Upstream Technology Group
ISSUE 1 SEPTEMBER 1999
BP Amoco Directional Survey Handbook
BPA-D-004
Contents Authorisation for Issue Preface Amendment Summary
Section 1
Section 2
Section 3
Section 4
Introduction 1.1
About this Handbook
1.2
Directional Survey and Value Addition
1.3
The Design-Execute Principle
Policy and Standards 2.1
Drilling and Well Operations Policy
2.2
Policy Expectations
2.3
Standard Practices
Theory 3.1
Surface Positioning
3.2
The Earth’s Magnetic Field
3.3
Position Uncertainty
3.4
Position Uncertainty Calculations
Methods 4.1
Multi-Well Development Planning
4.2
Survey Program Design
4.3
Anti-Collision – Recommended Practice
4.4
Anti-Collision – Selected Topics
4.5
Target Analysis
4.6
Survey Calculation
4.7
In-Hole Referencing
4.8
In-Field Referencing
4.9
Drill-String Magnetic Interference
4.10 Survey Data Comparison
September 1999 Issue 1
i
BP Amoco Directional Survey Handbook
BPA-D-004
Contents (cont’d) Section 5
Survey Tools 5.1
Inclination Only Tools
5.2
Measurement While Drilling (MWD)
5.3
Electronic Magnetic Multishots
5.4
North-Seeking and Inertial Gyros
5.5
Camera-Based Magnetic Tools
5.6
Surface Read-Out Gyros
5.7
Dipmeters
5.8
Obsolete and Seldom Used Tools
5.9
Depth Measurement
5.10 JORPs
Section 6
Technical Integrity 6.1
What is Technical Integrity ?
6.2
Risk Assessment
6.3
Surface Positioning
6.4
The Directional Design
6.5
Executing the Design
6.6
Survey Data Management
6.7
Performance Review
Appendix A
Mathematical Reference
Appendix B
Approved Tool Error Models
Appendix C
Data and Work Sheets
ii Introduction
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Preface This Issue 1 of the BP Amoco Directional Survey Handbook (BPA-D-004) is applicable in all areas of the BP Amoco organisation. In addition to the uncontrolled hard copies, this document is also available online via the wellsONLINE and ASK websites, accessible on the BP Amoco Intranet. The online document is to be considered the master version, containing the most up-to-date information. The distribution of this document is managed by the Upstream Technology Group (UTG) and controlled and administered in Aberdeen by ODL. ODL may be contacted as follows: UTG DCC or: ODL Buchanan House 63 Summer Street Aberdeen AB10 1SJ Scotland
UTG DCC ODL Mailbox BP Amoco, Dyce (through internal mail)
Tel 44 (0)1224 628007 Fax 44 (0)1224 643325 Alternatively, contact the UTG Wells Document Controller, Steve Morrison at BP Amoco, Dyce, Extn 3593 (44 (0)1224 833593
September 1999 Issue 1
v/vi
BP Amoco Directional Survey Handbook
BPA-D-004
Amendment Summary Issue No
Date
Issue 1
Sept 1999
September 1999 Issue 1
Description First issue of document.
vii/viii
BP Amoco Directional Survey Handbook
BPA-D-004
Section 1
Contents
Page
1-1
1-2
! " #
1-6
Well positioning process and associated files
1-7
Figure 1.1
September 1999 Issue 1
Introduction 1-i/ii
BP Amoco Directional Survey Handbook
BPA-D-004
Who this Handbook is for, and what it’s about.
1
! " # $%
& ' ( )*+ (,- % . / . $ 0+ &
1 $ # # # $ # $ & 1
$ * $ % ) # $ " &
$% # & '
1 " " % " & 1 ! #
# $ & 2 " # " $ &
September 1999 Issue 1
Reference to another section in the Handbook
Reference to a technical paper or publication Indicates a BP Amoco Standard Practice
Introduction 1-1
BP Amoco Directional Survey Handbook
BPA-D-004
& #
1 &
" 3 " ) % ) ' $ 1 % 21/& 4 3 "
% ) ' $ 1 % 21/& 1 ' & & #
1 % $ " " 5 % ' " ) +.6'.* $ 7) * $ $! 7
$!& & (#
$$ " $ # # % ) ' $ 1 % 21/& ' $ " $$ $ $ 4 3 " % " # 5 & 2 # & )
# " " % % &
0 " 5
" # $ & 1 $ % " % " &
1-2 Introduction
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
* &
0 " # $ # " & # % " 8 # " $ & (*+ & "$ $,
The well’s surface position must be directly above or at a known horizontal offset from the geological target located by the seismic survey, often taken months or years before. 1 " # % % $ " " " 3 & ' $ " # % "" % % # 3 $ & 0 " # # # # " # $ " & 0 # $
& . % % " $ & (- (*+ & "$ $,
The wellbore must be drilled such that it intersects an often small and distant geological feature. # $ $ $ " " % # # # $ & ) " " # & $ #
$ $
% # $ # $ " & 1 " # & 9 $ $ $ "
" # % 8 & +" % " $ " $ $ 3 &
September 1999 Issue 1
Introduction 1-3
BP Amoco Directional Survey Handbook
BPA-D-004
$ "
" & ' 3 " # $ $ $ " # " $ "
$& ) # $ $ " % " "" : # $ " $ "" : & ) % " "" " & &$.. $, $ ,&
The wellbore must not hit any existing wells which lie between it and the target. " " # ; " 5 $ # % # " &
# $ $ # % ' $ # " & 1 $ " # $% " $ % $ & 1
$ " # " "" # & & &
0 $ # ! $ 8 : $ " : 5 5 & $ 3 $ " " $ $ & 1 $ $ $ $ % $ # & " " &
1-4 Introduction
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
(* / "*$0* 1 &$
1 5 # # $ " $ & + $ % " 3 $ $ $ & 1 " 0) 5 <, " $ # & ) $ " " # 5 % " $ $ $ 8 " " & 1 2 1 ,0 * .. ,0 *$$1
" # $ 5 $ # # #
& 1 " % $ & )
% "" # % $ " " 3 % % $
& '
$ & " "" $ $ & . )
' $ $ % # " " # $ $ & 1 7 $ ! $ % $ % $ $ $ & 1 # # = â&#x20AC;˘ ' $ " " & $ $ $ $
% " 5 $ # $ $ $ # # $ $ â&#x20AC;˘ ' & 4 $ $ 1 " # " " " $ 3 % 5
September 1999 Issue 1
Introduction 1-5
BP Amoco Directional Survey Handbook
BPA-D-004
!
"
# $ Examining any question or decision about well positioning against this principle is almost guaranteed to help in its resolution. The purpose and content of the Directional Design and Well Survey Files are explained in Sections 6.4 and 6.6
1-6 Introduction
% & '
#
( ) ) *
$
!
#
September 1999 Issue 1
BP Amoco Directional Survey Handbook
Identify geological target(s)
Directional Design File Well Location Memorandum
BPA-D-004
Formalise well objectives and planned surface and target locations
Well Survey File
Well Data Pack or similar
Final Well Position Memo Position rig at surface location
Final proposed trajectory and survey program Acquire and validate survey data per program
Compile definitive well survey and load to database
September 1999 Issue 1
Design directional plan and survey program
Figure 1.1 Well positioning process and associated files
Survey reports
Defintive well survey
Introduction 1-7/8
BP Amoco Directional Survey Handbook
BPA-D-004
Section 2
" Contents
Page
3 $# "
2-2
" !#
2-3
"
2-9
September 1999 Issue 1
Policy and Standards 2-i/ii
BP Amoco Directional Survey Handbook
BPA-D-004
" What BP Amoco Policy says about directional surveying and what it means for your Business Unit.
1
" " $& 1 7 ! 7$ !
" $ # # & 1 " # $ $ &
5 3 "
$ ) + 7
$ ! & 1 " #& 1 "
$ ) 1 8 "% $ $ $ & $ 3 # 7 3 "
$ 0 $ !& 1 3 "
% 21/ ) ' $ 1 & # $ " " " & 1 5 "
$ &
September 1999 Issue 1
Policy and Standards 2-1
BP Amoco Directional Survey Handbook
BPA-D-004
7 ! 1 & " & 1
3 " 8 " $ %
% 2 1 6 & 1 2 1 6 8 " > # " 21/ 1 & 1 4 &? " $ & 1
" " % " # 2 3 5 " #& ) " # 8 $ % # $ # " # % & $$ #
3 " 8 " " & ' # " $ &
3 $# "
1
$ ) + 7 ! / " 1 $ @ + # " "
$& 2 " $ # 2 0 $ % " "" / & . % 2 # #
2-2 Policy and Standards
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
" " # 5 $ $ # Getting HSE Right& " " % 21/ ) ' $ 1 % &
" !#
1 $ # $ 3 "
$ italics& * 3 " # 5 # & 1 " " 5 3 " # % # 5 5 & 9
5 # % # " 3 # & $ " &
(12.5) A database of well trajectories (planned and actual) and all project data (slots, targets, locations and projections) shall be maintained in a form approved by a qualified person appointed by BP Amoco Senior Drilling Manager. This safety-critical database shall be the subject of a written plan approved by BP Amoco that describes how it shall be managed throughout the Business Unit life cycle. ,&, 1 0 $ # $ "= â&#x20AC;˘ ) â&#x20AC;˘ ) " $ "
September 1999 Issue 1
Policy and Standards 2-3
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ ) " $ " â&#x20AC;˘ 1
$ # $ $ # 2 " ,&A $ # " " " & ,&? " % 0 6 " 1 . / . # " & ,& $ 8 # " " " # % $ & ,&B $ # # $ " # % # & ,&- " $ # # $ # & # " & ,&C # " # & ' "
(8.4) The final position of all spud locations shall be confirmed by a qualified surveyor. (8.8) The rotary table elevation, relative to seabed at mean sea level and water depth (offshore drilling units) or the rotary table elevation relative to ground level (land drilling rigs) shall be determined and formally recorded.
2-4 Policy and Standards
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
A&, 9 $ # % " # # " ) 6 0 & A&A ' " # " 5 $ " 5 % " " # & ' " " "
" & A&? ) " $ 5 # " $ # Getting HSE Right & A& 1 " " # # 3 " % " %
9 ) 0 & A&B 1 $ " " # # # " # & A&- 1 $ ; 41*% D * & = â&#x20AC;˘ / $ # â&#x20AC;˘ "" # # % "
September 1999 Issue 1
Policy and Standards 2-5
BP Amoco Directional Survey Handbook
BPA-D-004
" )
(12.1) Survey programs for all wellbores shall be designed such that the wellbore is known with sufficient accuracy to: a) Meet local government regulations b) Penetrate the geological target(s) set in the wellâ&#x20AC;&#x2122;s objectives c) Minimise the risk of intersection with any nearby wellbore d) Drill a relief well (12.2) The performance specification of all instruments employed on operations shall be approved for the use by a qualified person appointed by BP Amoco Senior Drilling Manager. ?&, 1 $ $ # $ $ 8 & ?&A + " #
$ & ?&? 1 $ $ # " " & ?& ) # $ $
& ?&B $ $ $ # " $ $
$ $ & ?&-
! 1 $ # #
# " # &
2-6 Policy and Standards
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
?&C ' $ " $ " " # & 1 # " # $ $ ; % "= â&#x20AC;˘ 1 # " " # $ $ â&#x20AC;˘ 1 " $ â&#x20AC;˘ 1 " $ # ! $ $ " ?&E 1 $ # ""
" " & " ! F + $ 4 $ F+4 &
JORPs are discussed in Section 5.10
4 &
(12.6) On multi-well operations a collision check shall be performed on the planned well trajectory (12.7) All procedures for assessing tolerable risks of collision, defining minimum well separations and ensuring compliance with such criteria while drilling shall be approved by a qualified person appointed by BP Amoco Senior Drilling Manager. 9 5 " $ &?& 9 % 3 " &? # # & &, $ # # $ & &A # " # 8 # " $ " "&
September 1999 Issue 1
Policy and Standards 2-7
BP Amoco Directional Survey Handbook
BPA-D-004
&? 1 # " # # $ & & * # # " $ 0 8 0 & # 0 8 " # #
$ " & ' 0 " " # $ $ & &B 1 # " 0 8 # = ? Ď&#x192;,GĎ&#x192;A G H ,G A G Sb G & ,
I , ? Ď&#x192;,GĎ&#x192;A G H ,G A G Sb G ,
J , # Ď&#x192;, K Ď&#x192;A K , K A K Sb K
K
# , & & ' " $ # , & & ; # $ + " $ # # " &
&
&- 1 # " # # " =  d + d2  1 Ď&#x192; 2 ln 1  + (d + d 2 ) + Sb ďŁ RĎ&#x192; 2Ď&#x20AC;  2 1
# = Ď&#x192; R
2-8 Policy and Standards
K Ď&#x192;12 + Ď&#x192; 22 K 1 4
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
&C 1 1 4 # " " 3 " " $ # 2 & &E
$ # $ $ # & &L * $ # $
$ & &, " % " # # $ & &,, ) "" # # & &,A ' " $ % $ # $ % $ # "" ""&
"
5 " " % # $ $ # $ & 9
% # " & ,& # # " " # # " & A& # #
/
1 . % ?&, &
September 1999 Issue 1
Policy and Standards 2-9
BP Amoco Directional Survey Handbook
BPA-D-004
?& 0 $ # " = 1 " / $ / / $ 0 //0% ?&A %
" " % # # $
'94% &E & & 1 $ # # # ; ; & 7 ! ,A ! & & B& # 0 &E & -& " # $ -&- &
2-10 Policy and Standards
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Section 3
Contents
Page
' "
5 1 +
3-17
" (
3-21
4
" ( &
3-26
3-1
Figure 3.1
The Earthâ&#x20AC;&#x2122;s surface and the geoid
3-2
3.2
Globally and locally fitting ellipsoids
3-3
3.3
Dependence of latitude on choice of ellipsoid and datum
3-3
3.4
Relationship between geodetic heights
3-5
3.5
Geographical, mapping grid and drilling grid co-ordinates
3-7
3.6
Variation of grid scale factor across a mapping grid
3-8
3.7
Components of the magnetic field vector
3-18
3.8
The one dimensional normal distribution
3-23
3.9
A two dimensional distribution resolved in two directions
3-24
3.10
Principal directions and the standard error ellipse
3-25
September 1999 Issue 1
Theory 3-i
BP Amoco Directional Survey Handbook
BPA-D-004
Section 3
Contents (contâ&#x20AC;&#x2122;d)
Table 3.1 3.2 3.3 3.4 3.5
Page Definition of the drilling grid in some BP Amoco operation areas
3-9
The magnetic field in some of BP Amocoâ&#x20AC;&#x2122;s operating areas (approximate values as of 1 July 1999)
3-19
Confidence intervals for the one dimensional normal distribution
3-23
Confidence intervals for the two dimensional normal distribution
3-25
Error term propagation modes
3-27
3-ii Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
An introduction to the science of well surveying.
1
# # $ " # & ' 5 8 % $ " " " % % $ " &
' "
$ " 6 $ # # ! 5 " "" " $& 1 $ $ " "
% 21/ M 1 % & ) 0 0 $ , .. " $
1 * ! "
$ % $ " $ & 0 % $ $ % 3 "
$ & 1 # &
September 1999 Issue 1
Theory 3-1
BP Amoco Directional Survey Handbook
BPA-D-004
Mountain Range
Geoid Figure 3.1
The Earth
The Earthâ&#x20AC;&#x2122;s surface and the geoid
Ocean
1 $ $ 5 * ! " : & / # "
" 7 ! " ; 8 5 K 7 ! " $ K 7,>"! & 1 % " # " & 1 8 " & 1 # " & 6 " $ " # $ " * ! " & 5 ! ,E-- # $ . & 1 ,E-- $ " # $ 0 ! 4 D % $ . AC $ " & 1 " $ % " 5 % $ "" $ & / " $ 5 $ # * % " & )/ E $ $ " $ $ " $ )/ E # $ & ' / $ / &
3-2 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
globally fitting ellipsoid
geoid
eg. WGS 84
Figure 3.2 Globally and locally fitting ellipsoids area of best fit of ellipsoid to geoid
locally fitting ellipsoid eg. Clarke 1866
1 $ " * $ $ "
& '" $ $ % # $ " & 1 $ " 3 & 1 $ % # 3 # $ & grey ellipsoid black ellipsoid
perpendicular to grey ellipsoid
EQUATOR
September 1999 Issue 1
Point
perpendicular to black ellipsoid black latitude
grey latitude
Figure 3.3 Dependence of latitude on choice of ellipsoid and datum
Theory 3-3
BP Amoco Directional Survey Handbook
BPA-D-004
5 % " # $ "
= 6 & B ° !A &--,N .
6 & B ° !AA&CA?N .
6 $& ,°BL! ?&A,?N )
6 $& ,°BL! E&AL,N )
+ / ,L?- $
)/ E $
,E?
)/ E
. )/ E " & 0 , 0 * + * ,&
1 $ " * ! " % " $ $ % " !" & $ & 1 $ $ " $ & 1 # # & + % $ $ # 5 $ # & $ + % . # + . O 2DP . @ " ,LEE . @ EE O 2 P& ' % # # 5 " & 1 "
$ 6 # 1 6 1 0 6 # ) $ 06) & * "" " $ 6 1 " $ & 1 $ $ & $ $ # $ % $ 5 " # 5 $ & 2 " $ # $& 4 $ " 0 6 $ #
$ & $ &
3-4 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
$ $ " & 1 $ 5 / # % $ $ )/ E & ' $ $ " / % " $ Q$ $ N " & / $ " & 0 / $
$ $ & # % $ 5 / & & gravity-related height (h)
Geoid
Ellipsoid
ellipsoidal height (H) geoid height (N)
Figure 3.4
H=h+N
Relationship between geodetic heights
1 ## 0
$ " $ # ; % $ $ $ " " & " " $ # # & 1 * ! " " $ 3 " " $ $ $
$ & 1 " $ % $ "
September 1999 Issue 1
Theory 3-5
BPA-D-004
BP Amoco Directional Survey Handbook
$ & )
" % 8 $ " # # & 8 $ " #
8 # 8 % " 5 ED50 / UTM zone 31N . Nord Sahara 1959 / UTM zone 31N $ & . $ $ " 8 $& 210 ; ?, $ : $ " & " " % " # & 1 8 % $ " & 1
8 " 1 0 6 " % # " & + ""
" & 8 & / % 8 # $ $ $ & % $ & 1 $ $ 3 " # 8 8 & 9 3 " % $ & $ ; 2 1 0 210 2 0 " # $& 1 210 $ " 8 % - - $ " $ & 1 1 0 8 # "" $ $ $ & ; 5 / % 4 &
3-6 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
mapping grid
BPA-D-004
drilling grid
West of the Central Meridian, grid convergence is negative
lines of latitiude and longitude East of the Central Meridian, grid convergence is positive
Figure 3.5 Cross-section shown in figure 3.6
Geographical, mapping grid and drilling grid co-ordinates
Central Meridian
& ' # . & ' "
" 3 $ " 3 & . $ $ ; " # &
( ' # " "
$ $ & ' " " 3 " 3 & / & 1 $ " $ " & ' # % $ $ # $ # " & 1 # ?° G?°& $ "" "" % # " & ,° $ & '" $ % $ $ # $ ""
" " $ & 1 " % When survey measurements are related to grid north it is essential that the relevant map grid (projected co-ordinate system, including geodetic datum) is identified.
September 1999 Issue 1
Theory 3-7
BP Amoco Directional Survey Handbook
BPA-D-004
1 8 $ $ " # " $ " $ $ $ & 1 " " # &LLL ,& ,& ' " " % $ $
& Central Meridian grid scale factor > 1
Figure 3.6
e urfac â&#x20AC;&#x2122;s S h t r Ea
(Spheroid)
grid scale factor < 1
mapping projection
Variation of grid scale factor across a mapping grid
0
$ $ $ " # % ; "
$ $ & 1 " # % " " # # =
BP Amoco Standard Practice
BP Amoco Standard Practice
3-8 Theory
â&#x20AC;˘ 1 K # " $ " 5 " $ $ & ' " # $ $ $ $ & ) $ % 8 " â&#x20AC;˘ 1 $ $ $ " " $ $ & ' $ $ $ # "
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
3 " % "
" " $ $ # & " # $ # % " "" " & A
Structure Centred Referencing Survey Reference = True North
drilling grid north (DGN) drilling datum (= rotary table) TRUE NORTH
structure ref. point
(MAPPING) GRID NORTH
DGN
B
Norway UK - Forties UK - Magnus UK - former Amoco
Well Centred Referencing Survey Reference = True North
USA - Alaska
Table 3.1
C
DGN
Structure Centred Referencing Survey Reference = Grid North
Definition of the drilling grid in some BP Amoco operating areas
UK - former BP (excluding Forties, Magnus) Netherlands
DGN
D
Well Centred Referencing Survey Reference = Grid North
USA - Gulf Coast USA - Land Colombia
September 1999 Issue 1
Theory 3-9
BP Amoco Directional Survey Handbook
BPA-D-004
* .. ,0 0* * &$11 , $,
1 # "
$ / " $ " " $ " # $ & 9 # % " # $ = Survey Reference Direction â&#x20AC;˘ 1 . . # â&#x20AC;˘ / . " # Drilling Grid Origin â&#x20AC;˘ ) " $ â&#x20AC;˘ " $ " # 0 " )
1 / $ % / % " "" $ $ " $ " # & ' $ " " $ $ 8 # / & / " AC $ A % $ "
& " " 3 " / & . " % & 1 " " 5& " / $ & / # $ $ " " 2 / $ $ # & 1 "
3-10 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
$ / 5 R, R? " & $ $ # & ++ * , . 0" 6 0" 7
"" / $ # / & *
/ $ $ / # 7 " ! & 1
# # " & 1 " /
& 1 /
" / " # & 1 "" / 3 & " % & / $ R, B
" % " " % " $ "
/ & $ * 0" & , 8(
3 $ / $ $ 3 $ & 1 3 % 3 " # " $& 1 / 3 # ) % &* ( & 1 / " $ " RA B R, A & /
$ 3 " 41D " " , A 5 &
September 1999 Issue 1
Theory 3-11
BP Amoco Directional Survey Handbook
BPA-D-004
1 4 # ( % / & ' / #
" $ & 3 " / >/ & / # & & 1 3 " # & 1 " " # 1 Âą, ? & . $, 1 (* 1 ,
/ $ ; & 9 $ "" % / " $ " % $ # & + % / & ' 5 " " ; RA , " / & / $ )/ E
$ $ &
3 " & $ ' " )
" $ # / " & " / & ,LL "
$ # " "" $& " & 1 # $ $ "" & $ & # & 6 $
$ 0 ; $ & 1 $ $ % +,& $ / " % /
3-12 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
# $ & 1 # $ " " # &
# " / " $ # " # & 1 $ " " # # & ) " " 5 % & F 2 $ $ " 5 8 8 & 1
$ & + % # $ % # $ $ & 2 / " " $ # " $ / & ( % "
2 # $ $ 3 & 4 $ # $ " # & 1 "
$ # # " $ "
& 1 # $ $ " # % " " % # $ " " & 1 # "" $ " $ S $ 6 6 2 6 &
September 1999 Issue 1
Theory 3-13
BPA-D-004
BP Amoco Directional Survey Handbook
.$,0 - . , &$( & 6.-.7
1 6 6 $
" $
$ $ # " # " % $ / & " # " 5 $ # " & ) ""
% $ $ #
& 1 4+@% $ % " # % $& / % $ & '" " $ " $
3 & " $ " $ " " " 3 & *5 $ " 3 $ " R & B A % 5 $ $ " B & 6 # " 3 $ " , # " RA B & + # 5 &
" $ & '" $% " $ " "" % $ " $ & " # / % #
" &
3-14 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
(. * $* - . , &$( & 6( -.7
1 2 6 " $ & 1 " 5 " " & 4 $ 6 6 "
" $ $ & 1 3 $ $% " $ # " & 2 6 $ # %
" & 1 & 1 2 6 # & 1 $ " " # & 1 $ $ " " > > $ " & 1 " 2 6 $ $ " & '" #
: &BT " # & '" $ 2 6 3 % 2 6
" # & $ " $ 21/ M 1 & # # - % 6% 2 6 5 &
September 1999 Issue 1
Theory 3-15
BP Amoco Directional Survey Handbook
BPA-D-004
& . -* $,
& 6 6 $
" & 2 6 6
" $
" $% & "
$ " # "
$ & 3 " ( Section 3.3 explains the statistical concepts behind position uncertainty
0 "
$ / & / " , B A & 1 ; " / & 1 #
$ ; "" # / " " $
& ""
$ " "" & 0
" " "" & 1 " " $ % $ " % % $ & + # " # " ÂąB , % $ ÂąA B & 1 " # # $ # &
Section 4.2 gives the surveying requirements for relief well contingency
3-16 Theory
9 # # % $ # " # "" # & 1 ; " # $ "" 3 " # & ' "" $ 3 &
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
) "" " # 3 # = â&#x20AC;˘ 1 # % " & 1 " 8 " " â&#x20AC;˘ 0 "
& 1 " $ " 5 # $ " " " " 1 3 "
" " # $ & $ 3 % 3 " % 3 $ & 1 $ " & " " $ " # & 9 5 " % 21/ M 1 &
5 1 +
1 * ! $ " " % " # & ' " â&#x20AC;˘
. % D δ% " $ # "
; 8 " $ " % # % $ "
#
September 1999 Issue 1
Theory 3-17
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘
. % I Î&#x2DC;% " $ "
â&#x20AC;˘
/ % F B% # " $ "
; $ " % # # "
1 $ " % & 1 X% Y Z& True North
X
δ Y
Figure 3.7
H
Î&#x2DC;
Components of the magnetic field vector
F Z
1 ' " $ " 5 1 & * ! $ " # % & &" K , 1 &
3-18 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 " # $ $ 5 " $ " " ! 8 $ & 1 $ " ; " % #
$ "" " $ $& Long.
