Peter Köszeghy - SOULFLIGHT (the edge) EJK 0198

Page 1



Für Camilla Hoitenga

Flöte und großes Orchester

PÈTER KÖSZEGHY

SOULFLIGHT (the edge)

Studienpartitur



the partitura is notated in C!

für Camilla

SOULFLIGHT (the edge)

A

concerto for flute and orchestra

q = 40

Pèter KÖSZEGHY

 

  

flute 2

 

flute 3

 

oboe 1

 

oboe 2

 

oboe 3

 

clarinet in si 1

 

clarinet in si 2

 

clarinet in si 3 (also bass clar.)

 

bassoon 1

 

bassoon 2

 

bassoon 3

  

  

horn in F 2

 

horn in F 3

 

trumpet in C 1

 

trumpet in C 2

 

trumpet in C 3

 

trombone 1

 

flute SOLO

flute 1

horn in F 1

pp

 

trombone 2

 

tuba

 

 

3 cymbals

 

  

piano

celesta

f

mp

violin Ib (7)

violin IIa (6)

   Bartòk pizz      sfz. Bartòk  pizz      

 

violin IIb (6)

 

viola I (5)

 

violoncello I (4)

violoncello II (4)

double bass I (3)

double bass II (3)



sempre ff

          

    sfz.

Bartòk pizz

     sfz.

viola II (5)

f

3

 

 



 

 

    3 3                 f

sfp

ff

sfz.

mp

5:4

cymbales antiques

 5:4 5:4    5:4              

sempre ff 7:8 3 7:8 7:8 6:4 7:8 7:8 6:4  7:8 7:8 3 7:8                                          7:8                 7:8                                                            sempre ff sempre ff                           sfffz. sfffz. sfffz.                           sfffz. 6:4 6:4 3 6:4 5:4 6:4 6:4 3  6:4  6:4 5:4   6:4 6:4    6:4     6:4                                                                                 

sfz.

violin Ia (7)

   

 

trem.



Percussion 3

 5:4                  



Percussion 2

pp



Percussion 1

f

pp

trombone 3

               

Bartòk pizz

sfz.

 

 

 

  

  









 Bartòk pizz

Bartòk pizz

 

    sfz. (sim.)      sfz. (sim.)      sfz. (sim.)

Bartòk pizz

6:4

sfz. (sim.)

 

 

sfz. (sim.)

Bartòk pizz

sfz. (sim.)

© Edition Juliane Klein 2007

   

sempre ff

       

  

    

 

 5:4               6:4              

     

5:4

sfz. (sim.)

sfz.

   

sfz.





   

sfz.

    

3

  

  

  

 

sfz.

Bartòk pizz

sfz.

EJK0198


2

3  

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

fl. SOLO

fl. 1

bsn. 1

bsn. 2

bsn. 3

hr. 1

 

hn. 2

 

f

ppp hr. 3

 f

ppp

 

ppp

f

trp. 1

 

trp. 2

 

trp. 3

 

ppp tmb. 2

 

f

ppp

tmb. 3

  

 trem. perc. 1         perc. 2   

vla. I

vla. II

vc. I

vc. II

f

sfz.

     

ppp 

  

ppp



ppp

    sfz.   f

  f

   f

 

ppp

f



   

sfz.





 

 

 

 

db. I

  

db. II

  

 

sfz.

sfz.



sfz.

    sfz.     sfz.  

   

sempre ff

 

 

5:4 5:4 5:4 5:4                      

  

sempre ff

sempre ff

 arco  

sempre ff  7:8 3 3 7:8  3 7:8 7:8 6:4                               6:4     7:8    7:8                                                             sempre ff 6:4 3 6:4  5:4 5:4 5:4 5:4                                                                                                   sempre ff sfffz.                                        6:4 6:4 6:4 3 6:4  5:4 6:4 6:4 5:4                                                                         

 



3 5:4 3    5:4 5:4 5:4 5:4                                    

 

sfffz.

 

arco

vl. IIb

arco

vl. IIa

sempre ff

arco

vl. Ib

      

    

vl. Ia

         

pno.

cel.



ppp

perc. 3

f

ppp tuba

 f



tmb. 1

 

   sfz.   sfz. 

    sfz.







   sfz.



 

 

 ff

sfp

 

sfp

ff

 

sfp

ff

sfp

ff











     sfz.   

 sfp

   ff



sfp

ff



  

sfp



ff

sfp

ff

  















   

sfz.



sfz.

sfz.

sfz.

sfz.

sfz.

  

  

  

  


3

5

  

mf

fl. SOLO

fl. 1

  

sfp

  

 5:4 frull.ord.            



sfp

mf

 

fl. 2

   3        3

sfffmp

f







sub. p

mf



gliss.



gliss.

f



mp



 

frull.



sf

 

mp fl. 3

 

ob. 1

 



ob. 2

 



ob. 3

 



cl. 1

 

 

cl. 2

cl. 3

bsn. 1

bsn. 2

 

 

 

          sfz.

   

   

sfz.

sfz.

bsn. 3

hr. 1

 

 

             p

hn. 2

3    5:4    

 

hr. 3

p



3     5:4 3                

p

 

p

mf

       

mf

mf

p

mf

 

trp. 2

 



trp. 3

 

tmb. 1

tmb. 2

 

 

tmb. 3

tuba

perc. 1

 

  

 

  

p

      perc. 2   

 bass clar.

mPh.



 

 





con sord.

     f

mp

3                  mf 3   3  con sord.            mf 3

con sord.

con sord.

5:4       

p

p

f

5:4  3 3               



 

mf

mf



big drum

f

sfp

   p

2 tomotoms

 



f

 

      sfz.

  

  



mp

sfz.

f

perc. 3

pno.

p   mp           f         

 

    cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

   

f

  p

   

  

 

p

f

    

   

    

     

      sfz.



 

 

p

     

p

 f

 



 

p

 



f



f

 

 

sfp

sfp



f



f

       



    

 

sfp

mf

arco/sulpont.

arco/sulpont.

arco/sulpont.

sfz.

 

sfp

  sfp    

sfp

arco/sulpont.

sfp

 sfp

mf



    sfz.    Bartòk  pizz    sfz.   

Bartòk pizz

Bartòk pizz

     

sfz.

 

sfz.

sfz.

   





sfz.

sfp arco/sulpont.







arco/sulpont.





f



p

sfz.

db. II

f



sfz.

db. I

  

mp



sfz.

vc. II

 

p

           



 

   mp



sfp



 

 

 

Bartòk pizz



Bartòk pizz





Bartòk pizz



Bartòk pizz



mf

mf

  mf   mf

 

mf

Bartòk pizz

mf

mf

    con sord.

p



f



sfp

f

p

    

 

     

mf

p

 

    

mf

trp. 1

                 mf p 5:4                      



3     5:4 3               

mf

p



mf

p



3

sfz.

 

3   5:4               

5:4

   

             p

f

                 f

sfz.

 

p

mf

 3        5:4    3            

mf

6:4 3                

     sfz.              sfz.      sfz.

Bartòk pizz

      sfz.      sfz.

      sfz.

Bartòk pizz

sfz.


4

9 fl. SOLO

3    5:4           6:4  3   5:4                           

   sf

fl. 1

mf

f

sfmp



gliss.

       

mit d und d# Trillerklappen

 



f

sfffz. sub.mp

f

         5:4

Tr.: 4



sputt.

123/456/89 0

    sf

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

 

cl. 3

hr. 1

hn. 2

6:4          

  5:4             

       

frull.   

 

frull.   

mp

 

bsn. 2

bsn. 3

f

 

bsn. 1

mp

 

 

mp

sf

    6:4

6:4

            

                  

  

  

  

    

 

6:4      6:4    6:4        5:4

p

5:4

6:4

6:4

                 p

mf

con sord.

trp. 3

p

  

5:4

6:4

mf

6:4

p

  

con sord.

tmb. 1

 

frull.

mp

con sord.

tmb. 2

frull.

mp

  

con sord.

tmb. 3

mp

tuba

perc. 2

perc. 3

frull.

con sord.      frull.

mp

perc. 1

 

 

sffz.

  

   

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

db. II

sempre mf

mf

cel.

vl. IIa

Bartòk pizz

         

 

sfz.

 

sfz.

            

  

       5:4     6:4     3     



 

vl. Ib

 

  7:8 7:8 7:8 7:8                                 5:4       mf  sempre mf    6:4 5:4 5:4 5:4         3       6:4        5:4                                                           sempre mf sfffz.                                              3  6:4 6:4 6:4 5:4 3                                       

pno.

  

 

sempre mf

  

vl. Ia

p

mf

trp. 2

sf

p



trp. 1

p

frull.

sf

hr. 3

    f     f    

   sfz.     sfz.          

      

  

sfz.

  

sfz.

   sfz.

  sfz.

    sfz.

sfz.

arco

 

arco

 

 

    sfz.   

  

   sfz.    

sfz.

 

 f

arco

 

  f

 



sfp

sfp

sfz.

sfp

sfz.

 arco  

sfz.



sfp

 



f

  f



arco

arco

arco

arco

   sfz.     sfz.     sfz.  

 mp

mp

mp

mp









  

           

sfz.

arco/sulpont

 f

arco/sulpont

f

mp

mp


5

12

   

fl. SOLO

f

fl. 1

  

fl. 3

 

ob. 1

 

ob. 2

 







sfp

 

fl. 2

6:4            

f



 



  

 

6:4 5:4    3                          

f



 



 

cl. 1

 



 

bsn. 1

 

 

            

p

bsn. 3

hr. 1

sfz.

        

   

 





3 3     5:4                

sfz.

hr. 3

 

 

5:4 3 3              

   

p

sfz.

trp. 2

trp. 3

tmb. 1

 

 

sfz. senza sord.

 p

sfz.

        

p

trp. 1

                        p

hn. 2

5:4

6:4

6:4

                     senza sord.

 p



senza sord.





5:4



tmb. 3

 

 

ff

6:4

senza sord.

     senza sord.

 



    mp

perc. 2

    ff  5:4               

senza sord.

    

ff

3

   

   



 

f





sempre mf

f

 



 



 

 

  



 

 





sfp

f

f

sulpont.

 

  

 

f

 

   f

 

sfp

sulpont.

sfp



arco/sulpont.

fff

sulpont.

sfmp

f

arco

arco



  

arco normal

ff

arco normal    ff

 f

f

 

arco

 

 f

  





arco normal

  



  

f

f

arco normal



ff

arco normal

 

ff

   

 

 

 

 

 

sfmp

sfmp

ff

ff

ff

arco normal

f



 

 

f

mp

sfmp





arco/sulpont.

mp

sulpont.

arco

 

fff



sempre ff

       sfff     





 

mp

db. II

 

mp

db. I





sfp

vc. II



 

arco/sulpont.

vc. I

f



  

arco/sulpont.

vla. II



fff

7:8

6:4  6:4 6:4 5:4 6:4 6:4 6:4 6:4 6:4 6:4 3        6:4      6:4      5:4                                                           

 

vla. I

sempre ff

sempre ff



  3    

3 3 6:4 7:8 7:8 6:4 7:8                                                

f

sempre mf

6:4 5:4 5:4 5:4                     



            

cel.

vl. IIb

ff

vl. IIa

 5:4   3           

sfffz.

vl. Ib



f

vl. Ia



f   7:8   7:8    7:8      7:8   7:8    7:8      7:8                     perc. 3   

pno.

  



perc. 1

mp

mp

mp

tuba

   

6:4

ff



6:4

                  

 

6:4

               5:4

 

p

mp

ff

mp

tmb. 2

ff

sfz.

p

 



ff

p

bsn. 2



sfmp cl. 3

ff

ff

 

 3 5:4                           sfp f

 

cl. 2



 

sfmp

ob. 3

ff

sfp

ff

 

sfmp





ff

ff

 ff


B q = 40 (Calmo)

6

6:4 5:4 5:4 5:4              3           3     5:4                                                                   

14  

fl. SOLO

fl. 1

6:4

 

 

 

 

 

sfff

sfff

fl. 2

ob. 1

 5:4 5:4                                   

  

 

   



sfff

ob. 2

sempre sffz. 5:4

 

fl. 3

6:4              

   

 

bsn. 1



 

cl. 3

 sempre sffz.

sfff

clar. in si

 

 

sfff

cl. 2

sempre sffz.

sempre sffz.

sff

   6:4                   

sempre sffz.

3         

 

cl. 1

   

sempre sffz.



 

 3    5:4                     sff





 



 

 

 



3 3                  

sff

3             

sempre sffz.

5:4      6:4             

6:4

sempre sffz.

sfff

ob. 3

 3    

 6:4  6:4                         sempre sffz.

6:4

sempre sffz.

 

sfff

bsn. 2

  



sfff

bsn. 3

hr. 1

 

 

 



hn. 2

hr. 3

trp. 1

trp. 2

  f

f

mp

ff



 

 





 

 

p

p

p



 

sfz.

trp. 3

ff

 

sfz.

p

 

mp

 

 

ff

mp

f

 

p

p

tmb. 2

tmb. 3

tuba

perc. 1

con sord.

con sord.

3     sfz.

    

perc. 3

 

 

  

      fff

fff

fff

pno.



  

 

fff

cel.

 

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

    

 

 

 

 

sff

 

sff

sff

   











 

 

 

 

 

 

 

sff

mp

 

mp

sff

 

sff

    



ff

vc. II

db. I

db. II

 

 

 

mp

sfmf

 

 

sfmf



mp

sff



mp

sff



mp

sff

mp



ff

mf

  



mf

ff



 

  

ff

ff

 ff











 

ppp

 

ppp

ff

   ff

ff (sempre)

sfmf



sff

 



  

ff

sfmf

   

 

mp

sff





ff (sempre)

  

ff (sempre)



ff (sempre)





  

  



  

   p

sfmf

vc. I

 

3 Gongs

 

sff



 

3

sfz.

fff

sfz.

sfz.

   perc. 2  

  3

mf



   

con sord.

 

  

sfz.

sfz.

sfz.

tmb. 1



 

arco

  

 

arco



p

p


7

17

 

fl. SOLO

sfp

 







sfmf

 

3

mf

sfp

  

sputt.

  

 f

sfz. sfz. p

         

sub. mp

      

sfffz.

sfp

 

mf

mp

   sfp



  

3

sfffz. sub. mp

 

 

   

sfff mp

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

fl. 1

bsn. 1

bsn. 2

bsn. 3

hr. 1

  sub. p

hn. 2

 

sub. p

hr. 3



mf

 

sub. p

mf

 



p

mp

p

mf

sub. f



p

mp

 

 

  

mp

 

p

mp

  



p

   

mp

 

  



mp

p

trp. 1

 

trp. 2

 

trp. 3

 

 

con sord.

 

con sord.

 

con sord.

  tuba  

con sord.

tmb. 1

pp

tmb. 2

tmb. 3

mp

pp

mp

pp

perc. 1

 

       

mp

    

perc. 3

p

  

  

 

 

pp

    

mp mf

pp

 

mp

pp

mp

  

  

  

  





p

sfz.

