Gaudé - Julian Wachner - Full Score

Page 1

3

Catalog No. 8605 Commissioned by the Colorado Music Festival as the first prize of the 2016 Click! Competition. Premiered under the direction of Jean-Marie Zeitouni, July 27th, 2017. The score is dedicated to the memory of the joy and legacy of Leonard Bernstein, celebrating the 100th anniversary season of his birth.

Gaudé

An L. B. Anniversary for Large Orchestra

  

Luxioursly undulating q = 52 m.m.

Piccolo

within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed 12

12

12

12

12

12

mf

pp

                                                                                           12

12

12

12

12

12

12

12

mf

pp

12

12

12

12

12

12

12

12

9

10

mp

within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed

Flute 2

12

                                                                                                                                            12

Flute 1

Julian Wachner

                                                mp

Oboe 1

 

Oboe 2

 

English Horn

 

within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed

                                                                                  9

Clarinet 1 in Bb

9

9

pp

9

9

10

9

p

mf

9

                              f

within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed

                                                                                    9

Clarinet 2 in Bb

7

9

7

10

10

p

mf

pp

9

12

10

f

Bass Clarinet in Bb

 

Bassoon 1

 

Bassoon 2

 

Contrabassoon

  

  

Horn in F 2

 

Horn in F 3

 

Horn in F 4

 

Trumpet 1 in C

 

Trumpet 2 in C

 

Trumpet 3 in C

 

Trombone 1

 

Trombone 2

 

Bass Trombone

 

Tuba

  

   

Horn in F 1

Timpani

7

7

7

mf

pp

Vibraphone

7

7 7 7 7                                                                  7

Marimba

5 5 5                    

pp

5

    

mf

5

5

                   5

5

5

   

7

7

    

pp

Piano

       

pp

quasi bisbigliando (like a harp), wave-like crescendi and diminuendi throughout; heavily pedaled

Luxioursly undulating q = 52 m.m.

Violin 1

 

 

5

5

                5



 





 



Violin 2

 

Viola

 

Violoncello

 

Contrabass

  

© Copyright 2017 by E. C. Schirmer Music Company, Inc., a division of ECS Publishing Group. www.ecspublishing.com All rights reserved.

7

                      

improvise within these notes, think “Lutoslawski-style” random boxes, wave-like crescendi and diminuendi throughout, breaks as needed

Harp

9

9

                    


4

                                                                                                                  Fl. 1                                  4

12

12

12

12

12

12

12

12

12

12

14

14

15

12

mf

                                        

Fl. 2

12

12

12

12

                                                                                                        12

14

12

12

13

mf

Ob. 1

Ob. 2

E. H.

9

9

                              

Cl. 1

mp

9

    11

f

10

10

                                 

Cl. 2

mp

   12

9

9

9

10

                                    



                              9

10

10

                                9

9

9

10

9

mf

12

9

Bsn. 1

Bsn. 2

Hn. 1



Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 

Tba.

Timp.

Mar.

9

9

9

9

9

9

7

7

7

7

7

7

9

mf

f

                                         

B. Cl.

Cbsn.

10

9

9

9

9

7

7

7

7

9

9

                                                                                                               mf

Vib.

     

7

mf

Hp.

   





 

 

 

Pno.

   





 

 

 

Vln. 1

  

Vln. 2

Vla.

Vc.

Cb.

7

                                                                                

 

  

divisi as needed

  

 

mf

pp



divisi as needed

pp

 mf

divisi as needed

 

pp

mf


5

                                                    Fl. 1                                   12

7

12

12

9

12

9

9

10

f

     

Fl. 2

             

9

9

                                                                                                                     12

14

9

12

9

10

9

9

10

10

Ob. 2

E. H.

9

12

f

Ob. 1

9

9

10

                                      

Cl. 1

11

                      

                 12

12

12

12

12

12

12

12

                                                                               

f

                                                                                                                                              9

Cl. 2

10

10

12

12

12

12

12

12

12

12

12

9

9

f

B. Cl.

 p





 p





 





 





Bsn. 1

Bsn. 2

p

Cbsn.

Hn. 1

mf

mf

mf

p

mf

 





p

mf

 

Hn. 2





p





p

mf

 

Hn. 4

mf

 

Hn. 3





p

mf

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

   

Tbn. 2

B. Tn.

Tba.

Timp.

p





 p





  p





 





 

 

p

mf

mf

mf

mf

    p

mp

9

Mar.

Hp.

Pno.

9

9

                                      7

                              7

Vib.

9

7

7

9

9

9                                                                           9

9

9

f

7 7                             

f

   

 

  

   

 

  

7

7

  

f

  

7

7

7

                              

   

  

   

 

Vln. 2

Vla.

Vln. 1

Vc.

 





 





p

Cb.

f

p

mf

mf

7


6

 Fl. 1  10

 

10

10

             

   

12   10                 

10

      

12

14

                                          12

mf 9

Fl. 2

 

  

mf

11

11 12                                                           10

9

10

    

9

14

12

                            12

Within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed 11

Ob. 1

12

9

14

12

9

14

                                                  

mf

within the noodly sections think a realized “Lutoslawski-style,” don’t make yourself crazy, and take breaks as needed 11

Ob. 2

10

12

9

12

                                                              

mf

E. H.

9

Cl. 1

9

10

                    

10

9

                   

Cl. 2

10

12

11

12

mf

Bsn. 1

Bsn. 2

Hn. 1



Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 

Tba.

Timp.

        Mar.                                 9

10

10                                         

10

9

9

9



10

mf 7 7                    Vib.             7



   

7

Vln. 1

 

11                                 

11

10

11

11

10

11



11

    

   

   

     

    

     

    

   

   

 

Vla.

Vc.

  

mp

    f

 

 



 

mp

mp

f

f

11

                              

     

mf

10

                                     

   

Vln. 2

Cb.

10

      mf

Pno.

  11

mf

Hp.

9

10

B. Cl.

Cbsn.

10

            

9 9                                                                            

10

10

10

9

9

                                                                    

mf

9

9

  

  

mp

 mp

ff



   

mp

ff

pp

ff

pp

pp


7

 Fl. 1  13

12

                                 12

12

12

                            

     

12

12

f 12                                              12

Fl. 2

12



       12

                                    12

12

12

f 10

10

                                          

Ob. 1

12

12

Ob. 2

             

14

9

      







       

14

12

12

  



 



12

11

12

10

10



  

 

mf

mf



p

mf







p

mf



 



p

mf

Tpt. 1

Tpt. 2

Tpt. 3

 

 

Tbn. 1



p

mf

 

Tbn. 2





p

Tba.

mf

  

B. Tn.

p





 





p

Timp.

mf

mf

   

 

pp

Mar.



9

mf

p

Hn. 4

10



  

12

mf

 

Hn. 3

14

mf

 

Hn. 2

9

7



p

Hn. 1

7

      

f

p

    

f

p

Cbsn.

                                                                             

 

Bsn. 2

7

12

12

p

Bsn. 1

                                                   

12

 

B. Cl.

7

f

14

Cl. 2

f

12

          

                                                                       

             

Cl. 1

    

10

10

10

11

11

mp

10

10

                                                                                10

10

f 11

11

10

11

                                 Vib.                                                     f

Hp.

  

     

  

11

11

11

 

f

Pno.

  

     

   

 

 

Vln. 2

Vla.

Vln. 1

f

Vc.

 



Cb.

 



p

p

 mf

 mf


8

                                     12

12

15

Fl. 1

         

12

12

                                   12

12

Fl. 2

Ob. 1

 

  

 

7

  7

 

 



14

12

12

p

12

                                                  

    

12

12

12

p 12

                                                12

12

12

p

7

                                                                         

12               

Ob. 2

12

12

12

12

                                               

12

12

12

12

12

12

12

12

12

12

12

12

12

p

 

Cl. 1



  

 

12

14

                14

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.



12

                                                      p

12

12

                                                                                           

 

Cl. 2

p

 

 

 

Hn. 1



Hn. 2

Hn. 3

Hn. 4

 

 

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

 

 

   

          Mar.      10

10

10

10

10

                                                          10

mf

Vib.

Hp.

Pno.

Vln. 1

   

11

11



       

11

        

  11

     

 

     

 

               11

                   11

   

 

11

p

p

p

 

 

pp

 

p

 

 

 



 

pp

Vc.



   

 

Vla.

11

mf

  

Vln. 2

Cb.

         

10

10

mf

pp

 ff

ff

p

ff

 

 


9

12 12                               

17

Fl. 1

              

12

12

12

12                   

               

12

f

12

12

12

12                                                  12

14

12

mp

12

12

10

13                                                                                     10

Ob. 1

f

12

10

12

                                                                                

Ob. 2

f

10

13

12

10

                                        

Cl. 1

12

11

10

12

12

Bsn. 1

12

12





mp



mp

Bsn. 2



Hn. 2





mp

Hn. 3



mp

Hn. 4



mp

Tpt. 2

Tpt. 3

Tbn. 1







mp

Tbn. 2

mp

B. Tn.

mp

mp

 

 

  

7

 

f

  Vib.   f

  

mp

7

7

7

                   



7         

7

    

mp

9

                                9

 

9

9

mp

    

  

 Pno.    

  

f

f



Tpt. 1



         7

9

9

9

  

    

   

   

mp

mp

 



 

Vla.

Vc.

pp

pp

pp



mp



mp

7

 

   9

                             

 

Vln. 2

Cb.

12

mp

mp

Vln. 1

12

mp

mp

Hp.

12

mp

B. Cl.

Mar.

12

                                

9

f

Timp.

15

                                                                                           

Cl. 2

Tba.

13

mp

10

f

Hn. 1

12

mp

13

14

13

Cbsn.

12

                         

mp

f

Fl. 2

   

  


10

 Fl. 1  19

  





12

   

 14

                 14

        9

 

13 12 9                                    15

f

Fl. 2

 

                       

12 9              

15

13

  

                                              12

14

14

9

9

13

10

f

Ob. 1

12                                        12

14

12

                                      

f

Ob. 2

    

f

Cl. 1

   

f

Cl. 2

   

13 12                                                   

            

                                     

12

12

f

B. Cl.

13

12

     

12

           12

12

12

12

12

14

12

12

12

12

12

12

12

12

12

                                            

                 



                                           

f

Bsn. 1



 

f

Bsn. 2

f

Cbsn.

Hn. 1

 



f



f

Hn. 2



f

Hn. 3

 

f

Hn. 4

f

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1



f

Tbn. 2



 

 

 

 

f

B. Tn.

f

Tba.

Timp.

Mar.

Vib.

 

f

mf



  



     

      

f

f

Hp.

7

    

7

 

  

 

7

7

          

                              9

9

9

    

9

   

  

7

9

      



7

 

 

   

             7

7

9 9                           9

    

  

f

Pno.

Vln. 1

   

Vln. 2

Vla.

