QUÍMICA
Universidade Anhembi Morumbi
Universidade Salvador
Janes Fidelis Tomelin Diretor de EaD
Adriano Lima Barbosa Miranda Diretor de Educação Corporativa e Novos Projetos
Fabiano Prado Marques Diretor Acadêmico – Escola de Engenharia e Tecnologia
Rafael Gonçalves Bezerra de Araújo Diretor da Escola de Engenharia e TI
Francisco Carlos Damante Revisor Técnico
Alex Soares Caldas Revisor Técnico
Universidade Potiguar
Rede Laureate Internacional de Universidades
Barney Vilela Coordenador Geral do Núcleo de Coordenação a Distância Catarina de Sena Pinheiro Diretora da Escola de Engenharia e Ciências Exatas Raimundo Cícero Araújo Montenegro Revisor Técnico
Daniella Loureiro Koncz Coordenadora de Novos Negócios André Torres Gregório Designer Instrucional
FabriCO Projeto educacional Projeto gráfico Autoria do conteúdo Revisão ortográfica e gramatical
SUMÁRIO CARTA AO ALUNO................................................................................................................ 4 AULA 1 – ESTRUTURA ATÔMICA........................................................................................... 5 INTRODUÇÃO........................................................................................................... 5 OBJETIVOS................................................................................................................ 5 1.1 Matéria e energia............................................................................................. 6 1.1.1 Os estados da matéria.............................................................................. 6 1.1.2 Elementos e compostos............................................................................ 6 1.1.3 Composição do átomo.............................................................................. 7 2.1 Estrutura atômica.............................................................................................. 8 2.1.2 Número atômico....................................................................................... 8 2.1.3 Massa atômica.......................................................................................... 9 3.1 As teorias atômicas.......................................................................................... 9 3.1.1 Modelo atômico de Dalton....................................................................... 9 3.1.2 Modelo atômico de Thomson................................................................. 10 3.1.3 Modelo atômico de Rutherford............................................................... 10 3.1.4 Modelo de Bohr do átomo de hidrogênio.............................................. 12 4.1 Princípio da incerteza de Heisenberg............................................................. 13 5.1 Os níveis eletrônicos de energia.................................................................... 14 CONCLUSÃO DA AULA............................................................................................ 16
ERGONOMIA, HIGIENE E SEGURANÇA NO TRABALHO
CARTA AO ALUNO De onde viemos? O que somos? E para onde vamos? Algum dia você deve ter se feito uma dessas perguntas. Estas questões filosóficas instigam a humanidade faz muito tempo. De que são feitas as coisas? O que é a matéria? Qual a essência do universo? Perguntas desse tipo devem ter sido formuladas logo depois, mas são tão antigas quanto as primeiras e, claro, de grande importância. Na tentativa de explicar qual a natureza da matéria, surgiram várias teorias. Uma delas foi criada por um filósofo grego, Empédocles, por volta do século V a.C. Segundo ele, tudo que existe no universo seria composto de quatro elementos principais: terra, fogo, ar e água. A teoria dos quatro elementos mostrou-se inconsistente. Contudo, ela mostra a curiosidade do ser humano por tentar explicar e compreender a natureza da matéria. Nesta disciplina teremos como objetivo responder a tais questionamentos filosóficos e sanar outras perguntas que norteiam nosso cotidiano. Ah! Lembre-se: atenção e um pouco de curiosidade são os requisitos básicos para entrar no mundo dos átomos.
44
AULA 1 Estrutura Atômica
INTRODUÇÃO Imaginar um mundo onde um átomo pode ser explicado por teorias extremamente complexas pode parecer um pouco assustador. Imagine então para os químicos e filósofos da antiguidade. A teoria atual para a estrutura do átomo não foi algo que nasceu em poucos anos, mas sim em séculos de estudos, desde a ideia inicial de Demócrito até a contribuição da teoria quântica de Bohr. Por isso, nesta aula, veremos a evolução científica dos conceitos e das teorias acerca dos átomos e de algumas de suas propriedades. Vamos começar?
OBJETIVOS » » Perceber o que é estrutura atômica, matéria e energia.