 

 

mp



      

mp

p

 

pp

 

mf

  

mp

  

 

 

 



cel.

vl. Ib

vl. IIa

vl. IIb

  

arco

 f

pp

 

arco

 

arco

 

arco

 pp



 

f

pp



f



f

pp

  mp







mp







mp

 





 





 









mp

mp

 

mp

mp

mp

vla. I

 

vla. II

 

 

 

vc. I

vc. II

db. I

   p

db. II

    p



mp

mp

 

 

sfp

 

sfp

f



  f



 

 

sf

 

sf



   

mp

mp

  

sfmp

 

sfmp

 

 

 

sfp

  

sfz.

pno.

vl. Ia

sfp

sfp

mp

  

 

sfp

mp



 

 f

f

 

mf


8 3

22

        

 

fl. SOLO

  

f

mf

fl. 1

  

sub.mf

  

     f

sub.mp

   



sfmp

 3           

 

flag.



sfmf

 

  

mf

    

sfmf

sfmf

  

  

sfmf

 

 

mp

f

p

sfmf

  

 

    

  

sfmp

sfmp

 

fl. 2

 

fl. 3

 

ob. 1

 

                  

 

ob. 3

 

cl. 1

 



ob. 2

6:4

f

5:4

3

                     

 

f



mf

3

f

f

 



f

  f

   

sfmp

   

cl. 2

 

cl. 3

 

 

 

 

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 



bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

mf

  

mf

mf

  

mf

   3      

  

  

vl. Ia

sfz.

  

 

   sfz.   

 

  

 

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

          

    

   



 



ppp

 

ppp

 

ppp

ppp

 



   mf

 

 sub. p

mf sub. p

     

 

    p

p

 mf

mf



mf



mf



      

  



   p

ppp

 

 

   sfz.   

 

  

 

  



ppp

   mf

   mf

 

p

      mf

p

   mf

mf





db. II

 

sfmp

f

f

 

 





     



     



sf

sf

 

 

mf

 mf

 

p

p

sf

sf











sfmp

 

f

 

f

 

p

 

  





 

  

p

sfz.

sfz.



  

 

db. I

sfz.

 mf

p

 

 

   p

 

pno.

cel.



mf

mp

mf

perc. 3

p



 



  



mp



mp



mp



mp



  

  

sulponti

5:4

        

mp sulponti

mp sulponti

sulponti

       

mp

       

mp sulponti

5:4

        

      



mp sulponti

       

mp

 

f

sff

 f

 

3

 

3

sff


9

27  

fl. SOLO

fl. 1

  

    

mf

sfmf



 

      sfz. mf

 sf

     



mf

p

 

fl. 2

    

mf

 

mp

ob. 1

 

ob. 2

ob. 3

cl. 1

 



 

 

  p

mp

    3



 

3

 

   

 p

  

mf

 





              mf mf

3

f

  

3

        



5:4            

mf

sfz.





   

mf

sfp

mf

f

p

f





f

p

f





sfmp

3



sfmp





  

  

  

     





 

5:4







  

sfffz.

 

    

p

p

cl. 2

sffz mf

3

 

mp fl. 3

    

        

   

  

3

p

  



 

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

 

 

sfmp

 

 

3

  

3

   3           sempre p                 

sempre p

3

  

 

   

  

   



 

   

mf

f

 



 



f

f

f

    

sfz.

crotales



vl. Ia

vl. Ib

vl. IIa

vl. IIb



 



 

 

  



 





 

sulponti

 

sulponti

  p

vc. II

db. I

db. II

   

 p

 p

   



mp

  

sulponti

  

ppp

  

mp

   

mp

mp













p

   mp

ppp sulponti

mp

p

mp

    

sfmp

 

sfmp

mp

sfz.

 

sulponti

vc. I

   

p vla. II



 

sfz.

 



sulponti

sfz.

sulponti

ff

    

     3

 

sulponti

vla. I

sfz.

  

  



sfz.

pno.

cel.

  sfz. sfz.

   



bsn. 3





bsn. 2



bsn. 1

 



cl. 3



arco normal

 

 

arco normal

p

 p

sempre mp



 

sempre mp

mp



sfmp

mp

sfmp



 

  

  

  

 

   

 

 

  

mf

       sfz.

mf

      

sfz.

    ff 

Div.(1,2,3,4)

  

Div.(1,2,3,4)

ff Div.(1,2,3,4)

ff

  

 

Div.(1,2,3,4)

ff Div.(1,2,3,)

ff Div.(1,2,3,)

  

 

ff

    

    

   

    

    

  

ff

 

ff

 

 

 

      

ff

sfz.



    

 

  ff

 

sf

sf

sf

sf

 sfz.

  sfz.


10

32  

fl. SOLO

       

mf



sf



  

  

 

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

fl. 1

3

            mf sfmf 3

sfffz.

         3



   sfmp

     

5:4

sffz. mp

 

 

f

 



 

 

 

 

     

  

mf

 

 

 

 

 

 

 

 

 

 



fl. 2

fl. 3

 5:4   

sfmp





  flag.

sfffz. sfz. sf

sfmp

  

f

               

sfmp

  3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

 

 

sfmp

  

 

sfmp

 

 

sfmp

  

sfp

sfp

trp. 2

 

 

 

trp. 3

tmb. 1

tmb. 2

  

 

sfmp

 

 

perc. 1

   

  

   

  

sfz.

sfz.

sfz.

sfz.

 

 

 

  

sfz.

 

pp



mf

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

con sord

   

 

 



 

 

 

 

 



 

 

Div.(1,2,3,4,5,6,7)

Div.(1,2,3,4,5,6,7)

Div.(1,2,3,4,5,6)

Div.(1,2,3,4,5,6)

          



   

 

   

ff

 

ff

  

sff

    sff

db. I

  

   

db. II

  

sff

sff

   

  

sfmp

 

sfmp

 

sfmp

 

sfmp



 



 

    sfz.   

    sfz.    

 

 

sfz.

 

sfz.

 

 

sfz. sfz.



mf

ff

    

p



 

sfp

  

   





 

 



  ff 

sfp



 

 

    

   



f

sfp

 

 

sfp

 

  ff  

3

 





ff

f

 

  

sfp

     3             



sfp

  

f

sfz. (sim.)

pno.

cel.

  



           sfz.

 

sfmp

3           sfz.

 perc. 2   perc. 3

 

sfmp

tuba

              sfz. (sim.)  3     3  con sord             

con sord

sfz. (sim.)

sfmp

tmb. 3

 

sfz.

sfp

 





sfp

 

sfz.

sfz.

 

trp. 1

 



 

 

f



tutti/sulponti

3

3

3

mf

3

   

  

    

mp

sub. p

mp

  



    

mp

sub. p

mp

        





tutti/sulponti

           

mf

        

sulponti

mf





sulponti

mf

sf

f

mf

mf

  

 f


36 

fl. SOLO

fl. 1

 

 5:4      3      sfz. sf

fl. 2



fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

sf



 

 



 

11

sfz. f

  sf

cl. 2

cl. 3





       

 



sf

   5:4      3                 

f

 3               

      3                   sempre sfz. 3       

3

bsn. 2

bsn. 3

hr. 1

hn. 2

 

sempre sfz.

sempre sfz.

 f















 3             5:4           3

       5:4     3                      

f





3



f

3

      5:4                    3

3  3     3                                            sempre sfz.      5:4 3 3 3                                      sempre sfz.          5:4    3                                    sempre sfz. 5:4  3   3     3         5                               sempre sfz. sfp     3          3      5:4                            sempre sfz. sfp   5:4       3         3                        5:4

sempre sfz.

 



3





5:4

3

f

bsn. 1

sempre sfz.

3 3 3  5:4                         sempre sfz.  5:4       

3

sempre sfz.

sempre sfz.

    5:4                                             3

3 

              f  

 

sfmp



 

f

 



sfmp

f



sfp

sempre sfz.







 

ff

ff

ff







trp. 1

trp. 2

trp. 3

hr. 3



sfmp

tmb. 1

senza sord.

 

sfp tmb. 2

tmb. 3

 

senza sord.

senza sord.

 

sfp

 

sfp

tuba

perc. 1

 

  perc. 3

   

  

sempre sfz.

vl. IIa

vl. IIb

vla. I

sempre sfz.

      

tutti

      



  

tutti

 

vc. II

tutti

 

 

 

db. II



 

tutti

ff

ff

tutti

   sff   

    



 

  ff

  ff

 

 

 

  

sff

sf

 

       

    sff

sff



 

sff



sff

 

 

 

 

sff

 

sff



sf

ff

     

mp

 

 

  

   

 

  

       

sempre sfz.



  

 

 

               

 

 

ff

sfmf

db. I

f

 

 



tutti

 

sfmf

 

   

sfmf



f

arco normal (Div. 1,2,3,4,5)       







f

  arco normal (Div. 1,2,3,4,5)      

vc. I

   f

sfmf

vla. II

    

   sempre sfz.        sempre sfz.      

cel.

vl. Ib

 

sempre sfz.

    3           sempre sfz.             

  

sempre sfz.

sfp

pno.

vl. Ia

senza sord.

5:4 3                    sempre    sfz.     3  3    5:4           

  sff

 

  

     

   3

3   3  

  f

   

   

 

 

   

3   













3

3

            

 



sff

f

sfmp

 

  





 

sff



    

 

sfmf

 

sfmf

         sfmf

     sfmf

sff

 

sff

sff

 

sff

 

 

sff

 


12

39

 

       

 



    

3

   

3

 

    5:4     

 

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

fl. SOLO

fl. 1

mp

mf

cl. 2

 

cl. 3

 

 

 

bsn. 1

bsn. 2

      



p



f

       p

bsn. 3

hr. 1

 

   sfp

hn. 2

   sfp

hr. 3

trp. 2





f

sfz.

 

 sfz.

f

  

f

 

(con sord.)

 

 

(con sord.)

tmb. 1

tmb. 2

       sfz.       sfz.

tmb. 3

3

 

(con sord.)

sfp

  

perc. 1

perc. 2

perc. 3

pno.

sfp

f

p

   p

          

f

p

  

sfp

sfp

 

 

sfz-- sfp  

  

    

sfp

 

sfp



  

 



sfp

sfz



sfp



sfp

  

 

   sfz--

   

  

 

sfz.



   

   3

 

sfp

sfp

   

 



  













 

f

 

f

f

mf



 

p

mf

mp

f

    

        f

f

mf

mf

p

mf

       

   

        

   

p



  



 

    



  

    

    



  

p

f

sfz.

p

sfz.

p

sfz.

        

f

    f





         

 

 

3

5:4

f

 

 





f

 

 

trem.

mf

f

5 cymbals

 

trem.

  

 

 



    



mp

     p

  

       

 

  





p

f

mf



 

3





mp



f

     mp



p

    

p

3

3

mp



          



p

       p f      

mp

mp

f

mp

f

                 f 3

 



sfp

3

           mp





          

f

mp

mp

sfz.



mp

  

      

sfp

      

sfp

sfp





  

mp

sfz.



sfz.

3



      

sfz.

 sfz.

mp

f



sfp

 



     



3

  

 





      mp f

     

                           f mp

 f



f

mp

     

 

sfp

 

 f

        sfz.

sfz.

 



p

tuba

 





           

f

f

f

mp



f

f

     

   

sfp



mp

mp

 



  



mp

 

mp

mp



mp



      

sfp

trp. 3

f

      

sfz.

sfp



 

p



mp



      

        



sfp

trp. 1

f

 

mp



     

mp

sfmp

 

 

mp



mp

 

 

 

mf

 

mf



 

 

 

mf

 

mf

 

mf

  

 

 

 

  

f

mp

mf

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

pp

 

        pp

 

sulponti

pp

 

       

sulponti

   

   

sulponti

 sulponti

          mf

sulponti

mf

vla. II

           

mf

vc. I

vc. II

db. I

db. II

 

mp

mp

     

  

sulponti

                     

      



mp

  

        

p

p

p

 

sulponti

  

  f

  

 f



p



 

 



  

 

f





 

mf

 



  

 



 

mf

         sf

    sf

    sf

  

             

              3

3

p

sf





mf

mf

sf



  sf

sf

mf



 sf

p

 

p



 f

 



 

f

f

f

 

sulponti

 

f



  

mp

sulponti

   



mp

f

sulponti

      f



mf

mf

mf



mf

f

f

 



 

 



mf 3

p



  

3

mf

 

p

mf

p



mf

  

 

  

 sulponti

p

 mf





  

p

f

 

p

    

     

 

p



p

p

mp

 



         



   



f

 f

 



mp

sulponti

f

mp

sulponti



     

     

f

p

p


13

43 

fl. SOLO

  

mp

fl. 1

3       

       7:8     

3    

sfz. (sim.)

 

fl. 3

sfz. (sim.)

     5:4             

 

ob. 1

   

 

bsn. 1

3

3



f

         mf

3

3

 

       

mf

 

bsn. 2

bsn. 3

hr. 1

 

       

  



  



mp

hn. 2

mp

           

hr. 3

                  

mp

trp. 2

trp. 3

tmb. 1

p

f

5:4

          



      

       mp



f

mp

mf





 

f

   

tuba

  

           

 

perc. 1

perc. 2

perc. 3

pno.

 

  

 

      

f

p

mf

p

mf

p

mp

sfz.

       mf

sfz.

      

p

mp

sfz.

mf



 

 



      



      



      

p









p

     

mp

p

     





mp

p

 

f

f

f

mp

     

p

mf

 

mp

mf

 

mf



 

p

 

f

p

f

p

            mp

f

       f

mp

            f

 

 

p

p

f



f

                  p

          

p



f

  p

mp

           

 

f

mp

f

f

p

  

    mp

  

 

 

 





mf

mf

p

p

mp f

p

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

    

  

p

 



 

p

vc. I

vc. II

db. I

db. II

p

 

 





 

sulponti

 

 

sfp

          

             

 

     

     



 

  3   



sfp

mf

f

vla. II

sfp



sfp

 

mf

mf



 



mf



p

 



f

p

    f

 f

f

 

   p

p



 









p

  sub.sulponti     f 

 

sffmf

  sub.sulponti     f    sffmf  sub.sulponti    f 

   sub.sulponti    f  sffmf

sffmf

 

f

f

f





p

p

sffmf

p

f

   

sffmf

p

  

  

sffmf

sffmf

 

  

p

mf

     

      

      

     p

mf

 

f

    

      

      

   

           

p

p

  

    



    

f

 

p

f

f

      

    

mp

mp

sfz.

      

    

 

  

mp

f



    

mp

mp

 

mf

mf tmb. 3

p

mp

sfz.

    

 

mf tmb. 2

 

       

  



sfz.

 

 

mp



    

  



  

mf

mp

 

      

p

   

mf

p

f

 

mf

 3    5:4  

f

mp trp. 1



f

mp

    

p





   

           

f

mp

mp



sfz. (sim.)

mf

3

f

mp

sfmf

mf

3

p

        



f

sfmf

 

mf

5:4        



f

       

3

3

3 3          

              p mf

 

sfz. (sim.)



  



mf

 

   3      

  

 

mp

   5:4         

 

mp

    

3        

sf

sfz. (sim.)

f

cl. 3

5:4

 sub. mp

sfmp

 mp





              

3



mf

cl. 2

sf

     



sfmp

mp

   5:4                

 

sf



sfz. (sim.)

cl. 1

  

sfz. (sim.)

 

ob. 3

sf

              7:6  

   



sfz. (sim.)

 

ob. 2

                   

sfz. (sim.)