Vc.

    f

  f

  f

 f

  f

Cb.

 f

    

    

     

fff

 

fff

  fff

 


11

 Fl. 1  21

12                            

9

       10      

13

Fl. 2

                     14

13 12              

ff

Ob. 1

  

   12

     

 14

                            14

9

 

13 12 9                                       15

                                                 9

15

13

12

ff

     

12                                       12

14

Bsn. 1

mp

9

    

            9

           12

Hn. 1

9

    

 

10

                           9

                  13

15

 

12









mp

mp

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1











mp

mp

mp

 mp





mp





mp













mp

Tbn. 2

mp

mp

B. Tn.

mp

Tba.

Timp.

Mar.

mp

 

 

    7

  

7

  

 

9

9

    

    

Vln. 1

  

 

  

        7

9                

  mp

 

   

7

9

9

     mp

  

7

9

9

   

   

    

  

   

   

mp

ff

Vla.

Cb.

7

9                         

Vln. 2

Vc.

7               

mp

ff

Pno.

p

7

                    ff

Hp.

 

ff

Vib.

9

                



Hn. 3

10

10

 

Hn. 2

11

        

                         

mp

Cbsn.

11

12

mp

Bsn. 2

9

mp

B. Cl.

9

10

10

mp

ff

Cl. 2

        

                                          

mp

ff

Cl. 1



mp

ff

Ob. 2

13

mp

ff 12

9                   



mp



mp


12

                    10

23

Fl. 1



10

10              10

                    10

12

 

       

f

Fl. 2

           9

11

12

14

10                                                    10

11

14

9

12

9

 

9

            

f

                                       

Ob. 1

  

12

15

           10                         13

f 14

12

9

9

12

9

11

10

10

                                                                          

Ob. 2

12

10

11

                

f 11

                  

Cl. 1

10

               

                                                     

               

10

10

12

11

11

9

f

 

B. Cl.

10

                      

f

Cl. 2

10

                

10

11

f

Bsn. 1





f

Bsn. 2

f Cbsn.

Hn. 1

 

  

 

 

f

f

Hn. 2

f

Hn. 3

f

 

Hn. 4

f

Tpt. 1

Tpt. 2

f

 

 

 

f

Tpt. 3

f

Tbn. 1

f

Tbn. 2





f

B. Tn.

f Tba.

Timp.



    

 

f

p

11

11

11

11 11                                                                                  11

Mar.

11

11

f

12

12

12

12 12                          Vib.                                          

f

Hp.

12

12

      

   

     

   

f

Pno.

Vln. 1

 

Vln. 2

Vla.

   

     

  

    



 

f

Cb.

   

    

Vc.

f

12

f

mp

mp

mp


13

14 12 12 25                                                                               Fl. 1  14

15

ff

                    14

Fl. 2

12

13



ff

15

                                    11

10

10

10                                       

Ob. 2

10

ff

13                                                        12

15

10

12

10

                              

 



                                    12

14

13

9 9

11

9

10

                          

12

9

ff

        



15

10

          

        

13

       

mp

B. Cl.

12

12

13

mp

ff

Cl. 2

                                         

        mp

Cl. 1

14

13

mp

10

  

12

13 9

     

12

12                                                                   

mp 9

  

               13

mp 14

ff

Ob. 1





 mf

Bsn. 1











mf

Bsn. 2

mf

Cbsn.

Hn. 1

mf

 

Hn. 2

Hn. 3







mf

mf

mf

Hn. 4





mf

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1





mf



mf

mf

mf

Tbn. 2











mf

B. Tn.

mf

Tba.

Timp.

Cym.

Mar.

mf

   



mp 11

11

     

11

Vln. 1

12

                                                                                        12

12

12

12

     

       

Vln. 2

 

Vc.

      

ff

     









mf

Cb.

12

mp

ff

12

      

ff

   

12

mp

ff

  

Vla.

mp

      

     

         

11

mp

  

ff

Pno.

11

11 11                                                                                     11

ff

Hp.

mf

 

ff

Vib.

 



mf


14

                10   Fl. 1  12

27

f

             12

Fl. 2

10

       

                                                12

                      9

9

                        12

14

12

12

9

11

10

12

10

12

12

                                     12

12

13

15

12

10

9

12

12

12

12

12

14

12

12

f Ob. 1

12

12

12                            

f

                                          

Ob. 2

f

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

                                     f 12

10

9

9

                            

9

         

                                               

                                   

                                             









f

f

 f

 f

Cbsn.

Hn. 1

 f

  



 



 



f

Hn. 2

f

Hn. 3





f





 





f









 

 

Hn. 4

 f

 

Tpt. 1

f Tpt. 2

f

Tpt. 3

Tbn. 1

f Tbn. 2

B. Tn.

 f

 f

Tba.

Timp.

f

 

 Cym.  

f

f

 11

11

           Mar.                             

11                                        

                                               

                                              

11

11

11

f

Vib.



12

12

12

11

11

12

12

12

12

12

f

Hp.

      

   

      

   

f

Pno.

f

Vln. 1

 

  

mf

f

mf

 

Vla.

Vc.

       

 

f



mf

f





f

Cb.

     

  

  

Vln. 2

     

f


15

                   12

29

Fl. 1

12

               12

12

    12                                               15

13

12

mp

       12

Fl. 2

12 12                                                      12             

mp

12

12

10

                 12

Ob. 1

12

       

         

    

        

9

9

      12

12

10                                         10

mp 12

            

Ob. 2

mp

12

10

        12

                       

Cl. 1

14

mp

12

15

13

               

Cl. 2

mp

10

11

9

10

10

11

9

10

                                



 

 

B. Cl.

10

10

                                       

12

     

12

                                       

14

       

11

mp

Bsn. 1

mp

Bsn. 2

mp

Cbsn.

Hn. 1

 





 

 



 

 



 



 mp

Hn. 2

 mp

 

Hn. 3

mp

 

Hn. 4

mp

Tpt. 1

mp

Tpt. 2

mp

Tpt. 3

mp

Tbn. 1

mp

Tbn. 2

mp

B. Tn.

mp

Tba.

Timp.

mp

 

 11

 11

                                             

                         

                                              

                                  

11

Mar.

11

mp

Vib.



12

12

12

11

12

12

mp

Hp.

      

   

      

   

mp

Pno.

mp

Vln. 1

 

Vln. 2

         

  

     

 

12

 

mp

Cb.

12

  

ff

Vc.

11

ff

ff

Vla.

11

mp

11

12


16

      12             Fl. 1  31



12

12

12

                                   

Fl. 2

12

14

12

                                          

12

14

13

15

12

10

 

                                                    13

12

12

15

12

12

12

12

12

14

12

10

10

12                                                                                                      

Ob. 1

10

                                        

Ob. 2

12

10

10

                             

Cl. 1

Cl. 2

11

12

10

12

   

                         10

10

                                        9

                                         

11

11

9

10

                                        

B. Cl.

 

 3

Bsn. 1

 

 3

Bsn. 2

 

3

Cbsn.

Hn. 1



Hn. 2

Hn. 3

Hn. 4

3

3

3



3

Tpt. 1

3

Tpt. 2

 



Tpt. 3

 

Tbn. 1

 

 3

Tbn. 2

 



 

 

B. Tn.

Tba.

Timp.

Cym.

3

3

 3

 3

 

   

 

p

                                                                                         11

Mar.

3

11

11

11

11

11

11

11

f

Vib.

Hp.



                                                                           f

12

12

12

      

   

      

  

f

Pno.

f

Vln. 1

    

Vln. 2

 

Vla.

 

Vc.

 

12

12

12

    

      

 

mp

mf

mp

mf

   

12

     

    

 mp

12

mf

  

 3

Cb.

 3


17

                               Fl. 1  14

33

12

            

15

ff

14

                                                     

14

11

                           9

Ob. 1

12

15

13

ff 9

         10

    

 

13

12                                         14

12

13

ff 10

10

10

                 

Ob. 2

15

12

        



ff

Cl. 2

12

10

                  

ff

Cl. 1

            

10

13



     

9

Bsn. 1

 

Bsn. 2

 

14

12

9

9

11

 10

                                      10

15

13

11

11

                                     

ff B. Cl.

9

                                      

12

                               

 

12

             

14

13

12                                          

Fl. 2

13

               



ff



ff

ff Cbsn.

Hn. 1



 

 ff

Hn. 2

ff

Hn. 3



 ff

Hn. 4



 ff

Tpt. 1

Tpt. 2

Tpt. 3

ff

 ff

 



 



ff

Tbn. 1

ff



 

Tbn. 2

ff

 

B. Tn.

ff

Tba.

Timp.

Cym.

Mar.

Vib.

  ff

   

 

  11

11

                                               

 

                               12

12

12

      ff      Vln. 1 

   

ff

Pno.

f

Vla.

  f

      

   ff

  ff

 

f

ff

ff

Cb.

12

12

 

 

Vc.

11

   

ff

    

11

                                        

     

Vln. 2

11

                                           

ff

Hp.

 

f

11

ff

 

12

12

       

12


18

      Fl. 1 

9

mf

     

9

Fl. 2

9 10                                                

              

35

10

11

10 10                          

                                               

Cl. 2

B. Cl.

12

14

14

12

13

15

12

12

12

12

12

12

14

12

mp 10

10

10

10

12

12

14

14

13

15

12

                                                     mp

mp 12

                                                                                            mp

 



mf

mp







mf

mp

mp

mf

Bsn. 2

 

Hn. 2

mp

mf

mp

mf

 mp

mf

 

Hn. 3

Hn. 4

mf

mp

 



mf

mp

Tpt. 1



mp

mf

 

Tpt. 2

mp

mf

 

Tpt. 3

Tbn. 1

mf

mp

 



Tbn. 2

mf

mp







mp

mf

B. Tn.

mp

mf

Cym.

12

mf

10

mf

Bsn. 1

Timp.

10

                                                   

11

mf

Tba.

11

                                                                                                      

Cl. 1

Hn. 1

9

                                        9

mf

Cbsn.

11

mp 11

                                        

Ob. 2

mp

mf

 

   

 



mp

Mar.



    

9

mf

Vib.

Hp.



    mf

    



9

9

    

mf

Vln. 1

   

9

                              

7

 

Vla.

Vc.

13

13

13

13

mp

     

   

Cb.

      

  

9

7

 

9

  

  

mp

 

fff

 

fff





mf

9

mp

 

mf

 

7

 

  

mp

fff

Vln. 2

7

               

                                                                        

mf

Pno.

10

     

mp 12

mf Ob. 1

10

mp

mp

9


19

                   Fl. 1  10

37

12

9

mf

ff 11

12

12

12

9

                       

Fl. 2

       12

    

Ob. 2

Bsn. 1

14

12

                        

                                               12

15

13

ff

mf

 

ff

mf

ff

mf

 



ff

mf

 

ff

mf

 

Tbn. 2

mf

  ff



 



Timp.