Declination
Dip Angle
Field Intensity
Horizontal Intensity
8°N
109°E
0°
0°
41,000 nT
41,000 nT
Abu Dhabi
24°N
54°E
1°E
36°
43,000 nT
34,000 nT
Egypt
28°N
33°E
3°E
41°
42,000 nT
32,000 nT
Kuwait
29°N
48°E
3°E
44°
44,000 nT
32,000 nT
Algeria
29°N
1°E
2°W
39°
40,000 nT
31,000 nT
Trinidad
10°N
61°W
14°W
34°
34,000 nT
28,000 nT
Colombia
5°N
73°W
6°W
31°
33,000 nT
28,000 nT
Azerbaijan
40°N
50°E
5°E
58°
49,000 nT
26,000 nT
USA â&#x20AC;&#x201C; Gulf Coast
28°N
88°W
0°
59°
48,000 nT
25,000 nT
Bolivia
17°S
62°W
9°W
-11°
24,000 nT
23,000 nT
Argentina â&#x20AC;&#x201C; Austral
54°S
66°W
12°E
-50°
32,000 nT
21,000 nT
UK â&#x20AC;&#x201C; Wytch Farm
50°N
2°W
4°W
65°
48,000 nT
20,000 nT
UK â&#x20AC;&#x201C; Central N. Sea
57°N
1°E
4°W
71°
50,000 nT
17,000 nT
Canada â&#x20AC;&#x201C; Alberta
55°N
114°W
20°E
77°
59,000 nT
13,000 nT
Norwegian Sea
65°N
7°E
2°W
75°
52,000 nT
13,000 nT
USA â&#x20AC;&#x201C; Alaska
70°N
147°W
29°E
81°
57,000 nT
9,000 nT
Location
Vietnam
Lat.
Table 3.2 The magnetic field in some of BP Amocoâ&#x20AC;&#x2122;s operating areas (approximate values as of 1 July 1999)
0 ) +
. * ! " % $ " 5 " = 1 , + .
1 " $ * ! " 5 LET " " $ * ! " & $ # # & ' . % " $ " 1 " $ &
September 1999 Issue 1
Theory 3-19
BP Amoco Directional Survey Handbook
BPA-D-004
0 1 & ! / 2!.
1 " & 9 $ $ $& 6 " # & 1 " % # " " # 1 &
. &1 '02 / 2!.
1 "
" # $ $ %
$ & ' " " & $ $ % " " " # 1 . % % $ " $ $ & 1 "" " $ $ " B&A "" $ $ " " $ &E & 0 ) 1
BP Amoco Standard Practice
3-20 Theory
$ % " % "
& 1 " " # " : " " $& ' / $ / / $ 0 (( " $ " $ " % & 1 //0
/ " " & '/49 ' / $ 4 " 9 % B % !
&
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
" (
$
" # & 1 " # "
$ # % " & 1 " #
% % 3 & # % # # & 9 5 % â&#x20AC;˘ ) $ ; # % " # " & 1 â&#x20AC;˘ ) $ $ $ & " $ % " # " $ " & 1 # " $ % # & ( $ )
9 % # " = 1
& & Ď&#x192;% $ "
" 3 " $ 3 "" # & 1 " " # $ # " ,&C,& . " " -ET " : " &
September 1999 Issue 1
Theory 3-21
BPA-D-004
BP Amoco Directional Survey Handbook
'" # ( U $ % O(%UP 3 & 5 % OBV?W%-VBWP $ LBT " " 2 & ' " 5 " " " " & 1 O Ď&#x192;%GĎ&#x192;P O AĎ&#x192;%GAĎ&#x192;P # " $ ?&E& 1 , $ A $ , A " & 1
" # & ' " $ % " -B& T L-&-T& $, 1 , $, . ,$*1 . * -( $,
9 $ % / "
& 1 # Âľ Ď&#x192; 2 " Ď&#x192; " =  â&#x2C6;&#x2019; (x â&#x2C6;&#x2019; Âľ )  1 f (x ) = exp   2 Ď&#x192; 2Ď&#x20AC;  2Ď&#x192;  2
1 " # $ " $ # , $ A $ " " & 1 -E&?T LB& T " # " # &
3-22 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
f(x) 0.4 0.35 0.3 0.25
Figure 3.8
95.4% confidence interval
0.2
The one dimensional normal distribution
0.15 0.1
-2 Ď&#x192;
0.05
-1 Ď&#x192;
68.3% confidence interval
+1 Ď&#x192;
+2 Ď&#x192;
0 -3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
x
LBT " " # % 3 A $ & 1 " ? $ # % 5 " $ T # 5 & B T " $ $ & ' # % 3 7G> A $ K LBT " !
3 5 & +
" " = confidence level
standard deviations
confidence level
standard deviations
confidence level
standard deviations
25%
Âą 0.32
80%
Âą 1.28
95%
Âą 1.96
50%
Âą 0.68
85%
Âą 1.44
98%
Âą 2.33
75%
Âą 1.15
90%
Âą 1.65
99%
Âą 2.58
September 1999 Issue 1
Table 3.3 Confidence intervals for the one dimensional normal distribution
Theory 3-23
BP Amoco Directional Survey Handbook
BPA-D-004
f(x) 0.4 0.35 0.3 0.25
Figure 3.8
95.4% confidence interval
0.2
The one dimensional normal distribution
0.15 0.1
-2 Ď&#x192;
0.05
-1 Ď&#x192;
68.3% confidence interval
+1 Ď&#x192;
+2 Ď&#x192;
0 -3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
x
LBT " " # % 3 A $ & 1 " ? $ # % 5 " $ T # 5 & B T " $ $ & ' # % 3 7G> A $ K LBT " !
3 5 & +
" " = confidence level
standard deviations
confidence level
standard deviations
confidence level
standard deviations
25%
Âą 0.32
80%
Âą 1.28
95%
Âą 1.96
50%
Âą 0.68
85%
Âą 1.44
98%
Âą 2.33
75%
Âą 1.15
90%
Âą 1.65
99%
Âą 2.58
September 1999 Issue 1
Table 3.3 Confidence intervals for the one dimensional normal distribution
Theory 3-23
BP Amoco Directional Survey Handbook
BPA-D-004
( % )
9 $ ?&L " # ; $ %
$ "" # & $ " % # $ " $ & ' " $ % " . * & North
Figure 3.9 A two dimensional distribution resolved in two directions
East
% # # " 5 & ' # # & 1 # 5 # 3 $ " $ , $
" & 1 # " # $ " $ &
3-24 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
direction of maximum variation
North
Ď&#x192;max standard error ellipse
Figure 3.10 Principal directions and the standard error ellipse
90
Ď&#x192;min
direction of minimum variation
East
' # " % " # " & 9 " # % # " & 9 % " $ " " $ " " "
& 9 5 % A& B $
% # 5 3 A& BĎ&#x192; max A& B Ď&#x192; min % LBT " $ " & + = confidence level
standard deviations
confidence level
standard deviations
confidence level
standard deviations
25%
0.76
75%
1.67
95%
2.45
39.3%
1.00
86.5%
2.00
98.9%
3.00
50%
1.18
90%
2.15
99%
3.03
September 1999 Issue 1
Section A.2 includes more details on the mathematics of position uncertainty, including how to calculate other values for Table 3.4.
Table 3.4 Confidence intervals for the two dimensional normal distribution
Theory 3-25
BP Amoco Directional Survey Handbook
BPA-D-004
4
" ( &
1 # #
# & ' % $ " # $ &A " # " 3 $ & 1 # # $ " " # &
For a full description of the method, see
" " & # % " $ "
&
)#
1 " " $ = â&#x20AC;˘ *
#
# â&#x20AC;˘ " $ % ; â&#x20AC;˘ *
" ""
â&#x20AC;˘ 1 # ; "
$ $ # â&#x20AC;˘ 1 "" # "
3 " ""
3-26 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' #
& ""
"
& ' " " # $ = â&#x20AC;˘ % $& 7
!
â&#x20AC;˘ # $ $ " % $ "" "
â&#x20AC;˘ ; % 5 "
â&#x20AC;˘ $ 3 â&#x20AC;˘ "" Ď ,% Ď A Ď ? $
# % # % " 1
""
! : # ! "" # # & 1 " = Propagation Mode
Ď 1
Ď 2
Ď 3
mean
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 â&#x2030; 0
Random Systematic Per-Well Global Bias
"
# "
$ " $ "
# "" &
September 1999 Issue 1
Table 3.5 Error term propagation modes
Appendix B contains a list of the current BP Amoco approved error models.
Theory 3-27
BP Amoco Directional Survey Handbook
BPA-D-004
& "
" " # $ =
3
â&#x20AC;˘ " :
$ $ $ " â&#x20AC;˘ # 8 % & " â&#x20AC;˘ # " 8 $ %
$ â&#x20AC;˘ "
Section A.2 describes the interpretation and manipulation of position covariance matrices.
@
, & & "
& 1 $ " $ & 1 " " % ?Ă&#x2014;? 5% & -
0
3 $ % # " ; & # $ "
# # &
& % " % 5& " #
; % $ $ % & *5 5 $ " # ; " ;
# $ & 1
$ " # % % $ "
% #
% % $ " 5 "
&
3-28 Theory
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 "" "
" # # " # & 1 " # $ "" = â&#x20AC;¢ *
# â&#x20AC;¢
! $ # $ $ $ â&#x20AC;¢ + $ % $ " $ #
#
1 # # " # = â&#x20AC;¢ 1 " # & ' $
$ !
â&#x20AC;¢ 1 # # $ $ & ' $
$ !
â&#x20AC;¢ 1 "" $ # % " % "
September 1999 Issue 1
Theory 3-29/30
BP Amoco Directional Survey Handbook
BPA-D-004
Section 4
1 Contents
Page 4
1 3 #) "
4-1
4
" )
4-6
4
& 9 * )) "
4-17
4 4
& 9 #
4-27
4 :
4-34
4 ;
&
4-39
4 <
* '
4-40
4 =
+ * '
4-48
4 >
1 '
4-55
4 ?
& )#
4-59
4.1
A well planned development
4-3
4.2
A poorly planned development
4-5
4.3
Flowchart for survey program design
4-7
4.4
Schematic of a relief well
Figure
September 1999 Issue 1
4-10
Methods 4-i
BP Amoco Directional Survey Handbook
BPA-D-004
Section 4
1 Contents (contâ&#x20AC;&#x2122;d)
Figure
Page
4.5
The minimum separation rule for major risk wells
4-18
4.6
How a nearby offset well appears on a travelling cylinder
4-27
4.7
Travelling cylinder co-ordinates
4-29
4.8
Rules and conventions for drafting tolerance lines
4-30
4.9
Principle of single wire magnetic ranging
4-32
4.10
Calculation of the drillerâ&#x20AC;&#x2122;s target
4-35
4.11
Calculation of the drillerâ&#x20AC;&#x2122;s target (contd.)
4-36
4.12
Effect of hole angle on size of drillerâ&#x20AC;&#x2122;s target (side-on view)
4-37
4.13
Drillerâ&#x20AC;&#x2122;s target volume for a horizontal well
4-38
4.14
Pinched-out drillerâ&#x20AC;&#x2122;s target â&#x20AC;&#x201C; a case for geosteering
4-39
4.15
In-hole referencing â&#x20AC;&#x201C; section drilled with multiple BHAs
4-42
4.16
In-hole referencing â&#x20AC;&#x201C; section drilled with single BHA
4-45
4.17
The IIFR principle
4-48
4.18
Typical process sequence in an IIFR operation
4-51
4.19
Typical data flow in an IIFR operation
4-54
4.20
Estimating magnetic axial interference
4-56
4.21
The principle of simple axial interference corrections
4-57
4.22
A Survey T-Plot
4-60
4-ii Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Section 4
1 Contents (contâ&#x20AC;&#x2122;d)
Table
Page
4.1
Required competencies for anti-collision work
4-19
4.2
Calculation of in-hole reference corrections â&#x20AC;&#x201C; section drilled with multiple BHAs
4-44
Calculation of in-hole reference corrections â&#x20AC;&#x201C; section drilled with a single BHA
4-46
Maximum acceptable axial magnetic interference corrections, by region
4-58
Forbidden hole directions for axial magnetic interference corrections
4-58
4.6
Rules-of-thumb when using the error ellipse method
4-61
4.7
Quantitative interpretation of the error ellipse method
4-62
4.8
Example of a Relative Instrument Performance analysis for azimuth differences
4-64
Rules-of-thumb for use with Relative Instrument Performance analyses
4-65
4.3 4.4 4.5
4.9
September 1999 Issue 1
Methods 4-iii/iv
BP Amoco Directional Survey Handbook
BPA-D-004
1
4
Mathematical, logical and procedural tools for optimum well positioning.
1
$
$ $ " # $& 0 " % " " " " # % 5 &
" 0 @
1 5 " % % $ & A " 5 % " 5 # #
$ &
4 1 3 #) " 1
$ " # $ " # %
$ * $ " # " " # # % $ & * $ "" 3 $& 1 3 " $ " # # " & 1 " # " " $ &
September 1999 Issue 1
Methods 4-1
BP Amoco Directional Survey Handbook
BPA-D-004
1 # $ $ $ $ # % " $ % " & ) " $ % " 5 $ # $ & & 1 " $ $ " $ & & 1 ' "
* " 3 # = â&#x20AC;˘ *5 $ " % $ # â&#x20AC;˘ / $ $ â&#x20AC;˘ 1 " $ $ â&#x20AC;˘ # " % $ # $ $ â&#x20AC;˘ $ 3 % # "
"
1 # $ = â&#x20AC;˘ $ % # $ $ $ % # $ 3 " â&#x20AC;˘ # $ " â&#x20AC;˘ $ # $ " # 8 1 $ % # # " & " & " 5 " # %
4-2 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
& 1 # # " $ "" $
" & * " " " & 1 " # " # " # $ # #
" 5 " $& # %
# - 4 / . 1 # #
" % # # " & 0 ' ' "
1 " " $ 5 " 5 &
$
9 $ &, # 7 ! " " # & Slot in use or planned for use Spare slot
A-2
A-6
Well location at fixed depth (say 500 ft bMSL) Drilled well path Planned well path
A-3
Figure 4.1
A-4
A well planned development
A-1
A-9
A-8
A-5
September 1999 Issue 1
A-7
Methods 4-3
BPA-D-004
BP Amoco Directional Survey Handbook
1 5 " # $ = â&#x20AC;¢ " & ) %
7 !% " & 1 " # 5 $ # â&#x20AC;¢ ) " % $ #
" â&#x20AC;¢ & 1 $ 5 " 5 " $ $ " â&#x20AC;¢ . " $ # # " % $ 5 # â&#x20AC;¢ . " $ % " $ & 1 "
#
â&#x20AC;¢ . $ " % $ " & $ % # 5 â&#x20AC;¢ # " 8 & 1 $
" # # $ > $ % $ 8 = â&#x20AC;¢ $ > "" $$ & $ # $
# " " $ â&#x20AC;¢ 1 # " "" $ % % # "
4-4 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ 1 " " â&#x20AC;˘ / 8 # " " # $ " # " % " $ &A # # % # $ " # & slot in use or planned for use spare slot
A-1
A-5
A-4
well location at fixed depth (say 500 ft bMSL) drilled well path planned well path
Figure 4.2 A poorly planned development
A-3
A-2
1 $ $ # % $ # $ 3 " " # & % $
" $ ""& ) " %
" " & # + % "
+ # # " " %
$ * $ % )
" # &
September 1999 Issue 1
Methods 4-5
BP Amoco Directional Survey Handbook
BPA-D-004
It may be necessary to incur extra cost to avoid the paths of wells that have yet to be drilled, or to survey the top-hole sections of wells more accurately than would be needed were the well being drilled in isolation. # " &
4
" )
3 # ) @
Appendix C contains a Survey Program Data Sheet, useful for inclusion in the drilling program
1 $ " # 3 " 3 $ " $ & " " $ # = â&#x20AC;˘ / "" # # # ! $ 8 â&#x20AC;˘ "" 3 â&#x20AC;˘ 3 > 1 $ " # $ -
# & % " $ & 1 $ $ & ' % $ = ,& 1 & A& % # " & ?& 4 $ " $ $% # & &
$
&
B& & -& $ % " & C& $ " " &
4-6 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' $ $ $ F+4 5 # " # $ &
JORPs are covered in Section 5.10
"
1 " $ $ 7 " 8 % % 8 # !& 9 $ &? # & identify geological objectives
identify drilling objectives
target tolerances while drilling maximum uncertainty of definitive survey
anti-collision, economic target size external magnetic interference relief well contingency regulatory requirements
select survey sequence
check objectives are met
well trajectory, casing program
approved error models
Figure 4.3 Flowchart for survey program design
check program robustness sufficient data redundancy contingency for tool failure
standard running procedures
check operational impact / economics adherence to â&#x20AC;&#x153;lessons learnedâ&#x20AC;? survey equipment suitability for well conditions survey equipment availability impact on drilling process (stationary pipe etc.) best use made of market place minimum cost solution
September 1999 Issue 1
specify program details station intervals minimum depth ranges validation surveys contingency surveys
record in drilling program
Methods 4-7
BP Amoco Directional Survey Handbook
BPA-D-004
$ $ $ -$ " # " $ $ & 1 # 5 " 8 $ $ $ % & 8 $ & * ' 3 &
$ " # " # 3 $ $ # $ & 1 # "" & ' " $ # & 1 " # $ $ # " # " $ $ ; & 9 5 # % " " " 3 " # # "
$ $ = â&#x20AC;˘ ' # " " â&#x20AC;˘ 4 $ # % #
â&#x20AC;˘ " $ 8 % $
4-8 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
* .. ,0 , "$ $, ,0 * . + 3 ..
. # " # % $ $ = ,& 1 " " $ # # & # % "" # % # # $ # & ' % # $ " $ & ' " $ #
" $ # " # & ' " $
" $ " " # # " $ # & A& " $ " $ # # 5 5 & 1 #
"
# & 1
# 3 " " # & ?& 1 " # # 7 ! : " $ $ " " # $ & ' % # $ # $ % # # # $ $ : # # $ $ $ " $ # : # " & 1 5 $ " " % % " " % $ 5 $ $ , " ? &
September 1999 Issue 1
Methods 4-9
BP Amoco Directional Survey Handbook
BPA-D-004
& 1 " " $ # $ " % # "" ; & 1 # # " 5 5 " &
$ " &
Figure 4.4 Schematic of a relief well
Relie
f we ll
last casing shoe above reservoir
Target well
â&#x20AC;&#x153;cone of uncertaintyâ&#x20AC;? around target well
first approach - above last casing shoe
second approach - at kill point
B& 1 " # # # & '" $ # % # $ # #
$ $& '" # # % " 3 " % " # # % % &
4-10 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
3 .. "$ $, ,0 * 8( * 1 ,
1 " # $ # 5 " " 3 " # $ & 1 $ " # $
3 #& ) % ) 1 " 8 " & 1 " # 5 # & ,& 9 #
$ ; % $ " $ ? , " A & 1 " = 2Ď&#x192; Absolute Uncertainty = â&#x2C6;&#x161; [ (2Ď&#x192; surface uncertainty)² + (2Ď&#x192; surface-to-seabed uncertainty)² +(2Ď&#x192; lateral wellbore uncertainty)² ] Example: Offshore well in 800m of water. 2Ď&#x192; surface uncertainty = 5m (typical of DGPS) 2Ď&#x192; surface-to-seabed unc. = 8m* 2Ď&#x192; lateral wellbore unc. = 10m 2Ď&#x192; Absolute Uncertainty = â&#x2C6;&#x161;[ 5² + 8² + 10² ] = 13.7m * See Section 3.1 for a discussion of USBL acoustic position uncertainty. Land and hydrographic surveyors will usually quote uncertainties at 2 standard deviations (2Ď&#x192;) by default. Check. In some high step-out development wells, the above criterion may not be practically achievable. A dispensation may be justified on several grounds: â&#x20AC;˘ Knowledge and/or depletion of the reservoir makes a blowout very unlikely â&#x20AC;˘ Wellbore uncertainty is substantially less in the high-side direction that in the lateral direction (this fact could be used by careful planning of the relief well) â&#x20AC;˘ The type of survey data to be acquired is amenable to further processing and accuracy improvement, should it be necessary. IIFR is an example â&#x20AC;˘ There is no practical means of improving the accuracy of the survey program
September 1999 Issue 1
Methods 4-11
BPA-D-004
BP Amoco Directional Survey Handbook
A& ' #
$ ; % $ 3 $ 3 " ; & 1 $ 0) % $ $ $ # $ & Camera-based magnetic surveys are not adequate for this purpose, except over short depth intervals (c. 300m or 1000ft).
?& 9 "" # " " $ % " ; "" # " " 5& 1 " " 3 , & ' "" ; " " # # $ 3 5 & LBL acoustics are described in Section 3.1
There are a number of ways in which limits on the departure from verticality may be determined. Measuring the well inclination in the water column, probably with MWD, is among the simplest. Use of LBL acoustics is probably the most accurate (but also the most expensive).
! 1 '
0 $ $ $ " & ' $ % " = ,& 1 $ $ " & 1 " # $ & 3 "
" $ &C " & A&
$ " " & $ "% $ " " $
$ $ &L &
4-12 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
?& *5 " " & $ " $ # # & ' $ " %
"
"" & 1 $ $ $ ; # " 5 " & * .. ,0 $( $+ & ,0 $
$ % $ " # $ $ " $ % " $ % " 8 $! $ & *5 # $ ; - A " " $ & / $% " " & 5 #
# $ &
$ # $ " "" # 1@ & ' % % $ ; " & * .. ,0 $( $+ &.( * $* & ,0 3 , $3
1 # 8 $ $ $ " "" $ ; " & ' $ % $ 5 " # ? " L " $% " # B " ,B & 9 $ % $ $ $ " " & 5 # $ " % = â&#x20AC;˘ 1 "" # ? " % # â&#x20AC;˘ 1 " #
September 1999 Issue 1
Methods 4-13
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘
$ $ 5 & 1 " 1 0, & , *+ * ,& & ,
1 5 " # 5 $ " " 5 " $% % $ " : "" " # & 1 " $ " $ $ # & 1 # $ " $ $ & 1 " " # " # = ,& " $ " 5 $ # ,%XN $ # " & # 5 " " "" # & A& $ % d % # # % " "" # % S1(di) S2(di),â&#x20AC;ŚSN(di).
?& % d % 4 $ $ $=
"
 1  1 1  S equiv (d i ) =  ... + + + 2 S d 2 S d 2 S N (d i )  ďŁ 1( i ) 2( i )
â&#x2C6;&#x2019;
1 2
This formula is based on the simplistic but useful assumptions that (a) the interfering field from each casing string is equal in intensity (b) the intensity decreases with the square of the distance from the casing.
& 3 $ # # &
4-14 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
* .. ,0 *$(, +
1 " $ " # $ " $ $ " % "" # & 1 " $ # # " " $ $ $ " & " ( ' '
1 # " $ $ $ =
â&#x20AC;˘ # # â&#x20AC;˘ 1 # " " # 1 " " 1 $ &B & 1 % # $ "" 3 % " " $% 3 % & . % / $ # " # $
& 1 $ $ $ 3 % " $ " 8 " # & * * A ) '
1 3 " # $ # $ $ 3
3 % " " " & # 5 % # "" " "" 3 & . % # $ # " % $ " " 3 " # $ $% " " &
September 1999 Issue 1
Methods 4-15
BP Amoco Directional Survey Handbook
BPA-D-004
*
1 " $ # " 8 "
$ " $
& 1
$
& 1 " " 3 F+4
$ $ % "" & 1 # " " 3 $ " " "" & ' % " % # "
% # "
"" " # & ' " $ $ = The precise interpretation of this rule for MWD surveys is described in Section 5.2
4-16 Methods
the amount of corroborative data in the form of check shots, multiple probe runs and the like must be sufficient at every stage to confirm the performance of each instrument run in the hole.