 

fl. 2

3

mf p

       

mf sf

sf


14

47 

fl. SOLO

fl. 1

 

   

   

 

 

sf mf

sfmf

  

sfmf

 

sf

sf

 

     



sf mf

mf

sf

  

  mf

       

 

sf mf

sf

  



mf

    

 

sf mf

sf

   

 mf



   

 



sf mf

   





 



sf

sf mf

      



      



sf mf

C   

sf mf



p

fl. 3

  

  

        p

fl. 2

 

   

p

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

hr. 1



hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

 







bsn. 3

tuba

perc. 1

perc. 2

perc. 3

  

  pno.

cel.

vl. Ia

vl. Ib

vl. IIa

    



mf

p

     mf

 





mf

vc. II

db. I

db. II



p

p

p

             p 3        3



 

     

 

  

p





 

 



pp

   

 

(sulponti)

pp

 

(sulponti)

(sulponti)

 sulponti



sulponti

 



 

         

   



  

       3

        3



       3

mp

     mp

 

 







 



mp



mp

3



 

  

    mp

  





3



3

mp

3



  

 

3

3

 

mp

mp

   

  



      

    

mp

mp



 



 

3



  

3

    

   

   

  

3

    

   

  

    

 





   

p

     5:4

5:4

p

 

  

  

   

p





 

    



  5:4

p

 

 



   

 

  

     

  

  



    

 

3

 



 

3

5:4 3      

3

   

 

3

  

 

   

p



3

p

   

   3 



  

p

p

p

3

(sulponti)

     3           3          

pp

vc. I

3 

   

pp

vla. II



pp

vla. I

p

pp

vl. IIb



 3

f

f

f

f

 


15

51 

fl. SOLO

fl. 1



  

 mf

 

       sf

  sfmp

       

5:4                       6:4

sfz. (sim.)

mf

mp

sub. sf mp

sub.mp

mf

sfmp

   

  

3

 

      

mf

sf

  



mf

 

  

sf mf

   



  



sf mf

sf mf

 

      

 sf

sf mf

 

 





f

sf f

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

tuba

  

perc. 1

 

  

 

 

 

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

perc. 2

perc. 3

  

 

   pno.

cel.

vl. Ia

f

 

  p

mf

  

  



 



 



 



  

  

mf

p

 

mf

mp

3  3



     

        mp mf 3           3         

p

mp

              mp 3

3        

 

p

mf

 

  

mf

p

mf

sulponti

   

ppp vl. Ib

 

vl. IIa

 



sulponti

   

ppp

vla. I

 

 

       

sulponti

          

ppp

3

  

vla. II

vc. I

  



sub p vc. II



sub p

db. I

  

sub p

db. II

   

sub p

 

mf

mf



mf

mf

              mf



 mp

f

  

  

 f

 

sf

 

sf

mp

 

mf

     

mf

p

 p

3

3

ppp

   

3

mf

ppp

sulponti

3

   

   

   



mf

mf

        

      

   

p

mf

   

3



   sulponti

p

   

sulponti

5:4

3



   

  

   

  

 

 

 

  

p

ff

 

mf

sulponti

ff

   

5:4

(sulponti)



mf

   

mf

arco normal

(sulponti)

 

f arco normal

f

mf

arco normal

(sulponti)

 

sulponti

p

5:4

5:4

p

 

f





                  



mf

f



3

5:4

p

mf

      

3

3

3

3

p

  

         

 

3

3

p

  

3

 

p

3

p

        

p

mf

p

3

  

mf

3

mf

      

  

  

mf

       3

3       

3

sulponti

         

3              

       

3

3

3

3

sulponti

ppp vl. IIb

3                           mf sempre sfz.          3  arco normal                     mf sempre sfz.              3   arco normal                          sempre sfz. mf             arco normal                             sempre sfz. arco normal





3

mf

(sulponti)

mf

   







(sulponti)

f

arco normal

f arco normal

f



(sulponti)





arco normal

f


16

D

55 

fl. SOLO

fl. 1

 

   

 

sf

f

 



 sf

 f

    3



 

   

5:4

         

   3

     



  

  3

           

e = 90

6:4

 









sempre sffz.

 

























fl. 2



fl. 3

 

ob. 1

 

ob. 2



ob. 3



cl. 1



                       sfmp

ff







sfmp

ff







cl. 3









   

sfmp



    5:4                  

cl. 2

bsn. 1

sfz. (simile)

sfmp

sfz. (simile)

 

sfmp

 

         

sfz. (simile)

    







ff











hr. 1













hn. 2











hr. 3











trp. 1











trp. 2











trp. 3











tmb. 1











tmb. 2











tmb. 3











 











  

tuba

perc. 1

perc. 2

perc. 3

mf

 

   

sempre mf

pno.

  cel.

  



7:8       7:8        7:8                           

          sfffz. sfffz.            

sempre ff



 

sfffz.

 

3very big drum

sfffz.

                sempre ff  sfffz.        



sff



 

 

 6:4

sff



sff

7:8

 



7:8 7:8                                           

sff

6:4

       

6:4

   sff

sff

        

6:4

6:4         

 



 

sff

 

    

6:4



3 tomtoms

   

 

mp



 



 

 

     sfz.

        sfffz.                  



 

           

        

vl. Ib



vl. IIa



vl. IIb



vla. I





arco



vc. I



vc. II



 



 

vla. II

db. I

db. II



 

sff

 

sff

 

 

 

















    

mp



                                                                   

                     sempre sfz.                                                  sempre sfz.                                   sempre sfz.      

sempre sfz.

ff



 

     

            sempre sfz.                                      sempre sfz.  arco                             sempre sfz.                                      sempre sfz.            

vl. Ia



 



sff

 





bsn. 3



bsn. 2



ff

sff



                     

sff

 3         sfmp

 sfz.

      

          

 

 

3        

sfz.

     

      



  

mp

      

        

                             

      

  

 

 

mf


E q = 48 (e = 96)

17

58



  











 











fl. SOLO

fl. 1

fl. 2

               

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

 



cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

sfz. (simile)



vc. II

   

   

mf

 

mf

   

mp

     

sfffz.

gliss.

 





9:8           



  

 sfp  

  

sfffz. sfp

mp



 

9:8          









 

9:8           

 



  



   p



sff

mp



mp

p

 

  

 

 

sff

  

f





mp

   



   

p

          

     



gliss.

sfmf

mp

   

 5:4         



3         



mp

     mp

  6:4           

 

      

p

f



 

sfmf

mf sfp

f

sff

3



mp





  

 

sub. non frull.

f

        

6:4

f

p











 

  











 



 











 



 











 



 











 

 











 

 











 

 











 

 











 

 











 

      

  

 

 

  3      

    

sfz. (simile)



 



 



 



             sempre sfz.            sempre sfz.             sempre sfz.          sempre sfz.                              

                       

       

       sempre sfz. 3         

 

  

  

  

 

  3        

mp

 

sfz.

   

sfz.



ff

mf

db. II

gliss.

mf

sff



3

 

gliss.

 

sempre sfz.

db. I

sffmf

  



  3        

    

   



  mp



      5:4                 

f



sff

sfz. (simile)



sempre sfz.

vc. I

sfz. (simile)



sempre sfz.

vla. II

sffp

sff

 

   

pno.

frull.



     5:4        

3                   

sempre mf

perc. 3





  

 

bsn. 2

hn. 2



  

bsn. 1

hr. 1

 

 

cl. 3

bsn. 3



   

 

 ff





mp



       sffz.      

                sffz.





                     

 



            



     

   

sempre sfz.

sempre sfz.



  

 

 





  



  

3

 

 

  

   



  

 





  

   





 

 

    

               

 



   

3

  

 



  

  

    

 



 

 

 

mp

  



       sffz.     

    3               mp 

            sffz.              

sffz.                 

                                                                                                                                             

sfz.

        sffz.      

 

 

   

 

    

     3   3

 

             sempre sfz.              sempre sfz.              



  

sempre sfz.



 

 

     sfmp   sfmp

        sffz.        

 

sfmp

5:4 5:4                 

con sord.

 

ff



 

ff

 

 

con sord.

ff

   ff



mf

     



 

p

mf



 





sfp 3

f

 f

 



sfp







sfp

f

 



sfp

f

 



 



 



 



 



 



 



flag.   

 

flag.  

 flag.  

 

p

 flag. 



 Bartòk   pizz.   p



 Bartòk pizz.      Bartòk   pizz.   sfz.

        

 Bartòk   pizz.  

  sfz.

  

    

   

 

p

arco/sulponti

  

arco/sulponti

  

mp

arco/sulponti

sfz.

 Bartòk   pizz.   sfz.

 Bartòk pizz.    sfz.

sfz.

arco/sulponti

 



arco

p



Bartòk pizz.



3   arco     

sfz.

Bartòk pizz.

sfz.

 

p

 





f

 



f

  p

  



p

p

 

  

  f

    p   

f

 



p

 

p

mp

 

Bartòk pizz.

p

arco

sfz.

p

 



Bartòk pizz.

   p  



p





mf

6:4 6:4              

con sord.

p



  



sffz.

   



            

sfz.



sfmp

 

sffz.

sempre sfz.



 

    

            

 

    

sffz.

    

f

p



sffz.

     

              

p

p



 

6:4

 

sfz.

sfz.

p

 

 

   

sfz.

sfz.

  


18

62 fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

    

 

 



p

mf

sfz.

sfz. (sim.)

      

  

  

mp

   

 

ca 5"

   

 

ca 5"

 

        

 

ca 5"

 

ca 5"

 

sfmf

6:4  

 

sfz.

sfz.

  mf



 



  sfmf

ca 5"

 

   

ca 5"

 

    

ca 5"

 

    

   

sfmf

                     sfz.(sim.)

trp. 3

tmb. 1

 

ca 5"

 

ca 5"

 

ca 5"

 

ca 5"

 

               

ca 5"

 

ca 5"

sfz.(sim.)

 

ca 5"

 

sfmf

tmb. 2

    

ca 5"

 

sfmf

     sfmf    tuba    

tmb. 3

sfmf

perc. 1

    

sfz.



pno.

cel.

vl. Ia

vl. Ib

vl. IIa

     sfz.              sfz.      

 

 





 3

     

vla. I

vla. II

vc. I

vc. II

db. I

 Bartòk pizz.    sfz.  Bartòk pizz.      sfz.  Bartòk pizz.      sfz.   Bartòk    pizz.   sfz.          sfz.

db. II



ff

 

ca 5"

   

    sfz.   p

 

sfz.

     

 

 

arco/flag.

 arco/flag.     p  sfz.  ca 5" Bartòk arco/flag.   pizz.          p sfz.  ca 5" arco/flag.        

3

  sfz.  arco/flag.    p

Bartòk pizz.

p

  

Bartòk pizz.

5:4   

p

Bartòk pizz.

sfz.

 arco/flag. 

f

f

f

ca 5"

p

 

ca 5"

 

ca 5"

 

ca 5"

 

ca 5"

 

ca 5"

 

ca 5"



 





f































big drum



   



  

 

 

 

sempre mp

 

 

 

 

   

 

 

p

 

   

   

  

 

 

 



 

 

 

 

  

 

 

 

3

     mp 3       3     

mp

p

     

3

     

 sul A

SOLO only 1th Viol.I.

gliss.

    sfz.        sfz.     

 

      3

   



 

  

    

 

    



SOLO only 1th Viol.II.





 

 

mp





SOLO only 1th Vcello I.



mp

divisi.  arco   

sfmf

 arco  

divisi.

sfmf

  

 





 

sfmf

sfmf

f

 3    

 

sfz.(sim.)

sf





gliss.





sfz.(sim.)

mp

                  5:4

 3          sempre sffz.

     

  

  

                    

 

 

 

3

  3           

sempre sffz.

  

  

   





 

sempre sffz.

 

    

 

SOLO only 1th Viola I.

   3  

sfmp





sempre sffz.

sfffmf

 

sfmp



  

  

   

ca 5"

 

 

 5:4    

sub.sfffz.

sub.mp

sfffmf

mp

ca 5"

mp

ca 5"



ca 5"

arco/flag.  

Bartòk pizz.

 

    

 

Bartòk pizz.

    

p

Bartòk pizz.

sfz.

 arco/flag.   

  



3 tomtoms

  

ca 5"



   

sf

sempre mp

 

1/4 Ton Vibrato



   

ca 5"

p

vl. IIb

 

ca 5"

ca 5"

     

ca 5"

      perc. 3

 

 

  



fff

ca 5"

sfz.(sim.)

trp. 2

gliss.

 

   

sfmf

trp. 1

 



     ord.

 

frull.

    

ca 5"

sfmf

hr. 3

 

ca 5"

  

sfffmf

ca 5"

  

  



ca 5"

  

 

sf

 

ca 5"

   

sfmf

   

F e = 82

5:4       

   sff     sff


19

68 fl. SOLO

 

sf

fl. 1

 

fl. 2

fl. 3



3

  mp

ob. 3



cl. 3



bsn. 3

  

 

  



frull.

 

 

sf

ord.  

     

    frull. 

f

        sfffz.

3

mp

  

       sfffz.

frull.    

mp





 

mf sfff mf



frull.

sfff mf

 

3 ord.



sfffmf

frull.



 sfffmf

sf



 

   

3

    mp

  

    frull.

mp

 

3  mp

  

      

frull.

mp

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3



tmb. 3

tuba

perc. 1

    

perc. 3

pno.

con sord.

 



 



mf

 

con sord.

mf



 

 

mf



sub. mp



 

 

mf

 

 

sfz. (simile)

      3

 

 

con sord.

        sfz. (simile)        

sfz. (simile)

 

 

 

 

 

 

sfz. (simile)

mp

  

    

  

sempre sfz.

 

  

vl. IIa

 

 

sub. trem.

vla. I

          sfffz.

vla. II

vc. I

vc. II

 

   

3

3

3

  

   

   

   

    

       

 

 

 

    





sempre sff

  

 

  

 

 

 

 

  

  

 

 5:4             

                      5:4

    

           

 

 

 

5:4

  

 

 

  3

 

  

 

 

  

sub. trem.

   

5:4





 5:4   







5:4   

   

   

  

   

 5:4      



 

ff

  

divisi 1,2,3,4

divisi 1,2,3,4

   ff

     

divisi 1,2,3

divisi 1,2,3

 

sfffz.

db. I

  

db. II

   

    sff    sff

    

Div.

Div.

Div.

    sff     sff

    sff       sff

Div.(1,2,3,)

ff

ff

sub. trem.

ff

  

divisi 1,2,3,4

ff

sf

 

  

sf

5:4

divisi 1,2,3,4

  

sf

f

ff

  

 

 

ff

mp

        mp 

ff

sfffz. mp vl. IIb

      

  

 3       

sub. trem.

ff

3   

sempre sfz.

     

 

sempre sfz.

ff

sfffz. mp vl. Ib

    

3  

   

 5:4           

                      5:4

sempre sfmf

  

 

                

sfz. (simile)

  

   

    

cel.

vl. Ia



sfffz.

con sord.



 

3

mf

   



      sfffz.



tmb. 2



sfff mf

sfffmf

hr. 1

tmb. 1

ord.

mf

sf bsn. 2

sf (simile)



frull.

3



sfmf

5:4 ord.



ord.

     



bsn. 1

   

sf



frull.

sf

cl. 2

sf





ord.

mf

 

cl. 1



   

mp



frull.



frull.

sf

ob. 2

   3   

sf     

3

   

   

  

ob. 1

sf

mf

sf



6:4

sfffmf

 

          3            

 

  

frull.

Div.(1,2,3,)

                

 





 



fff

tutti

tutti

fff

       

 



 

fff

 



fff

tutti

tutti

 

fff

tutti

    sff   divisi 1,2,3,4        

fff

divisi 1,2,3,4

 B.pizz.    sffz.  divisi 1,2,3 B.pizz.      sff

 

 

tutti

divisi 1,2,3

sffz.