Mar.

 

ff

mf

 

ff

mf

 

ff

mf

ff

mf

 

    7

   

ff

Vib.

Hp.



9

7

          

9

7

7

9

                          ff

     

7

       

 p

7

  

mf

9

 

9

7

  

  

9

9

    

  

    

  

  

  

mf

ff

  

  

mf

 

Vln. 2

Vla.

Vc.

 

ff

mf

Vln. 1

Cb.

 

  

7

   9

                                            mf

ff

Pno.

12

mf

 



14

mf

ff

Tba.

12

mf

 

B. Tn.

12

ff

ff

Tbn. 1

12

 

Tpt. 3

12

mf

mf

Tpt. 2

12

ff

Tpt. 1

12

mf



Hn. 4

15

                               

 

Hn. 3

13

mf

  

Hn. 2

12

mf

 

ff

Hn. 1

14

12

ff

Cbsn.

14

                                        

 

Bsn. 2

12

                                                                              

ff

B. Cl.

12

mf 12

14

ff

Cl. 2

12

mf 12

12

                                                    

ff

Cl. 1

14

mf

12

                                      ff

9

                                                        

ff

Ob. 1

12

14

                                       

 

 

ff

mf


20

    Fl. 1                                   12

39

12

12                                

mp

12

12

Quick h. = 69 m.m.

12

12

12

12

14

          















mp



 



 







                

     

Fl. 2

mp

          

Ob. 1

12

9

mp

9

          

Ob. 2

                      

mp

Cl. 1

12

12

10

14

14

mp

Cl. 2

10

12

12

10

                                     

mp

 

B. Cl.

mp

Bsn. 1

mp

Bsn. 2

Cbsn.

Hn. 1

12

10

                                                                          

mp

14

14

12

                                   

mp

Hn. 2

mp

Hn. 3

mp

 

Hn. 4

mp





 



 







mp



Tpt. 1

mp

Tpt. 2

mp

Tpt. 3

mp

Tbn. 1

Tbn. 2

B. Tn.

Tba.

mp

mp

mp

     solo

Timp.

 solo   Perc.   

 

 

 

 

 

 

 

 

 

 

 

 

  

  

   

  

fff

mf

Hp.

mp

7

7

   7

  

  

7

 5

 5

9

9

9

9

7

mp

    

   

mp

   

    

   

mp

 

                                              

 

Pno.

fff

Vib.

mf

                

Mar.

   

 5

5

Refer to main percussion part for measures 41 - 142







   





   



7

     

7

7

           

ff

    

 



Vln. 2

Vla.

Vln. 1

Vc.

Cb.

mp

mp

  

Quick h. = 69 m.m.

 

 






21

   

 

 

B. Cl.

Bsn. 1

Bsn. 2

Hn. 1



Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 

42

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

Cbsn.

Tba.

Timp.

Perc.

Hp.

Pno.

   

 

      

   

 

      

   

 

      

   

 

 

   

 

      

   

 

      

   

 

  

 

                              

    

      

  

      

      

      

              

  

              

  

              

  

              

  

ff

ff

ff

ff

                             

  

              

  

ff

    

subito

                    

subito

       

 

    

3

 

    

3

 

    

3

ff

ff

   

3

       

 

    

3

 

    

3

    

     

     

               

p

   3

p

     

        

   

        

    





ff





           

ff

       

 

     

   

     

    

                  

              

subito p

     

ff

     

     

 

     

 

           

 

Vln. 2

Vla.

Vln. 1

Vc.

Cb.


22

           

   Fl. 1  

  

  

 

   

  

  

 

   

  

  

 

   

  

  

 

   f

  

  

           

   

  

  

 

   

  

  

 

59

f

Fl. 2

f

Ob. 1

f

Ob. 2

f

E. H.

Cl. 1

f

Cl. 2

f

   

 

             

 

           

           

           

           

           

           

           

           

               

3

           

           

3

           

               

              3

              3

 

 3                           

 

          

3

 

           

             

 

           

           

3

 

           

           

             

 



             

 

 

 



              

 

 

 



        mf



 

 

 

 

Hn. 1



Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 

B. Cl.

     



 

 

 

  



 

 

 

  

 

 

 

 

mf

Bsn. 1

     

mf

Bsn. 2

Cbsn.

Tba.

Timp.

 subito     p

Perc.

Hp.

Pno.

    

p

  

  

  

  

  

   

  

      

    

 



 



      

 

    

            ff

       



 

 

     

  



                  

ff

     

fff

    fff

subito

   

p

ff

    

  

  

 

   

  

  

 

  

  

  

 

ff

ff

pizz

      

 

  

 

           

 

          

 

        

 

  

           

               

 

pizz

       fff

 

   

   



3

               

              

 



              

 

 

arco

 

arco

         

  

        

           

           

           

           

3



 

           

3

              

     

           

 



  







     

 



  







     

fff

   

ff

Cb.

 

  

Vc.

 

  

Vla.

        

  

Vln. 2

   

Vln. 1

subito

  

 


23

  75    Fl. 1 

  

  

  

  

  

  

  

   

  

   

  

   

  





 

  

  

  

  

  

  

   

  

  

  

  

  

  

  

   

  

  

  

   

  

 

 



  

  

  

  

  

  

   

  

  

  

  

  

  

  

   

  

  

  

   

  

 





  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  







  

  

  

  

  

  

  

 

  

 

  

 

  

 

  

 

  

 

f

Fl. 2

f

Ob. 1

f

Ob. 2

f

      

E. H.

f

Cl. 1

Cl. 2

B. Cl.

     

f

     

 

f

Bsn. 1

 

f

Bsn. 2



f

 











Hn. 1

 

                 

f Cbsn.

     

 

f



 



 



  

  

  

 

  

  

  

 

  

  

  

 

  

  

  

 

Hn. 2

f

Hn. 3

f

Hn. 4

f

Tpt. 1

                   

    f

     













     

     

     

     

               

       

     

   

 



 



 



   

  





  

  





  

  





  

  

  

       











 

   

 



 



 



     

 











 

 

 



 

 

   

         





  

 



  



 

  

  

  

  

  

  

  

  

  

  

  

  

  

     

Tba.







  

  

  

  

  

  

f

  

  

 

  

f

  

  

 

  

  

  

   

  

  

f



  

 

 





 

 

 



 

 



 



 



 

 

 



 

  



 



  

 

  

 

   mf

 

Timp.

 

 

B. Tn.

 

 

Tbn. 2

 

 

mf Tbn. 1

 

 



 

mf Tpt. 3

 

 

mf Tpt. 2

     

             



       

     

 

               

  

  

   

  

  

Mar.

Vib.



     

     

     

     

       

     

Hp.

Pno.

Vln. 1

ff

               

 

loco

 

    

 

   

 

 

 

 

 



  

  

  

  

 

 

 

 

 



  

  

  

  

  

 

  

 



  

  

  

  

  

 







 

 

 

  

  

  

 

 

 

 

 

  

  

  

  

  

  

  

  

mf

Vln. 2

   

  

  

  

  

  

  

  

    

  

   

  

    

  

 

  

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  



  

  

  

  

mf

Vla.

mf

Vc.

     

     

     

     

           

     

     

           

     

     

     

     

     

           

     

     

           

     

mf

Cb.

mf


24

 Picc.  86

Fl. 1

Fl. 2

Ob. 1

Ob. 2

   

  

 

   

  



   

  

  

   

  

Cl. 1

 

Cl. 2

 

B. Cl.

Bsn. 1

Hn. 1

Tpt. 2

Tpt. 3

Vib.

Hp.

Pno.

   

   

 

  

 

  

  







 



 



  

   

   

 

  

  

 

 

  

  

 

 

mf

  

 



     

 

 

      







3



 



  





  





  





  





  





  

  



  

  



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

     

     

  

  

f

  

  

  

  

  

  

  









ff

ff

ff

ff

f



f fat

  

 

















 

 

 





   

 

       

 

   

       

   



3

   



 

 

 



f fat

f fat



f

fat



f



    

Vln. 2

Vla.

  

     

 

 

  

  

  

 

f

 

  

   

  

   

   

     

   

 

pizz

 

   

 

 

 

 

 

  

mp

   

  

     

    

Vc.

Cb.

 

 

    

Vln. 1

     



 

Tbn. 2

  



 

Mar.

  



3

  

       

 

 

 

Tbn. 1

B. Tn.

 

 

     

  

Tpt. 1

  





 

Hn. 4

Timp.

Hn. 3

  

 

  

 



Hn. 2

Tba.



  

f

  

Bsn. 2

Cbsn.

mf

      

E. H.

  

  

pizz

   mp

 

pizz

mp

 

pizz

 





  





mp

      

      

 

 

 



   

    

 

 

 

 



   

   

   

 

 

 

  

 

 

 

   

 

 

   

   

   

 

  

 

 

 

 



 

    

 

pizz.

   

 

 

  

 

 

 

 

 

  



 

 

 

 




25

 Picc. 

  

  

98

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

f

f

Cl. 2

B. Cl.

Bsn. 1

Cbsn.

Hn. 1

Hn. 4

Tpt. 2

Tpt. 3

Perc.

Xyl.

Hp.

Pno.

Vln. 1

  

  

  

   

  

  

  

  

   

  

  

  

  

  

  

  

f

f

f

  

  

   

  

  

  

  

   

  

  

 







 









 







 

   

 

   

 

   

  

 

   

  

  

 

 



 

 

   

 

   

 

f

f

 

 

 

 

 

 

 

 

 









3    



3      



ff

 

 

 

 

 

 

 

ff

    

   

 

ff

ff

 

 

ff

ff

3

      



  



 



 



 





 





 



 

 

 



 



 

 

 



 







 



 



 





 





 



 







 

 

 

 

 





 





 





 

         

     



 



 



 





 



 

 







 



 

 







 





 

 







 







 

 



 

  

   

  

  

  

   

  

  

  

   

  

  

  

 



 



 

 

 

 

 

 

 



 

 

 





 

 

 



 

 

 

 

 



 

 

 













 

 

mf

3

 

 

f

3

f

3



f

3

  

 

ff

  ff

  ff

 ff

















ff

  



 



 



 



    









 

 

 

 

 

 



 



 

 





 

 

 



 



 

 







  

 



 





  

 

 





 

 







 

 





 

 



  

  

  



 





 

 

 



 







 

 

 



 





 

 

 

  

 

 

 

   



 

 

  

  

  

 

  



 

  

 

 

Vln. 2

Vla.

Vc.

Cb.



Tbn. 2

Timp.

 

  

  

  

Tbn. 1

Tba.

