Julian Wachner: Lifting the Curse

Page 1

No. 6953|Wachner|Lifting t he Curse|Narrator & Chamber Orchest ra|Full Score

JULIAN WACHNER

Lifting the Curse for Narrator and Chamber Orchestra

Composer’s Engraved Facsimile Edition


Performings Forces

Narrator Piccolo/Flute Oboe Clarinet in Bb Bassoon 2 Horns in F Trumpet in C Trombone Percussion Timpani Cymbals Temple Blocks Glockenspiel Xylophone Strings

Duration: 20 minutes

The parts are available on rental from the publisher.


Catalog No. 6953 William Littlefield [2006]

Lifting the Curse for Narrator and Chamber Orchestra

q = 114 m.m.

      Flute  

3 Julian Wachner [2006]

      

     

     

      

       

f

Oboe

      f

Clarinet

      f

Bassoon

       f

Horn in F

f

Horn in F

f

Trumpet in C

f

Trombone

f

Timpani

q = 114 m.m.

Violin I

                                                                



             

                                                                



             



             

mp

Violin II

mp

Viola

Violoncello

 

cresc poco a poco

cresc poco a poco

                                                              mp

cresc poco a poco

     

      

f

Text © Copyright by William Littlefield. Used by permission.

mf

f

Contrabass

pizz.

 

 

pizz.

 

 

       

 

       

mf Music © Copyright 2006 by E. C. Schirmer Music Company. A division of ECS Publishing, Boston, Massachusetts. All rights reserved. Made in U.S.A.


4 6                                                                          Vln. I                                     Vln. II                                

                                                                                                                 

Vla.

Vc.

Cb.

  

          

      

   

 



 

 

 

  

11

Fl.

Ob.

       

                 

f

ff

    

                   

f

Cl.

Hn.



Timp.

ff

 

                

Vln. II

      f        f

 f

               Vln. I 



 

mf

                                

 

Vc.

 3

 

 3

 

                                 

ff

f

ff

f

ff













 

3

  3

    

    

           

            

   

 

                 

f

                                                  

Vla.

Cb.

 

Hn.

Tbn.

ff

               

                                 

 

    

      

arco

    

      

arco

ff

  ff


5

 15                       Fl. 

                     

                     

Ob.

Cl.

Bsn.

Hn.





 



 

 

  

   

 

  

 3

ff

 

Hn.



    

  

ff

 

  ff

  

C Tpt.

 

f

Tbn.

Timp.



   







  ff

  

   



 





ff

 

ff

                     detaché                                  Vln. I 

Vln. II

      

Vc.



  

  



  

  

ff

sempre

ff

                     detaché                        

              

Vla.

Cb.



sempre





detaché                                     sempre

 

ff

pizz.

f



 

pizz.

f

 3

 3


6

 Fl. 

Ob.

Cl.

18

Bsn.

Hn.

3

3

3

 

3

C Tpt.

Timp.

 

Hn.

Tbn.

 

                                                                      Vln. I 

Vln. II

                                     

                                                                     

Vla.

 

Vc.

 3

Cb.

                                 

 

 3

arco

arco

3

3

3

3

3

 3


7

           22                                                                        Picc.     ff

fff

                                                                            

Ob.

ff

fff

                                                                                        ff

Cl.

fff

                                          Bsn.                                    ff Hn.

 

 



 



 



 



 



                                 

Hn.

C Tpt.

Tbn.

Timp.

fff

     

ff

Xyl.

                                                                               Vln. I     ff

fff

                                                                         

Vln. II

fff

                                                                                       

Vla.

fff

                                                                            

Vc.

fff

Cb.

    

                        fff


8

    27            Picc.   





  

              





  

                  





  





   





    





   





    





Ob.

Cl.

Bsn.

Hn.

 

  

                 

      ff

Hn.

C Tpt.

 

 

ff

ff

Tbn.

Timp.

Xyl.

 

   

 

      

 

   

   

   

   

   

   

   

 

 

 

   

 

 

    

   

    

   

  

   

   

    

   

    

    

    

    

 

   

   

   

 

    

    

    

 

   

   

   

  

  

         

   

            

ff

         

   



                                                        

 loco                                                                             Vln. I    

Vln. II

Vla.

Vc.

Cb.

 

        

                                                            

                                                                                                 

 



 

  

 

    

    

   

   

             

 



 

  

 

    

    

   

   


9

  35

Fl.

Ob.

Cl.

Bsn.

Hn.

 

 

 solo

 f

solo

 f

 

  

  

     

  

     

mf

   





   





    3

f

3

3

 

3

3

                                         

          

mf

Hn.

C Tpt.

Tbn.

Timp.

     

  

Xyl.

Vln. I

    

     

mf

 

                                                                 mp                                                                                            mp 

Vc.

 

               mp  

pizz.

mf

                                     

  



mf

    

   

         

           

mf

mf

        

mf

Cb.

 

mf

Vla.

mf

                mf

                                                          mp

Vln. II

         

  

mf



 



 

            

   

          

   

   

       

        

                  

           

   

    

                 


10

    46                                                       Fl.   ff

Ob.

Cl.

Bsn.

Hn.

           

           

      

    









       



               

   



 

 

ff







        

 



 











Hn.

sfzmf

C Tpt.

Tbn.

Timp.

sfzmf

sfzmf

 

 

 

 

non-div.                            Vln. I  f









 



 

sfzmf

 

3

3

f

 

 

 

 

      

3

3

3

f

 

3

  

simile

f

 

                       

f

  

 

   

ff

      

sfzmf

 

                                   

ff

                                                                      non-div.

Vln. II

ff

f

non-div.

                                                                           f ff

Vla.

Vc.

         

f

Cb.

         

f

   

   





                               

ff

                                ff


11 55                                                                  Fl. 

Ob.

Cl.

Bsn.

Hn.

 





 





3

3





 





3

3

C Tpt.

Tbn.

Timp.

Cym.

3





3

3

                                                              

  

Hn.

3

3





 





3

3

 









mf

3

3

  

3

       

3

3

3

 

3

 

  

ff

let ring

 

                                                                 Vln. I 

Vln. II

Vla.

Vc.

Cb.

     

                                                       

                                                             

                                                              

                                                           


12

 Fl.  63

Ob.

Cl.

Bsn.

Hn.

 3

 3



 

     

3

3

  

 

3

3

 3



3

3

3

         

mf

 

3

 

3

       

3

3

                                        

             

C Tpt.

Timp.

  

Hn.

Tbn.

       

 



3



 3

 



 



 

3

 

 

 

3

3

                                        

3

3

3

3

3



 Vln. I 

             

  

                                        

Vln. II

             

  

                                        

Vla.

             

   

                                        

Vc.

                                                              

                                                                  Cb.    


13

                                                                      Fl. 

Playful

71

Ob.

Cl.

Bsn.

Hn.



 

 







3

3



3

                                                            

 



 



 



   

3



C Tpt.

Timp.



  

Hn.

Tbn.

 3

 









3

 3

 

 

 



3









 

3

3

3

3

 

  

 

Playful                                                                          Vln. I  mf

Vln. II

                                                                           mf

Vla.

                                                                           mf

Vc.

                                                               pizz.

mf

Cb.

pizz.                                                                     mf


14

 Vln. I  80

Vln. II

                                                                                         

                                                                                          

Vla.

 

Vc.

Cb.

                                                                                         

 

       

 

 

 

         

         

   

   

         

  

  

     

   89

Hn.

f

  

Hn.

f

C Tpt.