    

 

3



tutti

mf

3

tutti  mf


20

74  

fl. SOLO

fl. 1

  

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3





mf

sf

sff



       

 

5:4

 

 

 

 

 

f

 

 

cl. 2

cl. 3

bsn. 1

bsn. 2



gliss.

f



 



sf

3  

sempre sf

 f  frull.  

  

 

 

sf

          



sempre sff

      

3





  5:4               sempre sfz.   5:4                   

3





 frull.    

 

3

  



sf

    frull.   ord.        frull.   gliss.  sf  sfmf f

  

ord.

sf

   

hr. 1

     5:4              sempre sfz.

 

 

 

3

           

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

 con sord.

   

con sord.

tuba

 

con sord.



 

sfmf

 



 

 

perc. 1

perc. 2

perc. 3

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

  



         3  3           

sempre sfz.

3       

       

 

    

 

 

 

 

trem.

mf





3

  

sfz.

sfz.

sfz.

   

mp

 

mp

f

 



 mp 

 

mp

 



 



 

 

  

  



  

f



f

f

tutti/sulponti

tutti/sulponti

tutti/sulponti

tutti/sulponti

sfz. sfz. sfz. 3   

 



 

sf

 

 

sf

 sf     

   

 

sf



 p

      

 

sf

senza sord.



3

 

senza sord.



senza sord.





sf



 

senza sord.









5:4

 p

 p



 

6:4

 

    



5:4



 



    p

sulponti

f



f

     3

 f

sulponti

  

vc. II

 



      5:4

sulponti

p

f

 

       6:4

p

sulponti

 

sulponti

 

      f

   

        5:4

3

        



 





  

ff sub. arco normal



 

   ff

          ff

  

   p





       



  

5:4

    3



arco normal

f



 

arco normal

arco normal

 

 

ff

f



ff

f

ff

arco normal

f





sub. arco normal

3

sulponti



sub. arco normal

6:4

 



p

5:4

p

p

f

sulponti



sulponti

 



sulponti

p

f



sub. arco normal

5:4

p

5:4



6:4

f

     



ff

     

    

mp

mp

mp



p





 







mp

 

ff



   

mp



mp

  

mp

  

     

  

mp

Div. arco normal

sfff

6:4

 

sfz. sfz. sfz.

sulponti

sf

f

 

mp



tutti/arco

  

 

  

vc. I

db. II

mp

sf



db. I

f

  

 

 

mp

tutti/arco

 

vla. II

  

p

 

sf

mp

  

 



mp

mp





sf

mp

f

sfmf



sempre sfz.

sempre sfz.

 



 

frull.

        

frull.

frull.

   

sempre sfz.

3

mp

mp

5:4   5:4                 

 

f

f

   

5:4

       

  

  

 

sempre sfz.

sfmf

 

  

sempre sfz.

sfmf

tmb. 3

 f

 

mp

     

 

f hn. 2

mp

5:4

f

         

   

f

 

 

f

sempre sfz.

bsn. 3

3

frull.



sempre sff

5:4

 

f ord.

 



 

  

ff

 

gliss.

 

sempre sff

 

gliss.

f

3

 

cl. 1

sf

Div. arco normal

  sfff

 

      sff    divisi 1,2,3,4 arco normal    sff     divisi 1,2,3,4 arco normal    sff    divisi 1,2,3,4 arco normal         divisi 1,2,3,4 arco normal

sff

 

ff

  ff

  ff



ff

  

    sff

   sff    sff 

  sff 


21

81 

fl. SOLO



 

sfmp

ff

 



 

f

mf

     

 

    



"sf" f

 3   5:4                  

   3     gliss.                      

 

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2



p

               

  3             

        

  

fl. 1

bsn. 3

hr. 1

hn. 2

sffz.

p

hr. 3

p trp. 1

trp. 2

 

tmb. 1

tmb. 2

 3       

mf

        



senza sord.

mf

 

3

3

       

senza sord.

sfz.(sim.)

3 5:4           

3

gliss.

gliss.

3

gliss.

mp

 tuba 

3

mp

 3      3

perc. 1

perc. 2

perc. 3

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

 

  

 

gliss.

sfz.(sim.)



 

 

 



 

 

 



 

 

sfmf

gliss.

mp

gliss.

sfmf

sfmf

mp

f



mp

f

p

sfmf

 

 

 

 

  

 

       

        

   

sfmp

  

    

p

p

p

p

 

p

p

ff

  

   

 

  

 

p

p

p

p

p

 p

 p

 

 

    

3

3

p

  

   



 

   

 

ff

ff

3

      ff

 

ff

f

  

 mf

 

3

  

divisi 1,2,3

   sff   sff

mf

   

3

   

tutti/sulponti

 

p

3   sff  3    sff

 

   sff  divisi 1,2,3,4     sff    

tutti/sulponti

p







 

   

tutti/sulponti



 



tutti/sulponti

 

mp

 mf

divisi 1,2,3

    sff    sff

    sff

 

mf

5:4        

  

mp

    sff

      sff

  

     

arco normal

 



mf

    

 

mf

           5:4

tutti

mf

 

sfmf

      

 arco normal

       3

tutti/sulponti

mf

p

5:4

arco normal

     



mf

3

tutti/sulponti

p

 

 ff

arco normal

5:4

sff

 mf

3      sff 

mf

 

3      sff

divisi 1,2,3,4

mf

ff

 3       

  

   

f

p

ff

 

 

p

ff

f



   

   

p

ff

 

f

  

 

   

p

ff

p

  

 

p

   

mp

f

 

 



sfmp

db. II

f

3

mp

 

sfmp

mp

tmb. 3

mp

sfz. (sim.)

sfz.(sim.)

            mf

senza sord.

  

sfz.(sim.)

mp

mf

mf

 

3

sffz.

sffz.

trp. 3

sffz.

3  3                         

 

sff

3

sffz.

sffz.

sfz. (sim.)

f

mf

tutti

   mf sff     mf sff

 

sfmf

 

tutti

sfmf

 

tutti

sfmf

 arco normal

 f

arco normal

 f


22

88 

fl. SOLO



   

3

  

6:4  6:4   frull.                                     

gliss.

f

sfmp

sempre sfz.

sfmp

fl. 1

3                     3

  

gliss.

sfmp

sempre f   

fl. 3

ob. 1

 

sfmp

 gliss.

 

     frull.

 

ord.



 frull.

  

sff

 





 sf

sf

sfmp

p

sffmf fl. 2

 

ord. 

 

sff

 

 

frull.    

  sff

sff

  sff



ord.

sfmp

 



3

sf

p

 

f

f

p

sf

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

 

  3        

bsn. 1

bsn. 3

hr. 1

 

 

trp. 1

trp. 2

 

          

 

 

  

tmb. 1

  

f

f

            



sfz.(sim.)



sfmp

f

 3   

tuba

perc. 1

perc. 3

pno.

vl. Ib

sfz.(sim.)

  

sfmp

mp

mp

f

  

 

  

 3   

sempre sfz.

  

 

 

 

 

  

pizz.

 

pizz.

vc. II



db. I

db. II

     

f sub.mp

f sub.mp

 



       

   

      

                

 

 

  

 

 

   

  

 



  

  

 

  

  

  

   

  

  

 

 

   

  

 

sempre mf

pizz.

sempre mf

 

  

 

  

 

 

   sempre mf 

 

pizz.

pizz.

 

pizz.

   sempre mf

   sff    sff

 





mp

mp

  

    

   

   

   

 

  

   

  

 

  

  

sfz.(sim.)

mf

3         

 5:4            

sfz.(sim.)

mf

    sfz.(sim.)

 

sfmp

mf

 



mf

sfz.(sim.)

   



 

 



Bartòk pizz.



Bartòk pizz.



Bartòk pizz.



Bartòk pizz.



 



arco

 

 

    

 3  

     sempre sfz.    

        

    sempre sfz.     sempre sfz.     sempre sfz.     

   

    

    

 3        

 

      

 

                 



  

sf

 

sempre sfz.

                       



sempre mf

mp

f

 

sempre mf

sempre sfz.

mp

mp

 

pizz.

f



 

mf

  

sempre mf

sfmp

pizz.

vc. I

 

mp

sfz.(sim.)

 

       

 



  3        

  

                   sempre sfz.                     

vl. IIb

                3  3               

 3    

        sempre sfz.       

 

vla. II

     

sempre sfz.

vl. IIa

    

sffz.

sfz.(sim.)

sfmp

f

  3        

sfmp

 

sfz.(sim.)

  

mp

f

  

mp

  5:4   

sempre mf

vla. I

        sfz.(sim.)        

 

cel.

vl. Ia

sfz.

mp



   

mp

perc. 2

sfz.

mp

         sfz.(sim.)

sfz.

mp

     sffz.

f

   



f tmb. 3

sfz.



f

tmb. 2

sfmp

  3      sffz.  5:4           

    f



sfz.

  

sfz. trp. 3



3

f

 

      

sfmp





3

 

        



sfz.(sim.) sfmp

hr. 3

sfz.(sim.)

 

sfmp

hn. 2

     

sfz.(sim.)

 

bsn. 2

  

sempre sfz.

   

arco

   

sff

 

sff

sff

 

sff

  

sff

 

 



 

 

f

sff

f



mf



  

 

mf

mf

       

f

arco

mf



 

 

             

mf

   

          



mf arco

   

       

sff

sff

   sff   sff f


23

95 

fl. SOLO

fl. 1



sf

 

 



mp

sfmp

 

 

f



       3                 sub. sfz.

 f

f



sub. p

f

sfffz.(sim.)

   

  

  

sfmp

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

  

hn. 2

 

hr. 3

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

  

bsn. 1

bsn. 2

bsn. 3

hr. 1

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

pno.

 

   

  

 

sfmp 3 Becken

3 Gongs

  

 

sfz.

   

vl. Ia

    

     sfz.      

  

 mf 

mf

   

 

sfz.

sfz.

  

      5:4       sffz.(sim.)

     

sffz.(sim.)

 

mf

3

 

  

 

 sfz. 

mf

sfmp

 

fff

 

ff



 

      sfz.  sfz.

 

sfz.

 

sfmp

p

mp

vl. IIa

vla. I

vla. II

vc. I

vc. II

db. I

db. II

f

   

sfmp

fff

          

     sfz.   div.1,2,3,4          sff    div.1,2,3,4             sff  div.1,2,3,4                     

     sfz.  Bartòk pizz.     sfz.  Bartòk pizz.       sfz. sff  div.1,2,3,4   Bartòk pizz.               sff sfz.  Div.      sff p  Div.      sff

 

 

  

sfz.

Bartòk pizz.

p

   

tutti/arco/S.P.

p



     

tutti/arco/S.P.

p

tutti



tutti

  Div.      sff

 

sff

sff



sfp    Div.

sff

sfp

   

mf

mf

                 tutti/arco/S.P.

p

 

          

                  mf

tutti/arco/S.P.

  

 



 

p tutti

sfp

sfp

tutti

mf

  Div.   sff

 Div.   sff



tutti

p



tutti

p

   

sfmp

sfz.

 



sfz.

sf

 



3 

sfz.

vl. IIb

f

3

sfmp

  

sfz.

vl. Ib

 

   

3

f

sfmp

   

mf

  cel.

 

 



 3    sfz. mp       sfz.         

5 Becken

     sfz.      

sfz.

 

trem

 

 

 

sffz.


24

102 

fl. SOLO

fl. 1

 

      3       ord.                       mp mp sempre sfz. sfffz.(sim.)

3

3            mp

 mf

sfffz.(sim.)

 

3

mp

   

 

 



   

  

 

3

sfz. mf

sfz. mf

3   

          sfmf

     mf





fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

 

hn. 2

hr. 3

trp. 1

bsn. 3

hr. 1

trp. 2

trp. 3

tmb. 2

tuba

perc. 1

perc. 2

perc. 3

  

    

  

    

     

senza sord.

                

pp

tmb. 3

  

pp

 

 

  mp

 

vl. Ib

vl. IIa

        sfz.(sim.)    

mp

  sempre sfz.       sempre sfz.      

sfz.

 

3    

sfz.(sim.)

 

 

sfmp

 

              

f

  

sfz.

  

sfz.

f

 

 

sfz.

 



sfz.

 

 

 

sfz.

        3

sfz.

sempre sfz.

 

 

mp

 

mp

        pp

 



sfmp

p

 

f

 3        

f

sempre sfz.

3

 

   

mp sfz.

f



         

pp

      

                             

           

 

f

f

pp



    

f

pp

f

pp

 

sf

 

 

sempre sfz.

  

    

 

sfz.

mp

 3       

sempre sfz.

    sub.sfz.(sim.)  

p

mf

 

f

f

f



sfz.

 

mf

ff

vl. IIb

vla. I

vla. II

cel.

vl. Ia

          

          sempre sfz.             

  

 divisi 1,2,3,/arco normal

vc. I

vc. II

sulponti

 p



p

db. I

db. II

   

     sff  Div.     sff

 

 

 

sub. mp



tutti

sub. mp

 Div.

 

gliss.

Div.

gliss.

  ff

ff

  ff

        sempre sffz.

 ff

                                 sffmp  sempre sffz. 3                   sempre sffz.

  

  

              sempre sffz.

      

divisi 1,2,3,/arco normal

sulponti

mp

f

tutti

sulponti

mp

f

sulponti

Div.



 

    sffmp

         

  

f

pno.

f

                             pp

  

sfmp

                pp

 

pp

f

      pp

                

                



f

senza sord.

tmb. 1

    

senza sord.

pp

   



sempre f

sfmf

sfffz.

sfffz.(sim.)

  

 

3 3                   sempre sffz.

    sff      sff

      sf

 ff

    sff

3

   

  

sff

sff

               sempresffz.


25

109 

fl. SOLO

    

3      

 

3

     

 

 



     

sf

sfmf

sff

 

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

sempre frull.penetrante

bsn. 1

 

sempre frull.penetrante

bsn. 2

sempre frull.penetrante

bsn. 3

 

hn. 2

hr. 3

trp. 1



fl. 1

hr. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

   

sfffz.

sub. mf

 







         

con sord.

pp

         

con sord.

pp

         

con sord.

pp

         

con sord.

pp

         

con sord.

pp

          

con sord.

pp tuba

perc. 1

perc. 2

perc. 3

  

   



sffz.

  

sempre sff

  

 

 

  

sempre sff

    

  

3    

3  

 

      

  

  

  

sfmf

 

  

 

sfmf

 

sfmf

     

        

         

        

 





ff

mp

 

 

 

ff

 

ff

f

f

f

f            

sf

f

sf

           f

 

  

   

sempre sf

  

 

  f

mp

mp

mp

sf

 

mp

sf

 

 

 

mp

      sempre sf

 

big drum

   p

 

mf

  

3    

  

  

  

 

f

    

sempre sff

   



sfmp

 

pp

 



  

  







 

f

 

 



mp

 

 

 

ff

   

 

f

 

 

 

   sfz.

ff

 

p

 

 

f

mp

 

 

mp

sffz.

ff

 

sub.mp

ff

 

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

pno.

cel.

vl. Ia

vc. I

tutti/sulponti

mp vc. II

db. I

db. II

sempre sff





 

ff

ff

tutti/sulponti



mp

3        sempre sff     

   

ff

   

 

3

 

 

ff

   

            sempre sff            

3

  

sempre sff

  

  

 tutti   sfff

 tutti  sfff

  

  

   

 

 

   

  

  

  

  

  

 

sfmf

sfmf

sfmf

  fff

 

sfmf

  

  

divisi

   

divisi

fff

     sf      sf

sul C

arco normal

gliss. gliss.

gliss. gliss.