  



  

B. Tn.

 

Tpt. 1

  

  

Hn. 3

  

  

   

Hn. 2

 

Bsn. 2

  

  

f

Cl. 1



  

 



ff

 

fff

 

  

  

f

   

fff

    



  

  

  

   

  

  

  

  

 

 

  f

arco  f

   

ff arco

  

 





   

  

  

arco

   

  

  

  

ff

   

   

arco

  

   

  



ff

 



   arco

 

















   

  

    





        



 

 



 



  





   



  





  









 



 





 



 

   





   

 

    







 



 



 







 



 



  





 







 

 







 

 

 

 

 






26

   

  

  

  

   

  

   

  

  

  

   

  

  

  

  

   

  

   

  

  

  

   

  

  

  

  

   

  

   

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

    

    

    

    

    

    

    

    

    

    

    

    

     ff

    

    

    

    

    

    

    

  

  

  

  

    

    

    

    

     ff

    

    

    

    

    

    

    

  

  

  

  

    

    

    

    

    

    

    

    

    

    

    

    

   

   

   

   

    

    

    

    

 Picc.   

 



  

 



   

 



   

107

3

Fl. 1

Fl. 2

3

   3



 

ff

3



 

   

Ob. 2

3

E. H.

ff

3

 

   

Cl. 1

 



 



 



3

   

Cl. 2

3

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

ff

Hn. 2

Hn. 3

Hn. 4

Tpt. 1



 

 





 

 



    3

       

3

ff



ff

 

Perc.

S. D.

Xyl.

  

  

  

  

  

 



  

  

  

  

  



  

  

  

  

  



  

  

  

  

  

  

  

  

  

  

  

  

   

  

 

    

    

    

    

    

    

    

   

  

 

   

 

    

    

    

    

    

    

    

   

 

  

 

  



  

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  



 

 





 







 

ff

        

       

         

       

       

         

   

  

  

  

   

  

   

  

ff





   





   

    

 

 

   

     

 

 

   

   



  

3

  

       

3

  



     

    



  



  

 

 

  



  

   

  

ff

  





ff

3

 

  

3

Cb.

Vc.

  

   

Vla.

  



  

   

Vln. 2

 

 

  

  

ff

  

Vln. 1

 

  

Pno.



 

  

ff

  

 



3

Timp.

 

   

   

 

 

3

Tba.





3

3

B. Tn.

 

ff

  

  

3

Tbn. 2

 

 

ff 3

   

Tbn. 1

 

ff

 

3

Tpt. 3



 

3

Tpt. 2

 



  

 

ff

ff

   

Ob. 1

ff

3

   

ff

ff

ff

 

ff

  

  

   

  

  

  

  

   

  

   

  

  

  

  

   

  

   

  

  

  

  

  

  

  

  



 

 

ff

 

        





 

    

    

    

    

    

    

    

    

  

    

    

    

    



    

    



    

  

  

   

  

  

  

   

  

  

  

  

  

  

   


27

  116

Picc.

Fl. 2

Ob. 1

B. Cl.

Bsn. 1

Bsn. 2

   



 

   

 

   

 



 



 



 



 



 



 



 



  



  



 

 



 



 



 



 



 



  



 



 



  



 



 



 



  



 



 



 



 



 



 



 



Hn. 4

             

                  

mf

mf

   

           

mf

             

mf

             

mf

       

 





mf











  mf



 

mf

mf

              

mf

   

mf

       

mf

               

   

mf

     

mf

                

               

                

            

mf

mf

              

mf

mf

 



Hn. 3

mf

   

mf

   

Hn. 2

               

 

Cl. 2

             

mf



        

       

mf

  

Cl. 1

Hn. 1

  

E. H.

Ob. 2

Fl. 1

Cbsn.

mf

 









 









 







 



 

 

       





mf

              













 





 





 



 

    





mf





 

 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



mp

mp

mp

mp

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

  



 



 



 



 



 



 



 



 



 



 



 



 



 



  



 



 



 



mp



 



 



 



 



 



 



 



 



 





 



 



 



 



 



 



 



 



 



B. Tn.

Tba.

Cym.

S. D.

Xyl.











 

Pno.

Vln. 1

 

                         

   

 

  

         

Cb.

       

            

 

  

 

  

   

     



        

           

           

            

mf



 

  

 

  

 

  

 

   

     

   

     

   



mf

           





f

             

          

f













mf





 







               

f

   

 

 



             

 

mf

ff

Vc.

mp

Vla.

 

 

Vln. 2

mp

 

Hp.

 

              

               



 









 







   







 

  

   

              





   



 





 




28

 Picc.   123

Fl. 1

Fl. 2

Ob. 1

  

       

     

      

   

Cl. 1

   

Cl. 2

  

B. Cl.

Bsn. 1

Bsn. 2

 

f

   

E. H.

Hn. 1

     f

   

f

f



 

            

          





















 

   

  

mf

         

   

   ff

fff

  



   









  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

  

 

 

ff

   ff

   ff

  

 

  

 

 

 

 

 

  

 

  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

  

 

  

 

         



 





 



 



 

 

 

ff

ff

      

 

 

 





ff

 

           

      





 

      

           

      

     

                   

ff

       

fff

ff

   

fff

   

     

ff



 





mf

 





         

           

   

  

Hn. 4

f

  

     

f

f

     

                          

ff

ff

   

    

Hn. 3

    



  

Hn. 2

ff

   

                

    

f

       

Ob. 2

Cbsn.

    

ff

ff

 

ff



 

 



 



 



 



ff



 





 



 

ff

ff



 

ff

  

  

  

 

 

  

  

  

  

  

  

 

 

  

  

  

  

   mf

  

  

 

 

  

  

  

  

  

  

  

 

 

  

  

  

mf

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Tub. B.

Glock.

Xyl.

    

 



   

 



   

 



Vln. 1

 

 

 

  

  

 



 

 

 

 

 

  

  

 



  

  

 



mf

mf

 

 

mf

 

 

 

 



ff

 



 



ff

ff

  

  

  

  

 

 

 

 

 





  

  

  

  

 

 

 

 

 



 

 

    

      

 



Vc.

    

    

    

 



      

    

Vla.

      

      

     

  

f

  

      

      ff

     

    

fff

 

 

   

fff

    

    

    

 fff

   

          

Vln. 2

Cb.

 

Pno.

 

Hp.

 

   

 

 

 



         

     

                                    





















   









  



 

    

    

    

 

 

 

 

   

        

  

  



  



  

                            

ff

                  

         



 





 



      



 





 



     

  

  

  

  

  

     

     

  

              

     

     

ff

  

ff

  

ff

  

ff

   

        

   



 



 

   



 



 

 

 



 

 




29

134       Picc. 

     

     

     

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

     

     

      

     

     

    

     

     

           

        

  

           

 

 

   

     

     



Vln. 2

Vla.

Vc.

 

fff

     

  

        

  

  

  

  

  

  

  

  

  



 



 



 



 





 



 

 



 



 



 



fff

fff

  

fff



fff

fff

  

  

  

  

  

  

  

  

  

  

 

   

mp

 

 

 

  



  

  

  

  

 



 



  

  

  

 



  

  

  

mp

fff

 

fff

    

    

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

ff

ff

ff

ff

  

  

  

  

     



  



  



 

 



 



 





   

ff

  

 





 



  

ff

 





fff

 

fff

 

fff

      

 



    





 

                                                             mf

     

         

  

 Cb.   

             

               

  

  

   

 

mf

 

 

  

mf

   

f

  

   

  

ff

  

   

  

   

  

     

    

fff

  

  

   

  

                         

pizz.

mf



 



 

  

                             

                                  

 

    

 

ff

 

ff

                                 

  

mp

 

                                 

mp

  

  

mp

  

mf

  

 

  

mf

    mf

 

  

mf

 

mf

  

    

  

     

  

  fff   

  

   

  

  

  

 Timp. 

Vln. 1

 

  

  

mf

Pno.

  

  

  

Hp.

  

  

  

Mar.

  

     

Glock.

  

  

S. D.

  

  

  

  

Hn. 3

  

  

Cym.

  

 

  

Tba.

 

     

B. Tn.

  

Tbn. 2

 

  

Hn. 2

Tbn. 1

 

  

Tpt. 3

  

  

Tpt. 2

  

  

Tpt. 1

  

  

Hn. 4

 

  

     

 

Hn. 1

  

fff



   

Bsn. 2

     

     

Bsn. 1

  

fff

      

   

B. Cl.

Cbsn.

     

      

Cl. 2

  

     

fff

      

Cl. 1

     















        

  

  

  

  

  

  

  



         

  

   

  

   

  

  

    





















 

   

 

   

 

fff

fff

 

fff

 

fff

pizz.

mf pizz.

mf pizz.

mf


30

                                                                                               145

Fl. 1

                                                                                            

Fl. 2

Ob. 1

Ob. 2

Cl. 1

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Cl. 2

    

  

  

  

   

  

  

  

  

  

  

  

   

  

  

  

  



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



  



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



  



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



B. Cl.

Bsn. 1

Bsn. 2

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Hn. 1

Tba.

Glock.

Mar.

Hp.

Vln. 1

 

  



 

 

 

 

 



 

 

 

 

 

  

 













 































Vla.

Vc.

 

 

 

 

 

 



 

 

 

 

 

 

                                                                                            

  

Vln. 2

Cb.

 

 

  












































31

Fl. 1

153                                                                                                               



                                                                                                           

Fl. 2

Ob. 1

Ob. 2

Cl. 1

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Cl. 2

    

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

 



  

 



  

  

  

  

  

  

  

  

  

  

  

 



  

    

  

 



  

 



  

  

  

  

  

  

  

  

  

  

  

 



  

    

  

 



  

 



  

  

  

  

  

  

  

  

  

  

  

 



  

B. Cl.

Bsn. 1

Bsn. 2

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Hn. 1

Tba.

Glock.

Mar.

Hp.

Vln. 1

 

   





  

 

  

 

  

 

  

 

  



 

  

  













 































Vla.

Vc.

 

  

  

    

    

    

     

    



    

  

  

    

                                                                                                           

  

Vln. 2

Cb.

 

  
































32

 162                                                                                   Fl. 1 

                                                                           

  

Fl. 2

Ob. 1

Ob. 2

Cl. 1

   

  

  

  

  

  

  

  

 









Cl. 2

   

  

  

  

  

  

  

     

  



 











     

    

  

  

  

  

  

  

  







 

 

 

    

    

  

   

  

  

  

  

  









 

 

    

    

  

  

  

  

  

  

  







 

 

 

    

B. Cl.

Bsn. 1

Bsn. 2

















 

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Hn. 1

Hn. 2

Hn. 3

Hn. 4

Tba.

Glock.

Mar.

Hp.

Vln. 1

 



    



  

  

  



   

  

    

    

    

    

                               







 

 

 

 

solo

f solo

f solo

f solo

f

                                                                                      fff     arco

ff

 

Vln. 2







                                                                                 fff     arco

ff

 

Vla.