Tbn.

       f

Timp.

f

Vln. I

 

      

      

   

         

  

    

    

   

 

                

 

       

  

  

              

      

        

       

      

   

    

  

                 

        

   



  

                                      

mf

  

  

                                                               f                                                            f                                                                      f

Vln. II

Vla.

Vc.

Cb.

      

 

 

 

 

f

f


15

Hn.

  

 



 

Hn.

  

 



 

 

 



98

C Tpt.

Tbn.

Timp.

   

 

   



 

 

 

 

 

 

 

 

 

 

         



        



 



 

  

 

 

 

 

   

 

 

 

   

 

 

 

     

                                                              Vln. II            

                         

 Picc.  103

                   

Vln. I

Vla.

 

            

 



 

 

                            

                                                           mf

                                                               

Ob.

mf

                                                                mf                   Bsn.             f            Hn.               Hn.           Tbn.               Timp.                    Vln. I  Cl.

mf

 

Vln. II

mf

Vla.

      

arco

arco

    

Vc.

ff

Cb.

arco       ff


16

 Picc.  111

                                                             

Ob.

                                                             

Cl.

Bsn.

                                                     

ff

  

         



 

 



  

   

   



   



Hn.



Hn.

C Tpt.

Tbn.

Timp.

  

         

  

   

ff

 Vln. I 

Vln. II

Vla.

         

       

     

   

       

 



         

   

      

                        

        

  

     

               

ff

  

         



  

  

  

         

           

  

         

           

ff

Cb.

    

ff

ff

Vc.

ff

   

           

ff

 

 



   



   

   



   

   




17 118           Picc. 

Ob.

Cl.

Bsn.

   



   

   

              

                 

        

        

                  

                 

        

        

                  

                 

  

      

 

   



   

    



 

    

 

Hn.



Hn.

C Tpt.

Tbn.

Timp.

Vln. I

   

      

  

   

      

    



    



  

   

 





       

 



 

 

                                                         

Vln. II

Vla.

Vc.

Cb.

 



     

     

     

     

     

     



  

   

      

    



 

    

 



 

 

 



 

 



      

    



 

    

 



 

   



  

   

      

    



    

 







 

 

 


18 124          Picc. 

Ob.

Cl.

Bsn.

Hn.

Timp.

       

ff

 

ff

ff

  

 

                                                

                 ff



         

       

        ff

ff

        

                               

ff

                  

ff

        

   

Vc.

Cb.

ff

          Vln. I 

Vla.

        

Vln. II

ff

 

ff

        

C Tpt.

ff



Hn.

Tbn.

       

ff

                                                                


19 130   Picc. 

Ob.

Cl.

Bsn.

 

Hn.

Hn.

 

 

 

 

       

  

C Tpt.

Tbn.

Timp.

Vln. I

   

               

        

f

 

                                     

Vln. II

Vla.

Vc.

Cb.

                

               

     

        

       

       

       

  

   


20

Johnny, older by a year, and Andy, short and dark, Sat looking at each other just outside of Fenway Park, And Johnny said, “It’s funny, kid, but when the game was new, The Sox were Champs a lotta times.” And Andy said “That true?” The winning paused for eighty six long years, but you knew that, Unless your head’s beneath the sand or in a paper sack...

Repeat as needed

time only   2nd                                     Fl.              

   

Repeat as needed

135

mp 1st time, 3rd time if needed

                                                 

Cl.

mp

  Bsn.  

mp

 

  

 

  



 

 

 

 

     

          

 Variation I

 T. Bl.  



141



Temple Blocks



3

 

     

   

   

    

pizz                        Vln. I                                         

Variation I

ff

mf

    pizz                                        mf

Vln. II

pizz                                                               

Vla.

mf

pizz                                                                

Vc.

mf

Cb.

pizz                                                                    mf

  

150

T. Bl.

 

  

                     

          Vln. I       

Vln. II

Vla.

Vc.

Cb.

mf

fp

      fp                      fp   fp             fp

       

   

       

   

  

       

   

  

       

       

   

   

  

   



3



 



                         f

     

 

       f                       f                        f                        f

 

     


21

 T. Bl.  

C.F.

158

         f           Vln. I    3

mp

Vln. II

       mp

Vla.

    

Vc.

   

mp

mp

 

  Cb.   

  

        

 

 

 

 

mp

3

3

   

 

3

3 3                  3 3                

       

3

 

   

   

    

 

3

     

 

  

  

  

 

 

  

3 3  3                          arco 3 3  3 3                               Vln. I                                3

166

T. Bl.

Vln. II

Vla.

Vc.

Cb.

       

 

                 

  

       

  

    

3

3

3

3

            



p arco

f

                            3 p arco

f

                                            3

3

3

f

p arco

                                               3

3

3

3

f

p

3

arco 3                                            p

f

 ‘Twas twenty six times New York won, and Boston never once, ‘World Series’ was to ‘Boston’ just as ‘genius’ is to ‘dunce.’

      176

Vln. I

Vln. II

Vla.

Vc.

Cb.

           

  

     



     

              

     

     

 

And Johnny said “Along those years, you want to know the truth, The losing never had a thing to do with that guy, Ruth.” “The heck you say,” said Andy, who believed that selling Babe

      

         

  

    

             

  

        

         

                 

    

  

          



        

       

    


22

Began a curse that meant the Red Sox played and played and played Without once rising far above the other baseball teams, Erasing all the nightmares and replacing them with dreams.

  185

Cl.

Bsn.

Hn.



mp

mp

 

Hn.

 

 

 

solo mp

Tbn.

 

 Cym.  

Vln. I

mp

  

Vla.

Vc.

Cb.

  

p

 

 

  

Vln. II

 

 

 

 







mf

mf



 

  







mp

C Tpt.

 

mf

pp

 

 

 

 

mf

 

mf

mf

   

mf

 

 

let ring

   197

Ob.

 

Cl.

Bsn.

Hn.

  





mf

 

C Tpt.

 

 

Hn.

Tbn.

 

 



 

Poco rit.

  

 









 



 

 

  



    


23

Variation II

   Fl.   208

    

Cl.

Hn.

           

C Tpt.

Tbn.



     

Hn.

   

 3

solo

    

Ob.

Bsn.

q = 76 m.m.

mf

Variation II

   Vln. I  

q = 76 m.m.

                                                                    6

mp

   

Vln. II

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

                                                                  6

6

6

6

6

mp

6 6 6 6 6 6 6 6 6                                                                        

Vla.

mp

  

Vc.

Cb.

6

   

mf



mf







Fl.

211     

    

3

f

3





5

6 6 6 6 6 6                                                             Vln. I      

 

Vln. II

6

6

Vc.

Cb.

6

6

6

                                      6

6

6

6

6

6

6

6

6

6

6

6 6 6 6 6 6 6 6                                                                       6

Vla.

6

6

  

6

6

6




24 214   Fl.  



3

6                                                    6

6

6

6

6

6

6 6 6 6 6 6 6 6                                                    

Vln. II

6 6 6 6 6 6                                                   6

Vla.

Vc.

Cb.

 3

f

6

Vln. I

6

  

  





    216

Fl.

5

6 6                 6                                    6 6

 

Vln. II

 

Vla.

 

Vc.

Cb.



     

3

6

6

Vln. I

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

                                                                                                6



  

6

 “Nah,” Johnny said, “the thing is that each disappointing season, In which they might have won and didn’t, there was some darn reason That wasn’t quite the one before and wasn’t quite the next, But people like it better if they think the team is hexed.” 6 6 6

6 6 6 6 6                                                       Vln. I  pp 6 6 6 6 6 6 6 6                                                      Vln. II  pp 6 6 6 6 6 6          6   6               Vla.                          