September 1999 Issue 1
BP Amoco Directional Survey Handbook
4
BPA-D-004
& 9 * )) "
1 " " 4 " % # # 2 5 & 0 $ " $ "
7 1 ! & & -
1 4 " 7 ( 4 !% # # " ( & $ " $ #& 1 4 # # # # " ,LL- % # " " # ! . % " $ # # & 1 "
$ " & & ,0 +*$1 -"2 * &$11 , "*$& (*
$ # ( 4 " # 5 " " = ,& 0 : 0 8 4 ) + ( = K A&BE Ď&#x192;,GĎ&#x192;A G Y & ,B
% ,B Z G Sb + . / = K Ď&#x192;,GĎ&#x192;A G d,G dA G Sb . # = K ? Ď&#x192;,GĎ&#x192;A G H d,G dA G Y & ,
% , Z G Sb
September 1999 Issue 1
Methods 4-17
BP Amoco Directional Survey Handbook
BPA-D-004
# Ď&#x192;, K # &
,
Ď&#x192;A K ' " $ # , & 1
" " "" # & , K ; # & A K $ + " $ # & Sb K # " & 1 # " % % "" & lesser of : a) 1% of drilled depth b) 10m
most likely position of interfering well
M
Figure 4.5 The minimum separation rule for major risk wells
3 Ď&#x192; error ellipse
IN IM UM
AL LO W
AB LE
SE PA RA TI O
N
radius of interfering well radius of planned well
4-18 Methods
3 Ď&#x192; error ellipse
most likely position of planned well
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
A& 0 : 0 4 ) 1 ( $ $ "
$ % " # & 1 # 4 # " " $ % $ $ 1 4 " # & 0 * A )
$ # " & Specifically, the following personnel must have been assessed by a directional specialist as competent in the following skills: Performing anti-collision calculations
Drafting anti-collision diagrams
Well Planners
Person responsible for â&#x20AC;&#x2DC;signing-offâ&#x20AC;&#x2122; wellsite drawings
Directional Drillers and DD Co-ordinators BPA Person responsible for â&#x20AC;&#x2DC;drill aheadâ&#x20AC;&#x2122; decisions
Using the anti-collision diagram for decision making while drilling
Table 4.1 Required competencies for anti-collision work
) # " % # #
# & $ # # $ &
" # 3 M 4 M4 " $ "" 2 1 6 &
September 1999 Issue 1
Methods 4-19
BP Amoco Directional Survey Handbook
BPA-D-004
'
" # "
8 & 1 # " " # " # # " 8 & 1 " # " " $ # & &
# " # 8 # " $ " "& For a database to be used for the definitive clearance scan, there must be a process in place which ensures that it is, for practical purposes, identical to the definitive drilling database. It need only contain a subset of the wells in the definitive database, but must at least contain all the wells known to have been drilled in the area of interest.
1 ) ) # &
1 # " # # $ $ $ #& The separations are considered as distances measured perpendicular to the planned well, so that they lie in the plane of the anti-collision diagram. â&#x20AC;&#x2DC;3Dâ&#x20AC;&#x2122; or â&#x20AC;&#x2DC;minimum distanceâ&#x20AC;&#x2122; separations are more conservative, but cannot be adequately represented on the travelling cylinder plot and are therefore not part of the Recommended Practice.
4-20 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
&. + & $, $+ 3 ..
* # # " $ 0 8 0 & 1 " # " # $ " " =
A nearby well presents a $ ) if a collision with it would carry a significant risk to personnel or the environment. It presents a ) if the risk to personnel and the environment in the event of a collision would be negligible. The Major/Minor risk classification is preferable to the more prescriptive Flowing/Shut-in classification because it forces the engineer to think through the implications of collision in differing situations. For example, the consequences of collision with an oil-producer just above a shut-in SSSV should certainly be subject to a thorough risk assessment before the well is classified as Minor risk. Conversely, a collision with the same well in the perforated part of the reservoir section might well justify the Minor risk classification. Used in this sense, â&#x20AC;&#x2DC;Minorâ&#x20AC;&#x2122; is a relative term â&#x20AC;&#x201C; a well may be classified as Minor risk without implying that a collision with it would be of minor importance.
) " $ # $ " # % " $ # & A well may present a Major risk for only a part of its length. For example, below the shut-in point, or more than a certain distance above the reservoir. Calculations involving the mud weight, shut-in pressure and fracture gradient may be required to establish at which depth the risk classification changes.
4 " # $ $
"$ $, . (,& * , /
# # $
% " $ &
September 1999 Issue 1
Methods 4-21
BP Amoco Directional Survey Handbook
BPA-D-004
1 # $ " & 1 &B " " # # 21/ 1 & 1 , 1(1 " * $, 9 1 B$* * C 3 ..
1 # " 0 8 # =
K ? Ď&#x192;,GĎ&#x192;A G H ,G A G Sb G & ,
I ,
K ? Ď&#x192;,GĎ&#x192;A G H ,G A G Sb G ,
J ,
# Section A.5 explains how relative surface position uncertainty is included in the minimum separation equation
Ď&#x192;,
K # , &
Ď&#x192;A
K ' " $ # , & 1
" " "" # & K ; # &
, A Sb Section A.5 explains how survey bias is included in the minimum separation equation
K $ + " $ # & K # " &
K
& # " ) 4 " % $ & Example:
Planned well uncertainty at 1 std. dev. = Ď&#x192;1 = Interfering well uncertainty at 1 std. dev. = Ď&#x192;2 = Hole size in planned well = d1 = 17.5" = Casing OD in interfering well = d2 = 13.375" = Allowance for survey bias = Sb = Drilled depth = DD =
8m 5.5 m 0.445 m 0.340 m 0m 650 m
Separation = 3(8+5.5) + H(0.445+0.340) + 0 + 0.01(650) = 47.4 m
4-22 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 , 1(1 " * $, 9 1 ,$* * C 3 ..
1 # # " = K
 d + d2  1 Ď&#x192; 2 ln 1  + (d + d 2 ) + Sb ďŁ RĎ&#x192; 2Ď&#x20AC;  2 1
# = Ď&#x192; K
Ď&#x192;12 + Ď&#x192; 22
R K 1 4 Example:
Ď&#x192;1, Ď&#x192;2, d1, d2, Sb as above Tolerable Collision Risk = R = 1 in 80 =
0.0125
Ď&#x192; = â&#x2C6;&#x161; [8² + 5.5²] = 9.71 m Separation = 9.71â&#x2C6;&#x161; {2 ln [ (0.445+0.340) / [(0.0125)(9.71)(2.51)] ] } +H(0.445+0.340) + 0 = 13.8 m The risk-based separation equation exhibits some unexpected behaviour. In particular, it is meaningless when
d1 + d 2 RĎ&#x192; 2Ď&#x20AC;
< 1
For more on the behaviour of the risk-based separation equation, and its derivation, see A.5.
This occurs when the relative position uncertainty of the planned and interfering wells is so large that the tolerable collision risk cannot be exceeded even if the planned well is drilled straight at the interfering well. The minimum separation In this case can be set to zero and no-go lines need not be drawn.
1 1 4 1 4 # " " 3 " " $ # 2 &
Section 4.4 gives guidance on determining Tolerable Collision Risk
For convenience, a risk level may be used which is less than the value determined from the cost-benefit analysis. Thus, for example, directional software might present a pick-list of rules based on risks of 1/10, 1/20, 1/50, 1/100, 1/200 and 1/500. A calculated TCR of 1/57 would indicate that the 1/100 risk-based rule should be applied.
September 1999 Issue 1
Methods 4-23
BP Amoco Directional Survey Handbook
BPA-D-004
1 , 1(1 " * $, 9 * &C 3 ..
9 # % : " " # # : # $ # & Even when this is done, it is sometimes impractical to apply the standard minimum separations rules immediately below the kick-off point. In this case, good judgement must be used to determine from what depth the standard rules should be enforced.
& )
$ # $ $ # & ' 5 % # $ 3 " %
# > & It is occasionally possible to represent drilling tolerance lines adequately on plan view or vertical section plots, eliminating the need for an anti-collision diagram. For example, where there is no interference near surface, a single interfering well is involved, and the interfering well remains either above, below, or to the left or right of the planned well. Where there is any doubt that the drilling tolerances can be represented accurately, clearly and unequivocally in this way, an anti-collision diagram must be used.
1 $ # " # # . $ ,A V & 1 # # $ # " # # & Use common sense when it is clear that a particular no-go line cannot be violated due to the presence of other, shallower drilling tolerances.
4-24 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
& 3
* $ # $ &
BPA-D-004
$
$ # $ #
# " 3 " & Where the only deviations from the survey program are altered start and end depths to survey sections, it will usually be sufficient to recalculate the uncertainty in the planned well and to decide if the consequent changes in position uncertainty are significant. Eliminating surveys from the program, changing instrument types, or radically changing depth intervals will always require a full rework of the anti-collision calculations.
# > F + $ 4 $ F+4 B&, & " % " # # $ & ,+* ,0 1 , $+ $. * ,& . ,
) "" # # & ' " $ %
$ # $ % $ # "" ""& When a tolerance line has been crossed, or is likely to be crossed if drilling continues, the situation must be assessed by the onshore drilling team. Firstly, the anti-collision diagram must be examined to confirm whether either the tolerance can be relaxed without violating any no-go areas (for example if the line has been drawn to smoothly join two no-go areas), or
the tolerance line protects only planned well(s) and there is sufficient room to safely re-plan these at a later date.
In either case, an amendment to the anti-collision diagram with the tolerance line moved to allow drilling ahead can be prepared. If only a small section of the diagram is affected, it may be faxed to the rig.
September 1999 Issue 1
Methods 4-25
BP Amoco Directional Survey Handbook
BPA-D-004
It is always better to provide the rig with a revision to the anti-collision diagram than with verbal or written instructions. It will usually only be possible to relax a tolerance line by a limited amount, over a limited extent of the diagram. This information is difficult to convey in words. If the tolerance line protects an existing well, the options to be examined include: •
Plug back and side-track
•
Re-survey with a more accurate tool
•
Perform a QRA analysis to justify drilling ahead
•
4-26 Methods
Drill ahead with increased survey frequency and alertness (this may be appropriate where a tolerance line is just being ‘grazed’)
September 1999 Issue 1
BP Amoco Directional Survey Handbook
4 4
BPA-D-004
& 9 #
&
For more
1 1 $ 8 "
& 1 8 " % # " "" # & 1 " # $ $ # # "" # = 40â&#x20AC;&#x2122;
20â&#x20AC;&#x2122;
0â&#x20AC;&#x2122;
!" ! # $ %
! &
#
0
N
W
information on the Travelling Cylinder and its uses, see
E
S
40â&#x20AC;&#x2122;
1000â&#x20AC;&#x2122;
2000â&#x20AC;&#x2122;
40â&#x20AC;&#x2122;
20â&#x20AC;&#x2122;
992â&#x20AC;&#x2122;
2910â&#x20AC;&#x2122;
270
1976â&#x20AC;&#x2122;
80â&#x20AC;&#x2122;
992â&#x20AC;&#x2122; 20â&#x20AC;&#x2122;
90 1976â&#x20AC;&#x2122;
4779â&#x20AC;&#x2122; 3826â&#x20AC;&#x2122;
40â&#x20AC;&#x2122;
20â&#x20AC;&#x2122;
60â&#x20AC;&#x2122;
60â&#x20AC;&#x2122;
How a nearby offset well appears on a travelling cylinder
40â&#x20AC;&#x2122;
20â&#x20AC;&#x2122;
2910â&#x20AC;&#x2122;
180
3000â&#x20AC;&#x2122;
3826â&#x20AC;&#x2122;
Figure 4.6
20â&#x20AC;&#x2122;
40â&#x20AC;&#x2122;
60â&#x20AC;&#x2122;
80â&#x20AC;&#x2122;
4000â&#x20AC;&#x2122;
4779â&#x20AC;&#x2122;
5000â&#x20AC;&#x2122;
interfering well
planned well
* + * ,& (* /
' $ # 8 & 1
" $ $ $ & " # # 8 &
September 1999 Issue 1
BP Amoco Standard Practice
Methods 4-27
BP Amoco Directional Survey Handbook
BPA-D-004
* + * ,& * & $,
BP Amoco Standard Practice
' $ % # ; # $ & 1 # . " $ %
7 . !& " # # # $ ,A ! & 1 $ " # $ # $
" $ $ % " & 1 " . "
8 # # % # $ # $ "
5 # $ $ # " # & 1 $ " " $ # $ % # # $ " 3 & * .. ,0 &/. , * &$ $* ,
$ " # & 1 " " $ & % " # & 1 % # $ $ & % $ # " # $ # ; & ) # % % $ $ $ " # & $ $ # $ # 1 # # " $ $ & 2 " " # & ' % % " $ # " &
4-28 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
320 50 300
40 30
Relative Bearing = 96 deg
Figure 4.7 Radial Distance = 31 m
Travelling cylinder co-ordinates
2347 2370
Relative Depths
Interfering Well
,$ 0$ * , $. * ,& . ,
1 $ " $ $
8 ! $ & "" # % # # # $ " & $ $ # # % % % # $ &
# $ $ "" # $ # 3 " & 9 % # # " 7 $ ! & ' $ % $ $ $ & 1 # &
September 1999 Issue 1
For a step-bystep guide to drawing tolerance lines and completing anticollision diagrams, see ' ( (
) & $ * by Hugh
Williamson, UTG Well Integrity Team
Methods 4-29
BP Amoco Directional Survey Handbook
BPA-D-004
* + ,0 $. * ,& . ,
1 " # $ " $ # " "
$ $ # & Here, there is room to cross the 800 ft line before reaching 1000 ft, whilst staying outside the minimum tolerable separation. Separate tolerance lines have therefore been drawn. 1000 900 800
800
1000 900 800
Figure 4.8 Rules and conventions for drafting tolerance lines
A separate 800 ft tolerance line here would be pointless. It could scarcely be crossed without drilling within the minimum tolerable separation at a greater depth.
1000
960
980
1000
Entering this area would violate the minimum tolerable separation at 990 ft, even though the no-go area has not been plotted
& *
The worksheet, plus 3 completed examples, is in Appendix C.
4-30 Methods
1 1 4 "
# # " # # & ' 5 " "
& # $ " "
# & 1 " "= 1 " 3 " C ) & 1 " $ $ V ) & 1 " M4 $ & . &
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
" 1 4 % " # % # V/C & # % 2 # 3 % # # " $ 1 4 $ " $ # $% 8 $ & " " A 1 4 "" " # & ) " % " M
F $ # " # " # $ & * 3 "" # 8 " 1 4 % 3 ) & ' $ % " # = â&#x20AC;˘ 1 " " $ # % # 8 % $$ & â&#x20AC;˘ 1 " " @% # " $ % & â&#x20AC;˘ 1 " " $ " 3 " 5 # 1 # $ $ " $ $ % $ % & ' # $ $ & 1 5 5 " # " $ " " 3 & &
September 1999 Issue 1
Methods 4-31
BP Amoco Directional Survey Handbook
BPA-D-004
For more on the practical limitations of QRA applied to anti-collision see
+ , , ! ( & - &.) / & 0 - &
For more information see
+ + &
# 1& $
$ $ - $ $ ! " 2 3
&.
5 ) - $ ) & 1 " # $ " " %
" " M4 # "
& )
# $
"
$ " " 3 & 3 1 *
)04 3 $ " $ "
" # % # " & ' @ 0 $ ' & " ' % . # U & 1 2 B% EB% ELS B%B,B%L?, B%-BC%EA-& *5 $ " $ #
> & "* ,& ".
$ " #
$
$ # # & 1 " 0) $ # &
# 0) " $ "" & " # & well being drilled MWD sensors
w
Figure 4.9 Principle of single wire magnetic ranging
r B
well to be avoided wire inside well carrying current I
eletromagnetic field lines
4-32 Methods
conductor electrically grounded
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
'" " $ # % $$ $ & 1 " # # & '" % ? , " " "" & 1 " #% " $ # " # $ & " 5 " $ # " # 0)
% #
$ # & "" $ $ $ " # * ! $ " " % $ 8 " % B,
# & 1 " % r% " 0) " $ Âľ I # % ! 6 #% B = 0 2 (r Ă&#x2014; w ) # w 2Ď&#x20AC; r
" $ # & 1 r $ 8 " 3 = r=
Âľ0 I
2Ď&#x20AC; B
2
( w Ă&#x2014; B) &
"". & $, , " *+$*1 ,&
)04 # # $
# #
& ' "" # " $ # # # " # 8 & # " $ # $ $ " 3 " " $ &
September 1999 Issue 1
Methods 4-33
BP Amoco Directional Survey Handbook
BPA-D-004
1 $ "
% # 5 # " % " 0)
& ) % ,A
%
" Âą " , " Âą,B " A " 5 % # 5 $ " AB " & ' $ 21/ $ # " &
4 :
1 % $ $ 8 " # " " " # & ' " % " 3 # # " $ & " % # , T $ $ 8 & ) "
' $ " $ &
' $ $ ! &
* " & # $ " 5 $ "
$ & # 3 $ & 1 #
$ $ $ $ & 4 " $ 3 &
4-34 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
5
1 " $ $ $ # # "" "
6 & ' " $ &, # $ $ $ # & /
% , " # $ # " $ &, &
(a)
surveyed well path
(b)
geological target
Figure 4.10 Calculation of the drillerâ&#x20AC;&#x2122;s target
apparent point of penetration
2 s.d. error ellipse
* $ " , # # " $ $ $ $ & ) $ " $ $ $ " LAT& $ $ $ $ $ $ &,, &
September 1999 Issue 1
Methods 4-35
BP Amoco Directional Survey Handbook
BPA-D-004
(c)
geological target
(d)
Figure 4.11 Calculation of the drillerâ&#x20AC;&#x2122;s target (contd.) well direction
inclusion probability drillerâ&#x20AC;&#x2122;s target at 95% confidence
> 95% 90% - 95% < 90%
9 % # " " $ $ $ # # % % LBT% 7 ! $ LBT " !& 1 # &,, % $ & ' & ' .
1 $ $ # 2 $ $ $ ! $ % " $ & ' % " $ $ $ % ! $ " $ " $ LLT % #
$ $ "" & 9 $ $ $ % 5 # % ; $ # % & # % " $ ; " ! $ $ " # $ =
4-36 Methods
5 $ $ $ $ # $ $ &
* &
$ # "
$
$ &
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
$ " " $ # $ $ &
" " LBT L T " 3 &
! $ " L T " 5 & ' 5 % " # 3 & '' ' ##
1 ; " ! $ 7 ! #! " $ $ $ & 0 $ " ; " # # % # " $ & 5 % ; $ # ; # & Low angle well
High angle well
(1) uncertainty is magnified by foreshortening
Figure 4.12 highside uncertainty
highside uncertainty
(2) target is truncated at near and far edge by magnified uncertainty
Effect of hole angle on size of drillerâ&#x20AC;&#x2122;s target (side-on view)
geological target drillerâ&#x20AC;&#x2122;s target
# % " $ $ $ " $ $ " $ "" " $ $ & 1 5 % "
" = amount of target truncated at front & back = highside uncertainty / cos (incl)
9 3 # % # $ ! $ LET " &
September 1999 Issue 1
Methods 4-37
BP Amoco Directional Survey Handbook
BPA-D-004
The BP Amoco algorithm and the graphical method are described in Section A.4
& ' 5
0 $ # " # & $ " # " " $ " $ & % ! $ # " $ & 1 $ 3 & ' D 3
" " $ "" # $ $ $ % $ " ; # " ; & 1 " $ $ $ " " & 1 "
% 5 % 1 " # &
! $ " % 8 % " $ ! $ #& exit (or TD) plane
Figure 4.13 Drillerâ&#x20AC;&#x2122;s target volume for a horizontal well
direction of well
entry plane geological target volume drillerâ&#x20AC;&#x2122;s target volume
'" $ $ % "" ! $ 7 !&% # #& 1 $ $ $ $ & ' 8 $ $&
4-38 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Figure 4.14 Pinched-out drillerâ&#x20AC;&#x2122;s target â&#x20AC;&#x201C; a case for geosteering
direction of well
â&#x20AC;&#x153;pinched-outâ&#x20AC;? drillerâ&#x20AC;&#x2122;s target
4 ;
geological target volume
&
1 5 $ " # " $ # . % * % 1@ % " % % ; & 1 3 " " 5 $
" % # $ % $ $ 5% # $ ' & 1 " % # $ # &
The minimum
' " # & 7 " !% 7 $ $ ! 7 $ ! " % % $ & 1 % 8 # $ " # $ % " # # &
BP Amoco
September 1999 Issue 1
curvature equations are given in Section A.1
Standard Practice
Methods 4-39
BP Amoco Directional Survey Handbook
BPA-D-004
* &
1 " $ $ % ; " #
% & ' % # # 8 " & 2 " % " 3 % & % # $ $ " % &,&
4 <
* '
' " $ ' 4 $ 3 $ # " 8
0) & ' $ & $ % 5 . & " # ' *
' " $ # $ " 0)
$ " % $ ;
# 3 # 0) & 1 # 8
"
0) ; : $ 5 $ " : $ $ ! $ &
0) " # # # 0) > &
4-40 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
## ' *
' " $ #
BPA-D-004
â&#x20AC;˘ 1 # $ A ° â&#x20AC;˘ ; A " # $ # ' 4 : # â&#x20AC;˘ 1 $ ; 5 70 5 $ ! # # -
' % 0)
" $ #
$ # $ & ' " $ $ 0) & ' % # & )# &
' " $ 8 $
& ' ! $ 3 $ : " &
$ " # $ # # # " #
0) &
Survey data comparison is described in Section 4.10
It is vital that all IHR corrections are checked for reasonableness as well as numerical accuracy, and that unusually large or highly correlated corrections are investigated by a survey specialist.
September 1999 Issue 1
Methods 4-41
BP Amoco Directional Survey Handbook
BPA-D-004
* "
1 # $ # & ) " $ # $ % " # " # &
in-hole reference interval
Figure 4.15 In-hole referencing â&#x20AC;&#x201C; section drilled with multiple BHAs
gyro multishot survey BHA #3 BHA #1 BHA #2 IHR MWD surveys
BHA #1 BHA #2 BHA #3 MWD surveys
,& # B " ,B , " ? " $ # $ & 1 $ # # 5 " $
" # & ) % # $ A " 3 & 1 0)
" $ # $ # $ &
4-42 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
A& $ $ 1 " & 1 3 # $ " $ $ $ " $ $ & AB" , & 1 & ?& + # " # & 1 =
" $ # $ "" " $ " & AB " CB &
A " - $ &
# ; " &B° # &
1 > ' 4 % 70 5 $ ! #& & " % # $ % 0)
# ' 4 & 1# % # " $ # " L °% $ ;
& "" ' 4 & 1
& 1 " $ % " 0) 5 " $ & B& ;
# 3 0) > # $ &
September 1999 Issue 1
Methods 4-43
BP Amoco Directional Survey Handbook
BPA-D-004
& .&(. $, $+ * &$** & $, 9 1(. ". -
) $ % ' 4
" $ $ 0) ; # " ; & 1 " # $ 5 =
Table 4.2 Calculation of in-hole reference corrections â&#x20AC;&#x201C; section drilled with multiple BHAs
Measured Depth
Gyro Azimuth
1250 1275 1300 1325 1350
271.62° 271.81° 271.77° 272.04° 272.16°
1315* 1413 1508 1604 1255* 1699 1793 1300* 1886 1980 2073
MWD Azimuth
BHA #
Interpolated Gyro Azimuth
IHR Correction
Corrected MWD Azimuth
272.7° 273.6° 274.1° 274.3° 272.1° 274.2° 274.7° 272.9° 276.1° 276.2° 276.5°
1 1 1 1 2 2 2 3 3 3 3
271.93°
-0.77° -0.77° -0.77° -0.77° -0.44° -0.44° -0.44° -1.13° -1.13° -1.13° -1.13°
271.93° 272.83° 273.33° 273.53° 271.66° 273.76° 274.26° 271.77° 274.97° 275.07° 275.37°
271.66°
271.77°
* In-hole reference station * *$ " & &$** & $, $+ 13 (* /
' ;
# ' 4 & '" 0) # ' 4 % ;
"
$ " $
" &
4-44 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1$ + "*$& (* +$* ,0. - & $,
) $ # # $ % 5 ' 4
=
Figure 4.16 In-hole referencing â&#x20AC;&#x201C; section drilled with single BHA
gyro multishot survey MWD surveys rejected due to external magnetic interference
MWD surveys used for calculating IHR correction
IHR corrected MWD surveys
,& ' " $ A " % ' 4
" 0)
& 1 " # $ 0) 5 " = â&#x20AC;˘ 0) # # " 5 $ " 5 $ â&#x20AC;˘ 0) # " 5 $ ; J &B° # â&#x20AC;˘ 0) # ' 4
# 3 "" $
September 1999 Issue 1
Methods 4-45
BP Amoco Directional Survey Handbook
BPA-D-004
A& 1 " " $ $ 0) % $
& ?& 1
&
#
& " % ' 4
" # $ & 1 " # $ # # $ ' 4
=
Table 4.3 Calculation of in-hole reference corrections â&#x20AC;&#x201C; section drilled with a single BHA
Measured Depth
Gyro Azimuth
6200* 6300 6400 6500 6600 6700 6800
83.23° 83.06° 82.69° 82.24° 82.38° 81.60° 81.45°
6276 6370 6467 6562 6655 6749 6842 6936 7030 7125
MWD Azimuth
Interp. Gyro Azimuth
Azimuth Diff.