                                                                                  fff arco

ff

 

Vc.







 ff

Cb.





















pizz

 ff


33

  172

Picc.

  

mf

Fl. 1

 

 



            

  



mf

         

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

   

Cl. 2

3

Cl. 1

3

E. H.

3

Ob. 2

3

Ob. 1

3

Fl. 2

3

      

  

mf

3

3

3

       mf

      

mf

Hn. 1

   

Hn. 2









 

 

 

 







 

 





Hn. 3

 



 

Hn. 4

 

 

 









 







 



 



 









   



 

 

 

   

 

3

3

mf

        

mf 3

3

3

  

  

 

 

 

 

  

  

  

  

 

 

 

 

  

3

      

mf 3

  

3

      

3

Tpt. 1

Tpt. 2

Tpt. 3



                   

Tbn. 1

Tbn. 2

B. Tn.

Tba.

 Timp.  Xyl.

Mar.

Vib.

Hp.

Pno.

Vln. 1

 

  

ff

  

  

ff



mf



mf

mf



mf

 



  

 



  

 



  

 

 

 

 



  

  

 

    

 



  

 

 

 

f

                                                                                                                                           

Vln. 2

                                                                                                                                            

                                                                                                                                               

Vla.

Vc.

Cb.

  
















34

   182

Picc.

Fl. 1

Fl. 2

   3

 

3



 

3



  3

                  

                 

                  

3

3

 

3

  3

3

3

3

 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

  

 

3



 

3

3

  3

 



3

 

3

3

3

3

3

 

3



3

 

3

 

3

 

3

 

  3

 

3

 

3

   

3

 3

  

 

3

3

  

3

 

 3

3

  

3

3

Ob. 1







             













          

Ob. 2

 





             













          

E. H.

 

  

                  

  

 

 



  

                  

  

 

 

 

Cl. 1

3

 

Cl. 2

3

3

 

3

 3

 

3

 

3

3

3

 3

 

 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                  3

3

3

 3

3

3

 

3



 

3

 3

 

3

  3

 3

 3

3

 

3

 

 3

3

 

3

 

 3

3

 3

 

Bsn. 1

Bsn. 2

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 







 

  



 

 





 



 

  

3

Hn. 1

   3

3

B. Cl.

Cbsn.

  

3

3

 

 3

3



f



f





f

Tba.

Timp.

Hp.

 





 

mp

   

 

   

 

 

                                          

   

 

   

 

   





             

 

 

   



  



  





                          



  



  



  



  



  



              

  





                                     

 





 





             

 





                       

 





  



  



  



            

Vln. 2

Vla.

 

Vc.

Cb.



 

       

Vln. 1



f

Pno.



 

 

 

 

 

 

 

 

 

 

 

 

arco



 



 

f

 

 

arco

f


35

  







188

Picc.

Fl. 1

Fl. 2

Ob. 2

E. H.

 

3

3

3



3



3

 

 3

 



3

 

 3



3

 

3



3

 

 3

 

 

 

3

 

3



3





3

 

3



 

3



 

 

3

3

 

3



3

3

 

3

   3

   3

 3

      3

   3

   3

 

3

 

 

  

  

 

  

  

           

  

  

  

  

  

  

  

  

  

           









3



 3



 

3

3

3



3

3

3

 



3

 

 

3

 

 3



3

 

 3





3

 

 





 

3

 

3

3

3

 

3

3



 

 

3

3

 

3

   3

3

3



3

   3

3

  

3

   3

  3

  

 

 

 

 

3

3

 

 

3

Bsn. 2

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 2



 

 

B. Tn.





sfzp





sfzp

 









 

3

 

3

3



3

Bsn. 1

3

3



3

3

Tbn. 1

3

Hn. 1

3

3

B. Cl.

Cbsn.

           

3

3

 

3

 

 3

           

  

  

3

3

 

3

  



3

 

3

  

 3

  

Cl. 2

3

3



Cl. 1



 

Ob. 1

3



 

sfzp

Tba.

Timp.

 

   

  

 

Pno.

Vln. 1

 

Vla.

Vc.

 









 

 

 

 

 

 

 

   



 

   

   

         

  

 

            

  

       

 

  

  

                        

  

   

 

  

   

    



  



  



  



  



  

 

  



  



  





                       

     



       



  



  



    

  



  



  





                                                

   

Vln. 2

Cb.

 



sfzp

Hp.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


36

  

193

Picc.

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

3

3

 

3

 

3

 3

3

 

 

 3

           

           

              











           

           

               











           

           

               











                       

              











                         











                       

             

 

 

 

 

 

           

           

              











           

           

             













 





 





 



 



 



 



 



 

 

f

3

 

                        f

3

           

f

                        f

           

                        f



 

3



3

 

3

3

 

3

3

f

3

 

3

                        f

3

            f

B. Cl.

Bsn. 1

Bsn. 2

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Cbsn.

Hn. 1

Tbn. 1

Tbn. 2



 

Pno.

sffzmp

ff

sffzmp

ff

sffzmp

ff

sffzmp

ff



ff

 

 

sffzmp

ff

sffzmp

ff

sffzmp

sffzmp

ff

sffzmp

sffzmp

ff

   

 

sffzmp



ff

ff

 

  ff

 

 

sffzmp

ff

 

sffzmp

ff

f

           

           

           

           









              

 

 

 

 

 

 

                                                                                                                        

                     

                                                                     

                     

                                                                                                                   

          

Vln. 2

Vla.

 

Vc.

Cb.

ff

 

 

Vln. 1

 

 

 

sffzmp

sffzmp

Hp.

ff

 

 

sffzmp

 

 

  Timp.  

 

 

 

B. Tn.

Tba.

 



 

 

 

 

 

 





 

 

 














37

Picc.

199      

Fl. 1

Fl. 2

 

Ob. 1

Ob. 2

      

     

    

      

      

     

      

      

      

     

      

      

      

      

          

Cl. 1

Cl. 2

  

  

Hn. 3

Tba.

Timp.

Xyl.

  

  

  

  

  

  

  

   

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 f























 f























 f







































































  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

  

f

  

  

   

  

  

  

  

  

  

   f

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   f

  

  

  

  

  

  

  

  

  

sfzmp

  

  

  



  

  

  



  

  

  



  

  

  



  

  

  

  

  

  



  

  

  



  

  

  



  

  

  



  

  

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

   f

 

  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

mf























 f





   fff

  

  

  

fff



  



  



   

  



  



  

  



  



  



  



  

  

  

  

 

  

 

 

  

 

 

 

 

 

 

  

           

                                                                                                               

 

  

 

           

fff

  

 

           

            

f

f



     

                                    

                                                 

  

  

  

   

  

  

  

  

  

  

                       

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Vln. 2

Vla.

 

Vc.

Cb.

   



Vln. 1

  



Pno.

  

  

Hp.

  

  

 Tub. B.   Glock.

     

  

B. Tn.

      

f

Tbn. 2

   

sfzmp

Tbn. 1

  

sfzmp

Tpt. 3

  

  

  

   

  

  

  

   

     

  

  

  

   

  

  

  

  

  

  

  

  

f

Tpt. 2

  

  

  

  

  

Tpt. 1

  

  

  

   

f

  

  

  

  

f

Hn. 4

  

  

  

  

f

Hn. 2

  

  

  

  

     

 

  

  

  

  

      

Bsn. 2

  

  

  

  

      

Bsn. 1

  

   

  

      

B. Cl.

Hn. 1

      

    

E. H.

Cbsn.

    

                        












































































































38

  208

Picc.

Fl. 1

Fl. 2

 

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

 

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  









































































  

  

  

  

  

































































































  

  

  

  

  

  

  

  

  

























  

  

Hn. 2

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Hn. 3

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Hn. 4

  

  

  

  

  

  

  

  

Tpt. 1

  

  

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

 

  

  

  

  

  

Tpt. 2

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

Tpt. 3

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

Tbn. 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tbn. 2

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Tn.

 

 

 

 

 

 

  

 

  

 

  

 

  

 

 

 

  

 

  

 

  

 

 

 

 

 

 

 

 

 

  

 

Tba.

Timp.

Tub. B.

Glock.

 

    



Vln. 1

 

 

  

  

    

  

 

 

  

  

       

  















  

  

  

  

  

  

  

  

   

 











  

  

  

  

  

  

 

 

  

    

  

  

     

      

      

      

      

             

     

     

     

     

     

           

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Vln. 2

Vla.

  

 

  

  

  

Cb.

 

     

 

Vc.

 

     

Pno.

 





































     

  

  

  

  

  

   

  

  

  

  

  

  

  

 

  

  

  

  

  

 






























































39

  216

Picc.

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

 

Hn. 2

Hn. 3

Hn. 4

Tpt. 1

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

     ff

    

ff

       

    

       

    

       

    

       

       

    

       

    

       

    

       

                                                   ff

    

ff

       

    

       



















































  





  



  





  



  



       

   

       

   

       

   

       

    

       

    

       

    

       

    

       

ff

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  











solo, molto sostenuto





solo, molto sostenuto













fff solo, molto sostenuto

fff

     

  



solo, molto sostenuto

 

 

 



fff

  

  

ff

 

 



ff

  

  

  

 

ff

  

  

ff

 

 

  

  

       

                                                  

  

  

    

   

ff





       

ff

ff



    

                                                  

   

Tpt. 2

  

 

 

 











 

 



fff

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 









ff

ff

Tpt. 3

  

  

  

  

  

  

Tbn. 1

 

 

 

 

 

 

Tbn. 2

   

 

 

 

 

 

 

ff solo, molto sostenuto

fff solo, molto sostenuto

fff

B. Tn.

Tba.

 Timp.   Cym. 

 

 

 

 

 

 

  

 

  

 

  

 

 

 

 

Tub. B.



  

Glock.



Hp.



T.-t.

Vln. 1

 

 

 

 

 

    

 

 

 

  

  

  

   

            

             

Vla.





ff

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Cb.

 

 

 

 

 

 

 

 























                                                    ff

ff

        ff

    

  

 

 

 

       

    

       

    

       

       

    

       

    

       

    

       









ff

 

 

 

ff

 

 

 

    

ff solo

 

 

       

fff Vc.



                                                   

             



  

  

     

Vln. 2



  

     

 

 

  

  

  

 



ff

     

Pno.

 



ff

    



    

    



    


40

223               Picc. 

       

  

     

     

     

  

            

  

     

simile      

     

  

                                                   

  

     

     

     

  

Fl. 1

Fl. 2

            

    

       

Ob. 1

Ob. 2

E. H.

            

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

    

       

            

    

       

    

       

            

    

       

    

    

       

                                                  

    

       

        

               

        

               

        

               

                                                  

  

 

 

  

 

 

 

 



 





  





Hn. 1

 



Hn. 2

 



Hn. 3

 



Hn. 4

 













simile

simile

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





















Tpt. 1

 

 

 

 

 

 

 

 

 

 

 

 

Tpt. 2

  

 

 

 

 

 

 

 

 

 

 

 

Tpt. 3

 

 

 

 

 

 

 

 

 

 

 

 

 

Tbn. 1

 



Tbn. 2

 



Timp.