218

pp

   pizz. 

Vc.

Cb.

pp pizz.

   

pp

 

 

 

 

 

 

 

 

   


25

Variation III - Same tempo

                            220

Vln. I

p

                              

Vln. II

p

                         

Vla.

p

  

Vc.

f

 Cb.   

 

 

f

 

 

 

 

 

 

 





 



 



mf

mf

     3

    3

                                                             223

Vln. I

                                 

Vln. II



                 

                                                             

Vla.

 

Vc.

Cb.

 

 

 

 

mf





3

 

3

mf

 

f

 

 

f

                                                                 225

Vln. I

Vln. II

Vla.

Vc.

                                                                                                                               

  Cb.  

 3



3

 



 

 



 

 

 



 

 




26 227                                                                   Fl. 

mp

                                                                

Ob.

mp

    

Cl.



mp

Bsn.

                                                         

   

mp

Hn.

 

Hn.



mp 

Timp.





mf

 



 



mf

mp

Tbn.

mf

mp

C Tpt.

mf



  

mp

mf

   

 

pp

    

Vln. II

   

Vla.

  

   

    

Vln. I

Vc.

Cb.


27 229                                         Fl. 

                                

                       

Ob.

   

Cl.

     

Bsn.

Hn.

Hn.

   





 







 

f

  

 

 f

f

C Tpt.

Tbn.

Timp.

Vln. I

Vln. II

 

   

 f

 f

      



 ff

 ff

Vla.

Vc.

Cb.









  





  

ff




28

 Fl.    231

 





















f



 



 

  



 

Ob.

Cl.

Bsn.

Hn.

Hn.

ff



 

 



            

3

  

 

 

f





  div. 

3

ff

 

 

          5

            ff



                                 ff

Vc.

Cb.



mf

                          

Vla.



mf

         

      



mf

 



 

Vln. II

f





  







 

 Vln. I  

f

 

Glock.



mf



C Tpt.

Tbn.





 



 

arco

ff

3

ff

arco

 3


29 233   Fl. 

    

Ob.

Hn.



 









 









 









 









 









 









 





  

  

  

3









  



  





C Tpt.

  

Glock.

    Vln. I 

  

 

 

  

 

 

 

 

3

3

  

            5



            



  

 

5

3

                    

Vln. II

                                                                  

Vla.

Vc.

Cb.





 

Hn.

Tbn.



                                                              

Cl.

Bsn.



  

  





3

 3


30

 Fl.  235





  

Cl.

 

Hn.



















 

    





 



 







  



 

 

 

   Vln. I 

 

 

Glock.

Vln. II



Vc.















3

   3

 

 

 

 

 

                     

 

Vla.





C Tpt.

Cb.



  

Hn.

Tbn.

 

Ob.

Bsn.

 



               

3

 3


31

 Fl.  237

Cl.

Hn.









                              

    







               

 

 

 



 

 

   

 

 

3

  

Vln. II

                              

                                                              

Vla.

Vc.

Cb.



C Tpt.

Vln. I



  

Hn.

Tbn.



                                                          

Ob.

Bsn.



 

 


32 239                                                                 Fl. 

Ob.

Cl.

Hn.

                                                             

                                                            

f dolce

Hn.

  









3







3





 

 

 

 



  3

3

 

 

 

                                                              

Vln. II

Vla.



f dolce

 

Glock.

Vln. I

 



                                          

                                                                     Fl.  241

Ob.

Cl.



Hn.

                                                    

 

                                                    

 



 



  Vln. I  

 

Hn.

Glock.

Vln. II

Vla.

3

















3

3

 

3

 

 

 

  











 

 

 

                                                         



 

                                                       


“What is the deal?” asked Andy. Johnny sat up straight and said, “They signed the sluggers, not the pitchers, guys with feet of lead, Those guys who took a week to get from home on down to first, And lots of guys who cost too much, but that was not the worst.” “What was?” inquired Andy. Johnny shrugged and said, “Okay, Along about the same time, while the Red Sox were away,

  Vln. I  







  











244

Vln. II

The club brought in a fellow name of Robinson to see If he could maybe help. He would go on, you know, to be The guy who broke the color line with Brooklyn, but the Sox In those days operated like their heads were full of rocks. They sent home Jackie Robinson, and in those dreary days They sent a scout to Birmingham – he passed on Willie Mays.

p

p

 Vla.   

33

  









  





















p

 

  



 “So they were stupid,” Andy said, “and maybe they were blind.” And Johnny nodded. “Yeah, they figured Mays was not ‘their kind.’”.

Variation IV q = 76 m.m.

251    Bsn.   mf    Cym.    

solo

Vln. I

Vln. II

  

  

ppp

     

pp

Cb.

   





      

 

 

 

pp



































  



p





p

 

p



     



p

  

 

 f

    





 

3



 

 

  

      



pp

Vc.

 

Variation IV q = 76 m.m.

pp

Vla.

  

ppp

 259    mf   Cym.   

Bsn.

Vln. I

Vln. II

Vla.

    

 

  



  

Vc.

Cb.





 

They made the Series only once with Williams on the team, And Ted was hurt, and just a shadow of the brightest dream

Then Johnny said, “the club lacked luck, that was another thing That helped to pile up all those years with no World Series ring:



 

 





 











   

 



mf











   pp 

pp

   

pp





 

 

 



   

 

 

pp



pp

  

 

         

  

3

  

     

    

    

 

3

  

  

 

    

   


34 He might have been in ’46. He only got five hits.” “And ’67?” Andy asked. “Ah, that team was the pits,”

 3                                                              266

Bsn.

 Cym.        Vln. I    Vln. II    Vla.     Vc.    Cb. 

 Fl.  

  Cym. 

               

      

    

 

3

3

3



solo

Vc.

 

   

3

3

      

        

      

        















            



                             

                   mf

               

    

    

   



  

    

  

   

   

  





 



 



  

            mf

       

        



      

        







mf

     

       









      

He played as few have played, and now he’s in the Hall of Fame... He didn’t win a Series, but how very close he came...

    5

f

            

3

mf



        

3

  







       

  Cym.      Vln. I      Vln. II      Vla.       Vc.    Cb.  

3

        

      

 

281

3

3

3

    



solo

mf

f

    

  







3

    

   



3

mf

    

 

   



p

  



  

3

    

  



3

f

Said Johnny, “Carl Yastrzemski, then Jim Lonborg, and spare bits... Though down the stretch no pitcher in the league could get Yaz out. He won the triple crown that season, and, without a doubt,

      Vln. I     Vln. II      Vla.  Bsn.

Fl.

    

5

mf 3               3         

Ob.

       

  

274

Cb.

3

mf

             

      

              

5

5

            

              

  

mf

           

                

 

  

p

           

    

                

      


35

Variation V - 7/8 Fugue

   289

Hn.

 

Hn.



q = 120 m.m.

   mf   

   mp   







   C Tpt.         mp mf             Tbn.       Timp.  

mf

mf

mp

mp

 

 Fl.  300

Ob.

Cl.

Bsn.

Hn.

Hn.

            

C Tpt.

   Timp.  Tbn.

 

  

    

 

308 Piu energico    Fl.    

     mp

Ob.

mp

     mp     Bsn.   Cl.

Hn.

  

        mf       

Hn.

mf C Tpt.