82.1° 81.6° 81.3° 82.2° 81.1° 80.7°
83.10° 82.80° 82.39° 82.33° 81.95° 81.53°
1.00° 1.20° 1.09° 0.13° 0.85° 0.83° mean
79.9° 79.1° 77.9° 78.0°
IHR Correction
Corrected MWD Azimuth
reject â&#x20AC; reject â&#x20AC;Ą +1.03° +1.03° +1.03° +1.03° +1.03°
80.93° 80.13° 78.93° 79.03°
* For illustration only â&#x20AC;&#x201C; reference survey interval should be 25 ft or 10 m. â&#x20AC; Rejected â&#x20AC;&#x201C; statistical outlier. â&#x20AC;Ą Rejected â&#x20AC;&#x201C; azimuth change between reference survey stations >0.5° (Azimuth change between 6600 ft and 6700 ft = 81.60° â&#x20AC;&#x201C; 82.38° = -0.78°).
4-46 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 2 1(1 & ,0 , $. * & $,
' " $ ;
"" $ 0) $ & 1 " $
% " 5 $ " $ $ & 1 5 $ & 1 " # $ "
$ $ $ " 0) " &L " = Max. change in sin(Inclination)sin(magnetic Azimuth) â&#x2030;¤ Âą0.25 Example A proposed IHR section starts at 65° inclination, 150° magnetic azimuth, and finishes at 75° inclination, 130° magnetic azimuth. Is this change in hole direction acceptable ? Answer sin(65°)sin(150°) - sin(75°)sin(130°) = 0.45 - 0.74 = 0.29 The change in hole direction is too great, and IHR cannot be applied over the whole section. , $. * + * ,& ,0 $+ . & *$, & 1(. $
* " # 0) # $ & ;
" # " % " 5 $ 5 $ " &
September 1999 Issue 1
Methods 4-47
BP Amoco Directional Survey Handbook
BPA-D-004
4 = For a complete discussion of interpolation in-field referencing, see
+ , - )/ & 1 !" $"
00 4 ( 5 * $ ) 6 - $ ! " 2 and ,
00 0 ) 6 - $ - * 7 &" 8 &
Figure 4.17 The IIFR principle
+ * '
$ 3 " " $ & $
$ % 3 " $ $ " $ & . " $ " $ $ " / $ / / $ 0 //0 & # % $ $ " " & 1 " " ""
# $ $ " ?&A & ' % $ # $ " $ " # $ & 1 & 1 3 " " " $ ''94
5 & ''94 "" " $ $ " # $ " $ " & ' "" 7 ! $ % $ $ " $ 3
& Measured Field at Observatory
Mean Offset Derived From Wellsite Survey
Calculated Field at Wellsite
Observatory Wellsite
4-48 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 + 1
+ % 7 ! " $ " $ 3 :
3 # % $
$ 3 & +"" % % $ " & 1 " $ 3 " $ 5 & 1 $ " " $ " $ # " $ & 1
" $ " " $ & " " % " $ $ $ $ " & 1 $ $ "" & 1 " " " $ " " & 1 # $ =
1 " & 1
" "
" $ &
1 ; " & $ "" " # # " % 5 $ ; " &
1 # $ B B &
September 1999 Issue 1
Methods 4-49
BP Amoco Directional Survey Handbook
BPA-D-004
1 $ # 5 " $ $ " " " $ " # $ & ) 5 % 5 $ " " $ "
& + * ' $#
'94 & ' 3 " $ 3 % $ " 5 # $ ""& 1 $ $ 5 & . $, $+ 1 0, & + . .(
$ " " " " % 3 & 1 $ ''94
0) # $ $ # $ & 1 % " # $ "" = â&#x20AC;˘ 4 $ " # # " $ $ 5 â&#x20AC;˘ '" $ # % " 0) % â&#x20AC;˘ ''94 0) ; # " 0) ; &C
"". & $, $+ +*
% " ''94 3 & 1 $
$ " & 1 # " ''94
# 3 &
4-50 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Real time (rig site)
Figure 4.18
Typical process sequence in an IIFR operation
!
Regular turn-around (office)
D # $ " "
# # & 9 % "
$ $& 1 " % $ " # # % " 5 # " 8 " & % " " $ $ #
$ 3 $& 0) 3 $ " $ % & * $ # $ & *5 $ $ % $ % G> , "" % 0) > $ $
$ & 9 3 5 5 $ " " $ 5 "
3 &
September 1999 Issue 1
Methods 4-51
BP Amoco Directional Survey Handbook
BPA-D-004
$" $, +$* "*$& ,0
1 " $ " $ # # ''94& 1 $ 3 5 & 1 "" " $ % 5 " $ $ 5 & 1 % # #
= " $ $ % " " " # & 1
" ;
" # & Correction for crustal field declination 1 $ " $ "
"
$ ; & % # 3 $
"
& $ " & 1 $ & "" # " " % $ 3 " & OPTION 1
Correction for crustal field declination and drillstring interference
" 5 $ " $ " $ " $ " $ & 1
# " $ $ " # " & + # " # $ " ; # 5 & * " $ " $ $ + , " # & OPTION 2
4-52 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Correction for tool sensor errors, field variation and interference using near real-time data 1 "" "
B&A # " # 5 " $ " " $ " & / $% " % " "" "" # $ & OPTION 3
+* 8( ,&/ $+ . */
1 " 3 " $ 3 # = â&#x20AC;˘ D $ $ " " # â&#x20AC;˘ $ " " # ""
$ â&#x20AC;˘ 0 $
$ " $ % " 3 % " # " " & ' " $ $ % # # $ " # % # 3 " # & '" " $ ''94 " " # % "
$% $ $ & 0 $ $ $ " & 1 # # $ &
September 1999 Issue 1
Methods 4-53
BP Amoco Directional Survey Handbook
BPA-D-004
* & 1 , 0 1 , , &$11(, & $,
3 " ''94 "
$ & 1 % $ % 0) " $ & 4 $ & 1 " " 5 3 5 & Observatory Data (bulk) Geomagnetic Data Centre
Figure 4.19 Typical data flow in an IIFR operation
Observatory Data (real-time)
Permanent Magnetic Observatory
IIFR Processed MWD surveys
Directional Engineerâ&#x20AC;&#x2122;s Office
IIFR Data Processing Office
RAW MWD sensor data
Logging Unit
$3, * " , " , * 0
1 " 7 $ ! # % 8 1 $
2D . * 4 / $ )+LC, ,?& ) $ $ " % / # $ " " & 1 " $ " $ " % $ " $ " $ & '
" " $ " # " 21/&
4-54 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
4 >
BPA-D-004
1 '
0 $ " " $ "
" $ & ' # = â&#x20AC;˘ $ $ 5 " % $ & "
$ " 5 â&#x20AC;˘ 0 $ $ $ 5 " & ' ""
" # 7 !
! '
1 " 5 " $ ' " % "
& - & $*/
0 $ $ $ % # $ & 1 " % B % " " $ % P% ! % z: Bm =
P 4Ď&#x20AC;z 2
Bm 1 K, 1 % z % " ) Âľ) & $ "
Âľ) % , & & " " & ' 5 &
September 1999 Issue 1
Methods 4-55
BP Amoco Directional Survey Handbook
BPA-D-004
1 5 " $ " % % " " "" " & 9 $ &A # # # " # " $ & ' " # & 0 $ % $ # & magnetic sensors
P1
P2
Drill Collar
Mud Motor
z1
Figure 4.20 Estimating magnetic axial interference
P1 Drill Collar
P2
z2 magnetic sensors
P3
P4
Stab.
z1
1  P1 P2   +  4Ď&#x20AC; ďŁ z12 z 22 
Bax =
Mud Motor
z2
z3
z4
Bax =
1  P1 P2 P3 P4   + + +  4Ď&#x20AC; ďŁ z12 z 22 z 32 z 42 
1" & $, - 0,
1 ;
% â&#x2C6;&#x2020;az% 5 $ " 5 " " % % $ " " " $ " & ) " $ " # ; " * ! " % " # $ 5 " 5 = â&#x2C6;&#x2020; az =
180 Bax . .sin( Inc).sin( Azi ) Ď&#x20AC; BH
# BH ; $ " $ ?&A " 5 % Inc Azi $ ; & ' $ % $ " 5 "
$ &B°& 1 # " $ $ , & &
4-56 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
2 . , *+ * ,& &$** & $,
$ #
" 5 " " & 1 # " $ &A,= Problem
Solution apparent magnetic north
axial interference vector (magnitude unknown)
B + Bax
(1) we can measure this vector (2) and we know the interference vector acts in this direction (3) and we know the Earthâ&#x20AC;&#x2122;s field vector is this long:
Figure 4.21 B + Bax
Bax
The principle of simple axial interference corrections
B magnetic north (direction relative to drillstring unknown)
(4) so we can work out that magnetic north is in this direction
1 " $ $$ " # $ " = â&#x20AC;˘ 1 # $ " * ! $ " & ) & " " $ " %
# $ â&#x20AC;˘ 1 " 5 " 5 " &L â&#x20AC;˘ . " $ " * ! " " " & 2 " % # "" " 5 " # : # #
; $ #
September 1999 Issue 1
Methods 4-57
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ " % " # $ # $ = â&#x20AC;˘
$ # & 1 "
$
& 6 $ " 5 5 $ " Table 4.4 Maximum acceptable axial magnetic interference corrections, by region
Drilling Area
Gulf Coast, Middle East, Far East, Africa, South America, FSU North Sea, Northern Europe, Canada, Norway Alaska
Maximum Acceptable Correction 6° 8° 10°
â&#x20AC;˘ # ,? " " $ $ & ) % 5 " & â&#x20AC;˘ 5 $ "
# " 5 &LB& 1 " # $ " " = Table 4.5 Forbidden hole directions for axial magnetic interference corrections
Azimuth of Well
Forbidden Inclination Range
Magnetic E or W ¹ 19° or more Magnetic E or W ¹ 18° Magnetic E or W ¹ 15° Magnetic E or W ¹ 10° Magnetic E or W ¹ 5° or less
no restriction 87° â&#x20AC;&#x201C; 93° 80° â&#x20AC;&#x201C; 100° 75° â&#x20AC;&#x201C; 105° 72° â&#x20AC;&#x201C; 108°
' $ % "
$ " $ &
4-58 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
1(. $, , ./
8 $ # 0) # $ 5 "
& 1 7 ! 3 0) &
# # " $ & & 1 $ " "" " " $ # " " $ &
BPA-D-004
The development and validation of INTEQâ&#x20AC;&#x2122;s method is described in
,
00 0 ) # $
$ "*
0 "
$ % $ "
" & 1 " $ 0)
% $ " " $ & 1
" &
4 ? & )# " $ # " $ " 3 $ & 1 : 1 %
% # 4 ' " 4' & * A ) ' & )# 1
M 3 % $ $ " "" # & 7 $ " ! " 7
!& 1 = â&#x20AC;˘ 1 $ # $ " " $ #
September 1999 Issue 1
Methods 4-59
BP Amoco Directional Survey Handbook
BPA-D-004
) $ " "" " % 5 % # " & 1 = â&#x20AC;˘ 1 $ $ " % # # " . " " "
3 % " & "
1 $ # $ " # & 1 "
$ " 5 = 40
Inclination
35 30 25 20
MWD
15
Gyro
10
Figure 4.22
5
MD
A Survey T-Plot
350
500
1000
1500
2000
2500
Azimuth
345 340 335 330 325 320 315
1 # " $ $ " & "" % " & 1 # $ " $ " $ &
4-60 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 1 & ,°> A°> & 9 % 1 EH[ 5 ,,[ " : 5 $ # $ " " 3 & 1 # # $ "" # $ # 5 $ " & 1 3 " # $ & # 1
$ " "
" & *
% " % " # % # #
& ) 3 " ! $ & 9 %
# # & 1 ; % " $ 1@ & 9 $ $ ; # % # $ &
The equations for calculating these ellipses are in Section A.2
9 $ " $ > $ $ = Overlap at 1 s.d.
Good agreement. No further investigation necessary.
Overlap at 1.5 s.d. but not at 1 s.d:
Average agreement. No further investigation necessary.
Table 4.6
Overlap at 2 s.d. but not at 1.5 s.d
Poor agreement. Recheck both surveys carefully.
Rules-of-thumb when using the error ellipse method
No overlap at 2 s.d.
Disagreement. One or other survey almost certainly contains a gross error. Investigate to resolve the discrepancy.
September 1999 Issue 1
Methods 4-61
BP Amoco Directional Survey Handbook
BPA-D-004
2 " % " " $
$ " " % >" " & 1 # 7 3 !& # %
" " # = â&#x20AC;˘ 1 # & $
"" â&#x20AC;˘ 1 #
â&#x20AC;˘ 1 #
) % " # & 1 # # % " $ #
% #
$ & 1 % $ $
& . " ; " & " # " # & Probability that ellipses will not overlap
1 s.d. ellipses
1.5 s.d. ellipses
2 s.d. ellipses
Ratio (R) of ellipse sizes
Table 4.7 Quantitative interpretation of the error ellipse method
37 %
11 %
2%
41 %
13 %
3%
45 %
16 %
4%
R=1
R=2
R=3
4-62 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
* ) " ' )
4' " 3 " & ' ; "" # # # "" 5 "
& 1 3 " " # = â&#x20AC;¢ $ â&#x20AC;¢ = â&#x2C6;&#x2014; ' " â&#x2C6;&#x2014; - $ " " â&#x2C6;&#x2014; , & & " " $
â&#x2C6;&#x2014; , & & "" # " 3 " â&#x2C6;&#x2014; "" , & & "" $ â&#x20AC;¢ 9 " "" # â&#x20AC;¢ 4 " ; ""
September 1999 Issue 1
Methods 4-63
BP Amoco Directional Survey Handbook
BPA-D-004
MD
(ft)
Table 4.8 Example of a Relative Instrument Performance analysis for azimuth differences
1349 1444 1538 1632 1727 1822 1916 2011 2106 2200 2294 2388
Comparison survey azimuth survey 1 s.d.
Interpolated reference survey azimuth
Observed azimuth difference
1 std.dev. azimuth difference
Normalise d azimuth difference
survey
1 s.d.
A
B
C
D
E=A-C
F = â&#x2C6;&#x161; B²+C²
(std dev.) G=E/F
135.7° 136.4° 136.9° 137.2° 136.9° 137.7° 138.9° 138.1° 139.5° 141.6° 141.6° 142.7°
0.78° 0.78° 0.79° 0.81° 0.82° 0.82° 0.83° 0.84° 0.84° 0.84° 0.85° 0.86°
136.61° 137.54° 137.81° 138.45° 138.59° 139.02° 139.66° 140.45° 140.73° 141.75° 142.18° 142.89°
0.35° 0.35° 0.36° 0.37° 0.37° 0.37° 0.38° 0.38° 0.38° 0.39° 0.40° 0.40°
-0.91° -1.14° -0.91° -1.25° -1.69° -1.32° -0.76° -2.35° -1.23° -0.15° -0.58° -0.19°
0.85° 0.85° 0.87° 0.89° 0.90° 0.90° 0.91° 0.92° 0.92° 0.93° 0.94° 0.95° mean std. dev.
-1.06 -1.33 -1.05 -1.40 -1.88 -1.47 -0.83 -2.55 -1.33 -0.16 -0.62 -0.20 1.56 s.d. 0.65 s.d.
$
"
& $ " $
%
# $& $ " $ " &
4-64 Methods
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 " # $ % 5 % # = Normalised Difference (Incl. or Azim) Mean Std. Dev.
Interpretation
< Âą 0.5
and
< 0.5
Âą 0.5 to Âą 0.75
or
0.5 to 1.0
Average agreement
Âą 0.75 to Âą 1.25
or
1.0 to 1.5
Poor agreement.
Good agreement
Re-check both surveys carefully > 1.25
or
> 1.5
Disagreement.
Table 4.9 Rules-of-thumb for use with Relative Instrument Performance analyses
One or other survey almost certainly contains a gross error. Investigate to resolve the discrepancy.
September 1999 Issue 1
Methods 4-65/66
BP Amoco Directional Survey Handbook
BPA-D-004
Section 5
Contents
Page
5-1
5-4
5-11
!
" # $ % &
5-13
' #( %
5-24
)
* + %# &
5-26
,
-
5-28
.
/ % % 0 %
5-29
1
-
5-31
2
3 +4
5-35
Sensor arrangement in Gyrodataâ&#x20AC;&#x2122;s Wellbore Surveyor (large diameter tool)
5-15
5.2
Keeper tool configured for a 9-5/8" or 7" casing survey
5-19
5.3
The RIGS survey probe
5-23
Figure 5.1
September 1999 Issue 1
Survey Tools 5-i
BP Amoco Directional Survey Handbook
BPA-D-004
Section 5
Contents (contâ&#x20AC;&#x2122;d) Table
Page
5.1
Position uncertainty for inclination only surveys
5.2
Quality measures for electronic magnetic multishot surveys (generic)
5-13
5.3
Quality measures common to all Gyrodata surveys
5-17
5.4
Quality measures for Gyrodata gyrocompassing surveys
5-18
5.5
Quality measures for Gyrodata continuous surveys
5-18
5.6
Quality measures for Keeper multishot surveys
5-21
5.7
Quality measures for RIGS surveys
5-24
5.8
JORPs documents currently in use
5-37
5-ii Survey Tools
5-2
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
The surface and subsurface instrumentation used in wellbore surveying.
"
Recommended Practices for tool selection and operation are in italics.
! "
September 1999 Issue 1
Survey Tools 5-1
BP Amoco Directional Survey Handbook
BPA-D-004
5--
Their use should be restricted to near-surface sections of isolated exploration wells or well-spaced development wells. # $ "
Table 5.1 Position uncertainty for inclination only surveys
Average Measured Inclination 0° 0.5° 1° 1.5° 2° 2.5° 3°
Position Uncertainty at 1.s.d. (ft/1000ft or m/1000m) 13 22 31 39 48 57 65
" % & ' ( ) ) * Inclination only sections near surface should normally be resurveyed later in the drilling operation. " + , -.
5-2 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
-
" " TOTCO " 6 "'7 " + TOTCO
" " "
/TOTCO ) 0# # " 6 "'7 " +
" Teledrift 1 % / ) $ # Anderdrift # 2
" - 3° "
4°$- 3° 5 3°$64° $
September 1999 Issue 1
Survey Tools 5-3
BP Amoco Directional Survey Handbook
BPA-D-004
5--
" 0# ' # % "
" 0# % 7 â&#x20AC;˘ 8 9 % +92% .
(
â&#x20AC;˘ ( ( ( % 0# " $ -
% $ + . $ + , :. "
5-4 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
" ' $ ;$6<-= !
$ + . ' $
! ,$><,= 5 5 +5" 57
%
"
" $ 7 ? ? < # % " $ # % + . $ 2
September 1999 Issue 1
Survey Tools 5-5
BP Amoco Directional Survey Handbook
BPA-D-004
% $ 0 0# " + ' "57 " +
# % 2 2 ) ) ( 2 ) " ( " ( -
1 " ! " $ $ 785' 5 0+ "
% 0# + . " " %
+ 3 6. 0# "
0#
%
5-6 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
The determination of this offset is a safety-critical task, and must be checked independently before the BHA is run in hole. % 0#
% " ! 0# & % + >° 3°. 0# + @4° @6;4° @-54° @:4° . " 9+5 : ; ' 40 5 5
% ( ! "
Six-sensor â&#x20AC;&#x2DC;rawâ&#x20AC;&#x2122; data should normally be transmitted to surface, with inclination, azimuth and toolface (and associated QA measures) being calculated from it. < 5 % ; %
All MWD surveys must pass a number of internal and external validation checks. Details are below and in JORPs. " +"57 <057 = 5 0+5"'
" / $ ) % 7 â&#x20AC;˘ A$ â&#x20AC;˘ $
September 1999 Issue 1
Survey Tools 5-7
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ ! Section A.3 contains details of how to calculate these quantities
" $ %
( B# + , :. > +"57 5 5 ;57 5 "
2( B#
" Each MWD tool must pass a comparison with external data. " 7 CHECK SHOTS
2 0# +, % . ( ! 0#
$ # 7 ( 7
4 3°
( ! 7
> 4°
C #
5-8 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
% < 0# ( !7 ( 7
4 -3°
( ! 7
6 3°
% # Whenever possible, MWD tools should be changed out during bit trips. "
%
ELECTRONIC MULTISHOT
( +2 1. % " 0#
$ % 0# 2 1 MULTI-STATION DATA ANALYSIS
% $
+ , 5. $
+ , :. ( 2( $ + . %
September 1999 Issue 1
Survey Tools 5-9
BPA-D-004
BP Amoco Directional Survey Handbook
4 " 5 " 8+ > +"57 ;57 5 "
2( % 7 â&#x20AC;˘ " % 3° $ â&#x20AC;˘ " % $ 5&" ' 0+(5"' " + "&
2 % $
1 5
# % # $
+ , 5. $ + , ;. + , :. # ! " 0# 1 ( " ' # + .
5-10 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
2 +2 1. " $ + 3 3. 5--
2 1 " % 2 1 % % 2 1 ) 2 1 2 1 6444 1 +211. " %
-
2 1 6 4= - 4= & "
" $ two probes should be run in tandem for all EMS surveys. 2 1 % 1 + # 1 " .
September 1999 Issue 1
Survey Tools 5-11
BP Amoco Directional Survey Handbook
BPA-D-004
-
"
" + /TOTCO ). 0# #
% ) ) " "# 5&" ' 45' "& MWD non-magnetic spacing requirements are in Section 4.9
" $ Non-magnetic spacing requirements for electronic multishots are the same as for MWD, with the additional requirement that neither sensor be within 1.5 m (5 ft) of a tool joint. + 5 " 6
D 2 1 " ;$64 " C
E&C'
+ 3 64.
5-12 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
< 5
B# % 2 1 " 7 QA measure
Tolerance
Failure indicates
Possible cause(s) of failure
Divergence between probes â&#x20AC;&#x201C; Lateral
< 5/1000
Systematic azimuth error
magnetic interference
Divergence between probes â&#x20AC;&#x201C; TVD
< 2/1000
Systematic inclination error
tool misalignment or BHA sag
Gravity Field Strength (G-total)
< Âą0.007g* (all surveys)
Inclination and azimuth error
Faulty accelerometer or tool movement
Magnetic Field Strength (B-total)
< Âą700 nT*
azimuth error
magnetic interference, large crustal anomaly
Magnetic Dip Angle
< ¹0.7°*
azimuth error
magnetic interference, large crustal anomaly
(all surveys) (all surveys)
Table 5.2 Quality measures for electronic magnetic multishot surveys (generic)
* difference from modelled value
!
" # $ % &
* / ) " * 2 # ( % $ 2 " ( " * ! 2 ) " * " 7 0 ! 2 C @ â&#x201E;Ś @ 63 4,6 +Latitude. < " $ 2 )
September 1999 Issue 1
Survey Tools 5-13
BP Amoco Directional Survey Handbook
BPA-D-004
& % " # $ &
A ) Wellbore Surveyor +GWS. $
54F 53F " ( " Battery/Memory +RGS-BT. " G +RGS-CT. $ $ 63° 5447 '5 "
" Wellbore Surveyor 7 â&#x20AC;˘ 1 â&#x20AC;˘ % " Continuous 7 â&#x20AC;˘ G < â&#x20AC;˘ $ " Battery/Memory ( 7 â&#x20AC;˘ 1 â&#x20AC;˘ + .
5-14 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
7 '+ 4 "
"
" H +-4 . " & - -3= > H= # & 6 53=
accelerometer (non-rotating)
Figure 5.1 Universal joints
exciter/pickoff coils
motor/stator and bearing assembly
torquer coils
Sensor arrangement in Gyrodataâ&#x20AC;&#x2122;s Wellbore Surveyor (large diameter tool)
magnet assembly for torquer coils to force against
gyroscope (rotating)
" -$ ( -$ ( " " ( Wellbore Surveyor Battery/Memory $ + ! . Continuous + 63° . !