QUÍMICA
» » Compreender os conceitos básicos da teoria atômica e partículas subatômicas. » » Adquirir noções básicas do modelo de Bohr para o átomo de hidrogênio. » » Apreender o princípio da incerteza de Heisenberg. » » Reconhecer o magnetismo e paramagnetismo. » » Compreender a organização subcamadas atômicas e suas energias. » » Realizar a atribuição dos elétrons. » » Entender os níveis eletrônicos de energia e as configurações eletrônicas.
1.1 MATÉRIA E ENERGIA A matéria e a energia apresentam interesse tanto científico quanto filosófico desde a antiguidade. Atualmente, a matéria é tratada como sendo tudo o que tem massa e ocupa um lugar no espaço, como o ouro, a água e a madeira. Por outro lado, a energia é tudo o que pode modificar a matéria, tudo que pode provocar ou anular movimentos e causar deformações, mais especificamente tudo que tem a capacidade de realizar trabalho.
1.1.1 Os estados da matéria A matéria pode se apresentar em três estados: sólido, líquido e gasoso. Um sólido conserva o seu volume e a sua forma independente do recipiente. Um líquido mantém o seu volume, mas adquire a forma de seus recipientes. Por terem volumes e formas variáveis, os gases podem se expandir, adquirindo a forma do recipiente em que são postos. Tanto os líquidos quanto os gases apresentam fluidez, que é a capacidade de fluir – por isso também são chamados “fluidos”. (RUSSEL, 2008).
1.1.2 Elementos e compostos Existem duas espécies de substâncias puras: os elementos e os compostos. Um elemento é uma substância simples, fundamental e elementar. Os elementos, que estão presentes na tabela periódica (figura 1), são representados sempre por uma letra maiúscula, exemplo flúor (F), enxofre (S), nitrogênio (N), ou por uma letra maiúscula seguida de uma minúscula, como o ferro (Fe), cloro (Cl) e sódio (Na).
6
AULA 1 – ESTRUTURA ATÔMICA
Figura 1 - Tabela periódica dos elementos. Fonte: <www.dicadetudo.com>.
“Os compostos ou moléculas são constituídos de dois ou mais elementos combinados em uma relação definida e, assim, são substâncias mais complexas do que os elementos.” (RUSSEL, 2008, p. 22). Exemplos de compostos: o cloreto de sódio, a água e o ozônio. Os compostos químicos são representados por suas fórmulas moleculares, por exemplo, o cloreto de sódio por NaCl, ou seja, significa que esse composto é formado pela combinação de 1 átomo de sódio (Na) e 1 átomo de cloro (Cl). A molécula de água, como já nos é familiar, é representada por H2O. Isso significa que ela é formada por 2 átomos de hidrogênio (H) e 1 átomo de oxigênio (O). O composto ozônio, que tem a fórmula O3, é formado por apenas 3 átomos de oxigênio (O). Perceba que o número representa a quantidade de átomos presente nos compostos.
Acesse o site: <www.tabelaperiodicacompleta.com>.
1.1.3 Composição do átomo Segundo Raymond (2007, p. 30). O átomo é definido como a menor partícula possível de um elemento. O átomo é composto por elétrons, prótons e nêutrons. O elétron é
7
QUÍMICA
uma partícula carregada negativamente que se move descrevendo uma trajetória ao redor do núcleo de um átomo. Os elétrons estão dispostos em camadas. Cada camada contém elétrons que orbitam a uma mesma distância média do núcleo. Eles compensam um igual número de prótons, que têm carga positiva, o que possibilita que o átomo todo seja neutro. O próton é partícula subatômica que se encontra no núcleo e tem uma carga elétrica unitária positiva. O nêutron é uma partícula estável que influencia na radioatividade e em outras formas das reações nucleares, porém tem pouca influência nas propriedades físicas e químicas.
Na tabela 1 são apresentados os símbolos, a carga e a massa de cada espécie. Tabela 1 - Propriedades das partículas subatômica
PARTÍCULA
SÍMBOLO
CARGA
MASSA (KG)
Elétron
E
-1
9,109 × 10-31
Próton
P (H+)
+1
1,673 × 10-27
Nêutron
N
0
1,675 × 10-27
Talvez você não consiga conceber o valor de massa de um próton ou nêutron (1,673 · 10-27 kg). Assim, podemos informar que uma formiga, por exemplo, pesa incríveis 0,000010 kg ou 10,0 · 10-6 kg, e uma gota de água pesa aproximadamente 0,000003 kg ou 3,0 · 10-6 kg. Isso mostra a dificuldade em estudar o assunto e porque os filósofos antigos se referiam aos átomos como “partículas invisíveis”.