 







 







   

 

 

 

B. Tn.

Tba.

Tub. B.



Glock.



Hp.



Vln. 1

Vc.

Cb.



f

                                                     

              

Vla.

                                                   

  

Vln. 2

    

         

             

            

 



    

         

    









       

 

 

Pno.

 

 

T.-t.

let ring

fff

 

fff

  

     

     

     

  

  

     

     

     

  

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

detaché

  

detaché

  

     

     

     

  

     

     

     

  

            

            



 

 

  

 

 

  

 

 

  

 

 

 






41

229     Picc. 

           

     

     

  

        

           

           

     

  

  

           

     

     

           

           

           

     

  

  

           

     

     

           

           

           

     

  

Fl. 1

Fl. 2

Ob. 1

 

 

 

 

 

 

 

 

Ob. 2

 

 

 

 

 

 

 

 

E. H.

 

 

 

 

 

 

 

Cl. 1

  

 

 

 

 

 

 

Cl. 2

 

 

 

 

 

 

 

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

















































  









Hn. 2

 

Hn. 3

 

Hn. 4

 

Tpt. 1

  

 

 

 

 

 

 

 

 

 

 

 

Tpt. 2

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

Glock.

Hp.

Pno.

 

  

Vla.

























 

 

 

 

 

 

  

           

     

     

           

  

           

     

     

           

  

 

 

 

 

           

     

  

           

           

     

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

 



 



 



 



  

           

     

     

  

        

           

           

     

  

  

           

     

     

  

        

           

           

     

  

  

 

 

 

 

  

 

  

  

  

  













           

   

Vc.



   

Vln. 2

Cb.

   

Vln. 1


42

 Picc.  235

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

     

     

  

  

                                            

  

     

     

     

  

  

                                            

  

     

     

     

  

  

                                            

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bsn. 1

Bsn. 2

 

     

  

B. Cl.

Cbsn.

  

















































  





Hn. 2





Hn. 3

 

Hn. 4



Hn. 1

Tpt. 1

Tpt. 2

Tpt. 3















  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

Tbn. 1

 

 

Tbn. 2

 







B. Tn.

Tba.

Timp.

Cym.

Glock.

Hp.

Pno.

























   



Vln. 2

Vla.

Cb.

 

 

 

 

     

     

  

  

  

     

     

     

  

  

 

     

 

 

   

f

 

 let ring

 

                                                                                         

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

     

     

     

  

  

                                            

  

     

     

     

  

  

                                            

  

 

 

 

 

  

 

  

  

  

  













   

Vc.

  

   

 

  

   

Vln. 1

 






43

                                                                 241                       Picc.  Fl. 1

Fl. 2

                                                                                                                                                                                                

 

 

 

 

  

  

 

 

 

 

  

  

  

 

 

 

   

  

  

  

 

 

 

  

  

  

  

 

 

 

Ob. 1

  

 

 

Ob. 2

 

 

E. H.

  

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

  

 

  

 

  

 

 

  

 

  

 

  

 

  

 

 

  

 

  

 

  

 

  

































































  













Hn. 2

 

Hn. 3

 

Hn. 4

 

Tpt. 1

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Tpt. 2

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

  

 

  

 

 

 





   

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

Cym.

T.-t.

Glock.

Hp.

Pno.

Vln. 1

























  

  

  

 

 

  

 

  

f

let ring

 

  

 

 

  

f

 

 

 

  

 

f

                                                                                                                                                                                                  

 

    

    

    

  

  

  

  

  

 

    

    

    

  

 

    

  

 

    

  

 

    

  

 

    

  

 

    

  

 

    

 



  

 



  

                                                                                                                                                                                               

  

 

 

 

  

 

  

  









 

    

  

 

    

 

    

 

       

Vc.



Vla.















    

Vln. 2

Cb.

 

 

 

 

  

  

  

 










44

 Picc.  249

Fl. 1

Fl. 2

  

                                            

  

                                            

  

                                            

Ob. 1

  

 

 

 

 

 

 

 

Ob. 2

 

 

 

 

 

 

 

 

E. H.

 

 

 

 

 

 

 

 

Cl. 1

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cl. 2

B. Cl.

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1



















mf













































 



 



Tpt. 2

 

 

 

 

 

 

 



 



Tpt. 3

  

 

 

 

 

 

 



 



 











Tbn. 1

Tbn. 2

 







B. Tn.







 

   

     



 

 

 

 

  

 

  

 

let ring

                                             



    

      

   

     

   

      

   

     

   

      

   

     

   

     

   

                                                                                               

       

     

     

































mf

                                                   

   

 

  

  



 

 



let ring







Cb.



 

Vc.



Vla.

  

 

Vln. 2

  

Vln. 1

  

 

Pno.

  

mf

Hp.

  

 

Vib.

  



  



 

Mar.

  

mf



Glock.

  

 

  

T.-t.

  



mf

Tpt. 1

Cym.

  



 

Timp.

  



 

  

mf

Hn. 4

Tba.

  



 

Hn. 3

  

 

  

Hn. 2

  

    







pizz.

f pizz.

f





 

 

 

 

 

 

 

 




45

 

259

Fl. 1

Fl. 2

Ob. 1

 

Ob. 2

 

E. H.

B. Cl.

  

Bsn. 1

Vc.

Cb.



Bsn. 2

Mar.



     















































 



   

  











 

 





   









 





























































 

 



 

 



 





 

mp

 

mf





 







 

mf









mf







 

















 







   

mf







   

mf





 

mf





 

 

Cl. 2





 

Cl. 1

Cbsn.

 

  







  268

B. Cl.



  

Bsn. 1

Bsn. 2





 









 

























Cbsn.

Mar.

 

 





















  





 



  



  

 

 

 

 

 

 







































 

 





 



molto espressivo, divisi as needed















mf

 

Vc.

Cb.





 

   







  









 

  

















 

























 

 

 

 

 

 

 













 

 

 

 

 











fff

fff arco

 





  

molto espressivo





 

molto espressivo













fff

molto espressivo

Vla.







mf

  

Vln. 2



   

Vln. 1



fff molto espressivo



arco

fff

Bsn. 1

  





Bsn. 2

 





































 

 



































279

Cbsn.

Mar.

Vln. 1

  

     

Vln. 2

Vla.

 

Vc.

Cb.

  

     

  

   



   

   

 







 

 





 

 

 

  



 

 



    

  

     

  

      

  

     

  

      

  

        

   

      



  













 



 

 

 

 

 

  

  

 

  

 

 

 

 

 



   

 

  

 

 

 

 

 

  


46

   























 























   p























  

 

  



291

Ob. 1

p

Ob. 2

p

E. H.

solo

   

Cl. 1

Cl. 2

B. Cl.

f

Bsn. 1

Mar.

  

 

 

 





 

 





 







































































 



   





  

 

 

solo

mf

  



   





 

   

 











 

 



3

 

 

f

  

 











 

 







 



mp

    p

 

 

 

 

 

 

 

 

299   









































Ob. 2

  









































E. H.

  









































Ob. 1









 







Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Mar.

 

  



 







 

 







 





 

 





 





 

 



 







 

 



 

 



 

 



 



 







 

 



 

 

  



 







 

 

 



 

306   









































Ob. 2

  









































E. H.

 









































 







 

  





 











 

Ob. 1

Cl. 1

Cl. 2

B. Cl.

Bsn. 1

Mar.



  



 





 





 





 



 





 



 





 



 











 





 



 





 

p

p





 


47

  

 

 

 



 



 

 



 

 



 

 



 

 

 

 

 



 



 

 



 

 



 

 



 

  

 

 

 



 



 

 



 

 



 

 



 

  

 

 



 

 



 

 



 

 



 

 



 

  

 

 



 

 



 

 



 

 



 

 



 

 

 

 

 



 



 

 



 

 



 

 



 

 

 

 

 



 



 

 



 

 



 

 



 

 

 



 

 



 

 



 

 



 

 



 

 



313

Picc.

f

Fl. 1

Fl. 2

f

f

Ob. 1

f

Ob. 2

f

E. H.

f

Cl. 1

f

 

Cl. 2

f

B. Cl.

 

 













 

 













 

 













 

 













f

Bsn. 1

f

Bsn. 2

f

Cbsn.

Hn. 1

f

  

 

 



 

 







 

 

 

 



 







 

 

 



 

 







 

 

 

 



 







 

 

 

 









 

 

 

 









 

 

 

 















 













f

Hn. 2

f

Hn. 3

f

Hn. 4

f

Tpt. 1

f

Tpt. 2

f

Tpt. 3

f

Tbn. 1

Cym.

Mar.

Vln. 1

sfz

sfz

 



 

 





 

 









 

   



  



 



   

 





 









 

 

 

 















 

  

  

f

f

sfz

sfz



 

  mp

 

 















 



 



 

 



 

 

 

mp







 

 

 

 



 



 



 



 



 





   

 

  

 

   

 

  

 

   

 

  

 



























 



   

 

















  

 





 



      

 



      

 



      

 



 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 













 

 













ff



      

  ff

Cb.



ff

f

Vc.



sfz

f

Vla.

 



 

Vln. 2

 

 



sfz

 

Pno.





f

Timp.

sfz



f

Tba.

sfz

 

f

B. Tn.

sfz

  f

Tbn. 2

sfz



 




48

 Picc.  319

Fl. 1

Fl. 2

Ob. 1

Ob. 2

E. H.

Cl. 1

Cl. 2

  

  

  

  

   

Tempo Primo piu mosso q = 72 m.m.

                                                                                               

  

     



  

  

  

  

  

  

  

  

  

   

  

   

  

  

  

  

  

  

  

  

 













Tpt. 1

Tpt. 2





Tbn. 1



Tbn. 2

 

Tba.

Timp.

Cym.

Mar.

Vib.

Hp.

Pno.

Vln. 1

   

   

Vla.

Vc.

12

fff

fff

fff

12

12

12

12

12

12

12

12

12

12

12

12

12

12





 

12

12

12

12

12

 





f

f

f

f

















f

f





f

fff

  

    

12

f

  

fff





   

    

12

f

   

ff

      

12

ff

ff



12



fff

 

12

12

fff

 



12





  

12

12

fff



 

12

12



 

12

12







12

fff

    

Vln. 2

Cb.

12

fff





12



fff

B. Tn.

12





12

  

          

f

fff

Tpt. 3

ff

12

12

f





12



f





12

 

12

                                                                                               



                         

12

12



Hn. 4



12

ff

 

Hn. 3



12

                                                                                              



Hn. 2



12

f





12



 



ff





12

                                                                   

 

Bsn. 2



12

ff

ff



    

12

                                                                                               



Bsn. 1

    

12

                                                              



 

12

ff

  

  

Hn. 1

  

B. Cl.

Cbsn.