Tbn.

       mf      

mf

         

  

                              ff                          

pp

         pp         pp

           

 

ppp

              

mp

      ffp               ffp               

ffp

   

  

p             p            

          

          ppp       ppp

              ppp       

solo ppp

        p

p

mf    f                 mf f                     mf



  

 

f

  



  

     

 

                

              

                  f                    

                       

f

                                      

                              f                                   

                Timp.     mf

   

         ffp      

p mf             f                                          

    

   f    

pp

                              

                         

mf

    

                                                 

   mf   

f ff                           f ff mf mf                              mf mf f ff    

       mf       

f

f

 

 

               

     

 


36

 Fl.  316

Cl.

Hn.

Hn.

Tbn.

Timp.

Vln. I



   

mf

   

    

mf

mf











        

crescendo poco a poco

  

  

       

crescendo poco a poco

  

  















 



p

Vln. II

p

Vla.

            





        

p

Vc.

mf

                                               mf mf

        

C Tpt.

                                              

crescendo poco a poco

p

     

crescendo poco a poco

                                           Fl.       320

mf

f

f

f

mf

f

f

f

                                     Cl.             Vln. I

  

  



  

Vln. II

 



 

Vla.

 

 



Vc.


37

 Picc.  324

Cl.

Hn.

      

     

     



    

    

       

       

         

   

f

   f

Timp.

Vln. I

 

              

Vln. II

Vla.

Vc.

Cb.

f



   



   



f  

f  

f

         

          

    



  



    

    

  

   



    



      

    

  

   



       

    

  

   





                                     

    Rustic



                     

ff

ff

                                         

                      

ff

     

     

 

f

Tbn.

     

C Tpt.

   

Hn.

Ob.

Bsn.

    Rustic

ff

       

 




38  

  Picc.  332

Ob.

Cl.

Bsn.

Hn.

   



   



 

   



 

   



 

   



    



    



   



   



   



   



   



   





    





C Tpt.

Timp.

 



 

Hn.

Tbn.

 

   

 

   

 Vln. I 

                            

Vln. II

                            

          

Vla.

Vc.

Cb.



           ff

   

   

              



   

         



    





    




39

 Picc.  337

 

Cl.

Bsn.

Hn.

 

   



 

   



     





   



    



 

    



  Vln. I 

Vln. II

Vla.

Vc.

Cb.

   

C Tpt.

Timp.



Hn.

Tbn.

Ob.

   

 

  

   

 

  

                 

              

               

             

ff

     

   

 

  

                                           

    



    




40

 Fl.  342

Ob.

Cl.

 

Bsn.

Hn.

    

   

   

   

  

  

  

  

  

   

   

  

  

  

  

  

mf

Hn.

mf

C Tpt.

mf

Tbn.

Timp.

 

 Vln. I 

Vln. II

Vla.

Vc.

 

mf

                              

  

 



  

          

   

fff

                                     

mf

                                         fff

                



   fff

mf

                                        

mf

          

                                                                      

             

                                                                    fff

ff

Cb.

ff

fff

mf

mf


41

 Picc.  348

Ob.

Cl.

Bsn.

Hn.

       

 

     

          

      



    

f

Hn.

f



f

Tbn.

Timp.

       ff

   

 

 

                       



             

              



             

              





           

ff

    

C Tpt.

ff

                                               ff solo

 

f

       ff

       

        pizz.                                                         Vln. I                  f Vln. II

Vla.

Vc.

Cb.

        

                                          pizz.                                                                f

                                  (arco)                                                                                  mf                pizz.                                                                     f 

              pizz.                                                                                   f 

                   


42

 Picc. 

Ob.

Cl.

                                  

354

Bsn.

Hn.



          

       

  

     

 

 

Xyl.

               Vln. I                 

Vln. II

Vla.

Vc.

Cb.

C Tpt.

Timp.

ff

Hn.

Tbn.

                                                        

solo

      ff

  

      ff

  



        

        

                                               

solo

ff

                                                    

arco

  

                               

    

 





 

 

               

          





              

  

    

 

              

  

    

 

 

         



 





   

 

 

   


43 359                 Picc. 

  

Cl.

Bsn.

 

  

   





   

 



  





  





 



ff

Hn.

C Tpt.

 

Timp.

  

f

                   

Xyl.

    

                                                                           

Tbn.



ff

 

Hn.



                                                                              

Ob.

                                

                      Vln. I 

 



      

   

 



  

  



   

ff

 

Vln. II

Vc.

Cb.

 

          

 

 

 

 

 

 

 

  

Vla.

   

               

arco

f

   

 

         

     

 

      

       

       

     

  

      

       

         

     

  

f






44 364   Picc. 

Ob.

Hn.



          

 f

  

C Tpt.

Vla.

      

 







 





 

      





 















 













 



 

 

 





 











 



  







  





  





 

  





  

 

 

 

 





  





f

   

 





 

f

 Vln. I 

Vln. II

  





f

Xyl.

   

  

 

Hn.

Timp.



                                                                   

f

Tbn.



                                                                 

Cl.

Bsn.

 



 

       f

                                                     





     

 

      





 





                                                       f arco

                                                      arco

Vc.

f

                                                        arco

Cb.

f


45

  Picc.   368

Ob.

Cl.

                                               

   

















 

                                       

                                          Bsn.    Hn.

Hn.

C Tpt.

Tbn.

Timp.

     

 





    

 





   



 

    



 

   

  Cym.   

Xyl.

Vla.

Vc.









 











 



 

 



  

  

  





  







let ring



ff

                                     

    Vln. I  

Vln. II







  

           

                                                                                                     

                                         Cb.     




46

              



  



  

  

  

  

 

  



  



  

  

 Picc.  372

Ob.

Cl.

Bsn.

Hn.

Hn.

C Tpt.

Tbn.

Timp.

Cym.



 

        f

 Vln. I 

Vln. II

ff



    

      

mp

      

               

             

  

Vc.

Cb.

      

                     mp

Vla.



      

      

       

pizz.

mp

pizz.

mp

   


47 And eight years later, Boston's team was lookin' pretty nice,

                                            Vln. I                                              Vln. II  375

Vc.

Cb.

 

 

 

 

 

                                             Vln. I                                            Vln. II  And then, before the Series, who gets hurt but Jimmy Rice?

378

 

Vc.

Cb.

 

   

 

 

   

   

 

And after that who knows for sure where all the logic went?

                    Vln. I                       Vln. II  381

Vc.

Cb.

   

   

   

 T. Bl.   

 





on cue from conductor on line "They lost once on a fly to left..."

 

384

ff

                Vln. I                 Vln. II  

Vc.

 





 





 

  



  



  

  

 

                                                    



 





 3

 3

















Repeat if needed

       

They lost once on a fly to left by Bucky Lucking Dent...





Repeat if needed



 

 

                                 mp

                                 

Vla.

Cb.

 

3

3

 

mp

   

 

 

 


48



Variation VI

Hn.

 

Hn.

 

387

f

f

  

C Tpt.

 

Vln. II

 

 

f

mf



mf

f

Tbn.

mf







mf

Variation VI





mf











mf



mf

mf

 

                                      

                                

                                         

detached

mf detached

Vla.



mf

 



392

Ob.

Cl.

          

                               

mf

                                 

 



Hn.

Hn.

 







mf

 





















mp

mp C Tpt.

Tbn.

Timp.

Vln. II

Vla.

 





 



 





mp

mp

 



                             

    



cresc. poco a poco

 

 

pp

                                  




49

 Fl.  397

                                               

mf

                 

solo

Ob.

f





3

                                                                

Cl.

mf

Bsn.

Hn.