September 1999 Issue 1
Survey Tools 5-15
BPA-D-004
BP Amoco Directional Survey Handbook
4 +5 "57 <0 "' ? ' " "0 0 07 6 0+; =
% + ( . $ $ 9 64°$63° "
# 64°$63° !
" " >4 " C $ 64°$63° 9 / ) "
5-16 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
4 +5 "57 <0 "' ? + 4 0+; =
% Battery/Memory ( + ( $
. " + . " < # B# ( <057 = 5 0+5"'
" 7 QA measure
Tolerance
Failure may indicate
Possible cause(s) of failure
Field roll tests â&#x20AC;&#x201C; mass unbalance (if possible)
< 0.4°/hr
poor initial azimuth reference
gyro calibration shift
Field roll tests â&#x20AC;&#x201C; accel. scale factor (if possible)
< 0.00015
systematic inclination error
accelerometer calibration shift
In/Outrun comparison â&#x20AC;&#x201C; inclination
inclination error
depth error or running gear.
In/Outrun comparison â&#x20AC;&#x201C; azimuth
Csg: mn, sd<0.3° D/P: mn, sd<0.3° Csg: m, sd<0.5° D/P: m, sd<0.75°
azimuth error
depth error or poor gyro performance
Final zero depth
< 2.0/1000
systematic error, primarily inclination
wireline slippage or stretch â&#x20AC;&#x201C; correct to CCL
Wireline stretch at TD
< 1.5/1000
systematic error, primarily inclination
tool lag on inrun â&#x20AC;&#x201C; correct to CCL
September 1999 Issue 1
Table 5.3 Quality measures common to all Gyrodata surveys
Survey Tools 5-17
BP Amoco Directional Survey Handbook
BPA-D-004
QA measure
Table 5.4 Quality measures for Gyrodata gyrocompassing surveys
Tolerance
Failure may indicate
Possible cause(s) of failure
Single station test – Earth rate
< f1(Inc,Azi)°/hr*
poor initial azimuth reference
noisy data – reinitialise deeper
Single station test – gyro drift & noise
mean<400 bits s.d.<400 bits
poor initial azimuth reference
noisy data – reinitialise deeper
Single station test – accel. drift & noise
mean<50 bits s.d.<50 bits
azimuth error
poor gyro performance or tool movement
I f (Inc,Azi) = 1/{cosInc√[(0.1°sinInc.sinAzi)²+(0.08°)²]} 1
Table 5.5 Quality measures for Gyrodata continuous surveys
QA measure
Tolerance
Initialisation inclination
s.d. Inc < 0.1°
Tool movement or calibration shift during tool make-up
knock during tool make-up
Initialisation azimuth
s.d. Azi < 0.2°
tool movement or calibration shift during tool make-up
knock during tool make-up
Initialisation Earth rate
< f2(Inc,Azi)°/hr*
Tool movement or calibration shift during tool make-up
knock during tool make-up
Drift tune – X gyro
<0.2°, all params <0.2°, all params
invalid survey
poor gyro performance
invalid survey
poor gyro performance
Drift tune – Y gyro
Failure may indicate
Possible cause(s) of failure
I f (Inc,Azi) = 1/{cosInc√[(0.1°sinInc.sinAzi)²+(0.08°)²/6]} 2
5-18 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
*
" Keeper Finder 1 ) $
Cablehead
Zener Sub
5447 '5 "
" J 7
Decentraliser
â&#x20AC;˘ G < â&#x20AC;˘ $ â&#x20AC;˘ 1 % $ $ +
.
Casing Collar Locator Gamma Sensor 6.35 m / 21 ft
Temperature Sensor
Figure 5.2
Pressure Barrel /Heatshield Keeper Gyro
Keeper tool configured for a 9-5/8 or 7 casing survey
â&#x20AC;˘ 1 $ + ) . "
/ )
Decentraliser
7 '+ 4 "
" J
" 3 +6H . $ 3$64 +6H$>> . $ " & >= $ 6 53=<6 ;3=<- 6-3=
September 1999 Issue 1
Survey Tools 5-19
BPA-D-004
BP Amoco Directional Survey Handbook
" +K L. +K M. " K $ ! -4° " L ! -4° 4 +5 "57 <0 "' ? 07 6 0+; =
% + (
. + $ .
4° >°
$
# - / ) " / ) -4° " " / ) 63 63° # " + . " (
/ ) % $
5-20 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
4 +5 "57 <0 "' ? "&7 6 0+; =
9 " ! * $ +N>°. " # $ ) # > , <057 = 5 0+5"'
" 7 QA measure
Tolerance
Field calibration â&#x20AC;&#x201C; mass unbalance
DI < 0.6°/hr
Field calibration â&#x20AC;&#x201C; accel. scale factor
Failure may indicate
Possible cause(s) of failure
poor initial azimuth reference
gyro calibration shift
< 0.0033 v/g
systematic inclination error
accelerometer calibration shift
Initialisation â&#x20AC;&#x201C; gyro bias uncertainty
< 0.017°/hr
poor initial azimuth reference
noisy data â&#x20AC;&#x201C; reinitialise deeper
Initialisation â&#x20AC;&#x201C; Earth rate horizontal
< 0.07°/hr
poor initial azimuth reference
noisy data â&#x20AC;&#x201C; reinitialise deeper
Low angle Mode â&#x20AC;&#x201C; average G bias
< 0.8°/hr
azimuth error
poor gyro performance or tool movement
High angle Mode â&#x20AC;&#x201C; average G bias
< 0.15°/hr
azimuth error
poor gyro performance or tool movement
Final zero depth
< 1/1000
systematic error, primarily inclination
wireline slippage or stretch â&#x20AC;&#x201C; correct to CCL
Wireline stretch at TD
< 1.5/1000
systematic error, primarily inclination
tool lag on inrun â&#x20AC;&#x201C; correct to CCL
In/Outrun comparison â&#x20AC;&#x201C; inclination
Csg: sd<0.2°
inclination error
depth error or running gear.
In/Outrun comparison â&#x20AC;&#x201C; azimuth
Csg: sd<0.5°
azimuth error
depth error or poor gyro performance
DS < 1.0°/hr
D/P: sd<0.4°
D/P: sd<0.75°
September 1999 Issue 1
Table 5.6 Quality measures for Keeper multishot surveys
Survey Tools 5-21
BP Amoco Directional Survey Handbook
BPA-D-004
( $ 6 " <
C A1 C $O A 5447 '5 "
! C A1 +H 6= . " $ $ " " 644°G # ( + . 634°G ( 6 -44FG H + 5= . ( " / $ ) 54° ;4°
# ! #
GGO $ /C A1P) " C A1 C A1 "
5-22 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
7 '+ 4 "
" C A1 & 3 -3= 6;4 +,44 . D 3 ;53= --3 +344 . 1 >:3 +;54 . " D + D. " D " $ ! * 2 "8 $ D 9 * 1 C A1 $ ) $
Cable Head
Roller Centraliser
Pressure Barrel
Figure 5.3 Electronics
The RIGS survey probe
Gyro/ Accelerometers
Roller Centraliser
4 +5 "57 <0 "'
Breech C A1 2 Lock
" " H
6- + .
September 1999 Issue 1
Survey Tools 5-23
BP Amoco Directional Survey Handbook
BPA-D-004
( H,44 < +-6444 < .
" " BG " <057 = 5 0+5"'
* G ) " 7 QA measure Alignment summary
Tolerance < 0.1°
Failure indicates
Possible cause(s) of failure
Noisy Alignment
Excessive â&#x20AC;&#x2DC;electricalâ&#x20AC;&#x2122; noise Tool movement.
Table 5.7
Drift checks
< 0.08 ft/min
st
Tool movement, or invalid survey.
Poor Alignment (1 check) Lost heading.
Quality measures for RIGS surveys
Sensor failure. Tool movement. In/Outrun comparison
within tooldefined ellipses of uncertainty
Out of spec performance at some stage in complete inrun/outrun survey. QC flow chart will indicate whether sufficient QC parameters exist to qualify survey as within specification.
Depth error. Sensor failure. Lost heading.
' #( %
G $ $ / ) % "
5-24 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
5--
G $ 7 â&#x20AC;˘ $ â&#x20AC;˘ " ( â&#x20AC;˘ " G $ $ 1 + , -. $ 2
Camera-based magnetic multishots are not a recommended tool type. # ( $ $ -
" 7 â&#x20AC;˘ #
#
It is strongly recommended that only units ranges between 0-10° and 0-24° be used.
September 1999 Issue 1
Survey Tools 5-25
BP Amoco Directional Survey Handbook
BPA-D-004
1 O
â&#x20AC;˘ # ! "
â&#x20AC;˘ # " $ $ -
0# " $ 1 % + , :.
"
< 5
1 O B#
)
* + %# &
1 $
1CA D $ $
"
5-26 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
( " ! 5--
$ $ " $ 0# ( " $ ( $ SRGs must not be used: â&#x20AC;˘ For multishot surveys â&#x20AC;˘ Deeper than 450m/1500ft below rotary table â&#x20AC;˘ In hole inclinations greater than 10° " - % -
1 $ 1 +/1CA). 0 *"2B +/1 ). 1 $1 +/1C&). Due to its historically poor performance, use of the Sperry-Sun SRO tool is not recommended. " $ # # D 0&
0# # $ $
September 1999 Issue 1
Survey Tools 5-27
BP Amoco Directional Survey Handbook
BPA-D-004
" "
0+85' + 8 + "' "& 5" + 8 ' ++ ' "
1
# Surface references must be established and checked by a qualified land surveyor, and recorded with a detailed station description. The survey engineer on the rig must have a copy of this station description. Drift corrections must be computed and applied automatically by software. Reliance on hand computations by the survey engineer is not acceptable.
,
-
/ ) 1 ! 5--
" # "
$ %
5-28 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
- % -
" 0
"
" < 5
" 9 7 Make sure a hard copy of the data is provided, with sufficient header data to ensure its traceability. Insist on all data being labelled with the azimuth reference (magnetic, grid or true) and the correction, if any, applied. Visually inspect the survey for spurious data points, often indicated by large dog-leg severities.
.
/ % % 0 %
' # 2 ' # 1
September 1999 Issue 1
Survey Tools 5-29
BP Amoco Directional Survey Handbook
BPA-D-004
/
# $
6::4) 1 ( "
- #
# $ + . 1 E&C' ( $ 6 " <
# $ $ / ) $ 1 *
E&C' Engineers should seek advice from programming the Seeker tool in their wells.
UTG
before
*
" Finder 1 Keeper " Keeperâ&#x20AC;&#x2122;s L$ ( + . 63F " " Finder $ Keeper E&C'
5-30 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
8
" 8 9 2 + *"2B. 6::4 64$><,= & ( 6>$><;= - #
# D ' #( % &
# #
$ +'A 1 'A11. ' "# '
1 Engineers should seek advice from UTG before programming Camera-based gyro tools in their wells.
1
-
# $
/ $ )
September 1999 Issue 1
Survey Tools 5-31
BP Amoco Directional Survey Handbook
BPA-D-004
4 - - 5447 '5 "
" 0# " 7 â&#x20AC;˘ % â&#x20AC;˘ 2 $
â&#x20AC;˘ A < â&#x20AC;˘ 4 +5 "
" 0# " / ) 2 ( # (
/ )
% <057 = 5 0+5"'
A Where possible, the MWD engineer should keep his/her own independent depth tally, and seek to resolve any discrepancy with the drillerâ&#x20AC;&#x2122;s tally.
5-32 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
- 5447 '5 "
1
7 â&#x20AC;˘ A + ( FINDS. â&#x20AC;˘ A Battery/Memory 1 G Keeper
$ D 0#
<0 4 " '+ 4 "
2 7 3<6H= +; . 5<6H= +66 . 63<>-= +6- . 9 ; 64 444 3 444 "
" %
" $ "
September 1999 Issue 1
Survey Tools 5-33
BP Amoco Directional Survey Handbook
BPA-D-004
1 " # # -3 644 "
"
4 +5 "
& ! &
# " / ) " " 6 3<6444 ( " $! <057 = 5 0+5"'
" $! 1 E&C' 4 6Q 4 -Q
5-34 Survey Tools
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
# +%%&. " D GGO / ) GGO $ GGO
# ' " + . $
2 3 +4 E&C' E & C '
' # " E&C' % E&C' "
' # D"A '
2 E&C'
( " 7 â&#x20AC;˘ 2 â&#x20AC;˘
September 1999 Issue 1
Survey Tools 5-35
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘
â&#x20AC;˘ & ( ) *
D E&C' $ ( % + - /
E&C' C ' & 0
D"A E&C'
$ D E&C' " + .
5-36 Survey Tools
September 1999 Issue 1
JORPs document
Tool Coverage MWD
Anadrill
Anadrill MWD Surveying Procedures Manual*
Baker Hughes INTEQ
JORPs for Directional MWD
JORPs for SSDS Directional MWD*
Surface Readout Gyroscope Operations for BPX Gyrodata
BP JORPs Manual*
Scientific Drilling
BP JORPs*
Northseeking gyro
Surface read-out gyro
Camerabased gyro
EMS
Camerabased magnetic
Teledrift
Anadrill internal procedures document. Adopted as replacement to obsolete MWD JORPs by BP Amoco.
BPX and BHI JORPs Halliburton / Sperry-Sun
Inertial gyro
Remarks
BP Amoco Directional Survey Handbook
September 1999 Issue 1
Service Company
A separate document describes Sperry-Sun’s Interpolation in-field referencing service
Covers the G2 and SRO gyros
Additional and complementary to SORPs, SDC’s internal standard.
Under revision at time of writing
BPA-D-004
Survey Tools 5-37/38
Table 5.8 JORPs documents currently in use
BP Amoco Directional Survey Handbook
BPA-D-004
Section 6
Contents
Page )
@
6-1
)
+ $ 5
6-2
)
* 4
6-6
) !
6-8
)
A
6-20
) )
6-22
) ,
4 * + B
6-29
Figure 6.1
Generic failure mode and effects analysis for missed target and well collision
6-4
Generic classification of potential failures in the directional and survey process
6-5
Table 6.1
September 1999 Issue 1
Technical Integrity 6-i/ii
BP Amoco Directional Survey Handbook
BPA-D-004
)
How to minimise the risk of a gross well positioning error and establish an auditable trail from target definition to definitive survey.
"
% & '
( G 1 "
G 1 <
'
)
@
0
7 â&#x20AC;˘ # â&#x20AC;˘
September 1999 Issue 1
Technical Integrity 6-1
BP Amoco Directional Survey Handbook
BPA-D-004
# 7 â&#x20AC;˘ + . â&#x20AC;˘ + ( / ).
)
+ $ 5
" ( 9 $ 7 6
(
- > % ( " / $ ) 7 â&#x20AC;˘ " / $ ) ( " / ) â&#x20AC;˘
â&#x20AC;˘ " / ) / $ )
6-2 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
8 % % ** 5 8 5
& 9 2 # "
# / ) $ + . 9 H 6 ( 9 2# / ) / ) * ( " $
September 1999 Issue 1
Technical Integrity 6-3
BP Amoco Directional Survey Handbook
BPA-D-004
wrong well plan used for clearance scan
root-cause failure knock-on effect
wrong surface location or elevation used for planning
â&#x20AC;&#x153;on-designâ&#x20AC;? event
wrong input to target tolerance calculations
geological target location or boundary wrongly defined
gross surface location or survey error in drilled well
wrong input data for clearance scan
clearance scan software error inappropriate error model in drilled well
clearance scan results wrong wrong input to a/c tolerance calcs
inappropriate error model in planned well target tolerance calculation error
a/c tolerance calculation error
badly designed error model inappropriate separation rule
target tolerance print or plot error
badly designed separation rule
target tolerance wrong or invalid on plan
a/c tolerance print or plot error a/c tolerance wrong or invalid on plan
rig not at planned location or elevation target tolerance invalidated while drilling
change in target approach direction
anti-collision tolerance invalidated while drilling
survey program not followed target tolerance ignored or misunderstood
a/c tolerance ignored or misunderstood
drilling well plotting error target tolerace violated
statistically extreme survey error
a/c tolerace violated
insufficient or inaccurate projection ahead of bit gross survey error in drilling well
inadequate survey running or quality procedures
survey running or quality procedures mis-applied
tie-in or north reference error
unpredictable survey tool error
Figure 6.1 Generic failure mode and effects analysis for missed target and well collision
6-4 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' * 4 8
" $ H 6 "
A.
B.
C.
D.
DIRECTIONAL SOFTWARE / STANDARDS 1.
Clearance scan software error
2.
Badly designed error model
3.
Badly designed separation rule
4.
Target tolerance calculation error
5.
Anti-Collision tolerance calculation error
DIRECTIONAL DATABASE 6.
Missing data, surface location or survey error in drilled well
7.
Inappropriate error model in drilled well
PLANNING DATA 8.
Wrong surface location or elevation used for planning
9.
Geological target location or boundary wrongly defined
DIRECTIONAL PLANNING 10. Wrong well plan used for clearance scan 11. Inappropriate error model in planned well 12. Inappropriate separation rule 13. Target tolerance printing/plotting error
Table 6.1 Generic classification of potential failures in the directional and survey process
14. Anti-Collision tolerance printing/plotting error E.
RIG POSITIONING 15. Rig not at planned location or elevation
F.
SURVEY OPERATIONS 16. Survey program not followed 17. Inadequate survey running or quality procedures 18. Survey running or quality procedures mis-applied 19. Unpredictable survey tool error
G.
DIRECTIONAL DRILLING OPERATIONS 20. Change in target approach direction 21. Target tolerance ignored or misunderstood 22. Anti-Collision tolerance ignored or misunderstood 23. Drilling well plotting error 24. Insufficient or inaccurate projection ahead of bit 25. Tie-in or north reference error
September 1999 Issue 1
Technical Integrity 6-5
BP Amoco Directional Survey Handbook
BPA-D-004
)
Section 3.1 describes some of the theory and techniques of surface positioning
* 4
" 0
) " $ " 0
( "
7 %
Appendix C includes an example of a Well Location Memorandum
" %O $
) " 7 â&#x20AC;˘ " + . A <A $ K$ $ $ "
â&#x20AC;˘ " $ G 1 â&#x20AC;˘ 1 < 1 2 2 (
â&#x20AC;˘ 1 < $
G 1 2 % " O " %O
1 D"A 1 B 1 "
6-6 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
8
4
< $ G 1 9 % ' $ " D %
$
Appendix B includes completed examples of a Final Well Position Memo and a final Well Location Data Form
" $ $ 1 + , & + " 9 % '
1 8 % ' # %
* $ $ 1 R D ( $
% " $ # 9
September 1999 Issue 1
Technical Integrity 6-7
BP Amoco Directional Survey Handbook
BPA-D-004
) !
" $
" 7 â&#x20AC;˘ ' â&#x20AC;˘ 1 â&#x20AC;˘ C ) â&#x20AC;˘ % â&#x20AC;˘ % $ & 0# $
8
" 9 $
$ "
" 9
( $ ! )
6-8 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' * 8
" 9 )
" 7 â&#x20AC;˘ G O 1 ( # ( G " $ % ' 1 $ # + . & 7 & '57 (3 ' ;
â&#x20AC;˘ % ' D D $ ) % ' + $ . â&#x20AC;˘ D " D $ ( â&#x20AC;˘ '
+ 8 + "' 5 5
â&#x20AC;˘ % O + . â&#x20AC;˘ % ' 1 1 ( # ( G "
D
&" 5 7 5" " +0' "
â&#x20AC;˘ ' 9 ( D $ )
September 1999 Issue 1
Technical Integrity 6-9
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ #, + ; 3=(66=. " â&#x20AC;˘ 1 ' 1 1 ( # ( G â&#x20AC;˘ # $G 1 1 ( # ( G 5" #' 77 " 5"57=
â&#x20AC;˘ ' ( 1
â&#x20AC;˘ â&#x20AC;˘ # " G C % + , , G. 6 + &" 5"57=
â&#x20AC;˘ # )
Section 4.2 has details of the relief well drilling contingency requirement
â&#x20AC;˘ '
0
Section 4.2 has
â&#x20AC;˘ G " % (
details of this calculation
4 " 5 "
â&#x20AC;˘ C ' 1 ( # ( G
6-10 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' $
" $ $ 7 â&#x20AC;˘ # â&#x20AC;˘ â&#x20AC;˘ 6 &"# 88 50 6 + =
" 1 $ # # + D .
( " 1 $ # ' # )
0
" 1 $ # '
< 1 $ # 9 6 ; " 80" 5 " 57 8 + ' "57 &" '6 'C "&
9 1 $ # < 7 6 " "
September 1999 Issue 1
Technical Integrity 6-11
BP Amoco Directional Survey Handbook
BPA-D-004
" 7 - " > " , # 3 # H " $ $ 5 " ( % ' $
# $ % ' + . + ( . " 1 $ # < #
Section 6.6 discusses the relationship between directional databases.
4+ 4 +53 ' += 65 6 ' ++ ' 0+85' D 5+& " += 5" 7 '5 "
â&#x20AC;˘ G
7 â&#x2C6;&#x2014; "
+ % O 9 % ' $
.
6-12 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x2C6;&#x2014; " â&#x2C6;&#x2014; " +J 2 C"2 . â&#x20AC;˘ G 9 ( 7 â&#x2C6;&#x2014; G % ' â&#x2C6;&#x2014; C
â&#x2C6;&#x2014; G
â&#x20AC;˘ + . % '
$ "8
! +J 2 C"2. â&#x20AC;˘ G + .
+ . 0+; = 4+ &+5 088 ' " " + ' 5+& 5" 6 + & 7 & '57 + <0 + "
â&#x20AC;˘ 9 â&#x20AC;˘ % '
September 1999 Issue 1
Technical Integrity 6-13
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ C + . 7 â&#x2C6;&#x2014; "
â&#x2C6;&#x2014; " + . â&#x2C6;&#x2014; #
+ ::Q :3Q :4Q D . â&#x20AC;˘ % ' 9 2( 7 â&#x2C6;&#x2014; â&#x2C6;&#x2014; O "8 â&#x2C6;&#x2014; O "8 â&#x2C6;&#x2014; $ + C 8 + 77 "& 5" 0" 0'' 807 + 7 8 77 " Relief well contingency requirements are in Section 4.2
â&#x20AC;˘ G â&#x20AC;˘ G D
6-14 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
5"= &+ ++ + " 5'6 0+; = " +0 " 77 ( '
â&#x20AC;˘ G
" 7 â&#x2C6;&#x2014; & â&#x2C6;&#x2014; G â&#x2C6;&#x2014; D + $ % . 5" 5 <05 8 " ; 0+; = 77 ( ( 5 "
â&#x20AC;˘ G 5 6 + "' 5" #' 77 " " +0' " 77 4+ ; " ; 75 " 8 " 0 77 45+5 " +07
â&#x20AC;˘ G ( 7 â&#x2C6;&#x2014; %
â&#x2C6;&#x2014; # â&#x2C6;&#x2014; % â&#x20AC;˘ G + .
September 1999 Issue 1
Technical Integrity 6-15
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;¢ G 7 â&#x2C6;&#x2014; % â&#x2C6;&#x2014; % â&#x20AC;¢ C $ "GC + . D 7 â&#x2C6;&#x2014; " â&#x2C6;&#x2014; 9 â&#x20AC;¢ 9 7 â&#x2C6;&#x2014; C â&#x2C6;&#x2014; G
$ + . â&#x20AC;¢ 9 $ 7 â&#x2C6;&#x2014; #
â&#x2C6;&#x2014; G
â&#x2C6;&#x2014; G $
$ 77 " +0' " 5" +5 "& 5+ '7 5+D 5''0+5 5" 088 ' "
â&#x20AC;¢ G " $
6-16 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;¢ G ) 7 â&#x2C6;&#x2014; " $ â&#x2C6;&#x2014; " â&#x2C6;&#x2014; " + . â&#x2C6;&#x2014; " " ' 1 + .7 â&#x20AC;¢ + .
$ â&#x20AC;¢ G 7 â&#x2C6;&#x2014; " â&#x2C6;&#x2014; " â&#x2C6;&#x2014; " +" A . â&#x2C6;&#x2014; " + % ' 1 A1 + > -. â&#x2C6;&#x2014; " ! +
. â&#x20AC;¢ 1 1
+ ) .
September 1999 Issue 1
Technical Integrity 6-17
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ G )
+ . â&#x20AC;˘ G + .
+ . â&#x20AC;˘ G + . ' % # **
' 9 R %
% ' % % ' 1 $ # $ ( 9 ( $ $
% 1 $ # 9 % 7 â&#x20AC;˘ " ' # 1 $ # R â&#x20AC;˘ "
â&#x20AC;˘ " 9
6-18 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
( 0 5--
D 1 $ # D
( # + . 7 â&#x20AC;˘ " $ " % ' 1 â&#x20AC;˘ " â&#x20AC;˘ "
< + .