3         3 3                        

           3

    sempre sffz. sempre sffz.

Bartòk pizz. tutti

sulponti

 f

Bartòk pizz. tutti

  

gliss. gliss.

  

ss. gli gliss.

sub. mp

arco normal

sul C

 f

fff

fff

sulponti

sub. mp

 

  

    

 3         


26

119 fl. SOLO

fl. 1

q = 42

G

 

  

  

 

mf

 

fl. 2

 

 

 

 

     

 

        

 

 

 

cl. 2

bsn. 1

bsn. 2

  

 

frull.penet.     

 

sf

 

sfmf



   

  

 ord. 



frull.penet.      

 ord.  

frull.penet.

sf

  

sf

3

sfmf 3

sfmf

sfmf

 

3

  

frull.penet.

sf

   

 

sfmf

  

 

frull.penet.      

sfmf

frull.penet.

sf

sf

f

 

 

 

sfz.

 

sfz.

 

 

ord.

 ord.    

 

 





mp

 

ord.



f

     

 3          



3

  

mp

3

 

 3       

 

(senza sord.)

trp. 1

trp. 2

 

(senza sord.)

trp. 3

 

(senza sord.)

 

f



      



 mp

 

   

gliss.

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

db. II

 

 

  

  

 

(senza sord.)

gliss.

f

 

(senza sord.)

f

 

(senza sord.)

f

gliss.

 

 

ord.

f

f

      mp

p



 

 

f

3

sfz.(sim.) sub. mp

3     

sfz mp





sfz mp sfmp

  

           

mp

  

         

mp

 

sfmp

mp

3

mp

sfz.

mp

sfz.

mp

sfz.

mp

            

3

 

3

 

sf

f

  

sfmp

f

 

mp

 

 

 

 

 

 

 

 

 

  

arco/flag.

arco/flag.

arco/flag.

arco/flag.

arco/flag.

 

 

 

 

 

 arco/flag.

3    div.   tutti       tutti div.                                                 sempre sffz. ff 3 3  3  div.  3   tutti  3   Bartòk pizz./tutti  tutti                                                        ff sempre sffz. 3 3 3 3  3       tutti    div.  div.  tutti      div.  tutti                                                 sempre sffz. 3 5:4       tutti tutti     tutti  div.   div.  div.                                              



  

sempre sffz.

3

Bartòk pizz./tutti



 



 

p

f

f

p

 

   f  



p

p



p



p

     

arco/flag.

arco/flag.

arco/flag.



sub. p

sub. p

  

sub. p

sub. p

f

sub. p

 

 sub. p

f

sub. p

  f

arco/flag.



  f

   



     mp 

    

   

mp





3





 



    

    

  

sfz.(sim.) sfmp

  

 

sfmp

   

    



 

       

mp

sfz.

 

 

5:4      

sfz.

sfz.(sim.) ord.

ord.

 3         3    

 3    

sfz.(sim.)

 

 3              sfz.(sim.)  5:4 ord.                sfz.(sim.) 5:4 3    ord.              ord.

sfz.(sim.)

f

f

frull.

  

  f

 

3

f

sfmp



3   

ord.

  

sfz.(sim.)

  5:4       

sfz. sfz. sfmp

  

  3       

 

 



ord.

5:4      

 

sfz. sfz. sfmp

sfz.(sim.)          sfz.(sim.)

 

 

frull.   

      3

ord.

ord.

 

 

 

 

  frull.  

  frull.   

sfmp

sfz.(sim.)

 

sfmp



 

 



sfz.

   

 

sfz.(sim.)

 

 



sfz.

sfz.

 

 

 

sfz.

 

 

 

p 

sub. f

  

p

sub. f

 

 

sub. f

p

sub. f

p

 



 

 

   f

f

 

f

   f

f (sempre)

 

 

 

f (sempre)



f

 sub. p

f

f

  

sub. p

f

f

sub. p

f

  

sfmp

sfmp

sfz.(sim.)

    

f

 

   

   frull.       

     frull.        sfz.(sim.) sfmp  5:4    frull.       

sfmp

3

sfz.(sim.)

 3   frull.      

 

frull.          

sfz. sfz. sfmp

3

sfmp

sfz.(sim.)

3

           sfz.(sim.)               

 

sfz.

sfmp

sfmp

f

mp

         







sfmp

sfmp

    frull.      sfmp

3

sfz.(sim.)

3



3

 

3

ord.

f

 

sfz.

   



3

f

ord.

sfz.(sim.)



sfz.

 

sfmp

     



ord.

 

sfz.(sim.)







 

f





f



f

3

sfz.(sim.)



 

3

sfz.(sim.) sub. mp



 3     

mp



3

        

 

 

 

sfz.(sim.)

sfz.

sfz.(sim.)

 3        sfz.(sim.)  sub. mp  3       

 



 f

 3      

 

 3    

 

    f

f

f

3



 ord.    ord.

mp

     

sfz.

f

 

              

 

f

3



   frull.

sfz. sfz.

 

mp

 

mf ord.

 

 

mp

3   5:4       

 

frull.

 frull.  

sfz. sfz.

mf

 

mp

mp

3

 

frull.

5:4

f

3

5

sfz. sfz.

 

mp

:4    

      5:4           f

5:6

   

5:4    

ord.

5:6           

5:6

  

   frull.

    5:4       mf

sfz.

frull.

sfz mp sfmp

sfz.(sim.)

f

  mp     5:4 5:4   ord.         f

3

 

 

 

         

mp

5:4         

 

3 frull.

 

mp

       

 

 

frull.

mp

sfz.(sim.)

(senza sord.)

mp

 

 

 

frull.

p

sfz.(sim.)

 

3

 

3 frull.

 

sfz.(sim.)

tmb. 1

 

frull.

mp

 

 

sfz.(sim.)

 

hr. 3

mp

p

sfz.(sim.)

hn. 2

f

3

frull.

mp

f

 

f

mf

f

 

sub. mp

 5:4     

gliss.

  

mf

 

gliss.

    

 

  sub. mp frull.

gliss.

   

f

 ord.



f

sub. mp

f

  

 

 

              sfz.  3   ord.           sfz.  3   ord.           sfz.   3 ord.

f

sub. mp

f

    

 

frull.

   



 

 

sub. mp

sub. mp

 

  

frull.

    





3

f



mp

 

cl. 3



mp

 

cl. 1

hr. 1

 

ob. 3

mp

 

ob. 2

bsn. 3

 

f

  

3

f

f

mf

ob. 1

f

f

mf

fl. 3


27

124

frull.  ord.  

  

  

  

fl. SOLO

sfp

sfffmp

fl. 1

 



  

mf

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

 

1/4 Ton Vibrato



sfffmf

sub. p

 

 

frull.

 



mf



 



 

frull.



mf



sfffmf 



sf

sfz.(sim.)



  



 3     sfz.(sim.)

sf

3



  frull.    ord.  

 



sf

mf sfz.mf

3    



sf

 sf

 

3        



   

sfz.(sim.)

frull.

bsn. 1

frull.

bsn. 2

  

 

  

sf

frull.

 

    

3

 ord.  



frull.

sfff mf

sfff sf

sub.mf

  

 



      

 

sfmp

ord.

 



 sfffmp

sf



frull.

sf

     

  



  

sfmp

sfff mf

  

3

ord.

sfz.(sim.) sf

5:4 frull.       





sf

 

frull.  

 



  5:4   frull.       

 



 

sfz.(sim.)

 sfz.

sfz.

sf

sf

sfz.(sim.)

 

   

 

sf

  

sf

 

   

sf







hn. 2

hr. 3

trp. 1

trp. 3

tmb. 1

tmb. 2

con sord.

con sord.

sfz.(sim.) con sord.

3  



sfz.(sim.)

 3   



    









3

sfz.(sim.)

con sord.

    

sfz.

con sord.

      sfz.

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

 

   

 

con sord.

 

 

 

 

p

fff

3                       sempre sfz. molto secco        3                      

vl. Ia

vl. Ib

sempre sfz. molto secco                             mp       mp

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I



  

  

mp

mp

sfp

3            

   

   

sfp

sulponti.

 

sfp

sulponti.

 

    sfp

  

sfp



 Div. arco   

 

sulponti.



Div. arco     

 

sulponti.



sfp

db. II

  3       

sff  sff

    

  



tutti/sulponti

tutti/sulponti

tutti/sulponti

tutti/sulponti

 p



p



 p



   

 



      

5:4

6:4



 

 

 

 

 

     

mf

mf

   

        

 

 

  

 

   f    sff    

sff



f

f

 

f

     sff     

sff

 



(sulponti.)

sff

p

 

     sff      sff



sfz.

   



sfz.

p

6:4

p

       3

    p

 

  

3

   mf

  mf



 



 

 

 

f

f

arco normal

 



f

divisi/arco normal

f

5:4

    f    

    sff

sff

 

arco normal

f arco normal

  f

arco normal

  

arco normal

f

3          

     

f

5:4

(sulponti.)

(sulponti.)

f

 

f

3

f

          

          

(sulponti.)

5:4

     

5:4

    

p

f

        

3

  

 

 

          sempre sfz. molto secco                  

p

p

 

  

        

(sulponti.)

(sulponti.)

p

sfz.

        

(sulponti.)

sf

ff

           sempre sfz. molto secco            

(sulponti.)

f



p

f

3

p

   sff    

  

 

sfmp

f

 

p

mf

5:4

 

frull.

f

 

  

p

mf

5:4

     

p

 

   

ff



   

  



mf

ff

sfmp

     

cel.

sfmp

 pno.

    sfz.  

 

sfffz.

trp. 2

  

sfffmp

 

hr. 1

  

 

 gliss.       

sf

 

frull.

3

 

sf

 

sf

 

sf

 

 

    

ord.

sf



   frull.

 

frull.

 

 sfff mf

sfz. sfz. 3         sf sfz. sfz.    3          sfz.(sim.)      3         sfz.(sim.)  3    sfz.(sim.) 





   

mf

sf



    ord.

sfff mf

sf



   

sfz. mf

 

frull.

sfz.(sim.)

bsn. 3



 

sf



ord.

5:4

  

cl. 3



sfff sf





  

 

frull.

 

 

6:4

p

mp

     3               

ord.

ord.

mp

mf

frull.

 

mf

mf fl. 2

 

 

divisi/arco normal

     sempre sff      

sempre sff

  

 

arco normal

 

  f



f

                                          Bartòk pizz.            

sempre sffz.

Bartòk pizz.

sempre sffz.

   

 

   

    


28

129 

fl. SOLO

         5:4

   

5:4

3      5:4          3                      

sfz.

sfz. sfz. sfz. sfmf

sfz.mf

   3                          sfffz.  sempre sfz.  3

3

  

    

 

  

3             3

 

fl. 2

fl. 3

fl. 1

ob. 1

ob. 2

sempre mf, molto tenuto

 

frull.

3        

 

 

sfffmf

sfffmf

sempre sfz.

sfz.(sim.)



  

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

 

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

senza sord.

tmb. 1

tmb. 2

senza sord.

tmb. 3

senza sord.

frull.

ob. 3

bsn. 3

hr. 1

sf

  5:4         

        

 

 3  

perc. 2

perc. 3

pno.

 

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

 

 

 



 



sfmp     

     

sub.mp

     

sfmp

 

   

 

 

   sffz.

     sfmp

 

sfmp

5:4    

ff

div.1,2,3,4, + 5,6,7   

ff

ff

div.1,2,3, + 4,5,6     ff  div.1,2,3, + 4,5  

    3

   



            

  

arco

       sff        sff

   

  

div.1,2,3, + 4,5   

ff

     sff     sff     sff

sff



Div.

sff



Div.

arco     tutti

     

    sff

div. 1,2,3    ff  div. 1,2,3   ff 

    sff 3    sff 3

    sff 3

   sff 3

mp

  tutti

mp tutti



mp

sff

sf.(sim.)

 

 

tutti  sf

 

 

 

sf

 

 

  

  

  

 

sfmp

f   f

  



f   f

    

   

 f

f

 

sfmp



f

  





f

   

Div.

sf

 

Div.

sf

 

sf

 

5:4



  

  

sfz.(sim.)



   

sf

frull.

 f

 

sfmp

tutti

sf

   

  



  

ff

  

f

sf

 



3

sf

sff

  

   

         

  

  tutti      

   

sfz.(sim.)

 

6:4

f

 

 

  tutti     

    sff     sff

 

sf

sfz.(sim.)

sfz.(sim.)

  

frull.

sfz.(sim.)

 5:4          

  

sf frull.

sfz.(sim.)

 5:4        

  5:4         sfz.(sim.) 3       

   



mp tutti

        

ff

ff

mp

      

 div. 1,2,3,4     ff  div. 1,2,3,4    

             div.1,2,3, + 4,5,6

6:4

 tutti 

       

ff

 

 5:4            

p

 div. 1,2,3,4    ff  div. 1,2,3,4   

div.1,2,3,4, + 5,6,7    

mp

sfmp

      sempre sff              sempre sff  tutti            

 

 5:4

sfmp

   

  

sf.(sim.)

 

sfz.(sim.)

 

sfz.(sim.)

sffz.

db. II

 

cel.

vl. Ia

 

frull.

sfz.(sim.)

         sfz.(sim.)

  5:4          sfz.(sim.)

perc. 1

frull.

 5:4         

  5:4        

sfz.(sim.)

sfz.(sim.)

 

3       

sf

sfz.(sim.)

tuba



 5:4       3          

sempre ff

sf

ord.

sf

 

sfffz.

 

  3  3               

   

 

f

    

tutti/sulponti

sf

tutti/sulponti

sf

sf

     sf

 


29

133   fl. SOLO

  

  

sf sf

fl. 1

sfffz.   

ord.



sf

      

3

    

  

sfffz.

ord. 

   frull. 

 

    





sfffz. sf

mp

     

sfffmf

sfffz.



sfmp

  

6:4  frull.    frull.    ord.                            5:4

 sub.mp

sfz.

sfz.

mf



3

  frull.     

sfz. mf sfffz. sf

mf

 

ord.

mf

  



frull.ord.



sf

sfz. mf

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 2

cl. 3

cl. 1

bsn. 1

bsn. 2

bsn. 3

hr. 1

3   

   



      

sfz.

   

sempre sfz.

     sf

3 3       

 

 

  





  3   3  

 

f

5:4         

mf

f

mf

mf

mf

 

mf

 



mf

 

f



mf

      6:4     



  f

5:4    

f







sfffz. mf

   

  



 

5:4

     

sfz. f

sfz. sfz.

  3 3                          

3

sf

sff

  



   



  

sfz.(sim.)

sfz. mf



sfz. mf sfz. mf       



 3 

sfz.

mf



   

  



 

 3 

    



 

sfz. mf

    



sfz. mf

      sfz. mf



5:4

  

sfz.mf sfz. mf



f

(con sord.)



   

3 3       

 

p

mf sfz. mf

mf

5:4     



sf

  

  frull.    ord.

 mf

mf



 

mf

ff trp. 1

sfz. mf

mf



 

 3  frull.   

ff hr. 3

     3 3               

frull.

ff

hn. 2

5:4

frull.  