 













mf



 

Hn.

mf

mf

 

C Tpt.

Tbn.

Timp.

solo



f

 

mf





  

  mp

 3



 



 

 401   Fl. 

Ob.

Hn.



3





 

 



  3

3

  

Hn.

 

C Tpt.

 

   Timp.  Tbn.



 

 

 

 

 

 

 

3

  3

 

3

                                                                            

Cl.

Bsn.

  



















 



 

 

 

 





3

  

 

  



 

3

  

  



  3


50

  406

Fl.

Ob.

f

             3



 

3

           

Cl.

Bsn.

Hn.

3



3



 

 

 

   

 

   

                         

  

Vln. II

mf

   

Vla.

mf

Vc.

arco

mf 

arco



mf

 

    

 

 

3

 

 

 

 

 

 

 



  

3



  

3

 

  3

3

 

  

 

    

marcato

     

3

f



mf

mf

  

    



marcato

f

mf

3

 

 

                                   

 

 

 

  





5

3

3

3

 

 

 

5

f

Cb.

3

3

divisi urgent

Vln. I

  

3

C Tpt.

Timp.





3

  

Hn.

Tbn.

                   

 

 

 

 

 





 

3

 3

 

 

  

 

 

               










51

 Fl.  414

Ob.

Hn.

3

      

  



   

3

 

3

  

         



 

             

 

3



 





 





  

     

     





 

    3

3

3

   

3

    Vln. I 

  

  

3

  

 

3

 

detached                                                    

Vln. II

Vla.

Vc.

Cb.

   

Timp.

3



C Tpt.

3

Hn.

Tbn.

  

Cl.

Bsn.

  

 

  

 

detached                            



3



3

3

3


52

  417

Fl.

Ob.

Hn.

       3

3



 



 

 



              

 



              

 



             

 



          

   

 



          

   

 



              

 



             

 



 

 



ff

ff

   

3

C Tpt.

Timp.

 

ff



Hn.

Tbn.



Cl.

Bsn.

             

ff

ff

 

       3

3

3

ff

   

 

Vc.

Cb.

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

  

ff

     

 

ff

     

   

ff

 

3

 

ff

3

3

 

                       

Vla.

3

     

                      

Vln. II

3

3

ff

ff

    Vln. I 

3

3

ff

   

3

ff

They lost again when Buckner, ah, I’d rather not recall, He’s been the whipping boy too long for one mischievous ball.”

 



 

 



 

 

 



  

 



  

 




53 q = 76 m.m.

  Fl.  

421 Variation VII - Slow Waltz

 

  

Cl.

  430

Fl.

Cl.

 

ppp

 

Cl.

pp

Bsn.

  







    





 

mp

 

 

 

 

 

 













Bsn.

  

pp



 

      

 

    mf

mf

 

 

 

  

  

  

  

 

 

mf

They stopped then, for a moment, as if lis’ning for a cheer,

And Andy said to Johnny, “Well, I think at least it’s clear





     

     

pp

p

  

pp

 

 

mp





  



 

 



pp

   

 



      



 



p





  Fl.  

Cl.





mf



ppp

pp

3        



      

 

mf

447 Slow March - gradually building

Ob.

  



 

 



    

 

mp

      

 

  

  





                 





437

 Fl. 

Ob.

              

 

Ob.

Bsn.

     mp

Ob.

Bsn.

That everything was changed forever in 2004.

pp

    Timp.       mp

     

     

     

     

     

   


54 Just what it’s like to win, ‘cause Bloody Schilling led the way,

When they won, we won; we don’t have to wonder anymore

  



Ob.

 

Cl.

 

455

Fl.

Bsn.

  

Hn.

C Tpt.



Timp.





 

Hn.

  















And Lowe and Pedro did the job, and no one now can say

















 















Came back against the Yanks and beat the Card’nals in a breeze...”

The Red Sox weren’t the champs, because Ramirez and Ortiz

  Fl.  461

Ob.

Cl.

 

 

 

Bsn.

Hn.

C Tpt.

Timp.



  

Hn.

Tbn.

  
































55

Tempo of the Overture, piu mosso

     Fl. 

    

q = 124 m.m.

465

    

     

      

     

    

    

Cl.

Hn.

Hn.

C Tpt.

Tbn.

Timp.

“They did it,” Johnny nodded. “And the banner’s hanging, still, They did it with their pitching, and they whacked around the pill,

Ob.

Bsn.

That team was part-Hispanic, it was black, and it was white, And up in that front office, every move they made went right.

  

Tempo of the Overture, piu mosso

                                                               



             

                                                              



             

q = 124 m.m. arco

Vln. I

mp

arco

Vln. II

mp

                                                                       

arco

Vla.

Vc.

mp

pizz.

mf

Cb.

pizz.

mf

 

 

 

       

 

       


56

And ran the bases, too, like champs, which they had never done, Which may explain,or help to, how the Red Sox fin’ly won.

                                                            470

Vln. I

Vln. II



                                                          

Vla.



                                                         

Vc.

Cb.

 

    

    

 

    

    

 

    

    

 

 

  

 

 

 



 



   

 Fl. 



474

Ob.

Vc.

Cb.

 f



                           

                            

Vla.

f

    

     

f

                             Vln. I 

Vln. II

    

 

 

 

 

 3

 

 3





f



f

                                                                                            







 







 

3

3

    

    


57

                                         Fl. 

                                        

                                        

478

ff

Ob.

ff

Cl.

ff

Bsn.

Hn.

   





     

 

f

Hn.

 







 

  

   

 

      

   

Tbn.

Timp.

Vln. I

  

    

   

Vln. II

 

 

 

      

  

f

mf

 

 



 

 

 







   



 



ff

  



    

  

 

ff

 

ff

sempre

ff

                                                          sempre

ff

                                                      sempre

  

ff

    

   

    

arco

arco

Cb.

                                                     

ff

Vc.

 

ff

ff

Vla.

ff

ff

f



ff

f

C Tpt.

ff

      

  

  

      

  

  



 

ff

pizz.

f



 

pizz.

f


58 481        Bsn.  3     detaché                 Vln. I      detaché                Vln. II  detaché         Vla. 

 

Vc.

Cb.

 

 3

 3

                                                                3

3

                                      

3

              

                                                  

 3

 3

arco

arco

3

3

3

3

                                                             

 Picc. 

                                                               

                                                                 ff

485

Ob.

Cl.

ff

fff

ff

fff

fff

Bsn.

Timp.

fff

 

 3

    

 

             

ff

                                                          

ff

 

            

fff

                                                                                    

Vln. II

fff                                                                              fff                                                                           3

Vla.

Vc.

Cb.

 

Xyl.

Vln. I

 

                                                                   ff

 

3

   

fff

             fff


59

       490                          Picc.   





  

 

 

 

   

   

   

                            





  

 

 

 

   

   

   

                                 





  

 

 

 

    

   

    





   

 

  

   

   

    





    





    

    

 

   

    

   





 

    

    

    





 

   

Ob.

Cl.

      Bsn.                           

Hn.

 

Hn.

C Tpt.

Tbn.









Xyl.

 Vln. I 

Vla.

Vc.

Cb.

     

    

      

     

       

    

    

 

   

   

   

   

   

                                                       

  

       

 



        

                                    

                                          

       

                                                         

        

                        

 



 

 

  

 

    

    

   

                        

 



 

 

  

 

    

    

   

Vln. II

 

 


60

 498      Picc.  

Fl.

    

     

      

Cl.

Hn.

Hn.

C Tpt.

Tbn.

Timp.