2.1 ESTRUTURA ATÔMICA A estrutura atômica nada mais é que o número de prótons, a massa e o elemento químico existentes em um átomo.
2.1.2 Número atômico O número atômico (Z) é o termo usado para designar o número de prótons (P) no núcleo de um átomo. Em um átomo neutro, por exemplo, o número prótons é igual ao de elétrons. Veja: Z = P = ePerceba que o valor de Z é característico de cada elemento químico. Ou seja, se dois átomos possuem o mesmo número atômico, ele se trata do mesmo elemento. O número atômico será sempre representado como: ZE
8
AULA 1 – ESTRUTURA ATÔMICA
2.1.3 Massa atômica “A massa atômica (A) é a soma do número de prótons (P) e do número de nêutrons (N) existentes no núcleo de um átomo” (RUSSEL, 2008, p. 238). A=P+N A unidade de massa atômica é representada por “u.” ou “u.m.a.” (unidade de massa atômica). Ao calcular a massa atômica, é preciso desprezar a massa dos elétrons. Isso porque a massa do elétron em relação ao próton é muito pequena, cerca de 2 mil vezes menor. Veja a seguir como é feita a representação da massa atômica e do número atômico: E ou ZEA
A Z
A letra E indica o símbolo do elemento químico. Ou seja, é apenas uma referência. Exemplo: 8O16 (ZEA) refere-se a um átomo de oxigênio com um número atômico 8 (Z) e um número de massa 16 (A). Embora alguns elementos apresentem o mesmo número atômico, eles podem mostrar diferentes números de massas. Esse é um caso de átomos isótopos: mesmo número Z e distintos números A. Entenda: C12 e 6C13 (isótopos)
6
3.1 AS TEORIAS ATÔMICAS Vimos até aqui alguns fundamentos sobre a estrutura atômica. Porém, é interessante entender o desenvolvimento lógico envolvido nas teorias sobre os átomos e os experimentos mais importantes que contribuíram para sua definição.
3.1.1 Modelo atômico de Dalton Em 1807, John Dalton (1766–1844) propôs uma importante teoria acerca da natureza da matéria e dos átomos por meio de estudos e observações experimentais de gases e reações químicas. Dalton imaginou o átomo semelhante a uma bola de sinuca minúscula. Dessa forma, os átomos teriam a forma esférica, maciços, indivisíveis e indestrutíveis. A proposta baseada em seus dados experimentais resultou em mais alguns postulados como: » » todos os átomos de um dado elemento são idênticos; » » todos os átomos de diferentes elementos apresentam massa e propriedades diferentes; » » uma molécula apresenta combinação específica de átomos de mais de um elemento; » » em uma reação química, os átomos não são criados nem destruídos, porém trocam de parceiros para produzir novas substâncias.
9
QUÍMICA
3.1.2 Modelo atômico de Thomson “Joseph J. Thomson (1956–1940) propôs um novo modelo atômico estudando valores de descargas elétricas em tubos catódicos.” (RUSSEL, 2008, p. 229). Talvez você não imagine, mas provavelmente deva ter um tubo catódico em casa: monitores e televisões. Em 1898, ele sugeriu que o átomo poderia ser uma esfera carregada positivamente, em que alguns elétrons estão inseridos e poderiam ser facilmente removidos. O modelo de Thomson, conhecido como “pudim de passas”, é ilustrado na figura a seguir.
Figura 2 - Ilustração do átomo de Thomson, conhecido como “pudim de passas”. Fonte: <www.agracadaquimica.com.br>.
Por meio de campos magnético e elétrico, Thomson ainda foi capaz de determinar a relação carga/ massa do elétron. Consequentemente, concluiu que os elétrons deveriam ser constituinte de todo tipo de matéria, ou seja, a relação carga/massa do elétron era a mesma para qualquer gás utilizado.
Este foi o primeiro modelo a reconhecer que o átomo seria formado por diferentes partículas.