4 " 5 " 8+ + ' " 4+5' '
8 % & ' ( D
"
0 0
D$ % 7 â&#x20AC;˘ "
"
Appendix C contains an example dispensation form
â&#x2C6;&#x2014; C % â&#x2C6;&#x2014; ' < 1 "
9 ( 7
September 1999 Issue 1
Technical Integrity 6-19
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x2C6;&#x2014; 1 ' < 1 "
* â&#x2C6;&#x2014; C " ( â&#x2C6;&#x2014; E #
â&#x2C6;&#x2014; # G â&#x20AC;˘ 2
â&#x20AC;˘ 1 D %
)
A
G $ $ " ( "
6-20 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
77 50 6 + = 7 5 "
"
Certain rules (such as not crossing anti-collision tolerance lines and following JORPs) are inflexible. 1 + .
77 0+; = ;57 5 "
" " B#
$ $ 1 $
7 When in doubt, re-survey. 65" 7 "& " "#' "8 + 5"'
# $ ) * $ 7 â&#x20AC;˘ 9 â&#x20AC;˘ 9 â&#x20AC;˘ 1 $ $ â&#x20AC;˘ 8 ( ( $
September 1999 Issue 1
Technical Integrity 6-21
BP Amoco Directional Survey Handbook
BPA-D-004
7 6 * $ Appendix C contains a Non-Conformance Report form suitable for this
-
> # ) , C 7 . #
)
. 1 $
) )
8
" ( 1 ( " % 1 9 " 7 â&#x20AC;˘ " + . â&#x20AC;˘ #
6-22 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ B B#
â&#x20AC;˘ "
Survey data comparisons are discussed in Section 4.10
+ -
" % "
# " % % $ # % " 7 â&#x20AC;˘ " â&#x20AC;˘ # + .
â&#x20AC;˘ 9 0# â&#x20AC;˘
â&#x20AC;˘ # % 1 B# 1
September 1999 Issue 1
Technical Integrity 6-23
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘
; %
# " ( " / ) 9 ( " $ # ) " unvalidated survey data should never be loaded on the definitive directional database ) "
9
" + , 64.
9 B#
6-24 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
77 0+; = <5 6
BPA-D-004
" < "
E&C' " ' # % 1 9 *
" ) " 1
' 7
BP Amoco Standard Practice
6 " - " ( % C ' + $ . ) > 1
, %
# $ "$ + , 64. ( 3 #
H 1 ( ) # (
September 1999 Issue 1
Technical Integrity 6-25
BP Amoco Directional Survey Handbook
BPA-D-004
40(7 6 "& 6 5 5
# $ $ % /
" & ' $ $ + - -. " ' # 5 5 '+ '57 =
" #
G ) 7 â&#x20AC;˘ 1 $ $
â&#x20AC;˘ * (
7 â&#x20AC;˘ â&#x20AC;˘ " â&#x20AC;˘ C < < < â&#x20AC;˘ 1 â&#x20AC;˘ '
6-26 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
9 7 â&#x20AC;˘ â&#x20AC;˘ 8 â&#x20AC;˘ 0# 8 " ; 5 5(5
& (
%
" " 9 ( 1 1 * #
5'' + + ' "
D 7 â&#x20AC;˘
â&#x20AC;˘
September 1999 Issue 1
Technical Integrity 6-27
BP Amoco Directional Survey Handbook
BPA-D-004
%
" 65+ #' 4= 5 5 (5'C#04
1 )
"
+ ' "57 5 5(5 ' 45+ "
' $ ' # " ( ) ' #
" ( # 2#' ' " 7 â&#x20AC;˘ % â&#x20AC;˘ % +
. - â&#x20AC;˘ % +
"8 . 3
6-28 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 $ 0 + ; & 75"'
% # ( $ " ( + ( .
) ,
4 * + B
%
*
$ $
" 4 +8 + 5"' 5 0+
$
1 / ) + D . # G %
< 1 ( 7 â&#x20AC;˘ ' â&#x2C6;&#x2014; *
September 1999 Issue 1
Technical Integrity 6-29
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x2C6;&#x2014; " $ â&#x2C6;&#x2014; * $ â&#x20AC;˘ & â&#x2C6;&#x2014; 1 64 444 â&#x2C6;&#x2014; * â&#x2C6;&#x2014; * 0#
â&#x20AC;˘ Calculation of tortuosity is explained in Section A.6
â&#x2C6;&#x2014; % â&#x2C6;&#x2014; " â&#x2C6;&#x2014; ( '6" '57 "; &5 "
& $ $
# 2 # % 1 9 # C" 7 & (5
' # " 7 â&#x20AC;˘ JORPs #
E&C'
6-30 Technical Integrity
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
â&#x20AC;˘ Approved survey error models "
( â&#x20AC;˘ This Handbook " $ $
1 1 D"A % " 1 E&C'
September 1999 Issue 1
Technical Integrity 6-31/32
BP Amoco Directional Survey Handbook
BPA-D-004
Appendix A
+ * Contents
Page 5
' '
A-1
5
4 ' %
-
A-3
5
'
A-8
5 !
5 '
A-9
5
5 #'
'
A-17
5 )
A-22
Figure A.1
Reverse survey calculation
A-2
A.2
Geometrical construction of the pedal curve
A-7
A.3
The pedal curve and uncertainties in the north and east directions
A-7
A.4
Naming convention for sensor axes
A-8
A.5
A â&#x20AC;&#x2DC;bitâ&#x20AC;&#x2122;s-eye-viewâ&#x20AC;&#x2122; of the target: the basis of the BP Amoco target analysis method
A-10
A.6
Graphical method of target analysis
A-16
A.7
Calculating a no-go area on the travelling cylinder diagram
A-18
September 1999 Issue 1
Mathematical Reference A-i
BP Amoco Directional Survey Handbook
BPA-D-004
Appendix A
+ * Contents (contâ&#x20AC;&#x2122;d)
A.8
Derivation of the risk-based separation rule
A-20
A.9
Behaviour of the risk-based separation rule at low positional uncertainty
A-21
Behaviour of the risk-based separation rule at intermediate positional uncertainty
A-21
Behaviour of the risk-based separation rule at high positional uncertainty
A-22
A.10 A.11
A-ii Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
5-- % A
5
+ * Some of the equations and formulae underlying the methods described in the main part of the Handbook.
"
( (
5
' '
" 7 â&#x2C6;&#x2020;N =
â&#x2C6;&#x2020;MD sin I 1 cos A1 + sin I 2 cos A2 . RF 2
â&#x2C6;&#x2020;E =
â&#x2C6;&#x2020;MD [sin I1 sin A1 + sin I 2 sin A2 ]. RF 2
â&#x2C6;&#x2020;V =
â&#x2C6;&#x2020;MD [cos I1 + cos I 2 ]. RF 2
[
]
C 9
RF =
2  DL  tan  ďŁ 2  DL
$ DL @ +I I . I I S6 +A A .T
September 1999 Issue 1
Mathematical Reference A-1
BP Amoco Directional Survey Handbook
BPA-D-004
" RF @ 6 DL ( X ( DL ( Y7 RF = 1 +
DL2 DL4 17 DL6 + + 12 120 20160
( X N 4 46° Y N 6>° 6 64 5 6 8 + + ; + 0+; = '57'075 "
A similar method, 1 also based on interpolating the hole direction, can be found in
World Oil, April 1986
! " u0
P0
u01
P1
u1 u02
r01
r12
u12
r02 Figure A.1
P2
Reverse survey calculation
Îą12
u2
C
" ' ' ' + . " ' ( 7 r r u1 = 12 u 01 + 01 u12 r02 r02
A-2 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
' 7 1  u 0 + u1 = 2u 01 cos â&#x2C6; P0 CP1  = 2u 01 cos(â&#x2C6; P0 P2 P1 ) = 2u 01 (u12 . u 02 ) ďŁ2 
u 0 = 2u 01 (u12 . u 02 ) â&#x2C6;&#x2019; u1
O '
u 2 = 2u12 (u 01 . u 02 ) â&#x2C6;&#x2019; u1
" + . 9
> â&#x2C6;&#x2020;D12 = r12
5
Îą12 ι  csc 12  ďŁ 2  2
Îą12
= sin â&#x2C6;&#x2019;1 u1 Ă&#x2014; u 2
4 ' %
-
' $
>(> (7  Ď&#x192; n2  > ( @ Cnev @ Ď&#x192; ne Ď&#x192;  nv
Ď&#x192; ne Ď&#x192; nv   Ď&#x192; e2 Ď&#x192; ev  Ď&#x192; ev Ď&#x192; v2 
A (
September 1999 Issue 1
Mathematical Reference A-3
BP Amoco Directional Survey Handbook
BPA-D-004
* ( #+ * % 5A
" $ ( + . " $ ( + $ T $ $ (7
Ď&#x192; ha   T Ď&#x192; la  = Thla C nev Thla Ď&#x192; a2 
C hla
 Ď&#x192; h2  =  Ď&#x192; hl Ď&#x192;  ha
Thla
cos I cos A cos I sin A â&#x2C6;&#x2019; sin I    =  â&#x2C6;&#x2019; sin A cos A 0   sin I cos A sin I sin A cos I 
Ď&#x192; hl Ď&#x192; l2 Ď&#x192; la
# I A ! 6 E 4 0
" ! 7 + . ! $ + . + . + . 0"' + 5 " = 8 5 4 " " 6 77
" > ! " - (7  Ď&#x192; n2 Cne @  Ď&#x192; ne
A-4 Mathematical Reference
Ď&#x192; ne   Ď&#x192; e2 
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
0"' + 5 " = 5 5 & ; " ; + '57 4 6
" $ $ > ( (7 C*ne
Ď&#x192; n*2 =  * Ď&#x192; ne
*  Ď&#x192; ne * *T *2  = Tne C nev Tne Ď&#x192; e 
1 0 â&#x2C6;&#x2019; tan I cos A =   0 1 â&#x2C6;&#x2019; tan I sin A 
* Tne
'57'075 " 8 6 + F " 57 ++ + 77 4
" ! 7 1 $ ( @ Ď&#x192; max @
1 $ ( @ Ď&#x192; min @
Ď&#x192; n2 + Ď&#x192; e2 +
(Ď&#x192; n2 â&#x2C6;&#x2019; Ď&#x192; e2 )2 + 4Ď&#x192; ne2 2
Ď&#x192; n2 + Ď&#x192; e2 â&#x2C6;&#x2019;
(Ď&#x192; n2 â&#x2C6;&#x2019; Ď&#x192; e2 )2 + 4Ď&#x192; ne2 2
" ! ( Ď&#x2C6; Ď&#x2C6; 7 tan 2Ď&#x2C6;
=
2Ď&#x192; ne
Ď&#x192; n2 â&#x2C6;&#x2019; Ď&#x192; e2
$:4° P:4°
" 7
Ď&#x192; n2 > Ď&#x192; e2
$,3° N Ď&#x2C6; maj N P,3°
Ď&#x192; n2 < Ď&#x192; e2
$,3° N Ď&#x2C6; min N P,3°
" ( C*ne (
September 1999 Issue 1
Mathematical Reference A-5
BP Amoco Directional Survey Handbook
BPA-D-004
' * % 7 *
- %
- %
" > , +- . " ( > /G0 1" ) /G0 *8 ) 2( % G $1 7 2 Ď&#x2021; p, ν p 2
ν Ď&#x2021; p, ν $ +ν @-. +ν @>. p.
Example. Find the number of standard deviations at which a 3D error ellipsoid must be drawn to represent a 95% confidence region, assuming the well position errors follow a trivariate normal distribution. Setting p = 0.95 and ν = 3, we find from tables that Ď&#x2021; 02.95,3 = 7.81. The 95% confidence region is therefore represented by a 2.79-sigma error ellipsoid.
4 % ' 98 - :
" ! ! # 7 Ď&#x192;A
=
[cos A
Ď&#x192; 2 sin A  n Ď&#x192; ne
]
Ď&#x192; ne  cos A 2 2 2   = Ď&#x192; n cos A + Ď&#x192; ne sin 2 A + Ď&#x192; e sin A Ď&#x192; e2   sin A 
" # ( / ) $ 9 # -
A-6 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
pedal curve
Figure A.2 Geometrical construction of the pedal curve
standard error ellipse
9 # > + .
North standard error ellipse
pedal curve or â&#x20AC;&#x153;footprintâ&#x20AC;?
Figure A.3
Ď&#x192; north
The pedal curve and uncertainties in the north and east directions Ď&#x192; east East
September 1999 Issue 1
Mathematical Reference A-7
BP Amoco Directional Survey Handbook
BPA-D-004
5
'
* % + 1 . " 7 X-axis
Gravity Highside
Ď&#x201E;
Figure A.4
Y-axis
Naming convention for sensor axes
Z-axis
Ď&#x201E;
= instrument toolface angle
(down hole)
" Gx, Gy, Gz
Bx, By, Bz + . ! 7   G x2 + G y2  â&#x2C6;&#x2019; 1  sin    G2 + G2 + G2  G2 + G2 + G2  x y z x y z  ďŁ ďŁ ďŁŤ
Inclination = I = cos â&#x2C6;&#x2019;1 
Gz
(
 G B â&#x2C6;&#x2019;G B x y y x
)
    
G x2 + G y2 + Gz2    Bz G x2 + G y2 â&#x2C6;&#x2019; Gz G x B x + G y B y  ďŁ ďŁ¸
Magnetic Azimuth = Am = tan â&#x2C6;&#x2019;1 

(
)
(
)

Instrument toolface = Ď&#x201E; = tan â&#x2C6;&#x2019;1  G x  ďŁ Gy 
A-8 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
" 7 G x = â&#x2C6;&#x2019; G sin I sin Ď&#x201E; G y = â&#x2C6;&#x2019; G sin I cosĎ&#x201E;
Gz @ G I B x = B cos Î&#x2DC; cos I cos Am sin Ď&#x201E; â&#x2C6;&#x2019; B sin Î&#x2DC; sin I sin Ď&#x201E; + B cos Î&#x2DC; sin Am cos Ď&#x201E; B y = B cos Î&#x2DC; cos I cos Am cos Ď&#x201E; â&#x2C6;&#x2019; B sin Î&#x2DC; sin I cos Ď&#x201E; â&#x2C6;&#x2019; B cos Î&#x2DC; sin Am sin Ď&#x201E; Bz = B cosÎ&#x2DC;sin I cos Am + B sin Î&#x2DC; cos I
G, B Î&#x2DC;
" 7 Gravity Field Intensity @
G x2 + G y2 + G z2
Magnetic Field Intensity @
B x2 + B y2 + Bz2
Magnetic Dip Angle @ sin â&#x2C6;&#x2019; 1  G x B x + G y B y + Gz Bz  ďŁ
5 !
G. B

5 '
" ) " ' # " !
September 1999 Issue 1
Mathematical Reference A-9
BP Amoco Directional Survey Handbook
BPA-D-004
(4 5 %
A ( + .
"
Exclusion probability is integrated over the part of each sector lying outside the target... â&#x20AC;Śthen summed over all sectors
Ď&#x2020;i+1
PX
Figure A.5 A â&#x20AC;&#x2DC;bitâ&#x20AC;&#x2122;s-eye-viewâ&#x20AC;&#x2122; of the target: the basis of the BP Amoco target analysis method
Ď&#x2020;i+1â&#x2C6;&#x2019; Ď&#x2020;i Ns
Ď&#x192;l
Ď&#x2020;ij
b
geological target reference point
Ď&#x2020;i
Ui
lij
as-surveyed point of penetration
PY
hij
Vi Ď&#x192;h
Yi standard error ellipse
Xi geological target boundary
1 + ! . δ
! + ! $ . Îą K$ ( ! ! Îą â&#x2C6;&#x2019; 90° M$ ( $
A-10 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
1 N v $ X i Yi x =  X i  i
ďŁ Yi 
1 $ p =  PX  ďŁ PY 
$ ( + . $
b 9( : # = ; : 8 6 5+& ( 0" 5+=
" (
xi â&#x2C6;&#x2019; p " $ +*28. $
(  sin Îą  Ttp =  â&#x2C6;&#x2019; cosÎą  ďŁ 0
â&#x2C6;&#x2019; cosδ cosÎą   â&#x2C6;&#x2019; sin Îą cosδ   â&#x2C6;&#x2019; sin δ 
# ( ( Ttp (x i â&#x2C6;&#x2019; p ) + b
9 (  cos I cos A cos I sin A â&#x2C6;&#x2019; sin I  Ttc =   cos A 0  ďŁ â&#x2C6;&#x2019; sin A
( ( $ 7
[
 U i   highside   =  = Ttc Ttp (x i â&#x2C6;&#x2019; p) + b ďŁ Vi  ďŁ lateral 
September 1999 Issue 1
]
Mathematical Reference A-11
BP Amoco Directional Survey Handbook
BPA-D-004
4 8 8 6 +0 ( 4 "
" ( + . $ ( " ( $ 7 Ď&#x192; 2 C tc =  h ďŁ Ď&#x192; hl
Ď&#x192; hl  T  2  = Ttc C nev Ttc Ď&#x192;l 
pdf ( t) =
 1  exp â&#x2C6;&#x2019; t T C â&#x2C6;&#x2019; 1t tc ďŁ ďŁ¸ 2 2Ď&#x20AC; det (C tc )
=
1
1
2 2Ď&#x20AC; Ď&#x192; h2Ď&#x192; l2 â&#x2C6;&#x2019; Ď&#x192; hl
 2 2  â&#x2C6;&#x2019; h Ď&#x192; l + 2hlĎ&#x192; hl â&#x2C6;&#x2019; l 2Ď&#x192; h2   exp 2   2 Ď&#x192; h2Ď&#x192; l2 â&#x2C6;&#x2019; Ď&#x192; hl ďŁ ďŁ¸
(
)
t =  h ďŁ l
"'70 " 4+ (5( 7 =
"  h â&#x2020;&#x2019;  r cos Ď&#x2020;  ďŁ r sin Ď&#x2020; 
ďŁ l
pdf (r , Ď&#x2020; ) = =
1 2Ď&#x20AC; Ď&#x192; h2Ď&#x192; l2 â&#x2C6;&#x2019; Ď&#x192; hl2
r 2Ď&#x20AC;
Ď&#x192; h2Ď&#x192; l2
â&#x2C6;&#x2019; Ď&#x192; hl2
(
 â&#x2C6;&#x201A; (h, l )  exp â&#x2C6;&#x2019; r 2 f (Ď&#x2020; ) det   ďŁ â&#x2C6;&#x201A; (r , Ď&#x2020; )
(
)
)
exp â&#x2C6;&#x2019; r 2 f (Ď&#x2020; )
2 2 2 2 f (Ď&#x2020; ) = Ď&#x192; l cos Ď&#x2020; â&#x2C6;&#x2019; Ď&#x192; hl sin 2Ď&#x2020; + Ď&#x192; h sin Ď&#x2020; 2 2 2
(
2 Ď&#x192; h Ď&#x192; l â&#x2C6;&#x2019; Ď&#x192; hl
A-12 Mathematical Reference
)
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
N s ( 7  Ď&#x2020; = Ď&#x2020; + j Ď&#x2020;i +1 â&#x2C6;&#x2019; Ď&#x2020;i i  Ns r =â&#x2C6;&#x17E;   I ij â&#x2030;&#x2C6; pdf (r , Ď&#x2020; ) dĎ&#x2020;   Ď&#x2020; â&#x2C6;&#x2019;Ď&#x2020; 2 2 r = hij + lij  Ď&#x2020; = Ď&#x2020; + ( j â&#x2C6;&#x2019; 1) i +1 i i ďŁ Ns
â&#x2C6;Ť
â&#x2C6;Ť
    dr    
 hij  $ ďŁ lij 
( $ Ď&#x2020; = tan â&#x2C6;&#x2019;1  U i  i
ďŁ Vi 
( ( $ ( ( $ r =â&#x2C6;&#x17E;
I ij
â&#x2030;&#x2C6;
â&#x2C6;Ť
Ď&#x2020;i + 1 â&#x2C6;&#x2019; Ď&#x2020;i Ns
( )
pdf r , Ď&#x2020;ij dr
r = hij2 + lij2
Ď&#x2020;ij = Ď&#x2020;i +  j â&#x2C6;&#x2019; 1  Ď&#x2020;i +1 â&#x2C6;&#x2019; Ď&#x2020;i ďŁ
2
Ns
" ( 7 r =â&#x2C6;&#x17E;
I ij
=
Ď&#x2020;i + 1 â&#x2C6;&#x2019; Ď&#x2020;i 1 N s 2Ď&#x20AC; Ď&#x192; 2Ď&#x192; 2 â&#x2C6;&#x2019; Ď&#x192; 2 h l hl
September 1999 Issue 1
â&#x2C6;Ť
(
( )) dr
r exp â&#x2C6;&#x2019; r 2 f Ď&#x2020;ij
r = h ij2 + lij2
Mathematical Reference A-13
BP Amoco Directional Survey Handbook
BPA-D-004
(
( ))  ( )  r =
 â&#x2C6;&#x2019; exp â&#x2C6;&#x2019; r 2 f Ď&#x2020; ij Ď&#x2020;i + 1 â&#x2C6;&#x2019; Ď&#x2020;i 1  = 2  Ns 2 f Ď&#x2020;ij 2Ď&#x20AC; Ď&#x192; h2Ď&#x192; l2 â&#x2C6;&#x2019; Ď&#x192; hl 
{(
r =â&#x2C6;&#x17E;
hij2 + lij2
) ( )}
2 2 Ď&#x2020;i +1 â&#x2C6;&#x2019; Ď&#x2020;i exp â&#x2C6;&#x2019; hij + lij f Ď&#x2020;ij = Ns 4Ď&#x20AC;f Ď&#x2020;ij Ď&#x192; h2Ď&#x192; l2 â&#x2C6;&#x2019; Ď&#x192; hl2
( )
" hij2 + lij2  hij  7 ďŁ lij 
+ .
$ 7
+ .
i 7
1 l
h = l tan Ď&#x2020;ij l â&#x2C6;&#x2019; Vi V â&#x2C6;&#x2019;V = i +1 i h â&#x2C6;&#x2019; U i U i +1 â&#x2C6;&#x2019; U i
lij =
Vi (U i +1 â&#x2C6;&#x2019; U i ) â&#x2C6;&#x2019; U i (Vi +1 â&#x2C6;&#x2019; Vi ) (Ui +1 â&#x2C6;&#x2019; U i ) â&#x2C6;&#x2019; (Vi +1 â&#x2C6;&#x2019; Vi ) tan Ď&#x2020;ij
hij2
+ lij2
=
lij2
tan
2
Ď&#x2020;ij + lij2
 Vi (U i +1 â&#x2C6;&#x2019; U i ) â&#x2C6;&#x2019; U i (Vi +1 â&#x2C6;&#x2019; Vi )  = =   cos2 Ď&#x2020;ij  (U i +1 â&#x2C6;&#x2019; U i ) cos Ď&#x2020;ij â&#x2C6;&#x2019; (Vi +1 â&#x2C6;&#x2019; Vi ) sin Ď&#x2020;ij  lij2
2
" (
7 Nv Ns
p
A-14 Mathematical Reference
@
1â&#x2C6;&#x2019;
â&#x2C6;&#x2018;â&#x2C6;&#x2018; I
()
ij p
i =1 j =1
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
& - %
" ) ! " ( :;Q + )
:;Q. 9 ( 4
G $
+ bH Ď&#x192; H .
+ bL Ď&#x192; L . 1 ! A 4
4
* !
(2Ď&#x192; H â&#x2C6;&#x2019; bH ) cos Inc ! A Inc 4 !
! (2Ď&#x192; H + bH ) cos Inc ! AP6;4F 4
! 2Ď&#x192; L â&#x2C6;&#x2019; bL ! AP:4F 4 )
!
2Ď&#x192; L + bL ! A$:4F
September 1999 Issue 1
Mathematical Reference A-15
BP Amoco Directional Survey Handbook
BPA-D-004
4 ,
" ) 9 # H ( step 6
geol
ogic a
drille
Figure A.6
râ&#x20AC;&#x2122;s ta
2Ď&#x192;L + bL
Graphical method of target analysis
planned well azimuth, A
l targ
2Ď&#x192;H + bH cos Inc
et
step 3
rget 2Ď&#x192;H - bH cos Inc
2Ď&#x192;L - bL
step 4 step 5
A-16 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
5
BPA-D-004
5 #'
'
- ' 0+85' 4 " 0"' + 5 " =
"
7 Ď&#x192;2
=
2 2 + Ď&#x192; hole Ď&#x192; surf
Ď&#x192; surf
@ C
6
Ď&#x192; hole
@
+ . 6
577 5"' 8 + 0+; = ( 5
"
# ( + . = = + . " ( 7 Sb @ Max U 4 + $ . V
@
@
September 1999 Issue 1
Mathematical Reference A-17
BP Amoco Directional Survey Handbook
BPA-D-004
* + $ .