3

 

   

sempre sfz. trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

 

 

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

      6:4    

  

 5:4            

  

   

       

 

 

        

          sfz. (sim.)

sfz. (sim.)

 5:4        sfz. (sim.) 5:4           sfz. (sim.)

 

sfz.

  



sf

 

vc. II



db. I

  tutti  

db. II

  tutti   

sfmp

sfmp

 

             sempre sfz.                          sempre sfz.                

sfz.

sf

 

sempre sf

   







 

    

mf

mf

  

 

p

 

mf

sulponti

sulponti

 

     

 

 

        f

         Div.   

f

sff

      Div.

sff

 

sulponti/trem.

 f

  

sulponti/trem.

f

p

   



p

     

 

sfmp

  

     

mf

sfmp

sfmp

 

p



   



 

 

  

sfmp

    

p

3 



  

sfz. (sim.)



      



p

 



f

    

 

   

vc. I

 

p

        

sempre sfz.

5:4

 

  cel.

(con sord.)

  pno.

sempre sfz.

  

f

perc. 3

      6:4    

(con sord.)

  

sulponti/trem.

p

 

3





    

 

   

sfmp

sfmp

    p

 



p

 tutti 

sfmp

 



3

tutti

sfmp

f

  

sulponti/trem.

   

sulpont.

mf





 



mf

 







sfmp

mf

 ff

 ff

             6:4

3

p

       mf

 f

p

sulpont.

 p



 Div.  

sfmp

 Div.  sfmp





      3    f

sulpont.



f

       5:4

p

 

   

3 sulpont.

p

f

f

  tutti  

sfff

 tutti   sfff

arco normal

   

3

 

 

f arco normal

 

f

arco normal



 

 

sfff

arco normal

  

sfff

 

 Div.  sf

 Div.    sf


30

137  3

fl. SOLO



 3  

sub. mp

  

sempre sfz.

fl. 1



     

ob. 1

 

ob. 2

 

ob. 3

cl. 2

cl. 3

bsn. 2

hn. 2

hr. 3

 



        

         

 

sub. sfz.

     

  mp     

 

frull.

frull.

   3           sfz. (sim.)     ord.       sf sfz. sfz.     ord.   sf

 3       

3

 

sempre sfz.

   sf

 

sf

   3         sfz. (sim.)    frull.   ord.    sfz. sfz. sf   frull.  ord.   

sf

sfz.

sfz.

sf

  





   

sfz.

   

3

sfz.

 

 

frull.

 

mp

 

frull.

 

mp

 

frull.

 

 

 

3

 

 

 

f

 

 

f

 

mp







 

trp. 2

 

trp. 3

 

tmb. 1

tmb. 2

tmb. 3

  

perc. 1

perc. 2

perc. 3

  

 

cel.

vl. Ia

vl. Ib

                   5:4



mp

  

sfz.

  

    3

sfz.



 

 

   

vla. I

vla. II

vc. I

vc. II

db. I

db. II

 

         

sfz. (sim.)

sfz. (sim.)

     

  3 3 3 5:4                    

   3        

p

5:4         

p

5:4 3                   5:4 3 3 3                    

p

sub.sffz.

  3

 

div.1,2,3,4

div.1,2,3,4

    

    

  

   

sfmp





f

  

divisi 1,2,3,4

f

sfmp

tutti

f

sf tutti

f

   

sf

      

   

div.1,2,3,4

 

mf

  

 3    

sfz.

sfz.

mf

 

    

  

  

  

sfz.

    

sempre sfz.

 3        

            

  

p

 

p

p

ff sub. p

ff

sub. p

ff

sub. p

 ff

 

ff

           

  

ff

p

div.1,2,3,4,5

ff

  

div.1,2,3

sfmp

  

div.1,2,3

 div. 

 

sfmp

 div.    sfmp

p

sub. p

 

tutti

 

tutti

   

    

3

      

div.1,2,3,4,5

ff

  

ff

ff

       

p

   

 

sfmp

mf

 

ff

 

ff

ff

  

divisi 1,2,3,4

        

ff



sub.sffz.

   

     mp

mp



3       

      

sffz. sffz.

sffz.

div.1,2,3,4

mf

 

 

  

ff

5:4

  

sfmp

     

    

  

 

ff

   

mp

vl. IIb

 

sfmp

sfz. (sim.)

ff

sfz. sfz.

 

sffz.

 

   

sff

   

sfz.

mp

vl. IIa

  

sfmp

  pno.

 

f

trp. 1

tuba

3 3 3  3    3 3            3                            



3       sfz.  3    

sfz.

 

bsn. 1

hr. 1

      sempre sfz.      sempre sfz.        sempre sfz. 

3                sempre sfz. 3       sfz.  3          sfz.

cl. 1

bsn. 3

  

mp fl. 3



 3 



 3  

mp fl. 2

 3  

 3  3                3      5:4              

 

 

sf

tutti

tutti

 

p

sf

p

sf

p

   

sf

p


31

140 

 

fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

mf

3 3 5:4              

mp



mp

3 5:4           



cl. 3

3 5:4 3  3                   5:4                   



mf

  mf

5:4         

mf







   5:4    

  5:4    

sempre sfz.

5:4         3  

mf

  3   3     

sempre sfz.

mf

  3    5:4     

sempre sfz.

bsn. 2

hr. 1



hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

 

perc. 1

perc. 2

perc. 3

pno.

 

 

vl. Ib

vl. IIa

vl. IIb

 

5:4

sfz.(sim.)

5:4

 

 





 

  

 

3

sfz.(sim.)

 

sfz.(sim.)

  

5:4

   

   

        sfz.(sim.) 3       3

sfz.(sim.)

   

5:4

   

   

 

   

mp



mp

mp

    

mp

only 1,2,3,4 !

only 1,2,3,4 !

only 1,2,3,4 !

p

 p

p

p

mf

 

 

 

 

6:4

6:4



3

5:4

           

      

mf

 

 



 



      



mf

mf

mf



 div.1,2,3  

 

sfmf

 div.  sfmf

 div.    sfmf

   

mf

ff

ff

ff

ff

         sfz.(sim.)       

6:4

6:4

      3

 

  

sfz.

 

 

sfz.

f

gliss.



 

sfmp



sfmp tutti

 sfmp

p

f

p

f

  



p

f



tutti

tutti

div.1,2,3,4      

 

 sfmp

div.1,2,3,4



tutti

p

   f

gliss.

       

   sfz.    

p

div.1,2,3,4  

  

mf

mf

 div.1,2,3  sfmf

gliss.

  

 

f

  

 



div.1,2,3,4

 

vc. II

mf

  

gliss.

  

vla. II

   

div.1,2,3,4,5

mf

vla. I

mf

div.1,2,3,4,5

mf only 1,2,3,4 !

vc. I



sfz.(sim.)

 

3

5:4

sfz.(sim.)

 

3

        

db. II

 

sfz.(sim.)

db. I

 

3

cel.

vl. Ia

  

 3  

mf

tuba





tutti

tutti

tutti

tutti

 

p

sfmp

f

sfmp

f

sfmp

f

sfmp

f

     

5:4 5:4 3                     

mf







5:4

bsn. 1

      5:4          



3 3              

mf

5:4 3 3                               

bsn. 3





 3     3   3               5:4                 

3 5:4  3                

5:4 3            

mp



sempre sfz. molto secco

5:4     

   5:4   

3 3         

sempre sfz.

5:4        3  



 3  

sempre sfz.

sempre sfz.



3 3                

5:4    3           

mf

mp cl. 2

          3

3

sempre sfz.

3   3         

3    

             3

3 3 3 5:4 3 3                            

 5:4       

3      



3

   5:4       3    5:4          

    3   

    5:4        3   

5:4    3             3   

sempre sfz.

mf

mp



sempre sfz.

3   3   3      5:4 5:4                               

3    

mp cl. 1

 3      5:4                   








32

142               

fl. SOLO

fl. 1

(sempre sfz. molto secco)

  

sempre sfz. molto secco

3

  5:4       



     5:4       

3 3 3  3            5:4            5:4   5:4                                

sempre sfz. molto secco

3        

 6:4    

p

p

ff

 



ob. 3

 

ff



cl. 1



mp

 

cl. 2

 

cl. 3



ff

mp

 

bsn. 1





ff

 ff mp  

         

 

5:4         

 

 

sf

       sfz. sfz. sf ff

sf

ff

p







ff

ff

p

           sempre sfz.



sfz. (sim.)



p

            

sfz. sfz.

ff

p



p

ff

 3        sf (sim.)



sempre sfz.

  

 mp  

ff



ff





 6:4             

mp

sempre sfz.

bsn. 3



p

mp



sempre sfz.

bsn. 2





 

ff

p

 





p ob. 2

 

p

sempre sfz. molto secco

 

ff

   

ff

     3   

sempre sfz. molto secco



sempre sfz. molto secco



sempre sfz. molto secco



 

ob. 1

3  3   5:4                                 

sempre sfz. molto secco

sempre sfz. molto secco

 

fl. 3

 6:4     

 

fl. 2

3 5:4           3    3                              5:4

3

5:4

3

ff





p

ff



 



 



trp. 1

 



trp. 2

 



trp. 3

 



 



 



 



  



hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

tuba

  

perc. 1

perc. 2  

perc. 3

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

 

mf

sfz.

 

 

   mf

 

sf

                         

 



f



sfmp

f





sfmp

   

  

   

  

div.1,2,3,4,5

mf

div.1,2,3,4,5



   

mp

  

 

div.

mp

  

 

div.

mp

 

 

3

      5:4

   

3

   p

  p

   p

 



 

sfmp

 

sfmp



 



   

 

sfmp

div.1,2,3,4

f tutti/sulponti

sfmp

   

div.1,2,3,4

sfmp

  

p

sfmp

    

 



f

 

f

 



f

sfmp



p

f

p

 

mp



p

p

  

  

   

  

   

 

 

 arco normal 

 

 

 

 

 arco normal 

sfmf

 

 

 arco normal 

sfmp

sfmp

  

ff

           sff

fff

  





   

 

 

f

  f

fff

   

 

    



fff

   



fff

   



fff

   



fff

mp

   

p

 

mp

sfmp

p

f

sub. p

sub.mp

mp

 

  6:4     6:4     6:4      6:4                          



sfmp

ff



 arco normal 

  

ff

sub. p

p

sfmp

sub. p

 

f

ff

 

f

sfmp

tutti/sulponti

sfmp

tutti/sulponti

 

sfmp

tutti/sulponti

  

f

 

f

 

sfmp

f

 

mp

   





sfmp



 

 



 

f

sf

fff

sfmp

f

db. II

sfmp

f db. I

     



f

vc. II



  

    

           6:4   6:4   trem.                   sempre sfz. sempre sfz.

 

 

sempre sfz.

mf

vc. I

  



fff

 

fff

 



 



 



 



sfmf

sfmf

sfmf


H

33

e = 50

145 fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

   







   







   







  







  







  







  







  







  







  







  







   







    







   







   







   







   







  







  







  







  







  







    











       sfz.

perc. 2

perc. 3

   

  



3

2 Bongos 

          

 

(trem.)

trem.

sfmf

mf

    

2 Congas

trem.

cel.

vl. Ia

  

sempre f

      

sf

sf

sf sf



mf

trem.

    



 

   







                       

              

vla. II

  

     

          

           

       

sfz. (sim.)

   3      sfz.

      sffz.

sfz.



3

Bartòk pizz.

3      

Bartòk pizz.



    

         sfz. (sim.)

ff

 

 ff

    ff

    ff

 

     Bartòk pizz. 

Bartòk pizz. sffz. mp 3

mp

  

sfmp

3      

sffz.

   

3

  

3      

sfz.

sfz. (sim.)

3

  

  

sfmp

 

 

  

3

sfz. (sim.)

   

 

sffz.

3

sffz.

p

   

sffz.

sfz. (sim.)

3            Bartòk pizz.                                       sfz.  (sim.)        sempre mf  5:4 5:4 3 sffz. 3                                                       sfz. (sim.) sfz. (sim.) sfmf 3 3                sffz. sffz.

sfz. (sim.)

     

ff

   

3

3

    sffz. 

 Bartòk pizz.

ff

sfp

            Bartòk pizz.                                 sfz. (sim.) 5:4 sffz.             5:4                                             

  

 

trem.



sffz.

mp

mp

      sfz. 3          

sffz.

 

  

    sfz.

sfz.

sffz.

 

           

sffz.

 

f

f

sfp







   

  

 

 3 

vla. I

db. II

sfp

 

p

  

  

db. I

 





  

3

vl. IIb

vc. II

   

3

p

p



  

vc. I



trem.

 3    



                3 sfz. (sim.)          sfz. (sim.)         

vl. IIa





sempre mf

vl. Ib

sf

   3   



     pno.



   

3

       sffz.  3

Bartòk pizz.



3

3      sffz. 

      sffz.  3

      sffz.  3

sfmf

 

  



  



arco

arco

sfmp

sfmp

 

 

3

 

sffz.

   ff

  



ff

  



sfmp

  

sfmp    

3

3      

sffz.

sffz.


34

149

 









  









 









  









 









     

















 









 

   

















 









 









  









 









 









 









 









 









































fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

 f

f

cl. 2

cl. 3

bsn. 1

f

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

 

  

frull.   

(senza sord.)

sfmp

tmb. 2

 

(senza sord.)

frull.  

 

  

 

sfmp tmb. 3

 

(senza sord.) frull.

sfmp tuba

perc. 1

perc. 2

perc. 3

pno.

cel.

vl. Ia

  

 

   f 

(senza sord.)

sfmp

              

               mf mf  

3

5:4

      

sfmp

f

 

mf

mf

sfmp

  

sfmp

sfz.

f

f

                    mf      mf   sfmp



vl. IIa

   

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

db. II

 

                                                           sempre mf

   

  

 

  

  

ff

ff

sfmp

3       3      

sffz.

sffz.

ff

   

sfmp

   

sfmp

      3

3      

sffz.

sffz.







 



sfmp

                                                            

sempre mf



arco



sfmp

3   

3      

  

  

  

  

ff

ff

sffz.

sfmp

sfmp

 

     3

     sffz. 

  

3

sffz.



sfz.

sfz.

   

sffz.

  

   

  

   

      ff

3

3    

sffz.

sffz.

3     3     

 

              

sfmp

sfmp

sffz.

sf

              



 

  



 

  

3       sffz.

3      sffz.

ff

sfmp

sfmp

 

     

  

        

sfmp



  

     

  

3       sffz. 3    

sf

         sffz.

  

3       sffz.

3        sffz.

3

sempre sffz.

sffz.

  

         3

 

 

ff

ff

   

       

3 Bartòk pizz.

sempre sffz.

      sempre sffz.



  



  

      sempre sffz.

3 Bartòk pizz.

      sempre sffz. 3       

       

3       

 

 

3           sempre sffz.

sfmp

3

3        sempre sffz.

3    

ff

      3

3      

 

 

  



sfmp



arco

ff

sfmp



  

3 Bartòk pizz.

3 3           sempre sffz.



3 Bartòk pizz.

     3    3    3 3                     

ff

  

 3 3 3 3       3                      

sfz. sfz.

mf





sffz.

3

ff

3

sffz.

sffz.

sffz.

sfmp



arco

sffz.

 

sfz.





3     

  

sfz.

sf



3

3       sffz. 

mf



     sffz.    3     

     sffz.   3       3

sfz.

mf



3

sffz.

ff



sfz.

sfp



             sffz.  sffz. arco                             Bartòk pizz.

sfp sfp

sfmp



3

Bartòk pizz.