3.1.3 Modelo atômico de Rutherford Atkins (2006, p. 45) afirma que Em 1890 descobriu-se que alguns elementos são radioativos. Isso significa que eles emitem radiação de alta energia: partículas alfa (α), beta (β) e raios gama (δ). Uma partícula alfa carrega uma carga positiva tem uma massa que é muito maior do que um elétron.
10
AULA 1 – ESTRUTURA ATÔMICA
Sabendo disso, em 1911, Ernest Rutherford (1871–1937) realizou um dos mais importantes experimentos científicos da história. Tal experimento consistiu em bombardear uma fina lâmina de ouro, com partículas alfa emitida pelo elemento de polônio (Po). Com isso, foi possível estudar a trajetória dessas partículas. A partir desse experimento, foram realizadas três importantes observações: » » a maioria das partículas alfa atravessava diretamente a lâmina de ouro sem sofrer desvio em sua trajetória; » » algumas partículas sofriam desvio em sua trajetória com ângulos variados; » » apenas um pequeno número de partículas batia na lâmina e retornava. Por meio desses dados, Rutherford imaginou que os átomos de ouro não deveriam ser maciços, como afirmaram anteriormente Dalton e Thomson. Para ele, existiam “buracos” na lâmina de ouro que permitiam a passagem das partículas. Essas lacunas foram denominadas eletrosfera. As partículas que retornaram ou desviaram seriam fruto de alguma repulsão ou interferência entre cargas positivas das partículas α e uma região positiva. Diante disso, Rutherford concluiu que um “[...] átomo poderia ser composto por um pequeníssimo núcleo carregado positivamente (no centro do átomo), rodeado por uma região comparativamente maior, contendo os elétrons” (ATKINS, 2006, p. 236). A sugestão foi de uma estrutura planetária, semelhante ao sistema solar, onde o núcleo seria corresponde ao sol e os elétrons aos planetas que se movimentam em órbitas fixas. Ele compreendeu que se elétrons carregados negativamente estavam distribuídos na maior parte do átomo e se a carga positiva compreendendo a maior parte da massa estava concentrada em um minúsculo núcleo no centro do átomo, então não somente muitas partículas alfa passariam em linha reta sem apresentar deflexão, mas aquelas partículas alfa que passassem próximas do núcleo seriam fortemente repelidas por sua carga positiva. (ATKINS, 2006, p. 236).
A figura a seguir mostra um desenho do átomo idealizado por Rutherford.
Figura 3 - Modelo ilustrativo do átomo proposto por Rutherford. Fonte: <www.brasilescola.com>.
11
QUÍMICA
Uma comparação interessante entre a distância do elétron e o núcleo do átomo pode ser ilustrada no estádio do Maracanã, em que uma bola de futebol representa o núcleo de um átomo, no centro do campo, e seus elétrons estariam circulando nas arquibancadas do estádio.
3.1.4 Modelo de Bohr do átomo de hidrogênio Em 1913, Niels Bohr (1885–1962), um físico dinamarquês, identificou que a teoria de Rutherford violava uma das leis clássicas da física: a famosa mecânica newtoniana. Ou seja, um elétron acelerado à medida que fosse perdendo energia desceria em espiral até colidir com o núcleo do átomo. Isso significaria que a matéria deixaria de existir ou existiria por determinado prazo de validade. O modelo proposto por Rutherford foi aperfeiçoado por Niels Bohr, baseando-se nos estudos feitos em relação ao espectro do átomo de hidrogênio e na teoria proposta por Planck em 1900 (Teoria Quântica), segundo a qual a energia não é emitida em forma contínua, mas em “pacotes”, denominados quanta de energia. (ATKINS, 2006, p. 135).
Com essa nova teoria, foram propostos os seguintes postulados. 1) Os elétrons descrevem sempre órbitas circulares ao redor do núcleo do átomo, chamadas de camadas ou níveis de energia. 2) Nas camadas ocupadas por um elétron, possui um valor determinado de energia (estado estacionário), em que cada um deles possui uma energia fixa e definida. 3) Os elétrons absorvem uma quantidade definida de energia quando saltam de um nível para outro mais externo. Porém, se o elétron passar de um estado de alta energia para um estado de menor, existe a emissão de energia, que é igual à diferença de energia entre os dois estados.
Figura 4 - Ilustração do salto e decaimento eletrônico emitindo e absorvendo energia. Fonte: <www.mundoeducacao.com/quimica/estudo-atomo-bohr>.