+ . ' * " #& 5
" $ β + 6- ) . 7 .
> $ 7 cos I cos A cos( β â&#x2C6;&#x2019; A) â&#x2C6;&#x2019; sin A sin( β â&#x2C6;&#x2019; A)   @ cos I sin A cos( β â&#x2C6;&#x2019; A) + cos A sin( β â&#x2C6;&#x2019; A)   â&#x2C6;&#x2019; sin I cos( β â&#x2C6;&#x2019; A)  
7 I @
"G
A @ #! "G 0
interfering well
Figure A.7 Calculating a no-go area on the travelling cylinder diagram
β
u
minimum allowable separation no-go area
A-18 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
.
BPA-D-004
7
Ď&#x192; 2 @
Ď&#x192; 1 @ uT C1u
2 uT C2 u + Ď&#x192; surf
7 C1
@ ' (
C2
@
(
Ď&#x192; surf @ C 6 .
+ , >.
+ $#( % - +
" $ S
 d 1 + d 2  d1 + d 2 = Ď&#x192; 2 ln  + ďŁ PĎ&#x192; 2Ď&#x20AC;  2
" G 9 # ; O S $ $ Ď&#x192; R +
. %
z 7  (z â&#x2C6;&#x2019; S)2  1 exp â&#x2C6;&#x2019; f ( z) =  2Ď&#x192; 2  Ď&#x192; 2Ď&#x20AC; 
September 1999 Issue 1
Mathematical Reference A-19
BP Amoco Directional Survey Handbook
BPA-D-004
# d1 + d 2 2
â&#x2C6;Ť f (z)dz
P = â&#x2C6;&#x2019;
d1 + d 2 2
+ # ;. % ( + $ . 1  d1 + d 2  P â&#x2030;&#x2C6; (d1 + d 2 ) f   ďŁ 2 
=
[
]
2   S â&#x2C6;&#x2019; (d1 + d 2 ) / 2  exp â&#x2C6;&#x2019;  Ď&#x192; 2Ď&#x20AC; 2Ď&#x192; 2    
d1 + d 2
S (
d1
d2
S
Figure A.8
planned well
interfering well
Derivation of the risk-based separation rule
Ď&#x192; f(z)
z=0 d + d2 z= _ 1 2
z=S z=
d1 + d 2 2
" ( # (
A-20 Mathematical Reference
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
% + 6. Actual Collision Risk Collision Risk (low position uncertainty)
Case 1
Ď&#x192; <
d +d 0.242
1
Figure A.9
2
Collision Risk (higher position uncertainty)
P Tolerable Collision Risk
Ď&#x192;b Ď&#x192;a
Sa S b
Behaviour of the risk-based separation rule at low positional uncertainty
Minimum Separation increases as Combined Position Uncertainty increases
# + -. " Case 2 d +d 0.399
1
2
> Ď&#x192; > 0.242
P
d +d 1
Figure A.10
2
P
Behaviour of the risk-based separation rule at intermediate positional uncertainty
Tolerable Collision Risk
Ď&#x192;b Ď&#x192;a S b Sa
Minimum Separation decreases as Combined Position Uncertainty increases
2 ( + >.
September 1999 Issue 1
Mathematical Reference A-21
BP Amoco Directional Survey Handbook
BPA-D-004
Case 3
Ď&#x192; > 0.399
d +d
2
P
Figure A.11 Behaviour of the risk-based separation rule at high positional uncertainty
1
Tolerable Collision Risk Tolerable Collision Risk is never exceeded - no Minimum Separation exists
Ď&#x192;b Ď&#x192;a
5 )
Sa
" D"A the average excess dogleg severity over plan #
"
DTD + D0 . " ! 7
[D
i P
I Pi
APi
]
0â&#x2030;¤i â&#x2030;¤ M
$
[D
j S
A-22 Mathematical Reference
I Sj
ASj
]
0â&#x2030;¤ j â&#x2030;¤ N
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
9 + # 6. 7
{
]}
[
DLiP = cos â&#x2C6;&#x2019;1 cos( I Pi â&#x2C6;&#x2019; I Piâ&#x2C6;&#x2019;1 ) â&#x2C6;&#x2019; sin I Piâ&#x2C6;&#x2019;1 sin I Pi 1 â&#x2C6;&#x2019; cos( A Pi â&#x2C6;&#x2019; A Piâ&#x2C6;&#x2019;1 )
7 1 DLS P = DTD â&#x2C6;&#x2019; D0
M
â&#x2C6;&#x2018; DL i =1
i P
O $ 7 1 DLS S = DTD â&#x2C6;&#x2019; D0
{
N
â&#x2C6;&#x2018; DL j =1
j S
]}
[
DLSj = cos â&#x2C6;&#x2019;1 cos( I Sj â&#x2C6;&#x2019; I Sj â&#x2C6;&#x2019;1 ) â&#x2C6;&#x2019; sin I Sj â&#x2C6;&#x2019;1 sin I Sj 1 â&#x2C6;&#x2019; cos( ASj â&#x2C6;&#x2019; ASj â&#x2C6;&#x2019;1 )
" 7 Wellbore Tortuosity =
September 1999 Issue 1
DLS S â&#x2C6;&#x2019; DLS P
Mathematical Reference A-23/24
BP Amoco Directional Survey Handbook
BPA-D-004
Appendix B
Contents
Page
" # $ %
&
$ '
(
'
)
'
+
,
! & * (
September 1999 Issue 1
Approved Tool Error Models B-i/ii
BP Amoco Directional Survey Handbook
BPA-D-004
An inventory of the survey tool error models approved for use in BP Amoco.
! "
" # $ % & â&#x20AC;˘ ' ( â&#x20AC;˘ ( ) # â&#x20AC;˘ ( The standard ) * format for survey error models # tool is described in +
September 1999 Issue 1
Approved Tool Error Models B-1
BPA-D-004
B-2 Approved Tool Error Models
MWD - Standard
MWD
MWD
MWD with no (or no known) special corrections
The model allows for the fact that axial interference may marginally exceed the upper limit specified in Section 4.9 when the well is near to horizontal east/west
MWD + Sag correction
MWD+SAG
MWD+SG
MWD with a BHA deformation correction applied
Covers all BHA corrections, from simple 2D to finite-element 3D models
MWD + Short Collar correction
MWD+SCC
MWD+SC
MWD with single station axial interference correction applied ( 4.9)
â&#x20AC;&#x153;Short Collarâ&#x20AC;? is the name of Sperry-Sunâ&#x20AC;&#x2122;s correction, but the error model covers all such
MWD + Sag + SC corrections
MWD+SAG+SC
MWD+SS
MWD with both BHA sag correction and single station axial interference correction applied
MWD + IHR correction
MWD+IHR
MWDIHR
In-hole referenced MWD (
MWD + IFR correction
MWD+IFR
MWDIFR
September 1999 Issue 1
with time-varying field applied. Model is applicable whether or not Short Collar type correction is applied.
Table B.1
Approved Survey Tool Error Models â&#x20AC;&#x201C; MWD (Part 1 of 2)
Assumes a BHA sag correction is applied to enhance inclination accuracy Assumes a BHA sag correction is applied to enhance inclination accuracy.
BP Amoco Directional Survey Handbook
4.8). In-field referenced MWD ( 4.7),
MWD + IFR [Alaska]
MWD+IFR:AK
MWDIAK
In-field referenced MWD in Alaska
Model takes account of increased violence of magnetic field disturbances in Alaska. Assumes a BHA sag correction is applied to enhance inclination accuracy
MWD + IFR [Wytch Farm]
MWD+IFR:WF
MWDIWF
In-field referenced MWD at Wytch Farm
Model takes account of observed low levels of axial low level interference using Anadrill BHA components and design. Assumes a sag correction is applied to enhance inclination accuracy
MWD + IFR + Multi-station
MWD+IFR+MS
MWDIMS
In-field referenced MWD with multistation analysis and correction ( 4.9) applied in post-processing
Assumes a BHA sag correction is applied to enhance inclination accuracy
MWD+crust
MWD+CA
MWD where local magnetic field has been measured (or derived from aero-magnetic data) and corrected for, but short-term time variations are not applied.
Assumes a BHA sag correction is applied to enhance inclination accuracy
MWD + Crustal + SC corrections
MWD+CA+SC
MWD+CS
Same as MWD + Crustal Anomaly correction but with single station axial interference correction applied
Assumes a BHA sag correction is applied to enhance inclination accuracy
Table B.1
Approved Survey Tool Error Models â&#x20AC;&#x201C; MWD (Part 2 of 2)
BPA-D-004
Approved Tool Error Models B-3
MWD + Crustal Anomaly corrn
BP Amoco Directional Survey Handbook
September 1999 Issue 1
BPA-D-004
B-4 Approved Tool Error Models
EMS - Standard
EMS
EMS
Electronic multishot with no (or no known) special corrections
Includes ex-BP â&#x20AC;&#x153;Electronic Single Shotsâ&#x20AC;? model. Assumes large axial interference errors have been corrected.
EMS + Sag correction
EMS+SAG
EMS+SG
Electronic multishot with a BHA deformation correction applied
Covers all BHA corrections, from simple 2D to finite-element 3D models. Assumes large axial interference errors have been corrected.
EMS + IHR correction
EMS+IHR
EMSIHR
In-hole referenced electronic multishot ( 4.8).
Assumes a BHA sag correction is applied to enhance inclination accuracy.
EMS + IFR correction
EMS+IFR
EMSIFR
In-field referenced electronic multishot ( 4.7), with time-varying
Assumes a BHA sag correction is applied to enhance inclination accuracy.
field applied. Model is applicable whether or not Short Collar type correction is applied. EMS+IFR:AK
EMSIAK
In-field referenced electronic in Alaska
Model takes account of increased violence of magnetic field disturbances in Alaska. Assumes a BHA sag correction is applied to enhance inclination accuracy
EMS + Crustal Anomaly corrn
EMS+crust
EMS+CA
Electronic multishot where local magnetic field has been measured (or derived from aero-magnetic data) and corrected for, but short-term time variations are not applied.
Assumes large axial interference errors have been corrected.
Table B.2
Approved Survey Tool Error Models - Electronic Magnetic Multishots
BP Amoco Directional Survey Handbook
September 1999 Issue 1
EMS + IFR [Alaska]
RIGS
RIGS
INTEQ RIGS multishot surveys
BHI Seeker multishot
Seeker MS
SKR MS
All INTEQ Seeker ( surveys
Ferranti FINDS multishot
FINDS
FINDS
Gyrodata - gyrocompassing m/s
GYD GC MS
GYD GC
Older Gyrodata gyro multishots, plus all battery/memory tool surveys (RGS-BT)
Gyrodata - cont. casing m/s
GYD CT CMS
GYD CC
Gyrodata multishot surveys with continuous tool (RGS-CT) in casing. OD 13-3/8â&#x20AC;? or less.
Gyrodata - cont. drillpipe m/s
GYD CT DMS
GYD CD
Gyrodata pump-down multishot surveys with continuous tool (RGSCT) in drill-pipe.
Gyrodata - large ID casing m/s
GYD LID MS
GYD LC
Gyrodata multishot surveys (gyrocompassing or continuous tool) in larger size casing strings (greater than 13-3/8â&#x20AC;? OD).
Gyrodata â&#x20AC;&#x201C; bat/mem drop m/s
GYD BM MS
GYD BM
Gyrodata multishot using Battery/Memory tool in any configuration.
Table B.3
5.8) multishot All Ferranti FINDS ( 5.8) surveys Replaces ex-BP â&#x20AC;&#x153;Gyrodata multishot into open holeâ&#x20AC;? model.
Includes an increased misalignment term
Approved Survey Tool Error Models - North Seeking and Inertial Gyro Multishots (Part 1 of 2)
BPA-D-004
Approved Tool Error Models B-5
BHI RIGS multishot
BP Amoco Directional Survey Handbook
September 1999 Issue 1
BPA-D-004
B-6 Approved Tool Error Models
5.8)
Schlumberger GCT multishot
GCT MS
GCT
GCT surveys in casing or open hole.
GCT = â&#x20AC;&#x153;Gyro Continuous Toolâ&#x20AC;? (
SDC Finder - multishot
Finder MS
FDR MS
Finder multishots in casing or drill pipe
Replaces ex-BP â&#x20AC;&#x153;Inrunâ&#x20AC;? and â&#x20AC;&#x153;Outrunâ&#x20AC;? models
SDC Keeper - casing m/s
KPR csg MS
KPR CM
Keeper multishot surveys in casing. OD 13-3/8â&#x20AC;? or less.
SDC Keeper - drillpipe m/s
KPR d/p MS
KPR DP
Keeper pump-down multishot surveys in drill-pipe.
SDC Keeper - large ID csg m/s
KPR LID MS
KPR LC
Keeper multishot surveys in larger size casing strings (greater than 13-3/8â&#x20AC;? OD).
Includes an increased misalignment term
Sperry-Sun G2 multishot
G2 gyro MS
G2 MS
G2 ( 5.8) multishots in casing, drill pipe or open hole
Replaces ex-BP â&#x20AC;&#x153;Staticâ&#x20AC;? and â&#x20AC;&#x153;Dynamicâ&#x20AC;? models
Approved Survey Tool Error Models - North Seeking and Inertial Gyro Multishots (Part 2 of 2)
September 1999 Issue 1
BP Amoco Directional Survey Handbook
Table B.3
Inclinometer (Totco/Teledrift)
INC
INC
Inclination only surveys in nearvertical hole, including TOTCO, Teledrift and Anderdrift.
Inclinometer + known azi trend
INC+trend
INC+TR
Inclination only surveys in nearvertical hole, where formation dip and experience enables direction of drift to be predicted.
Table B.4
BP Amoco Directional Survey Handbook
September 1999 Issue 1
Replaces ex-BP â&#x20AC;&#x153;Inclinometer (azimuth in known quadrant)â&#x20AC;? model
Approved Survey Tool Error Models - Inclination Only Surveys
BPA-D-004
Approved Tool Error Models B-7
BPA-D-004
B-8 Approved Tool Error Models
Camera-based mag single shot
CB mag SS
CBM SS
Traditional (mechanical) magnetic single shot ( 5.5)
Conventional SRG single shots
SRG
SRG
Optically-referenced gyro single shots ( 5.6) Includes SDC Keeper when used in â&#x20AC;&#x153;siteline reference modeâ&#x20AC;?.
Tool types include SRG and MSRG (scientific Drilling), Sigma (INTEQ) and SRO (Sperry-Sun).
Camera-based gyro single shots
CB gyro SS
CBG SS
Traditional surface referenced gyro tool run on wireline, including â&#x20AC;&#x153;level rotorâ&#x20AC;? gyros and Sperry-Sun SU3.
Replaces ex-BP â&#x20AC;&#x153;PGSSâ&#x20AC;? model.
Gyrodata - gyro single shots
GYD SS
GYD SS
Gyrodata gyro orientation surveys
SDC Keeper - gyro single shots
KPR SS
KPR SS
Keeper gyro orientation surveys
SDC Keeper â&#x20AC;&#x201C; surface ref s/s
KPR SR SS
KPR SR
Keeper gyro orientation surveys, where azimuth alignment is achieved by optical referencing at surface.
SDC Finder - gyro single shots
Finder SS
FDR SS
Finder gyro orientation surveys
NS Gyro single shots
NS gyro SS
NSG SS
North seeking gyro orientation surveys taken with unspecified tool.
Approved Survey Tool Error Models - Other Single Shot Types
Excludes siteline (ie. surface) referenced surveys
Note Gyrodata, SDC Keeper and SDC Finder have their own models, which should be used if the tool type is known to be one of these.
BP Amoco Directional Survey Handbook
September 1999 Issue 1
Table B.5
Assumes tandem probes are run and that both are adequately magnetically spaced. Replaces ex-BP â&#x20AC;&#x153;PMSSâ&#x20AC;?.
CBG MS
Traditional optically referenced gyro surveys run on wireline, including â&#x20AC;&#x153;level rotorâ&#x20AC;? gyros and Sperry-Sun SU3 ( 5.8).
BP Amoco Directional Survey Handbook
September 1999 Issue 1 CB gyro MS
Camera-based gyro multishot
Replaces ex-BP â&#x20AC;&#x153;PGMSâ&#x20AC;? model.
CB mag MS
CBM MS
Traditional (mechanical) magnetic multishot ( 5.5)
Dipmeter or other wireline log
Dipmeter
DIPMTR
Wireline conveyed logging tools with directional survey capability ( 5.7).
Sperry-Sun BOSS gyro multishot
BOSS gyro
BOSS
Sperry-Sun BOSS multishot surveys ( 5.8).
Table B.6
Assumes adequate magnetic spacing. Replaces ex-BP â&#x20AC;&#x153;PMMSâ&#x20AC;?. Schlumberger OBDT, BGT are examples
Approved Survey Tool Error Models - Other Multishot Types
BPA-D-004
Approved Tool Error Models B-9
Camera-based magnetic multishot
BPA-D-004
B-10 Approved Tool Error Models
Blind drilling
Blind
n/a
Hole intervals where no surveys are taken
Model assumes well direction deviates from last known survey at a constant rate. Errors grow with square of distance drilled.
Unknown survey
Unknown
n/a
Any survey data of unknown or dubious type
Replaces ex-BP â&#x20AC;&#x153;unknown multishotâ&#x20AC;? model.
Zero Error model
Zero Error
n/a
Used to set position uncertainty to zero down to a given depth (eg. sidetrack point).
Table B.7
Approved Survey Tool Error Models - Special Models
BP Amoco Directional Survey Handbook
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Appendix C
Contents
Page
C-5
C-8
C-9
C-10
C-12
C-14
C-16
!
C-18
" #" !
C-20
$ % !
C-22
& % ! '
C-27
September 1999 Issue 1
Data and Work Sheets C-i/ii
BP Amoco Directional Survey Handbook
BPA-D-004
(
Checklists and proformas to facilitate auditability and quality assurance.
#
! ! "#$ % & # '(&' )* & +% , + ,
# )*
! ' ) "
September 1999 Issue 1
Data and Work Sheets C-1
BP Amoco Directional Survey Handbook
BPA-D-004
) * $ *" ) *! " + The function of the Well Location Memorandum is discussed in more detail in Section 6.3
# - # # " ) * $ *" ) * , * )$) )- ).
& ! - #
" ) * $ *" $ *! , * )$) )- ). DGPS and other surface positioning systems are described in Section 3.1
$ . $*!/ - - #
# ! 0 % * #
- . 1 2/ !) $ *" ) /" $ &))$
3 )"
#
C-2 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
!) $ *" ) /" &) 0 $
% * 0 - 4 . 5 6/ +!1)2 !*/! $ &))$
3 ! 4 % ! 4 % * "$ * *" " $!+ $ *" &))$
- 7 - # 3 0 ! 4 % * )" $ *" !* !) * )" ) ! $ )
$ 8
# % * "*" * " ) ## "*" *" *! " ) !) *!$
7
& 9 1 8
.+' - ,/ : .+' - ,/ & - . 5 ;/ 4 % ! 4
September 1999 Issue 1
Data and Work Sheets C-3
BP Amoco Directional Survey Handbook
BPA-D-004
* $* )! 3 ) * *" ! 0 *!0 &))$
" - 0 . 6 2 6 6/ < - !) $ *" +!1)2 & " 3**0 & "/) !)4+) $
" = 8
# 8
C-4 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
WELL LOCATION MEMORANDUM LOCATION DESIGNATION
This WLM supersedes the following previous locations: (NB: Any change in shotpoint location must have a new location designation)
Country: Region/State:
Prospect/Field: Lease/PSC/Block:
1. WELL LOCATION DEFINITION (To be completed by Buisiness Unit subsurface and/or reservoir team) SURFACE LOCATION: PRIMARY DEFINITION: 3D, 2D, HR Seismic Survey or OTHER* (* Circle appropriate definition)
Survey name:
Survey mnemonic:
Database type & name:
3D Inline bin, or 2D/HR line number:
Acquisition contractor & year:
3D Xline bin, or 2D/HR shot number:
Processing contractor & year:
3D bin size (Inline x Xline): or 2D/HR shotpoint interval:
OTHER DEFINITION (eg: template & slot No.):
SECONDARY DEFINITION: 3D, 2D or HR* Seismic Survey (* Circle appropriate definition)
Survey name:
Survey mnemonic:
Database type & name:
3D Inline bin, or 2D/HR line number:
Acquisition contractor & year:
3D Xline bin, or 2D/HR shot number:
Processing contractor & year:
3D bin size (Inline x Xline): or 2D/HR shotpoint interval:
PRIMARY DRILLING TARGET LOCATION (for non-vertical wells): PRIMARY DEFINITION: 3D, 2D or HR* Seismic Survey (* Circle appropriate definition)
Survey name:
Survey mnemonic:
Database type & name:
3D Inline bin, or 2D/HR line number:
Acquisition contractor & year:
3D Xline bin, or 2D/HR shot number:
Processing contractor & year:
3D bin size (Inline x Xline): or 2D/HR shotpoint interval:
Section 1 completed by:
Section 1 approved by:
Signature:
Signature:
Date:
Date:
Name:
Name:
Position/Job Title:
Position/Job Title:
September 1999 Issue 1
Data and Work Sheets C-5
BP Amoco Directional Survey Handbook
BPA-D-004
Well Location Memorandum - Page 2
2.
LOCATION DESIGNATION
SUBSURFACE DATA (To be completed by Business Unit Subsurface Team)
Attach a separate map sheet to this WLM showing seismic lines and geological structure around target location
Describe below in words and diagramatically the surface location and it's constraints (give dimensions):
Proposed Location
TOLERANCE
Define Surface Location Tolerance(s)
Surface Location Area Diagram Illustrate shape and size of the zone within which a surface location would be acceptable and indicate constraints which limit rig anchoring or manoevring (eg: shallow gas, obstructions, pipelines).
For location(s) derived from workstation provide: Coordinates of surface and primary target locations and two other bins remote from the primary target (one bin with same Inline and one with same Xline bin number as primary target)
Location
3D Survey Name
Bin Size
Inline
Xline
Eastings
Northings
Eastings
Northings
Surface: Primary Target: Same Inline: Same Xline: For surface and target locations based on 2D or HR seismic provide: 2D/HR Survey Name Line No. Shotpoint Point* Location Surface: Primary Target: * Mapped point type (SP, CDP, etc) Attach extract of relevant 2D and/or HR line from database listing shotpoint coordinates values for 2km either side of proposed location
C-6 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Well Location Memorandum - Page 3
LOCATION DESIGNATION
3. WELL LOCATION COORDINATES (To be completed by UTG SURVEY GROUP) LOCATION COORDINATES SURFACE LOCATION (Vertical or Deviated well)
PRIMARY TARGET LOCATION (Deviated well)
Latitude:
Latitude:
Longitude:
Longitude:
Eastings:
Eastings:
Northings:
Northings:
Surface Positioning Tolerance:
True azimuth from surface location:
Water depth:
Horizontal offset distance:
degrees m
ft
Ground Elevation:
Geodetic Information: Datum name:
Datum mnemonic:
Ellipsoid name:
Ellipsoid mnemonic:
Projection name:
Projection mnemonic:
Zone:
Data source of coordinates (eg: database name, report, etc): Surface Location: Primary Target Location:
Seismic survey positioning systems and horizontal accuracy estimates:
Surface Location Positioning System
Primary Target Location Accuracy
Positioning System
Accuracy
3D Seismic: 2D Seismic: HR Seismic: Other positioning information:
Section 3 completed by:
Section 3 approved by:
Signature:
Signature:
Date:
Date:
Name:
Name:
Position/Job Title:
Position/Job Title:
Circulation: D.S. / S.D.E. / D.E.
Site Investigation Specialist
Subsurface Team Leader Asset Geoscientists
Data Administrator (load to database) Head of Survey
September 1999 Issue 1
Data and Work Sheets C-7
BP Amoco Directional Survey Handbook
BPA-D-004
" ) * $ *" ) * )- )
! " # # $%&'$%(#%)* ##%+,
! " 2
" # $ % & '(%)* " ($ -& --' 0)
+ ,- . /0%( 1
2 * 2
" ( 0 %'# " # #70 %/ ' *
+3 4 5 64 $ 1
'8# 2 ( '78$ % (9% : / + #1' ; < ! ' /
! '%- '
! '
(#'-$ (-'-$ =9: , 2
2 ! - '-° ' -. )+/ " - ! 0 ! 12+ ! 0
! 0 . 3 " 4.
#) 2 2 =9: '%
2 2 ! /'- '
: 2 6 > ' 0 5 6 4
? ' %-78
, " 4 /007
! " ## $$ %%& ' ()
C-8 Data and Work Sheets
$
September 1999 Issue 1
Area:
Lat:
(Geogs: 2 dec places, Grid: 1 dp (m) 0 dp (ft)) ° Long:
Ac c e p t e d S u r f a c e P o s i t i o n
& & ( '
Geodetic Datum Easting: Radius of error: System/method for accepted position
Projection and zone: !