 

sfmp sfz.

  5:4 3 5:4   3     6:4     6:4   3 5:4 6:4  5:4            3                                                                                                                                  sfz. sfz. mf sfmp sfz. mf sfz. sfz. mf sfz. sfz. mf mf mf mf mf    sfmf     mf     sfz.    mf             



                           

 

sfmp





arco

 

5:4





sempre mf

3        3                     sfz.(sim.) mp mf    



sempre mf

vl. Ib

f



   

frull.  

f

arco

sfmp

    arco    arco

sfmp

sfmp

 

ff

  ff

 

ff



 

ff


35

154

 









  









 









 









































 









 









 









 









 

























fl. SOLO

fl. 1

fl. 2

fl. 3

       6:4

ob. 1

ob. 2

mf

sfz.

mf

sfz.

6:4     

        6:4

ob. 3

 

sfz.

mf

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

 

 

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

senza sord.

vc. I

vc. II

db. I

db. II



3

 

sfmp

ff



sf

sfmp

ff

  





sfmp



sf

 ff

sfmp

 5:4  3    









             









sfz. simile

 













   

sfmp

sfmp

sfmp

ff

ff

3 frull.

                      sf                             

      sf                ff                                3

                  ff                           

6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4 6:4   6:4  6:4  6:4                                                                                                                                                                                                                                 mf   mf  mf    mf  mf   sfz. mf  mf  mf  mf   mf   mf   mf  mf  mf  mf   mf  mf  mf   mf          6:4

 

sfmp

                                                                     



ff

 

sempre mf, stresses always sfz!



 

sfmp

 

ff

 

ff

 



   

sfmp

  

2 timbales

 

ff

 

 

  

 

sf



   

 





sempre mf, stresses always sfz! sf

sf

sf

sf



sf

sf

sf

sf

6:4

6:4

sf

sf

6:4

sf

sf

6:4

6:4

sf

sf



6:4

6:4

sf

6:4

sf

sf sf

sf

sf sf













 









 



               arco                          sempre mf sfz.(sim.)      arco                sfmp sfz. sfz. sfz. sfz.     arco                               sfz.(sim.)          arco                     sfmp  

sfz.

sfz.

 

        

  

 









                                      

                                       

                                    

                                    

 

   



sfmf

  

sfmp

       

sfmp

 

sfmf

ff

sfmf

   

 

ff

arco

arco



 



   

sfmp



  ff

  

       

sfmp

 

 



 



sfmp

 











  

   ff

  

ff

  

    

ff

sfmp

   

                                                                           

ff

sfmp

ff

  ff

sfmp

                                                                         

ff

ff





 

 

   

 

 

 





6:4

6:4

sempre sf

 

sfmf vla. II



sfmp



   6:4         

 

 

sfmp

sfz. simile

sfz.(sim.)

vla. I

 

sfz. simile senza sord.

sfmp

mf

mp

perc. 3

 

  senza sord.

3  



sfmp





 

 perc. 2



mf

 

perc. 1

  sfmp

 

 

 

 

mf

 

 

 

 



  ff

 

sfmp

 

sfmp

sfmp

 

sfmp



  

  

  

  

     

ff

sfmp

ff

sfmp

ff

sfmp

   

sfmp

   ff

   ff

  ff

  ff

 


36

   

159







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







 







ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

  

3 frull.

  

sf

                                                sempre mf, stresses always sfz!

                                                   perc. 2         sempre sf   perc. 3   6:4

pno.

cel.

vl. Ia

      

db. II

mp



       

  

   

  

  

  

  

   

  

  

    sfmp  

  

sfmp

  

 

mp

   

  

   

 

sfz.

sfz.

    

 

 

 

f

f

 f

sfmp

sfmp



f

f

 

sfmp

f



 

sfmp

sf

3 frull.

  

  

mp

sfz.

f

                 

mp



3

sfz.

sfz. mp





 3    

 

sfz.

mp

sfz.

mf

3



 

     

sfz. mf



sfmp

    

ff

            sempre mf  sulponti 

   

sempre mf

      

    

mf

   

sfmp

sulponti

   

 

sfmp

      

sfmp

sfmp

f



 

f

f

 

f

  f

 3             mp

        sempre mp    

3         

  sfz.

  

mf

 

   

sfmp

f

sfmp

 



  

                    

  

 3   3                                sempre mp

 

mp

  

ff

sf

                                3     3                        

sfz. mf



     f

Bartòk pizz.

sfz.

    3

Bartòk pizz.

sfz.

3    

Bartòk pizz.

sfz.



 

sfz.(sim.)

sfz.

 

mf

 

sfmp (sulponti)

sfmp (sulponti)

 

sfmp

arco 

 

 

 

sfmp

 

arco

 

 

arco 

sfmp

f

f

f

f

      

 3             

 

arco

sfmp

     

  

sfmp

3     

Bartòk pizz.

sfmp

  

3



mp

   3                    mp sempre mp 3                     mp       

 

sfmp

  

    

   

sfmp

f



                           

f

 

p

 



      

                









 





 

 

f

sfmf

sf

 3   3             mp  

                                    sempre mf   

   



 

sfmp

db. I

  

      

mf

ff

 3        

sfmp

vc. II

  

  

mf

                                                                                        

 

   



sempre mf

 

f



                sempre mf 



p



 

vl. IIa

vc. I

6:4

6:4

6:4

 

  

vla. II

6:4

 

vla. I

6:4

 

vl. Ib

vl. IIb

     

  

fl. 3

hr. 1

   

6:4



fl. 2

bsn. 3



 

fl. SOLO

fl. 1

 3


37

   

163   

fl. SOLO

fl. 1

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 3

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

sf



 



3



 





f

sfmf

mf



 

            

 

6:4

sub. mp

f

sfz. sfz. sf





 mf

f





 









 









 







 









 









 









 





















 









 









 









 









 









 







 









   

 

 ff

 

mp

      5:4     6:4   3     5:4                    sempre mf, stresses always sfz!                        



          

  

sempre mf, stresses always sfz!

 



   

   

sfmp

ff

ff

                                                                                       

 3   3   3                 mp       mp sfz. sfz. sfz. mp     sfz. sfz. sfz.

sfz.

3  3  3  3      sfz.                           mf sfz.  mf sfz. mf sfz. mf  mf sfz.     3

sfz.





sfz.

sfz.

sfz.

sfz.

mp

                            3     3               mp sfz.      sfz.

sfz.

sfz.

ff

   

sempre mf, stresses always sfz!



 









        





  

 

 

sfmp

mf

sfmp

ff

sfmp

ff

sfmp

    

  mf

 



mf



  

 

   

 

   

    

sfmp





 

 

 



3

 

f

f

  f

  f

   

 

 





mf

 

mf

   

                                                                      sempre mf

                                                                            sempre mf 











  

  





                                               

            

 

        



Bartòk pizz.

        sfz.    

Bartòk pizz.

arco

    

sfz.

 

sfmp

arco

     

sfmp

arco

  

  

arco

sfmp

  f

 



 

  f  



 



f

sfmp

sfz.

Bartòk pizz.



sfz.

Bartòk pizz.

   

mf

  

 

mp



 

     sfmp   

f

f

   sfmf   sfmf

sfz. sfz.

 

sf

 

   

  sf

 

   

 

 

   

sf

  3   sfz.(sim.)

sfmp

f

f

sfmp

sfmp

f

  

 3    

sfz.(sim.)

 3  

sfz.(sim.)

  

sfp

 

f

sfp

f

sfp

f

 

 

sfp

                           3                           

f

      3     





 

 







sfmp

    

 













                   



 

  3

               3     3              

 

f

f

  

sfz. sfz. sf

 

sfz.

   

f



3

 

mp



 

 

 









  

mp



 

    

mp

sff

3

3



  







 



sfmp

db. II

   

 

sfmp

db. I

f



sfmp

vc. II

mf

 

perc. 1

perc. 2

  

fl. 2

bsn. 3



f

      sempre sfz.

       

 

                       

sempre sfz.

                                       sempre sfz.                       sempre sfz.    


38

168  

fl. SOLO

fl. 1

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

sff

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I







 







 









 









 













 





 



 



 

 

db. I

db. II

       

mf

  3     

mf

   sf



   

 



 

f

 



  3                   3                                 

sempre sfz.





                     

      

                        mf  mf  mf  mf 

6:4

mf

6:4

6:4

sf

sf

6:4

sf

        

mf

 

 

 

3

 

3

frull.

frull.

         

                                           



 

sempre mf, stresses always sfz!

  3                   

3



3

 





                sempre mf

                   sempre mf



                 

                    

  

(sulponti)

sfz.

 

               

  

 

   f sfmp  

 

f

f

f

sfmp

sfmp

 

f

sfmp

f

f

sfmp

 

 



 



f

  

sulponti

 

sulponti

 

sfp

   



   

sfmp

     

sfmp

sfmp

 



f

  

  f

mf

mf



mf

 

mf

  

 

  mf



  

mf

 

Bartòk pizz.



Bartòk pizz.



Bartòk pizz.

 

 

 Bartòk  pizz. 



     



 

   

   

       

sfz. (sim.) Bartòk pizz.

sfz. (sim.)

    

sfz. (sim.)

  

            sempre sfz.

 



   



   



  

  

arco

sfmp

  

 

           

      

sfz. (sim.)

     3         

                          

            sfz.                    mf                                  sfz. mf        

 

sempre mf, stresses always sfz!

sempre sfz.

mf

sfz. (sim.)

 Bartòk pizz. 

             

              

mf

sfz.

sfz. (sim.)

   



                                 sfz.

sfz. (sim.)

 

sempre mf, stresses always sfz!

               

 3  3    3   3                      

sempre sfz.



   

sempre mf, stresses always sfz!

           

 

 

  

mf

           

                      

                          

 



 

  

sempre sfz.

f

5:4

              

 



f

 

  f   f



 



 

f

sfmp

  

sfp

sfp

 



3

sulponti

sfmp (sulponti)

 

mf



sfp

5:4

                   

3

 

 

 

5:4

              

sulponti

5:4

                 

 

5:4

                   



            3 sfz.(sim.)        sfz. 

5:4

                   



   

3



       

3

mp



f

            mp

                             

3

mp

frull.

 

f

3

mp

                   

sempre sfz.

3

3

 

          

sempre sfz.

     

3

mp



    

3

mp

sempre mf, stresses always sfz!

       

3

        







sfmf

f



mp

sf

sf



 



mf

sf

mp

  



f







mf

3



3

mp



mf

3





 

3

  



3

                 f    3 mp 5:4                   mp f 3    3             3

 



 



 

sfmp





 

 



 

sfmp

 

 

 

 



f

 

    sfmp    

f

 

   

mf

mp

 

sfmp

vc. II

f



 

3

         6:4





 

vl. Ia

        

sub. mf





 

 3 

cel.

6:4



sempre mf, stresses always sfz!

pno.

     

3



                                      perc. 1         

perc. 3

     





   

sfmf



tuba

perc. 2

sfmf

 

bsn. 2

hr. 3



  



bsn. 1

hn. 2

sf sff

 



cl. 3

hr. 1



 

cl. 2

bsn. 3

(ff)

  

fl. 2



3     

   sfmp  arco    arco

sfmp arco

 

sfmp



  

  

 

  

f

 f

f

f


39

173

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

    

 6:4   5:4                       









 





 





sub.mf

  

fl. 2

3



fl. SOLO

fl. 1

 

 

sfmp

mf

sf sempre

 





 





 







 







 







 





 





   

sf



sf

sfmp

 

tmb. 2

mf

mf



mf

p

  tuba 

mf

p

mf

vl. Ia

   sfp

mf



sfp

mf

sfp sfz.

   5:4               

mf

 3 



sf

sfp

vl. IIb

                     

vla. II

              

vc. I

 

sfmp

vc. II

db. I

db. II

   sfmp    sfmp  



sfmp

sfp

sfp

        

sempre sfz.

  

   

f

   f

   f

sfmp

   sempre sfz.    

 

 

 

arco normal

 

sfmp

 

 

 

sfmp

sfmp

  

sfmp

3             

 

sfz.(sim.)

sf

 

sfz.(sim.)

 3  3            sfz.(sim.)    3       sfz.(sim.)



mf

 

mf

sf

f

sfmp

 

 f 

  sfmp 

 

f

f

  

sfmp

 sfmp

         

     

f

 

f

  

        

f

  f

 

mf

sfz. mf

 mf 

sfz.



3          

sffz. (sim.)

sffz. (sim.)

 

       5:4           3 3 sffz. (sim.) 3                 ord. 

sfz.

sfz.

 

sfz.

sfz.

  

ord.

ord.

3    3    

sffz. (sim.)

  

sfz.

 3    

   

sfz.(sim.)

  

sfz. sfz.

 

sfz. sfz.

sfz.

 3 

sfz.(sim.)

3   

sffz. (sim.)

sfz. sfz.

 3   

   

sf

  

sfp

 

sfp

sf

 

sffz. (sim.)

sf

sf

    

 

sfp

 

ff

  

sf

 

                sfp                                        5:4

5:4



mf

3

   

sfz. mf

sfz.

sfz.

  

  

 

   

sfmp



            sempre sfz.                

 

sempre sfz.

  

                   sempre sfz.                

 

sempre sfz.



sfmp

  

                                           

sfmp

 

 3 



           

sfmp

 3 

3                

sfz.

 

mf

sfz.

sfp





sf



f

frull.



 

 

sf



  





 

sfz.

frull.

sfz.(sim.)

     3    6:4 5:4 6:4                                              

 

5:4

sfmp

 

frull.

           3                       sfz.(sim.) sf      5:4    3   5:4                           sfz.(sim.) sf 5:4   5:4          3                  

 



sf   3  3                    

f

  

 



arco normal

mp

  

            sempre sfz.    

sfmf

3

sffz. (sim.)  3 5:4               sffz. (sim.)   3         

              sffz. (sim.)        5:4        

sfz.(sim.)

sf

3



   

        

mp

f

sfz.

                   

mf

 

 

sempre sfz.

  

 

   

                          

mf

  

sempre sfz.

mf

  

       5:4        

mf

        

    

sfp

   

3

                                          

sempre mf, stresses always sfz!

  

                          sfz. mf         sfz.

vla. I

           

sempre sfz.

sfz.

vl. IIa

mf

               



sfmp

 

 

              

sf

3

sfz.(sim.)

 3          

 

3             

5:4

                 

   

sfmp

 



 

3



 





 





    

sfz.

vl. Ib

sfz.(sim.)

3    

     

sffz. (sim.)

 

cel.

sfmp

 3  

5:4





  

pno.

 

 3  

sffz. (sim.)

                     perc. 1  sempre mf, stresses always sfz!           3                  

sfz.(sim.)

 3       



p

   perc. 3  

sfmp



p

 

sffz. (sim.)

sfz.(sim.)

3           



 

sf



 

sfmp

   

3       

 

   

sfmp

 

 

   

  



sfmp

 

tmb. 1

tmb. 3

  

 3 

sffz. (sim.)



  



        

sffz. (sim.)





 5:4       

sffz. (sim.)

 

 

6:4           



f

 f

      



 

 

 

 

ff

 

ff

ff

ff

 

 

  

         

     

  

     

   

sub. sulponti/trem.

sub. p

   

        sub. p  sub. sulpont.      trem. sub. p  sub. sulpont. sub. sulponti/trem.