   

 



    

fff

   

      

   

  

  

  

  

  

  

  

  

  

   

   

    



6

12

 

 

6

ff

                  



   

6

     

 

   



6

   

   

   

   





6

6

12

 

 

 

 



6

 



fff

 





 





fff

 

 

 

 

 

 





6

12

 

 

6

 

 

 

 

6

12

 

6

 

   

6

   

   

 

 

6





   

 

 

6

12

 



 

 





6 6





 

 

 

 

6

 





 





6

   

   

 

 

6

6

 

6



 

 

 

 

 f

12

6 6





 

 

 

 

    6

 

6

6

 



12

6 6





 

 

 

 

6

 

 

 

 

6

  6



6

6

 

6

   

                                               

6

  6

 

6

 

 

   



 

6

 

6

 

6

 

 

6

   

6

6

 

 

   

 

6

 

  

6

6

 

 

6

6

 

6

 

   

6

6

6

fff

 

6

fff

 

6

Tempo Primo piu mosso q = 72 m.m.

 

 

  

6

 

6

 

 

 

 

6 6



 

    6

 

6

  6

12

6

6

 



 

  6


49

  323

Picc.

    

  

    

   

12

Fl. 1

Fl. 2

Ob. 1

          

                                                12

12

12

12

12

    

  

12

12

 

Cl. 2

B. Cl.

 

                                                12

12

12

12

12

Hn. 1

12

12

12

12

12

12

                                                12

12

                                               

12

12

12

12

12

12

12

                                                











ff



12

                                             

12

12

ff

Cbsn.

12

ff

Bsn. 2

12

12

ff

Bsn. 1

12

                     

12



12

                

          

12

    

12

12

ff

Cl. 1

12

          

12

12

                                 

12

E. H.

12

      

                                              12

Ob. 2

12

                                     

               12

12

12

     

ff

Hn. 2

Hn. 3

ff



ff

Hn. 4



ff

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1



ff

Tbn. 2







ff

B. Tn.

ff

Tba.

Mar.

Vib.

Hp.

ff









 

Pno.

Vla.

Vc.













 







  



    







 







   

   

  6

  











   

 

   











  









   

 





  







   





   

 

 









 

 





















   

  



 



   

6

  













   

 



  

  

  



   





   

 

 







   





  



 6

   

 

 

 















6

 6



6







 

6





6

 





6

6

 



6

6



6



6

 





6

6





6



 



6

  

6

 6

  

 



6



6







6

  

6





6

 





6

 





6

 6



6

  





6



6





 6





6





6

 





6

6

 



6

6



6



6

 





6

  

6





6

6





6



 



6



6



6



6

 



  

 

6





6

6





6

  

6





6



 



6



6

6

ff

  

 

6

6



6

 





6

 6



6

  

6

 



6

  





6



6





6

6

div à 3

Cb.



div à 3    

Vln. 2

 6

   

Vln. 1







 6


50

 Picc.  325

Fl. 1

Fl. 2

Ob. 1

 

                             

  

                            

  

                         

 

  

12

12

                     12

12

Ob. 2

 

12

12

12

                    12

E. H.

Cl. 1

12

12

12

12

12

  

12

12

12

  

 

12

              

 

12

Bsn. 2

Hn. 1



Hn. 2

Hn. 3

Hn. 4

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

 

Vib.

Hp.

 

Pno.

  

 

Vc.

Cb.







6

 

 









  

  

 

  







6

 

6

6

 

 

  

  

 

6



 

 

 

 

6

    



6

 

 

  

  

    

6

  

6

6

 

 

 

 

 

 

6

 

6

6

 

 

 

 

 

 

 

  







6



   

 

   



   

 

   

 

6







 



 

 

 

6



   

 

   







   

   









6

  6



6



 

6

 

12

 

 

 

 

 

6

 

6

 

 

 

6

 

 

  6

 

 

 

6

6

 

6

 

   

6

   

   

 

 

 

6

 

 

 

6

   

   



 

6

 

   

 

 

6

6

   

   

   

 

 

 

 

6

 

 

 

6

   

   

 

 

 

 

6

 

   

 

 

 

   

 

 

6

 

 

 

  6

  6

   

6

 

 

6

   

6

6

  6

6

 

 

   

6

 

  6

6

 

6

   

6

 

  6

6

6

 





 

6



 



6

6

 

6

 

6

6

6



 

6

 

6



6

6

 

6

  

12

6

6





6

6

    

Vla.

 

  

     

Vln. 2



6

 

  

Vln. 1

 6

    



12

12



                 



12

Mar.

12

Bsn. 1

Timp.

             

                        

Tba.

12

B. Cl.

12

Cbsn.

                          

12

12



                           

       

   

 12

Cl. 2

  

12

 

  6


51

   327                               Picc.  12

                          12

Fl. 1

12

12

                            

Fl. 2

12

 

Ob. 1

Ob. 2

  

                                               

                                                

                                                

12

12

12

12

12

12

12

12

12

12

12

12 12

12 12

12 12

12 12

                                                

              

                                               

12

12

12

                  12

12

E. H.

12



 f

Cl. 1

  

            

Cl. 2

  

                                                                          

Bsn. 1

Bsn. 2

Hn. 1

12

12

12

12

12

12





 f







f

f

f

f

f









Hn. 4

12

Hn. 3

12

  

12



Hn. 2

12

12

B. Cl.

Cbsn.

12

f





f

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

Vib.



6













6

6



  

Vln. 2

Vla.

Vc.

Cb.



f

  











6

6





6













6

6



6













6



6



6

















6

6



  

6

6

















6

  

  

  

6









6

    

    















   

    









    







    

6

 

    

 

  















6

  

  

  

 

 









  

  

  

6

 



6



  

6

 f

 

 



















6









6

  

  

  

6

  

  

  

6





 





  



  









6

















6

 6

6

6



 

6



6

6





 

6



6

6

 6

  

6

6

 

6

  

6



6

6



 

6

6

6

  6



6



 

6

6

 

6





 6

6



 

6

6

 

6





 6



6

6



6



  



6

6

 

6

6





6

6



6

6

  

Vln. 1





Pno.

f



f

  



f

Mar.

Hp.

 

 f





 6


52

  329

Picc.

Fl. 1

Fl. 2

    

        

            

  

12

    

12

12

 

12

            

 

12

     

Ob. 2

E. H.

  12

12

12

              

12

12

12

12

                  

ff

  

Hn. 1

ff

ff

Hn. 2





12

12

12

12

12

12

12

12

12

12

12

          

   

              

ff

Hn. 4

12

ff

Hn. 3

   

12

12

Bsn. 2

12

                 

 ff

Cbsn.

    

12

12

                        

     

ff

Bsn. 1

12

12

12

12

          

12

B. Cl.

12

                                            

12

12

12

       

Cl. 2

 

12

           

12

ff

Cl. 1

 

12

12

12

12

12

                                             12

    

12

12

12

            12

       

12

Ob. 1

    



ff

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

ff

 

Tbn. 2

ff

B. Tn.

ff

Tba.

Timp.

 

ff

Mar.

  

Vib.



 

 

ff

 







 

6



 









 

6

    

Hp.

6



 







6

Pno.



   

Vln. 2

Vla.

Vc.

Cb.





6



 







6





 

6



6



 







6





 

6



6



 



 



6





 

6





  

 6 6



 

 

 

 



6

 







6

 

 

6

ff

6





 

 

 

 



 





 

6

6 6



 

 

 

 





 





 

6

6 6



 

 

 

 











 

6



 











 

6

6



 





 

6 6



 

 

 

 



6







6





 



 

6

 

6

6 6



 

 

 

 







 

 









6



 





 

6

6 6



 

 

 

 





 





 

6

6 6

 6

 6



6

6

 6



6

6

 6



6

6

 6



6

6

 6



6

6

 6



6

6

 6

6



6

6





6



6

  

Vln. 1



 

6

 

6





 

 

 

6

6


53

  331

Picc.

Fl. 1

                          12

 

        

12

 

12

 

12

12

12

                                        12

12

12

12

12

12

12

12

12

12

Cl. 2

12

12

12

12

Bsn. 1

Bsn. 2

                                                12

12

12

12

12

12

Hn. 1













f

f

f



f

Hn. 2

f

Hn. 4







f Hn. 3

12

f

Cbsn.

12

12

                                                               

B. Cl.

12



12

12

12

12

           12

  

12

                                               

  

12

  

12

f

 

12

12

12

12

             

Cl. 1

12

                                 

12

E. H.

12

12

                                           

12

Ob. 2

12

   

12

Ob. 1

                                                   

12

12

   

Fl. 2

f Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

 

 

 

6

 

 

 

  

  

Cb.

  

  

  

 



 

 

 

 

 

  

  



 



6

 

 

 

 

  

  

 

6

 

  

6









6

 





  







  

  

6

 

 











 



 

 

 

 



 



 

  





6

 





 

 

6



















6









6

6

6

6

6

                       6

 





 



 



 



 

 6

6



6

   

 



 

div. à 3





 

 

 



div. à 3

6

6

6

 f

6

   

 

 

 

 

 

 









6

6

   

 

 

 

 

 

 









6

6

6

   

6

  6

6

 

6

  6

6

 

6

  6

6

 

6

6

 6

  

6

 



 

6



6

6

6

6

 6

  

6

 



  

6



6

  

6

6

6

  

 6

                      

6

6

6



6

6

  

  



6

6

6

  

6

  

 

  

6

  

6

  

Vc.

 

Vla.



6

 

6

Vln. 2



f

6

6



  

Vln. 1



 

Pno.

f

f

 

Hp.



 

f

 



f

 Mar.   Vib.



 

 

 

 

 









  6

6

6

 

 






54

Picc.

333                             12

Fl. 1

Fl. 2



12

12

                                                 12

12

12

12

12

12

12

12

12

12

12

                                       

12

12

 

12

12

12

                                               

12

12

12

                        

12

                                                12

                                    

12

12

12

12

12

12

                                               

Ob. 1

Ob. 2

                                                

E. H.

  

12

                            12

12

12

12

12

12

12

12

12

12

12



fff 12

12

12

12

12

12

12

12

Cl. 1

                                               

Cl. 2

                                               

 

B. Cl.

                                                                                                

ff

 

Bsn. 1

ff

Bsn. 2

 

 

ff

Cbsn.

Hn. 1

ff

   

  

  

  

fff

Hn. 2

fff

Hn. 3

fff

Hn. 4

fff

Tpt. 1

Tpt. 2

Tpt. 3

Tbn. 1

 

ff

 

Tbn. 2

ff

 

B. Tn.

ff

Tba.

Timp.

Mar.

Vib.

 

 

Hp.

 

ff

 

 

ff

 

 

 

 

6



















Pno.