Vln. I

 solo

 f

solo

 f

  

  

mf



   



   



3

3

3

    

    

     

    

Cb.

              

mf

       

mf

 

        

     

mf



 

 

            

                                                                        mp      

      

                                              mp                               mp 

    

mf

mf

Vc.

    

mf

                                                               mp

Vla.

   

Vln. II

                                       

  

 

f

3

 

3

        

     

 

Xyl.

    

Ob.

Bsn.

    

     

pizz.

mf



mf

    mf     

       

         

                                                                          

mf

mf

     

                                  

    

   

     

   

   


 

 Fl.  509

Ob.

Cl.

Bsn.

Hn.



           



           

       

Hn.

                                                   ff

61

    









       



               

   



 

        

Tbn.

Timp.

Xyl.



 

Vla.

Vc.

 

ff







       

 



 











 

                         

f









 



 

sfzmf

 

3

simile

 

f

 

 

 

 

 

3

3

3

f

3

  

               

f

 

3

 

 

                             

ff

                                                              

non-div.

ff

f

non-div.

                                                                  f ff

                f

Cb.

non-div.

         

sfzmf

       Vln. I 

Vln. II

sfzmf

  

f

       

 

sfzmf

C Tpt.

ff

      

sfzmf

    

      

                 f

       

 

 

 

 

                       

ff

                       ff


62

   Fl.  518

Ob.

Cl.

Bsn.

Hn.

Cym.

 

  

 

 

 



 



3

3

 



 



3

3

 

C Tpt.

Timp.

 

3

3

 

 

3

3

                                                                     

Hn.

Tbn.

                                                            

 

 



 



3

 

 

 

3

3

 

 

3

3

     

3

3

3

      

3

  

mf

3

  

ff

let ring

 

   Vln. I 

                                                            

  

                                                            

Vln. II

Vla.

Vc.

Cb.

                                                               

                                                                   

                                                               


63

 Fl.  527

Ob.

Cl.

Bsn.

Hn.

 

 3

 3

    

3

3

  

 

 3

 

 3

 

3

3

3

3

  

3

  

3







3



 3

                                                      

3

3

                                          

           

C Tpt.

Timp.

  

Hn.

Tbn.

     

      

mf

  



  



 

3

3

  

  

3

3

3





3





  

3

3

 Vln. I 

          

  

                                          

Vln. II

          

  

                                          

Vla.

Vc.

                                                                 

                                                               

                                                                      Cb.    


64

                                                             Fl. 

Playful

536

Ob.

Cl.

Bsn.

Hn.

 







3

3

 3

                                          

  3

C Tpt.

Timp.

  

Hn.

Tbn.

 3

 









3

 

 3

 

 

 



3









 

3

3

  

  

 

      

3

3

  

 

Playful                                                                                 Vln. I  mf

                                                                           

Vln. II

mf

Vla.

                                                                             mf

Vc.

                                                       

   

                                                     

   

pizz.

mf

Cb.

pizz.

mf


65

 

Hn.

Tbn.

545

Hn.

Timp.

Vln. I

    

Vln. II

 

   

  f

  

   f



    

f

  f

                                                                                            f

                                                                                            f

                                                                                            f

Vla.

 

Vc.

Cb.

 

 

 

 

    

    

   

    

  

   

 

 

    

    

   

    

  

   

 

f

f

Hn.

554     

  

Hn.

C Tpt.

Tbn.

Timp.

  

 

 

 



 

 

      

 



 



 

   

 



 

  

     

    



 



 

 

  

 

     

 

 

  

  

  

 

     



 

 

 

 

 

 

 

 

 

 

 

 

  mf 

 

  

 

  

 

  

 

  

 

  

  

 

                                                                           Vln. II                                         Vla.    Vln. I

 

  

 

 

 

                                                                            


66

  

 



 

  

 



 

   

 



 

 

 

 

561

Hn.

Hn.

C Tpt.

Tbn.

Timp.

   



  

 

 

 

 

 



 

 

 

 

 



 

 

 

 

   

 

 

 

 

   

 

 

 

 

     

 

 

 

          



 

 

  

            

                                                           Vln. II                                     Vln. I

Vla.

                                 

 Picc.  567



 

    

 



 

 

                                                            

                                       mf

                                            

Ob.

mf

                                                     mf                Bsn.            f           Hn.              Hn.   Cl.

C Tpt.

Tbn.

Timp.

 



 

  

 



  

  Vln. I 

mf

 

Vln. II

mf arco

Vla.

Vc.

Cb.

   arco   ff arco   ff

   

  

 


67

 Picc.  574

                                               

Ob.

                                               

Cl.

                                               

Bsn.

  



ff

  

   

       

    

          

Hn.



Hn.

C Tpt.

Tbn.

Timp.

 

 Vln. I 

Vln. II

Vla.

  

   

       

    

          

   

   

        

    

          

ff

 

 

 

   

  

   

  

   

  

   

  



  

  

  

  

  

  

  

  

  



ff

   

   

       

    

          

  

   

       

    

          

  

   

       

    

          

ff

Cb.

  

ff

ff

Vc.

ff

ff


68

 580                               Picc. 

Ob.

Cl.

Bsn.

   



   

   

              

                             

        

                  

                             

        

                  

  

      

   

   

     



   

    

Hn.



Hn.

C Tpt.

Tbn.

Timp.

Vln. I

   

   

  

   

 

     



    

  

   

      

    



    



  

   



                                                         

Vln. II

Vla.

Vc.

Cb.



     

     

     

     

     



 

   

   

     



  

   

      

    



   

   

      



 

 



      

    



   

   

     



  

   

      

    




69

 Picc.  586

                                                        

Ob.

                                                        

Cl.

Bsn.

Hn.



    

 

         

  

    

C Tpt.

Timp.

 



Hn.

Tbn.

                                                       

   

  

 

               

  

         

     

      

    

  

 

      

    

  

 

f

f

 

  

         

   



 

 



                 

                                   Vln. I 

         

   

   

                     

        

  

   

ff

       

Vln. II

Vla.

Vc.

Cb.

  

    

 

            

  

         

     

  

    

 

          

  

         

     

 

    

 

         

  

         

     




70

 Picc.  593

Ob.

Hn.

    

 



   



        



   





                

Cl.

Bsn.

     

      

Hn.

    

    



     





      



     





      



 

     

 



     

   

   

      





 





 

                                  

                    mf

                                                                mf

C Tpt.

                    

mf

Tbn.

Timp.

  

  

    

      

 Vln. I 

Vln. II

Vla.

Vc.

Cb.





 





 

 

 

 

 



 

                       mf

      

 

          

                                      

 

                                                   









 









 









 

pizz.

     

 



pizz.

     

     

pizz.

     

 

 

 

      

 

 



     

 

 



     

 


71

Fl.

  602

Ob.

Cl.

Bsn.

Hn.

“It was a time,” mused Andy, “and I went to the parade, And watched as all the players waved, and everybody made A promise to themselves that they’d remember this great day, The Red Sox were the champs, no matter what the Yankees say.

                       p                       

Hn.

Tbn.

Timp.

           

             mp 

mp

              mp

             p

                     

 

p

C Tpt.

         mp

p

 

 Vln. I 

                        f

         f               f

                f

              f

 

 

pizz

 

 

 

 

pizz

Vln. II

              

f

pizz

Vla.

             

f

             

pizz

Vc.

Cb.

f


72

                                                           Fl. 





                                                                 mf





                                                                                  mf









That it resided elsewhere, for in Boston it was dead.”