Northing: & & Primary Positioning System (Geogs: 3 dec places, Grid: 2 dec places) Names of Reference Station(s) used for Primary Position
)*+$, -.
Secondary positioning
%# +$, -.
system:
01 12
Rig positioning contractor: Job number: Site survey date:
Long: Sph. Ht.
Contractor: Report number:
Coords of rotary: Local Datum Lat: ° Long: ° & Ellip. Ht.
or stated Vert Datum
RTE
B.L.A.T. A.M.S.L
& &
' ' '
S.D.
X:
Y:
dY: ' rY:
dZ: ( ' rZ: ( &
Scale Factor: //' Useful Information / Notes
° °
km
3$4 + ' '/$% 5 6* 7 83 9$%%$ '4 ! 4 ! $%% 4# #$ ! + #3 $ #$ ! % : * 7 !56 ) # %% 5$! # 4 43 ;! correct.
Sph.Ht.
Easting:
° ° & & &
S.D. S.D.
GPS Antenna
GPS Antenna 56
Rig Hdg 309.7 deg T
dX: ' rX:
' < ° Coords of rotary: Local Datum
Northing Diagram
Diagram
Reciprocal flattening 1/ Datum Shift From WGS84 to Local Datum
S.D. X: Y: Z: Offset: Antenna to rotary (Rel. range/bearing)
Lat. Long
Z:
"!# ! #$ ! % & '
42 .55
.3 m
R/T
m
Rig Hdg 309.7 deg T
Completed by: (block caps)
1 " 7
Checked by: (block caps)
=>
R/T
BPA-D-004
Data and Work Sheets C-9
Water depth
& & & &
Easting: Northing:
km
WGS84 Datum
Lat. Long
& ' < ° ! 2 : %
km
Ref.Stn.2: Name/Country: Lat. Long. Easting Northing Dist to Ref.Stn.
Easting Northing Dist to Ref.Stn. Antenna Coords: Network Solution
Offset: Antenna to rotary (Relative range/bearing)
B.M.S.L.
Northing
m
Type of rig: Vertical datum:
Easting Dist to Ref.Stn.
Associated Ellipsoid Semi-major axis Semi-minor axis
Ref.Stn.3: Name/Country: Lat. Long.
° °
! 0 3
Ref.Stn.1: Name/Country: Lat. Long.
1. 0
Rig name:
Antenna Position: WGS84 Datum Lat:
Well Number:
Submit to BP Amoco Survey for checking/approval Location designation: Date Completed: Secondary Positioning System Contractors report no. (Geogs: 3 dec places, Grid: 2 dec places) Geodetic Parameters °
17 .4 m
Prospect/Field:
BP Amoco Directional Survey Handbook
September 1999 Issue 1
Country:
BP Amoco Directional Survey Handbook
BPA-D-004
WELL PLAN DATA SHEET Rig / Platform / Drill Site*
Well
Sheet completed by SURFACE LOCATION
Date Datum/Ellipsoid
planned / actual*
Structure reference Lat. Long.
Description
Well reference point Lat. Long. Offset from structure ref.
Description
N / S* E / W*
N / S* E / W* N / S*
Elevation (land rig) Drill datum RT / KB* Drill datum to well ref. pt. Well ref. pt. to MSL TARGET #1 Name Easting Northing Depth TVDss Tolerance
* delete as appropriate
Projection
Easting Northing
Easting Northing E / W*
Elevation (offshore) Drill datum RT / KB* Drill datum to MSL Drill datum to well ref. pt. TARGET #2 Name Easting Northing Depth TVDss Tolerance
Survey reference True / Grid* Grid convergence (T to G) Magnetic declination (T to M) Magnetic model Date Correction (magnetic to survey ref.) Correction (true to survey ref.)
TARGET #3 Name Easting Northing Depth TVDss Tolerance
North arrows (diag.) E / W* E / W*
Curved conductors Drill datum to well reference point MD TVD North East N / S* E / W* Incl. at w.r.p. Azim at w.r.p.
C-10 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
WELL PLAN DATA SHEET Rig / Platform / Drill Site*
Well
Sheet completed by
Date Datum/Ellipsoid
planned / actual*
Structure reference Lat. Long.
Description
Well reference point Lat. Long. Offset from structure ref.
Description
$°, - % $. N / S* $$° %- . E / W*
0 , $$ 0 , ,1 %% -
" 4! 5 + 6
!"# $%%
+ Easting Northing
Projection
&' () *
/ 0 , $ 1 0 ,$%1$ 1
+ $ (+ ! 2 3* $°, - % . N / S* Easting / 0 , $ $
$$° %- % . E / W* Northing 0 ,$%1 %
% - N / S* 1 % - E / W*
Elevation (land rig) Drill datum RT / KB* Drill datum to well ref. pt. Well ref. pt. to MSL
-
SURFACE LOCATION
TARGET #1 Name Easting / Northing Depth TVDss Tolerance
* delete as appropriate
Elevation (offshore) Drill datum RT / KB* Drill datum to MSL Drill datum to well ref. pt. TARGET #2 Name Easting / 0 , Northing 0 , ,$ Depth TVDss Tolerance
, % , $ , $ , %
Survey reference True / Grid* Grid convergence (T to G) Magnetic declination (T to M) Magnetic model 77' Correction (magnetic to survey ref.) Correction (true to survey ref.)
4 4 4 4
, 1 , ,$ , , , ,
,1° E / W* ° E / W* Date 8
,°
,1°
1 $% -
TARGET #3 Name Easting Northing Depth TVDss Tolerance
North arrows (diag.)
M
G
decl. = +0.11 conv. = +2.34
Curved conductors Drill datum to well reference point MD TVD North East $ - $% - % 1- N / S* - E / W* Incl. at w.r.p. 1 ° Azim at w.r.p. %$ $°
September 1999 Issue 1
Data and Work Sheets C-11
BP Amoco Directional Survey Handbook
BPA-D-004
DIRECTIONAL DESIGN CHECK LIST Rig / Platform / Drill Site
Well Date
Sheet completed by Checked by
Well Objectives Document from BU sub-surface team Updates to well objectives
/
Comment
Well Location Memorandum Planning File Well Plan Data Sheet Survey Program Data Sheet Proposed well trajectory BU sub-surface approval of trajectory Target analysis (1 per target) Offset well data (surveys, completion diags. etc.) Initial clearance scan (global scan) Tolerable Collision Risk Worksheet(s) Minimum separation calculations Anti-Collision Instruction Sheet Magnetic interference prediction Relief well contingency calculation Dispensations from Recommended Practice Wellsite Drawings Plan view drawings Vertical section drawings Structure (spider) plots Travelling cylinder - global clearance scan Travelling cylinder - working drawing(s) Travelling cylinder - wellsite plots
C-12 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
DIRECTIONAL DESIGN CHECK LIST Rig / Platform / Drill Site
Well
Date
Sheet completed by Checked by
,
+9:
Well Objectives Document from BU sub-surface team Updates to well objectives
/
Comment
5 ! ! ! #; < =; , !" !=
< = 9!: 5: :!9 ;
Well Location Memorandum
Planning File Well Plan Data Sheet Survey Program Data Sheet Proposed well trajectory BU sub-surface approval of trajectory Target analysis (1 per target)
Offset well data (surveys, completion diags. etc.) Initial clearance scan (global scan) Tolerable Collision Risk Worksheet(s) Minimum separation calculations Anti-Collision Instruction Sheet
9 : = 3:! "!9 ! ! 3
Magnetic interference prediction
+ + > ":= 6
Relief well contingency calculation
Recommended Practice Dispensation Form(s)
!" =):3 = 8
Wellsite Drawings Plan view drawings Vertical section drawings Structure (spider) plots
? " @6:" 3
Travelling cylinder - global clearance scan Travelling cylinder - working drawing(s) Travelling cylinder - wellsite plots
?
September 1999 Issue 1
8 " : = % < = 9!:
+ + > ":= 6
Data and Work Sheets C-13
BPA-D-004
C-14 Data and Work Sheets
SURVEY PROGRAM DATA SHEET Rig / Platform / Drill Site Survey Tool / Error Model
Well Hole Size
Program version Casing Size
Depth interval from to
Sheet completed by
Date
Comments / Contingency
BP Amoco Directional Survey Handbook
September 1999 Issue 1
Rig / Platform / Drill Site
Well
Date
Hole Size
! " " #
$
%&%'
'
! " " #
% $
'
'
" ( ( ) * "* !+ , * ,
-. ! !
% $
'
'
! "/ ) , " , () # " ! # , " * )) # +) / (
-. 0 1 !+ " , "
$
'
'
%&%'
'
'
'
& $
Comments / Contingency
! "/ ) , " , () # " ! # , " * )) # +) / (
BPA-D-004
Data and Work Sheets C-15
-. 0 1 !+ " , "
&$
Depth interval from to
Sheet completed by
Survey Tool / Error Model
2 " ! ! !# + -() # "
Casing Size
Program version
BP Amoco Directional Survey Handbook
September 1999 Issue 1
SURVEY PROGRAM DATA SHEET
BP Amoco Directional Survey Handbook
BPA-D-004
ANTI-COLLISION INSTRUCTION SHEET Rig / Platform / Drill Site
Well Date
Sheet completed by BU authorisation
The instructions given in this sheet are based on: Well plan no. Date
999 Survey program no.
Date
and are not otherwise valid. Wells to be Shut In Well name
Minor Risk Wells Well name
Slot
Minimum Shut-in Interval MD from MD to
TCR*
Comment
Key Assumptions
*Tolerable Collision Risk
Travelling Cylinder Plots Plot no. Depth from Depth to
Date
Comment
Contingency Plans / Special Instructions
C-16 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
ANTI-COLLISION INSTRUCTION SHEET Rig / Platform / Drill Site
Well
Date
Sheet completed by BU authorisation
A:9 2 "
,
The instructions given in this sheet are based on: Well plan version no. Date
1
Survey program version no.
Date
1
,
and are not otherwise valid. Well Shut-ins Well name
Minimum Shut-in Interval MD from MD to
Slot no.
%
,
Minor Risk Wells Well name
$ $ -
, -
TCR*
Comment
# ?! ! 6 :) . ! := : ! B
Key Assumptions
*Tolerable Collision Risk
Travelling Cylinder Plots Plot no. Depth from Depth to
$ , 1 -
, 1
Date
1 1
Comment
Contingency Plans / Special Instructions
5 ! 2 = !== 3 ! B B ( * " 9!:= ) B:= : : = ) " = := = 6 := 2 !# = 2C > ": := !9 = !38: ) :" : =! ": " B : := . ! := ! " ! ( -* D B ! , - ' :! " !6 : = " !8 :3!= 9 ! 6" = !"C :" : =! ": " 9!# ": !9 !B!" ) 9! " 2!2: : C ) : : =
September 1999 Issue 1
Data and Work Sheets C-17
BP Amoco Directional Survey Handbook
BPA-D-004
DISPENSATION FROM RECOMMENDED PRACTICE To be used for recording planned violations of standard directional and survey procedures and recommended practices
Rig / Platform / Drill Site
Well Date
Sheet prepared by Recommended Practice Document
Procedure / Standard to be violated
Details of Dispensation Requested
Justification
Attachments
Technical Assessment / Recommendation
Signature / Date / Comment
BU Authorisation
C-18 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
DISPENSATION FROM RECOMMENDED PRACTICE To be used for recording planned violations of standard directional and survey procedures and recommended practices
Rig / Platform / Drill Site
Well
Date
Sheet prepared by
=3C +9:
Recommended Practice Document
Procedure / Standard to be violated
: "C 8 9 = :" : =! ! : ) : = !" !=! C : =):3 = 8 ( E*
Details of Dispensation Requested
": "- !" ) " !" 2 ! 6 ! 3 ! $ E =):3 = Justification
"! : ! 9:=:969 :F ) " 3": "- !" !# = ! - ! " )) :8 : = ) " 62 != :! C " 36 := : : = 6= " !:= C " = !" := : ! !" 36 3 =):3 = 8 ! " 3 B: < = = Attachments
* !" !=! C : ":= 6 ! E; $ E !=3 $ E =):3 = * < = 9!: ; Technical Assessment / Recommendation
Signature / Date / Comment
A = :3 " := ): 3 " ) " = := ) " )6 6" B !C "; > 7 5 ; % BU Authorisation
" 8 3
September 1999 Issue 1
= ; : "C 5 &; $
Data and Work Sheets C-19
BP Amoco Directional Survey Handbook
BPA-D-004
NON-COMPLIANCE / NON-CONFORMANCE REPORT To be used for reporting unplanned violations of standard directional and survey procedures or unplanned deviations from directional plan or survey program
Rig / Platform / Drill Site
Well Date
Sheet prepared by Procedure / Standard / Plan / Program document
Procedure / Standard / Plan / Program violated
What happened
Most serious likely consequence
Contributory causes
Action
C-20 Data and Work Sheets
Responsible
Date
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
NON-COMPLIANCE / NON-CONFORMANCE REPORT To be used for reporting unplanned violations of standard directional and survey procedures or unplanned deviations from directional plan or survey program
Rig / Platform / Drill Site
Well
Date
Sheet prepared by
=3C +9:
% %
Procedure / Standard / Plan / Program document
": := " "!9 : = % +6"8 C:= " "!9
Procedure / Standard / Plan / Program violated
1. : = '5 G < +! "" : = +6"8 C
What happened
'5 6"8 C := 1. : = B " = "" 3 ) " < ! := " ! :9 :" : =! ": " (7 " B=* 6 + > ) B!" ! : 3 "" : = !6 9! : ! C '5 = := " (+ 7" =* !3 = = 6"8 C " "!9 Most serious likely consequence
= : B ; "" " 6 3 !8 " @6:" 3 ? "! 3:" : =! B "# := $ . : = = " : "C B ; B "
$. C" : = "6=; !" 6 3 !8 2 = 9: 3 : :2 := " ! := != : : : = ": # Contributory causes
:" : =! ": " B! 6=)!9: :!" B: + > ) B!" ; !=3 6 3 : B= '4 ) B!" ) " 6"8 C ! 6 ! : = '5 9 !=C !3 = 2 = 3 ) " @6:" 9 = ) " ! "" : = Action
Responsible
3 ) " ! "" : = 2 = 3 = +6"8 C " "!9 ! ! +9: + B " ! " ":! :" : =! 9 !=C !9 =3 @6! : C " 36" I 4= 6" ! - "!:= 3 = + > 3! ! = "C + =3 C ) +6"8 C " "!9 ! ! + ! 6"8 C 9 !=C "! : = +6 "8: " ": " 63
September 1999 Issue 1
+9:
Date
H6 6" B
%
Data and Work Sheets C-21
BP Amoco Directional Survey Handbook
BPA-D-004
Scenario Name:
Tolerable Collision Risk Worksheet
Description:
(Be specific. Include all factors which affect either the cost of collision or the cost of reducing the risk)
Use this sheet to justify classifying a well as Minor risk and to establish the Tolerable Collision Risk for use in risk-based well separation rule. Ref. BPA-D-004 (Dir. Svy. Hâ&#x20AC;&#x2122;book) Sections 4.2, 4.3
Prepared by: Authorised by:
Do the consequences of collision include a risk to personnel or the environment ?
no
List all the consequences of collision and the necessary remedial action
yes
Are the consequences of collision predictable ?
STOP
no
Use Conventional rule - Major risk
yes
Key Assumptions (Elements of the drilling program which are critical to the above analysis)
How could the probability of collision or the severity of the consequences be reduced ? How might this impact the drilling operation ?
Estimate the total cost of collision
yes
Is there a practical way to substantially reduce either the probability of collision or the severity of the consequences ?
C=
Estimate the value of the planned well to the BU
no
V=
Accepting a finite risk of collision will reduce the value of the planned well. What reduction, as a fraction of the total value, are you prepared to tolerate ? (guideline = 0.05) Estimate the total cost of substantially reducing the risk
F=
V=
Given the uncertainty in the above estimates, by how many times must the savings made from not reducing the risk outweigh the risk itself ? (guideline = 20)
M=
F=
1 = M
Tolerable Collision Risk
=
VF C
=
VF C
> 1 : close approach tolerances need not be set
VF C
Tolerable < 1 : Collision Risk = 1 in
C VF
=
1 in
H.Williamson, UTG Well Integrity
C-22 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Scenario Name: Marnock A01Y Parallel S/T in Reservoir
Tolerable Collision Risk Worksheet
Description:
Use this sheet to justify classifying a well as Minor risk and to establish the Tolerable Collision Risk for use in risk-based well separation rule. Ref. BPA-D-004 (Dir. Svy. H’book) Sections 4.2, 4.3
Prepared by: Stuart Telfer (Directional Engineer) Authorised by: Richard Harland (Ops Superintendant)
Sidetracking an existing well (A01Z) by paralleling it through the reservoir section. Original well is sidetracked below the 13 3/8” casing drilling 12 1/4” and 8 1/2” hole sections. The original well, under conventional rules is classed as MINOR risk as it is closed in and abandoned. Interference occurs in 8 1/2” hole from 4060m to 4590m.
Do the consequences of collision include a risk to personnel or the environment ?
no
List all the consequences of collision and the necessary remedial action
(Be specific. Include all factors which affect either the cost of collision or the cost of reducing the risk)
yes
Are the consequences of collision predictable ?
STOP
no
Use Conventional rule - Major risk
yes
1. Estimated treatment due to contamination from original wellbore and potential mud loss Mud loss is not expected, merely contamination through barite sag in the original hole requiring treatment to the sidetrack hole system. 2. Potential well control due to reservoir fluid on the highside of the original wellbore (est. 2 days rig time @ £100k/day) 3. Plugback and sidetrack well (est. 6 days rig time @ £100k/day)
£ 50k £ 200k £ 600k
Key Assumptions (Elements of the drilling program which are critical to the above analysis)
How could the probability of collision or the severity of the consequences be reduced ? How might this impact the drilling operation ?
Estimate the total cost of collision
Moving South edges of the drillers target North by 10m at entry and 63m at TD would result in: 1. Increased directional control to achieve smaller targets, cost in extra rig time = 8 days 2. Increased risk of sticking by 25% through greater sliding requirement, potential impact of becoming stuck, 12 days rig time.
yes
Is there a practical way to substantially reduce either the probability of collision or the severity of the consequences ?
C=
850k
Estimate the value of the planned well to the BU
no
V=
0.25 x 12 days = 3 days Accepting a finite risk of collision will reduce the value of the planned well. What reduction, as a fraction of the total value, are you prepared to tolerate ? (guideline = 0.05)
Total = 11 extra days @ £100k/day
Estimate the total cost of substantially reducing the risk
F=
V =
£ 1.10 m
Given the uncertainty in the above estimates, by how many times must the savings made from not reducing the risk outweigh the risk itself ? (guideline = 20)
M=
20
F=
1 = M
0.05
Tolerable Collision Risk
=
VF C
=
0.065
VF C
> 1 : close approach tolerances need not be set
VF C
Tolerable < 1 : Collision Risk = 1 in
C VF
=
1 in
15
H.Williamson, SPR Well Design
September 1999 Issue 1
Data and Work Sheets C-23
BP Amoco Directional Survey Handbook
BPA-D-004
Scenario Name:
Tolerable Collision Risk Worksheet
Description:
Use this sheet to justify classifying a well as Minor risk and to establish the Tolerable Collision Risk for use in risk-based well separation rule. Ref. BPA-D-004 (Dir. Svy. H’book) Sections 4.2, 4.3
Prepared by:
Larry Wolfson
Authorised by: Adrian Clark
Niakuk Segment 3/5 Development Wells (Be specific. Include all factors which affect either the cost of collision or the cost of reducing the risk)
New development wells drilled to segment 3/5 locations encountering interference with adjacent wells. Shallow nudges and varying KOPs used to move the interference depth below the surface casing.
12/6/96 15/6/96
Do the consequences of collision include a risk to personnel or the environment ?
no
List all the consequences of collision and the necessary remedial action
yes
Are the consequences of collision predictable ?
STOP
no
Use Conventional rule - Major risk
yes
• Collision with a producer/injector results in a side-track of that well: $2-$2.5 million (based on P2-50B) • Plug back and side-track the drilling well: $200k - $500k • The cost of delayed production/injection from both wells is estimated at $60 per bopd. NK-10 is a significant injector that supports 12,000 bopd and the average production from the producers is 3,000 bopd. The cost of a collision includes delayed production for both wells: - Injector: $900k - Producer: $360k • Estimated total cost (range): $2.56 - $3.90 million. Key Assumptions (Elements of the drilling program which are critical to the above analysis)
Surface casing set above start of zone of interference (6,600 ft MD)
How could the probability of collision or the severity of the consequences be reduced ? How might this impact the drilling operation ?
Estimate the total cost of collision
yes
Is there a practical way to substantially reduce either the probability of collision or the severity of the consequences ?
C = $3.9 million
Estimate the value of the planned well to the BU
no
V = $8.0 million
Accepting a finite risk of collision will reduce the value of the planned well. What reduction, as a fraction of the total value, are you prepared to tolerate ? (guideline = 0.05) Estimate the total cost of substantially reducing the risk
F = 0.05
V =
Given the uncertainty in the above estimates, by how many times must the savings made from not reducing the risk outweigh the risk itself ? (guideline = 20)
M=
F=
1 = M
Tolerable Collision Risk
=
VF C
=
0.103
VF C
> 1 : close approach tolerances need not be set
VF C
Tolerable < 1 : Collision Risk = 1 in
C VF
=
1 in
10
H.Williamson, SPR Well Design
C-24 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
Scenario Name:
Tolerable Collision Risk Worksheet
Description:
Use this sheet to justify classifying a well as Minor risk and to establish the Tolerable Collision Risk for use in risk-based well separation rule. Ref. BPA-D-004 (Dir. Svy. H’book) Sections 4.2, 4.3
Prepared by: James O’Connor
Mungo 22/20-A09(169)[W12] (Be specific. Include all factors which affect either the cost of collision or the cost of reducing the risk)
Interference with previous exploration and development wells when achieving W12 target. Well plan must pass between the two wells to achieve W12 target. Both wells are suspended. The development well is awaiting abandonment. The section of greatest collision risk with the development well has high percentage casing wear and is of no future use to the asset.
Authorised by: Liam Cousins (Ops Superintendant)
Do the consequences of collision include a risk to personnel or the environment ?
no
List all the consequences of collision and the necessary remedial action
yes
Are the consequences of collision predictable ?
STOP
no
Use Conventional rule - Major risk
yes
Collision with either well would provide a conduit for reservoir pressure to into the 12 1/4” section of the planned well. However as the reservoir pressure is c.1.3sg and drilling fluid is 1.65sg the risk of a well control incident is no greater than when Top Reservoir Target is reached in 12 1/4” section. Estimated costs: 1. Plugback and sidetrack well (estimate 4 days rig time @ £140k/day) £ 560k 2. Bit damage (estimate £50k) £ 50k Key Assumptions (Elements of the drilling program which are critical to the above analysis)
Programmed FIT achieved at 13 3/8” casing shoe (the drilling programme calls for revision of risks if the FIT is not achieved). How could the probability of collision or the severity of the consequences be reduced ? How might this impact the drilling operation ?
Estimate the total cost of collision
Collision risk would be reduced if the wellpath accessed the area via a much more tortuous path. •250mMD extra -> £150k
yes
Is there a practical way to substantially reduce either the probability of collision or the severity of the consequences ?
C=
610k
Estimate value of the planned well to the BU
no
V=
•increased risk of stuck pipe -> £150k Accepting a finite risk of collision will reduce the value of the planned well. What reduction, as a fraction of the total value, are you prepared to tolerate ? (guideline = 0.05)
•increased risk of not setting casing -> £300k
Estimate the total cost of substantially reducing the risk
F=
V =
£600k
Given the uncertainty in the above estimates, by how many times must the savings made from not reducing the risk outweigh the risk itself ? (guideline = 20)
M=
20
F=
1 = M
0.05
Tolerable Collision Risk
=
VF C
=
0.049
VF C
> 1 : close approach tolerances need not be set
VF C
Tolerable < 1 : Collision Risk = 1 in
C VF
=
1 in
20
H.Williamson, SPR Well Design
September 1999 Issue 1
Data and Work Sheets C-25
BP Amoco Directional Survey Handbook
BPA-D-004
#
C-26 Data and Work Sheets
September 1999 Issue 1
BP Amoco Directional Survey Handbook
BPA-D-004
DIRECTIONAL SURVEY HANDBOOK (BPA-D-004) - CHANGE REQUEST Forward to the Directional & Survey Specialist, UTG Well Integrity Team
Request made by:
Date:
Business Unit / Organisation: Job Title: Tel: Section Title:
E-mail: Page(s) affected:
Details of Change
UTG / ODL Action
September 1999 Issue 1
Data and Work Sheets C-27/28