6

 

Cb.

















 

 













6

 









  



6



6

ff

 







 6











   

   

 

 

 

 









   

   

 

 









6

6

 

 













 

  6









6







6

6

   

   

 

 

 

 





















6







6

6

   

 

 

 

 

 









6



   

   

 

 



6

6

 

 















6

   

   

 

 

 

 









   

   

 

 





    6

  6

 6

 

6

6



6



6



 6

6

 6



6



 6

6

 6



6

6





6



 6

6

6





6



 6

6

 6



6



 6

6

 6



6

6





6



 6





6

 

6

6

6

 

 

6





  6



6

 

6



6

 

6



6

6

6

    

Vc.





    

Vla.

  6



6

6

  

Vln. 2

 

  

Vln. 1



6

 

  6



6

  

 

6







 6




55

Picc.

     335                                                                                       

Fl. 1

Fl. 2

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12 12

12 12

12 12

                                                                           

                                               

                         12

12

                                                 12

12

12

12

                        

12

Ob. 2

12

12

12

E. H.



f

Cl. 1

12

12

12

12

                                               

                                                12

12

12

Cl. 2

12

12

Bsn. 1

Bsn. 2

12

12





 f



















f

f

f

f

f

Hn. 3

f

Hn. 4

f

Tpt. 1

12

12

 

Hn. 2

12

12

                                                                     12

B. Cl.

Hn. 1

                                                                              12

Cbsn.

12

Ob. 1

12



 f

Tpt. 2



 f

Tpt. 3



f

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

Mar.

Vib.

 

Pno.

  



  6





 

 







6



Cb.



f

  

 



 





  6



 

 



 





  6



6

 

 

 

 

6





 

6

 

 

 

6





6









6









6









6









6









6









6









6





 

   

  

  

  

6

6

  

  



 

 

 

6



6



 

 









 

 

 







   

   

 

6





 

 

 

 











6

 

 

   

     







  

  

  

6

 

 



 



   

  

 

 

 



 





div. à 3

6

  

  

  

6

 

 

 

 

 

 

 

 

















 





6

6

6

6

 f

  

  

  

6 6

 

6

6

 6

 

6

 



6



6



6

   

 

  6

6

 



6

   

6



6

6

 

 



6

   

6

 

6

6



6



  

  

  

6

6

6

 

 

  

6





6

6

   

Vc.

 

6

  

Vla.

f

f

   

Vln. 2



 

Vln. 1

f

 

f

 

Hp.

 

 

 

 

 

 

 

 

















6

 

6

6

  

  

6

 

6

  

6

 

 

 

 

 

 

 

 

















 

 

6

6

6

6

6

6

 

 

 

 









  6

6

6

6


56

Picc.

337                                                    12

12

12

                             

Fl. 1

Fl. 2

Ob. 1

   

12

   

12

Ob. 2

12

12

                          

                              12

12

12

   

   

12

12

            

12

12

12

12

                

12

12

12

12

12

12

                                                     

12

 

E. H.

   

12

12

12

12

12

12

12

              12



                                                    

         

12

   

12

12

 

12

12

12

ff

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Cl. 1

                                                

Cl. 2

                      

 

B. Cl.







ff

Bsn. 2

ff

Cbsn.

Hn. 1

ff

  

ff

Hn. 2



 

ff

Hn. 3

ff

Hn. 4



ff

Tpt. 1

Tpt. 2

 

12

                                              

ff

Bsn. 1



ff

ff

 

Tpt. 3

ff

 

Tbn. 1

ff

 

Tbn. 2

ff

B. Tn.





ff

Tba.

Timp.

ff

   

  

mp

ff

Mar.

  



Vib.







Hp.

 

Pno.

Vln. 1

  

 













  

  

  

6

















  

  

  

6

  

  

  

  

6

6

6

6

















  

  

  

6

6

6





 











  

 

  

6

6

6

















  

  

  

6

6

6

















  

     

     

 

 

  ff

  

6

 

 

     

     

 

 





6

 





     

     

 

 

 

  

  

6

6

 

     

      

 

 



  

6

















  

  

  

6

6

 

     

     

 

 





 

6

6









  

  

6

6

 





     

     

 

 

  

6

6

     

     

 

 

  

 



 

 

  6

 6

     

6

6



6

6

6

 6

  

6

 



   6

6

 6

  

6

 



  

6

6

6

   6

6

 



  

6

6



   6

6

 6

6

 



   6

6

 6

  

6

 



  

6

6



   6

6

6

6

  

6

6



  

  

6

6

6

 

  

Vc.



6

  

Vla.

6



6

         

Vln. 2

Cb.

 

6







 6



 


57

                                                                                                  

339

Picc.

12

fff

Fl. 1

Fl. 2

Ob. 1

Ob. 2

    

12

12

                12

fff

fff

12

fff

12

12

           

12





     

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

                                                                                                 12

fff

12

12

12

12

12

12

12



                                                                                               

12

    

fff

   

 



12

 

12





12



12





12

12



12



    

12

   

 



12



12





12



12





12



12



 

12

fff

B. Cl.

12



Cl. 2

                                                 

fff

Cl. 1

             

                                                                         

 

E. H.

12



fff

 

Bsn. 1

fff

Bsn. 2

Cbsn.

fff

Hn. 1

  

fff





 

 



 

 



fff

fff

fff

Hn. 4

 

Hn. 3

fff

Hn. 2

fff

Tpt. 1

Tpt. 2

Tpt. 3

 fff

 fff

fff

Tbn. 1

fff

 

Tbn. 2

fff

B. Tn.

Tba.

Timp.

fff

   

 

ff

Glock.

Mar.

Vib.



12

12

12

12

12

12

12

   

6

6

6

6

6

6



Vln. 1

     

  

   

 

 

 

 



  

6

fff

6

6

 

            6



       

 

            6

 



        

6

6

         

6

6

6

         

         

6

 

 

 

 

6

6

6

6

 

 

 

6

6

     

         

         

6

6

   

 

 

 

6

       6

 



  

         

   

 

 

 

6

           

 

 

 

6

6

6

6



       

 



 

            6

6

 



        

6

6

 

12

6

6

                                     

6

 

 

6

    

6

 



6

6

 

 

6

6

6

 

 

6

                            6

 

 



6

    

6

 



6

    

Vc.

       6

 

6

  

Vla.

 

6

    

Vln. 2

Cb.

                                                                                                 6

Pno.

ff

Hp.

6

6

6

         

         

6

 

 

 

 

6

6

6

6

         

         

6

 

 

 

 

6

6

6

6

6

 

 

 

6

6

                6

         

6

6

6

                                                                    6

6

6

6

6

6

6

6

                                    6

6

 

6

6

6

                                6

6

6

6

6

6

6

6

                                                6

6

6

6

 

               

 

               

6

6

6

6

6

6

6

6


58







  Picc. 



342

Fl. 1







Fl. 2

 





Ob. 1



Ob. 2

 





E. H.

 

Cl. 1

 







Cl. 2

 







  



 

 



 

 

B. Cl.

 

Bsn. 1

 

 3



 

Bsn. 2

 

3





3

Cbsn.

Hn. 1

  

3



 

 

 



 

 

 3

Hn. 2

 

Hn. 3

 





 

 

Hn. 4

 





 

 

Tpt. 1





 

 

 

 

 

 

 

Tpt. 2

Tpt. 3

3

3

3

 

 

 









 

 



 

 



 

 



 

 

3 3

 

Tbn. 1

Tbn. 2

B. Tn.

3

 



 



3

3

Tba.

Timp.

T.-t.

3

 

 

Glock.



Mar.



Vib.



Hp.

 

Pno.

Vln. 1

  

     

6

 

     

6

    6

   

 

 

    6

 

     

6

   

 

 

 

6

6

6

6

                         6

   

6

6

   

   

   

   

 

 

6

 

    

Vc.

   

  

 

 

 

6

 

 

 

 

6

 

 

 

 

6

 

 

 

 

6

 

 

 

 

6

 

 

 

 

6

 

 

 

 

6

 

 

6 6 6 6                                                                                                                 

    

Vla.

    

Vln. 2

Cb.



 

6

   

   

   

 

 

6

6

6

6

6

   

 

 

 

6

   

   

 

 

 

 

 

6

6

6

 

 

6

6

6

6

6

6

6

6

6

6

6

6

6

6







   

  

 

 

 

 

   

   

 

   

   

   

 

  

 

 

6

   

   

6

6

6



 





6

 

6

 

6

6

6

 

6

6

6

 



6



6

   

6

6

 

6

 

6

   

   

 

 

   

   

   

   

 

 

6

6





6

6

6



   

   

 

 

   

   

   

   

 

 

6

6

6

6

                                      

6

6

6



6

6

6

   

 

 

  

   

  

   

 

 

  

6

6

6

6

6

6

   

   

 

 

 

 

 

 

6

6

6

6

6

6

   

   

 

 

 

 

 

 

6

 

 

6

6

6

6

   

   

 

 

 

 

 

 

6

 

 

6

6

6

6

6

       

6

 

 

  6

6

 


59

Picc.



















345    

Fl. 1

Fl. 2

Ob. 1

Ob. 2











E. H.

 











Cl. 1

Cl. 2

 

B. Cl.

 

  

Hn. 2

 

Hn. 3

 

 

Bsn. 1

Bsn. 2

Cbsn.

Hn. 1

Hn. 4

Tpt. 1

Tpt. 2

 

Tpt. 3

 

 

 

   

f

ff

fff

 

 

ring

Tbn. 1

Tbn. 2

B. Tn.

Tba.

Timp.

T.-t.

Glock.

 



f

Mar.

   

Vib.



Hp.

 

Pno.

Vln. 1

Vln. 2

Vla.

Cb.

 

 

 

 

6

 

 

 

 

6

 

 

 

 

6

6

6

6

6

6

6

6

6

 

 

 

 

                                    6

     

6

6

6

 

 

 

 

 

 

 

 

6

 

ff

6

 

 

 

 

 

 

 

6

6

 

6

6

 

6

 

 

6

6

6

 

 

 

 

 

 

 

 

6

6 6

 

6

6

6

 

 

 

 

 

 

 

    

 

  

 

 

 

 

 

 

6

 

 

 

 

6

   

6

6

6

6

6

6

6

6

6

6

 

 

   

   

 

 

 

 

6

  

6

6

 

 

   

   

 

 

 

 

6

6

 

6

6

 

6

 

   

   

 

 

 

 

6

6

 

6

 

6

 

6

   

6

  

  

  

  

  

 

        

      

      

    

    

   

   

    

    

    

    

 

   

   

   

  

  

  

6

 

    

6

 

 

6

6

 

6

 

  

6

 

6

                                        6 6 6 6

 

6

                                        

6

6

 

fff

                                   

  

Vc.

6

 

    

 

 

 

 

 

2017 Duration:


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.