And if there ever was a curse, then now it could be said,

611

mf

Ob.

Cl.

                                                Bsn.  mf

 

















 

 Vln. I 

 

 

 

 

Hn.

Hn.

C Tpt.

Tbn.

Timp.

Vln. II

                                                             

mp

                     mf   arco                   arco

                                                                              

mf

Vla.

 

 

                                                    

     

                           



arco

mf

Vc.

arco

mf

Cb.



 

          

                           

             

 


73

    Finale

 

  Picc.  619

Bsn.

Hn.

C Tpt.

Timp.

   





    



   



       

 

Hn.

Tbn.



Cl.

 

 Vln. I 

Vln. II

 

 

   

   

arco

   

 

   



 

   



    



   



   





   



   





   



   







    

 

ff

Cb.





             

   

   

   

    

ff

arco



 

             

   



            

ff



Finale



Vc.

 

   



arco Vla.

   

Ob.



 

 

   

   

   





            

                            

            

                            

          

             

                            

           ff



   



   



    





    




74

 Picc.  624

 

 

   



 

   





    





  

   



    



 

    



                   Vln. I 

Vln. II

Vla.

Vc.

Cb.

   

C Tpt.

Timp.



Hn.

Tbn.

Cl.

Hn.

Ob.

Bsn.

   

 

  

  

 

   

  

                    

                                   

                                    

                               

ff

    



    




75

 Picc.  630

Ob.

Cl.

 

Bsn.

Hn.

    

   

  

  

mf

Hn.

mf

C Tpt.

  

   

  

  

mf

Tbn.

Timp.

 Vln. I 

                                    



               

Vc.

Cb.

 

Vla.

mf

 

Vln. II

  

  

   

                 

 

          

ff

        

fff

                 



                  

mf

                      fff



         

ff

 

   fff

mf

                 

mf

                                    fff

mf

                                                fff mf


76

Picc.

 

Ob.

Cl.

Bsn.

Hn.

“They were the champs,” said Johnny, and he smiled at Andy then, And said, “And now they’ve been the champs, hey, they might win again.”

636

   

      

Tbn.

Timp.

           



     

          

       



    

                        





  

f

   

  

ff

ff



    f

       ff

  

 

f

 

      

 

  

f

C Tpt.

                     

ff

     

Hn.

solo

      

        

              



       

              



    

ff

       



              pizz.                                                                                         Vln. I           f Vln. II

Vla.

                                                          pizz.                                                 f 

                                                            (arco)                                                      mf

Vc.

                    pizz.                                                                                                 f 

Cb.

                    pizz.                                                                                                 f 


77

 Picc. 

Ob.

Cl.

                                                    

642

Bsn.

Hn.



         

      

 

 

Xyl.

          Vln. I 

Vln. II

Vla.

Vc.

Cb.

C Tpt.

Timp.

ff

Hn.

Tbn.

                                      

solo

      

     

               

      

      ff

          

      ff

          

                                

solo

ff

                                   

arco

  

     

                                                   

             

          

      

     

  

     

          

      

     

  

     







 

       





 

 

 


78 647                               Picc.   

Ob.

Cl.

  

     

 

 

ff

   

 



  





  



                                                             

 

Hn.

C Tpt.

 

Bsn.

Hn.

Tbn.

Timp.

Xyl.

 Vln. I 

Vln. II

Vla.

Vc.

Cb.

          

ff

                     

                                   

 

       

  

  

ff

   

 

                                                              

  

                               

   

         

 

 

 

 

 

     

                       f arco

    f

   



 

 

         

 

   

 

     

       

         

   

   

 

     

        

         


79 652   Picc. 











                   

Ob.

Cl.



 



           



   

  

        



 







 



  

                                                                        



                                                         Bsn.                f Hn.

 

  





  











   f





  











 





  

 

 

 

 

 

 





  











f

C Tpt.

Tbn.

Timp.



 

 

 

  

Vc.

  

f



 Vln. I 

Vla.

Vln. II

  

Xyl.

Cb.

Hn.

   

f

f



 

                                                      

 

 

arco

 

 

arco

 

 

arco





      

 

        





  

                                           f                                          

f

                                         

f


80

  Picc.  656

  

Ob.

Hn.

Cym.

 



                                                   



    





    



   



   



    



    

     





 

    





 

    

  



 

   



   



    







 

    



    



   

    



    



   



   



C Tpt.

Timp.

 

                  

   

Hn.

Tbn.



                                                     

Cl.

Bsn.

                                                        



 

 

f



    

f

     

      









    



 





   



   



   

    

   



   



   

                                                                    Vln. I 

Vln. II

Vla.

Vc.

Cb.

 





                                                                                                      



         

               



    



            



    



 



                     

 

  

                    

     

     

     


81

 Picc.  661

Ob.

Cl.



                             

   



  



fff

fff

                                                                                  

ff

fff



ff

 



  





  





 



            

                    fff

                                                                                        Bsn.       ff

Hn.

 

fff



ff

Hn.



ff

Timp.





 

   

  





   



   

             

     

         

         

  

   

         ff



        

         

 



      

ff

Tbn.





C Tpt.



  

      

 





   



   

             

 







  



 

 

 

f

 



f

 

 

f

  f

ff

Xyl.

        

ff

                                                                                     Vln. I 

 

                                                                                      ff

 

ff

Vln. II

ff

ff

Vla.

Vc.

                                                                                ff ff                                                                            ff

Cb.

          ff

 

ff

         

         

         

  

  ff

 



 

 

 

 

 


82 666                  Picc.    

 

                  

 

Ob.

Cl.

Bsn.

 

  

 



 

  

 

 

                                                 



 







 





 





  

 

 

 



 





 





 





 





 





 



  



 





 





  



 

 

 





  

 

 

                                    



Hn.

 

C Tpt.

Xyl.

                                                 

                                                                                                             



Tbn.

  

                                                                                   



Hn.

 

 



  

 







 





 





 





  

  



 







  



 





 





 

  



 







 





 





 





  

Vc.



 

 

 



 



 

 





  

 

 

Cb.

 

 

 

 



 





 





  

 

 

Vla.

   

 

 





 





 

 



Vln. II

  

  

Vln. I





     

 





 

 

 



 





 





 

  


83

     672                                                   Picc. 



                                                     



                                                      



                                                  Bsn.    



Ob.

Cl.

 







 



 



 

 

  

 







 







  





 

 

  



  

Vln. II

  

Vla.

  

Vc.

 

  



  

         



  



 

C Tpt.

  Vln. I 

 





 





Hn.



Timp.

 

 

    











Tbn.



 



 



 



 



 



secco

f



 

 

  





 

  



  



 

                      ff

 

 



 



 

                      ff

                   ff







 

      

 

      

pizz.

ff

Cb.



   

 

 









 







  

 









 







 



 





Hn.





 

 

  

ff

  


84 676     Picc. 

    

Ob.

    

Cl.

    Bsn.    Timp.

 

     















  

                 Vln. II            Vla.    Vln. I

Vc.

Cb.

         















   





















 

   

   

   

















  

 





 





                                





                                        









 

















  

   



















































 

  

   

  





















                      

       







                             

 



























 

 

                                   

           

  





 



 

  680      Picc.        Ob.        Cl. 

  

  

  

  

            Bsn.  

Timp.

 

   

 



           

  

  

    

   





 

              



   

              Cb.         Vc.

  

      

                                                             Vln. II                                        Vla.  Vln. I



   

    

   

     

         

   

   

   



     

   

















    

                                                                                      

                                                

  

    

   

     

   

   

   

 

                                        

                      


85

Picc.