4) Ao retornar ao nível mais interno e liberar energia, o elétron emite um quantum de energia (igual ao absorvido em intensidade), na forma de luz de cor definida ou outra radiação eletromagnética, denominado fóton.
12
AULA 1 – ESTRUTURA ATÔMICA
5) Cada órbita ou camada é denominada de estado estacionário, que pode ser designada por letras K, L, M, N, O, P, Q. Essas camadas podem apresentar um número máximo de elétrons. Ou seja, K = 2; L = 8; M = 18; N = 32; O = 32; P = 18 e Q = 2.
Figura 5 - Representação de como seria um átomo, na visão de Bohr. Fonte: <www.mundoeducacao.com/quimica/estudo-atomo-bohr>.
4.1 PRINCÍPIO DA INCERTEZA DE HEISENBERG Todos os estudos realizados até hoje acerca do átomo e suas propriedades não conseguiram responder a umas das principais questões: onde se encontra cada partícula subatômica? “O princípio da incerteza de Heisenberg afirma que é impossível conhecer com certeza a posição e o momento (o produto da massa × velocidade) de uma pequena partícula, tal como um elétron.” (RUSSEL, 2008, p. 264). O princípio da incerteza diz que, para termos a informação sobre a posição e o momento de uma partícula, devemos interagir ou “ver” de alguma maneira essa partícula. Imagine o seguinte: você deseja acompanhar a queda de um balão de festa na sala de sua casa. Tente visualizar o referido balão descendo durante o dia, como se tivesse cronometrando o tempo e o lugar que ele toca o chão. Agora, imagine realizar essa tarefa à noite, totalmente no escuro. Será que é possível? Se você for habilidoso e tiver dedos sensíveis, poderá estender sua mão, deixando o balão tocá-lo levemente. A partir desta sensação, você terá uma ideia sobre a posição e o momento do objeto. Entretanto, o ato de tocar o balão poderia modificar ligeiramente seu movimento, fazendo-o cair em outro lugar e em outro tempo, certo? Ou seja, sua tentativa em determinar a posição e o momento do balão no escuro poderá causar uma alteração nos resultados. Assim, o ato de efetuar a “medida” manualmente introduziu uma incerteza nos resultados. Tal situação é semelhante para qualquer partícula minúscula e rápida como um elétron, por exemplo. O princípio da incerteza pode ser interpretado como, quanto mais de perto tentarmos olhar ou sentir uma pequena partícula, mais difusa se toma a visão. Para o elétron somos forçados a concluir que qualquer retrato físico ou qualquer modelo mental da estrutura eletrônica do átomo não poderá ser precisa em localizar o elétron e descrever o seu movimento. (RUSSEL, 2006, p. 264).
Em outras palavras, nenhum equipamento pode “sentir” ou “ver” um elétron sem influenciar no seu movimento.
13
QUÍMICA
5.1 OS NÍVEIS ELETRÔNICOS DE ENERGIA Até o presente momento vimos que o átomo é a menor partícula possível de um elemento. Ele possui prótons, nêutrons e elétrons. Além disso, move-se descrevendo uma trajetória ao redor de seu núcleo, como a terra faz em torno do sol. Entretanto, como poderíamos organizar vários elétrons em um átomo? Eles giram de maneira aleatória ou seguem alguma direção? É isso o que vamos ver agora! Embora o princípio da incerteza diz que não podemos apontar onde está exatamente o elétron dos átomos, é possível matematicamente prever a região onde existe a maior probabilidade de encontrá-lo. Essa região é chamada de orbitais moleculares. Tente imaginar os orbitais simplesmente como níveis de energia. Você se recorda da analogia do átomo com o estádio de futebol? Pois é, por ela, podemos dizer que quanto mais perto do gramado menor será a camada orbital, certo? “Cada orbital no átomo irá acomodar no máximo dois elétrons e, quando dois elétrons ocupam o mesmo orbital, são ditos emparelhados.” (RUSSEL, 2008, p. 265). Agora vamos aprender uma nova forma de representar elétrons em átomos. Esquematicamente, os orbitais serão representados por pequenos quadrados . Um elétron em um orbital é representado por uma seta, orientada para cima ↑ ou para baixo ↓. Dessa forma, o único elétron do átomo de hidrogênio é representado por: ↑ . Por exemplo, o átomo de Hélio tem dois elétrons, ou seja, ↑↓ . Subcamadas: Os orbitais de um átomo são agrupados em conjuntos chamados de subcamadas. Em átomos no seu estado fundamental, quatro tipos de subcamadas são ocupadas por elétrons, designadas por s, p, d e f, que consistem em 1, 3, 5 e 7 orbitais, respectivamente. (RUSSEL, 2006, p. 269).
s= p=
f=
. .