685       



     



Ob.

     

Cl.

Bsn.

Hn.

 









C Tpt.



































































































  





   

 





















  



     

     

     

3

fff



 

         

3

fff

      3

fff

    

      3

fff

 

     





     

    

     

   

    

Hn.

Tbn.

    





 



   



fff

3

3

fff

      3

fff

      3

fff

 

    

                                      Vln. I                              

                            

Timp.

    

Vln. II

 

 

 



                              

 



 

                                                                         

Vla.

Vc.

Cb.



    

  

    





  

    







  

    

 



  

 

       

 

       


86

  



689

Picc.

Ob.

Cl.

Bsn.

Hn.

Cym.



sfzmp

fff



sfzmp

fff

 

  sfzmp

C Tpt.

Timp.

fff

            3

sfzmp

            3

sfzmp

            3

sfzmp

3

sfzmp

fff



            

sfzmp

fff

 

sfzmp

fff

 

  sfzmp

 

3

           3

3

   

  

ff

  

fff

                             fff    arco                      

fff

 sfzmp

sfzmp

  

 

mf

                       

fff

 fff

  

  

fff

arco                      Cb.    

sfzmp

                       

 

sfzmp

           

fff

  

Vc.

sfzmp

          

              Vln. I          fff

Vla.



mf

Vln. II

3

fff

  

Hn.

Tbn.

sfzmp

          

                      

                          fff   arco                        fff

  

                     arco

fff


87

 Picc.  692

Ob.

Cl.

Bsn.

Hn.

  



Cym.

 









 











 

 







 

 

 









 

 









 

 

 

 

  

  

  

  

  

  

  

 3



  

 3

fff



  

 3

  

3

  

3

  

3

fff

 

  

 3

fff

 

 

 

  

fff



fff

Tbn.

 

3

fff

C Tpt.



fff

  

Hn.



fff

  

ff

mf

 

   Vln. I 

             

  

         

 

  

  

  

             

 

  

 

Vc.

   

           

 



Cb.

   

           

 



Vln. II

Vla.

  

  

  

  

 

 

      


88

                                                                 Picc.  697

                                                                

Ob.

Cl.

Bsn.

Hn.

                                                         

3

   

    

   

 

 

   

 

         

    Vln. I  ff

   

Vln. II

   

Vla.

Vc.

Cb.

   

C Tpt.

Cym.

3

3

Timp.

    

  

Hn.

Tbn.

 

  

  

  

 

 

  

  

  

  

  

  

3

3

  

  

  

  

  

  

  

   3

3

  

  

  

  

  

  

  

     

  

  

  

         

        

       

   

   





Julian Wachner Julian Wachner (b. 1969) has been hailed by his mentor Lukas Foss as “an enormously talented composer, organist and conductor whose vision and talent will invigorate the musical world.” His most recent collaborations include those with the San Diego Symphony, L’Orchestre Metropolitain (Montreal), New Haven Symphony, Sioux City Symphony, Boston Pops Orchestra, Theatre of Early Music, Charleston Symphony, Spoleto Festival USA, Tanglewood Music Center, Opera Boston, Boston Bach Ensemble, Handel and Haydn Society, Newport Jazz Festival, Dave Brubeck, Barry Manilow and the Boston Landmarks Orchestra. During the 2005-06 season, Wachner made his conducting debut with L’Orchestre Metropolitain (Montreal), Calgary Philharmonic, Grant Park Symphony (Chicago), and National Arts Centre Orchestra (Ottawa). He continues to conduct the Providence Singers, Bach-Academie de Montreal, McGill University and the New Haven Symphony. Recently appointed principal conductor of Opera McGill, Wachner made his professional debut as an opera conductor stepping in for Grant Llewellyn to conduct Dido and Aeneas at the Spoleto Festival USA in 2001. Recent operatic engagements include Gluck’s Orpheus et Euridice, Mozart’s La Finta Giardiniera (Boston Conservatory Opera), Britten’s Turn of the Screw, Argento’s Christopher Sly (Opera McGill), Gilbert and Sullivan’s The Mikado and The Gondoliers (Opera Boston), and Britten’s Albert Herring with the Red House Opera Group. In addition, he has served as assistant conductor for Mozart’s Cosi fan tutti, Handel’s Tamerlano, and Purcell’s Dido and Aeneus (Spoleto Festival USA). His first original opera, based upon Longfellow’s Evangéline, received its premiere in October of 2005. Wachner’s original music has been described as “jazzy, energetic, and ingenious” by Richard Dyer of the Boston Globe, “bold and atmospheric” by the New York Times, “highly enjoyable, touching, clever, and inspiring” by the Deseret News, and “upbeat, jazzy, glittering, and poignant” by the Providence Journal. Commissions and performances of his work include Landmarks Orchestra of Boston (The Midnight Ride of Paul Revere), Opera McGill (Evangéline Revisited), L’Orchestre Metropolitain, Montreal (Tryptich for Organ and Orchestra), Spoleto Festival USA (Cymbale), the New Haven Symphony (Planet X, Pluto, Apollo’s Fire), the Church of St. Andrew and St. Paul, Montreal (Psalm Cycle III), the San Diego Symphony (Regina Coeli), the Providence Singers (Canticles), the Quincy Symphony (Clarinet Concerto), the Cape Ann Symphony (Celebrations), Emmanuel Episcopal Church, Maryland (Behold, the Tabernacle of God), and the Charleston Symphony and Chorus (Regina Coeli). E. C. Schirmer Music Company publishes his complete catalogue of music. He is the founding music director of the Red House Opera Group, founding music director of the BachAcademie de Montreal, artistic director of the Providence Singers, music director of the Church of St. Andrew and St. Paul, Montréal, and associate professor of music at McGill University. His previous faculty positions include Boston University and the Massachusetts Institute of Technology. His most recent recording activity includes six commercial discs: Bach’s Christmas Oratorio with the Boston Bach Ensemble, Britten’s The Company of Heaven with the Back Bay Chorale and Orchestra, Coro Allegro’s Somewhere I Have Never Traveled featuring Wachner’s choral song-cycle Sometimes I Feel Alive, The Boston Sinfonietta’s Julian Wachner: Chamber Music, Lukas Foss’ Griffelkin with the Boston Modern Orchestra Project and Back Bay Chorale, and the Boston Bach Ensemble’s Julian Wachner: Sacred Music. As an organist and improvisateur, Wachner has appeared throughout North America including such prestigious venues as Methuen (MA) Memorial Hall, Trinity Church Copley Square (Boston), AGO Conventions in New York City, Dallas and South Carolina, the Organ Historical Society’s Boston Convention, St. Joseph’s Oratory in Montreal, and as part of the first-place winning team of the Festival Orgue et Couleur’s inaugural improvisation competition in Quebec. Over the years, with his various ensembles, Wachner has commissioned and premiered more than fifty new works by both young, emerging and established composers such as Marjorie Merryman, Lukas Foss, Charles Fussell, Theodore Antoniou, Augusta Read Thomas, Carlyle Sharpe, Trevor Weston, Marti Epstein and Andy Vores. Many of these works have gone on to receive major awards. Born in Hollywood, California, Wachner began his musical education at the age of four, studying improvisation, composition, organ and theory under Dr. Gerre Hancock while a boy chorister at the St. Thomas Choir School in New York City. In 1990, at the age of twenty, Boston University appointed him University Organist and Music Director of Boston University’s Marsh Chapel. In 1996, he earned the Doctor of Musical Arts degree from Boston University’s School for the Arts.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.