.
.
d=
.
.
.
.
.
.
.
.
.
.
.
.
Já que cada orbital pode receber 2 elétrons, isso significa que a subcamada “s” pode receber no máximo 2 elétrons. Já as subcamadas seguintes: p 6, d 10 e f 14. Lembre-se: as subcamadas formam as camadas, correspondendo assim um conjunto de níveis de energia. Os elétrons de determinada camada estão a uma mesma distância média do núcleo atômico. A identificação de cada camada pode ser feita por valores inteiros positivos: 1, 2, 3, 4 etc., correspondentes ao número quântico principal “n”, sendo n = 1 a camada mais próxima do núcleo. Também se utilizam letras (K, L, M, N...): K para n = 1, L para n = 2, e assim por diante. Por fim, o spin eletrônico é uma propriedade dos elétrons. De acordo com os princípios da física, qualquer partícula com carga, ou com spin eletrônico, tem um momento magnético. Isso significa que ela atua como se fosse um pequeno ímã.
14
AULA 1 – ESTRUTURA ATÔMICA
Se uma partícula com um elétron não emparelhado atravessa um campo magnético, uma força é exercida sobre ela e a trajetória da partícula será alterada. Este comportamento é chamado paramagnetismo. Quando dois elétrons estão ocupando o um mesmo orbital (ex. átomo de hélio), seus spins estão em direções opostas, havendo assim uma compensação de forças magnéticas. Nesse caso, não haverá efeito de atração pelo campo magnético. Assim, os resultados podem ser utilizados na determinação do número de elétrons desemparelhados na substância. Por acaso, você já percebeu qual são as substâncias que geralmente respondem a ímãs? Se você respondeu metais, parabéns! Com as informações que obtivemos até aqui, podemos realizar distribuições eletrônicas em diversos átomos. Iniciaremos pelo Lítio (3Li). Esse átomo possui número atômico 3, ou seja, 3 elétrons. Utilizando o diagrama de Pauling e os conceitos obtidos na aula, podemos fazer a distribuição eletrônica para esse átomo, certo?
Figura 6 - Representação do diagrama de distribuição de elétrons de Linus Pauling. Fonte: RUSSEL (2006, p. 283).
Vamos iniciar o processo seguindo a seta no orbital 1s, de menor energia. O orbital 1s tem capacidade para 2 elétrons. Na sequência avançamos para o orbital 2s, que também pode receber 2 elétrons. Mas como o lítio possui apenas 3, no total a distribuição ficará assim: [Li] = 1s2 2s1 ou [Li] = 1s2 ↑↓ 2s1 ↑ .
15
QUÍMICA
Podemos afirmar, a partir da distribuição de elétrons, que o lítio é um átomo paramagnético, pois possuem um elétron sozinho no orbital 2s. Agora vejamos como fazer a distribuição eletrônica de um átomo maior, por exemplo, o silício (14Si). Como percebemos, ele possui 14 elétrons. Utilizando o diagrama de Pauling, a distribuição será: [Si] = 1s2 2s2 2p6 3s2 3p2 ou [Si] = 1s2 ↑↓ , 2s2 ↑↓ , 2p6 ↑↓ ↑↓ ↑↓ , 3s2 ↑↓ , 3p2 ↑
,
Sozinho, tente realizar a distribuição eletrônica do alumínio (13Al) e cobalto (26Co). Utilizando o diagrama de Pauling você verá que distribuir elétrons em um átomo é bem mais fácil do que se pode imaginar.
CONCLUSÃO DA AULA Na presente aula, esperamos que você tenha obtido uma ideia da estrutura atômica e das principais teorias sobre o átomo. Além disso, que consiga fazer a distribuição eletrônica. Essa introdução à Química é muito importante para entender as transformações que ocorrem ao nosso redor e, também, em nosso dia a dia.
16