 

   trem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      sempre sfz.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sempre sfz.

 

 

 

sempre sfz.

ff

 

  

 

 

sempre sfz.

 

  

 

 

sempre sfz.

ff

 

 

   

 

sempre sfz.

 

 

 

 

 

 

 

sub. p


40

 

177  

fl. SOLO

fl. 1



 

 

 

cl. 2

cl. 3

bsn. 1

bsn. 2

trp. 3

vc. I







  

f

f



 







 



 



 

   







 

 





 

 



      

  

sf

  

                               sf                                  sf                                                      

     sempre sfz.        

sempre sfz.

 

 

 

 

 

 

 

 

 

 

   

 

   

 

   

 

sf

   

     

  p

  p

  p

 

     

sfp

 

   

 

f

   

f

mp

   



   



sf

 

   sf





     sfp

  mf

   

 

    

 

sfp

sfp

sfp

mf

mf

 

mf

 

sfp

 sub. arco normal  sfp

 sub. arco normal 

sfp

 sub. arco normal  sfp Bartòk pizz.             

Bartòk pizz.

      sempre  sfz.   Bartòk pizz.       sempre sfz.   Bartòk pizz.      

 

Bartòk pizz.

       

Bartòk pizz.

sempre sfz.





 f

sfp

   

 f

sfp

   

 f

sfp



      

f

f

f

sfp



sfp



sfp

   

           f

              

   

   

   

   

   

   

   

          

          

  f

sfp

     

 

   

     

  

 

sfp

 

   

     

   

   

     

   

 

 

        sfz.   sfz.        sf

          

    

sfz. sfz. sfp

     

 

 

    

 sulponti/trem.  

f sfz. sfz. sf

   sulponti/trem.          f

sfz. sfz. sf

   sulponti/trem.          f sfz. sfz. sf

sfz. sfz. sfp

        f

  

sf

      f sfz. sfz. sfp          sfz. sfz. sfp f         

        

f

    sfz.       

    

 

 



f

 



  

sempre sfz.



sub. arco normal

    sfz.  

sfp

sfp

 

 

 



mf

mp

 

 

sfp

mf

sfp

 

sfp

mf

 

sf

sf

   

sfz. (sim.)

mf

sfp

sempre sfz.

f

con sord.



sempre sfz.

             

  



 

     

 

sf

 

sfp

 

 



 



sfp

   

f

 

p

     

sfz. (sim.)

sfp



   

 

 

  

sfp

 

f

  

              

   sulponti/trem.         

        f

sfz. sfz. sf

           

   



3   



sfz. (sim.)

  

 



sf



 

 

mp senza sord.

 

        sf        

sf

 

 

sfp

 

con sord.



mp

senza sord.



 

f

senza sord.



mp





 

 



sfz. (sim.)

 

     

sfz. (sim.)

 

 

con.sord.

 

con sord.

 

ff

 

3 Becken

 





 

mf



con sord.

sfp



 

 3 



 

bass clar.



sfz. (sim.) con.sord.

 



sfp



mp

 

     

    



 con.sord.

sf

mp



 

sfp

   

    

f

 

sfp

  

   

mf

   



 

   

f

mPh.



mf

  3

p

  

f

sfffz.

 

sempre sfz.

db. II



 

sempre sfz.

db. I



sempre sfz.

vc. II



sempre sfz.

vla. II



  

sf

vla. I

 

vl. IIb

 

  

vl. IIa

f

vl. Ib



f

vl. Ia





mf

  sf  sfffz.        sf  sfffz.     sf sfffz.     

sf

sfz.



f

cel.

sfz.

mf

mf



     

sfz.

sf

    mf   5:4     

   



3

 

f

pno.

 



tmb. 2

perc. 3

mf

 



sf

sfz.(sim.)

    

3



f

perc. 2

sf



sf



        

 

  

perc. 1



sfz.





  

tuba



sfz. sf

5:4      

 

tmb. 1

tmb. 3

sfz. sfz. mf

 

cl. 1

trp. 2



ob. 3

trp. 1

 

 

 

ob. 2

hr. 3

sf

  

            5:4



ob. 1

hn. 2

sf

 

 



fl. 3

hr. 1

 

6:4

  

fl. 2

bsn. 3

  

                      

        

     


41

181 fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1



  

 



   



     

 

  mp

vl. IIa

vl. IIb

vla. I

vc. II

db. I

  



mf

mp

3       



 

 

f



 

mp

frull.     3

   

mp

frull.

frull.  

3     

mp

mp

3

sfmp

 

(con sord.)

sfz. (sim.)

 

 

  

sfz.(sim.)

mp

         

 

  

  

f

    

mp

sfz.

mp

 



sfz.

sfz.

      

     





sfz.

 



sf









sf

 

 

  sf

sf

  



    

sf

   



 

sf



 

  sf





  

sub. sfz. (sim.)

sfp

                            

  

arco normal

sub. sfz. (sim.)

   

                                sfp sub. sfz. (sim.)          arco normal

       

   

      sempre sfz.       sempre sfz.       

    

 

sempre sfz.

sfp

 

 

 

   

    

                                            

f

   f

f

   

  

pizz. normal

mp

    mp  pizz. normal   

pizz. normal

pizz. normal



p





p

 

 

 

 

 



 

mp



  

  

mp

  

pizz. normal

mp

 

 

 

 

sfp



 f

sfp



 f





 

    

Bartòk pizz.

sfp

      sfz. (sim.)  Bartòk  pizz.      sfz. (sim.)  Bartòk    pizz.    sfz. (sim.) Bartòk    pizz.      sfz. (sim.)

mp



 

mf

mf

sfp

 

mf

pizz. normal

mf

p

  

f

p

Bartòk pizz.

    

sfz. (sim.)

Bartòk pizz.

f

     

 

   

f

 

pizz. normal

mp

 

pizz. normal

sfp

sfp

sfp

  

 









mp





 

   

 

 

mp

 

   

 

 

pizz. normal

pizz. normal

mp



sfz. sfz. p

 

    mf   

         mf

    mf     

mf

      

  

            mf

         mf



p

       

sf

 

 



         mf

 

 ff

 ff



 

 

 

 

 

 

 

sf

  f

 f

 f

  

 

 

mf

 

 

 











 

 

 

mf

 

 

 

 

 

 

 

 

 



mf











mf

mf

  

sfz.



 sfz.    

sfz.

 

   

 



mf

  

sf



sfp

  

 





ff

 

sff

    sfz.  

sf

sf

     

 sfp 

      sfp

  

    

ff

sfp

sfp

p

    sfp

 

  

sf

 

senza sord.



sfp

sfp

      p mf sfz. sfz.  

    

 pizz. normal  

      mf sfz. sfz. p  

 



      mf sfz. sfz. p  

 

mp



 

    sfp

 

mp

pizz. normal

   



  

 

p

sf

 

 



sfz.



 



  

p

   

p



       sub. sfz. (sim.) sfp arco normal                             

 

senza sord.



  

          

sfz.

 

  

p

p

senza sord.



  

      

 



  

sfz.

p

senza sord.



  

          

p

p



   

sfz.

sfz. sfz.

 

  

    



   

sfz.



arco normal

   

 



   



sfz.



sfz.



   5:4        

      





sfz.

   5:4    

sfz. sfz.

f

frull.

p

     5:4          

5:4

mp

sfz.

p

sfz.

sfz.

5:4                   sfz.  mp                mp sfz.             f             f            f

   5:4    

p

          

 

 

mp

         

   

       5:4        

5:4

mp





sfz.

    

 

sfz.          p

mp

 



p

f  5: 4                 

5:4

sfz.

 

 

              

sfz.

sfz.

p

sfz.

f

  

mp

sfz.

mp

5:4

                    

sf

 

  

5:4

                 

5:4          

5:4

         mp

sfz.



f

  

    

(con sord.)

5:4

frull.

             sfz.(sim.)      (con sord.)          sfz.(sim.)

        

sfz.

          

5:4

mp

sfz.(sim.)

5:4

3

          

(con sord.)

          sfz.(sim.)

sfmp

 3          mp

 3   3                  sfz. (sim.)              3                      sfz. (sim.) 3                 

sfz.(sim.)

 

sfmp

       

sfz.(sim.)

mp

 

mp

mp

mp

 3        

 



      f

mp

5:4          

               frull.

      

mp

mp

sfz.

 

f

mp

5:4          

mp

sfz.

mp

 5:4               mf          sfz.       5:4           mf          sfz. 4   5:                        sfz.

          

   

sfz.

3

 

sempre sfz.

db. II

 

mf

sempre sfz.

vc. I

 3 3     

sfz.

  

     

mp

         

sempre sfz.

vla. II



sf

  





3      

 

  

vl. Ib

sfz.(sim.)

mp

   3     tuba          

vl. Ia

3     3        sfz.(sim.) 3   3  3            



    

sfz.

  

mp

 

sfz. (sim.)

cel.

frull.

sfz.(sim.)

sfmp

sfmp

  



     

con sord.

pno.

 

 3  3       



      

mf

 

 

perc. 3

 

mp

 

perc. 2

mp

 frull.   

trp. 2

perc. 1

  

3

con sord.

tmb. 3

  frull. 

 

3





      

  

5:4



   

    

con sord.

tmb. 2

f

mf

 

tmb. 1

mf

              sfz.(sim.)    sfffz. 3                  

f

trp. 1

trp. 3



f hr. 3

f

hn. 2

 



   

 

sf

 

sf

 sf 

   f sf            

Bartòk pizz.

       sfz. (sim.)  Bartòk    pizz.       sfz. (sim.) Bartòk    pizz.       sfz. (sim.) Bartòk    pizz.        Bartòk pizz.

sfz. (sim.)

   

      

  

  

               sfz. (sim.)

Bartòk pizz.

sfz. (sim.)


42

Y1 e = 60

accel.

185

  

3            3                            

fl. SOLO

  

f

sempre mp

fl. 1

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3



perc. 2

perc. 3

vl. Ia

vl. Ib

vl. IIa

vl. IIb



 







 







 







 







 





 







 





 









 



 



  

    p

mf

3



mf



      



mf



 

3

 

   

  

sfmf



mp

Basskl.

  



p

 







 

 

    

    

















 3

sfp

 



     

mf

sfp



mf

 













 



















  

 

 

 

sfmp

p



 

sfmp

p

mp

 

  



  

mf



 

   





p

p

p

     p

     

        p     pizz. normal           

        

  

p

     

  

p

     

pizz. normal

p





  

molto Vibr.







3 Gongs

         mf mp  mp     3         3    5:4              mp

pizz. normal

pizz. normal

pizz. normal

pizz. normal

                            

                     

mp

sfmp

mp

sfmp

mp

sfmp

 molto Vibr.           





 molto Vibr.           

molto Vibr.        

sfmp

 

        

 

 

  

      

     

 

  

       

mp

mp

         

mp

p

 

p

p

p





      

         



  

     



 

p

p



      

  

mp



        

  

  

mf

arco/sulpont.

p

arco/sulpont.



  

p

 

    mp

   

mp

     mp

    

    mp     mp

     

 

mp

    mp      mp     mp

  

       

mp

 p

          p

mp

      

   

          p          p



p





p

p

                    

  

sfp

sfp

arco/sulpont.

mf

mp

  



3

arco/sulpont.

mf



  p

  

3

  



sfp

  

 

 



sfp

sfp



f

   

 

 

 

sfz. p





 

           mp                  mp                     

p



mf

  

 



 

      



 

sfz.

   



      

  

 



  

 

        

f



mp

 



p

p

mf



 

 



          

p

 



  

p

 

mf



   

 

 

                  

       



       

mp

                 sempre  mp               



      









 



sempre mp

mf



                  

 

sfp

mp

 





sfmp

sfmp

mp

  

mf



 

sfmp

             

 p

sfp

              mp sfmp               sfmp mp                sfmp

p sfmp

sfmp

3





 

  



sfp





sfmp



mf

mPh.





mf

mf



           5:4



    

bisb.

bisb.

 

mf







gliss.



 

mf

p





  

 



mf



pizz. normal

db. II



mp

sfz. f

mf



    



pizz. normal

db. I

  

mf mp

 

p

 mf







mf

sfp



mp

 

p

vc. II

sfp

  





p

   

3



  

 



sfz.

mf

mp

sfmf

p

vc. I

mp

sfmf

mf



pizz. normal

vla. II

     

 

sfmp



5:4



 

pizz. normal

vla. I



  cel.



sfmp

3

mf

 

sfmp

3       



   pno.



mp

3    5:4  5:4 3                                                                                        6:4

3                         

sfmp

sfmp

  

 

  tuba  

perc. 1

mp



 

fl. 2

bsn. 3

sempre mp

   6:4

  

 

sfp

   



  

sfp

            mf









            mf



            mf

            mf             mf

            mf


43

Y2 e = 72

192 fl. SOLO

    

              

    

  

f

sub. mf

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2



 



 



 

 



 



 



 



 



tmb. 1



 f



  





 





 





 

con sord.

con sord.

  

  

sfmp

  

  

  

   

sfp



f



sfmp



sfmp

   



sfmp

  

f

f

f

vla. I

vla. II













vc. I

p

sfz.

 

 

 

     

 

3

 

p

db. I

mp

f

 

 

mf

  

 

 

       p       

         p

        

mf

mf

        

sfz. (sim.)

   

 3          

  3             sfz. (sim.)













  mf

 



 

  

   

                         

arco/sulpont.

f

   

arco/sulpont.

               

   

arco

3

 arco        sf sf 

3            sf 3

sf

3

 

sempre sf

3

3 3         sf  sf 

             sempre sf  3 3               3

3

arco

 

 

mp

sfz.

3 3               sempre sf 3    3        

sempre sf

3 3             

sempre sf

3           3

sempre sf

  

  

   

f

 

 

mf

 

                                    

p













  



f

               

       

      3      3

     3

3     3           3

  

          

  f

      3

       3

     3

3

           3

3

     

     







  f



        

        

               

  

mf

  



  

     



mf

   



sfz.

 

f

   f

  

  

sfmp

sfmp

f

sfmp



sfz.-------

mp

sfmp

sfmp

 

arco/sulpont.

    

3         sfz.

  

   

f

  

mf

molto Vibr.

  



mf

  

   

        



f

 

sempre sfz.

sfmp

 

           sempre sfz.                      

sfmp

 

mf



f

molto Vibr.     

 

sfz.

  

sfmp

molto Vibr.   

 

 



mf

f

 

 

sfmp

f 3

mp

molto Vibr.

  

     

3

3            sf sf 3 3 arco           sf  sf

arco

sfz.

       

 

 

3

p

arco

3

 

 

p arco/sulpont.

        sf  sf  3

   

mf

sfz. mp

p



 

sfz.

 

 

       

    



 5:4           





   

 

f

mp





p

db. II

 

 

 

3

mf

  

p vc. II

 

mp

 

3

sfz.

mf

mp

   

   

 



mf

   

p



 



          mf            mf            mf 



f





    





             



mf



sfz. (sim.)



 





mp

           

3



p



f

 

         



mp

   



      



f

mf





mf



mp

 



 

   

mf

vl. IIb



f

f

 

mf



mp

5:4 5:4      5:4   3                   

  

  

  

5 Becken

 







mf

vl. IIa

    



f

  



f



f





mp

mf



 

   

     



  



f



mf



      sfz.

sfz.

     



f



f

mp

    

5:4

sfp

 

sfz.



6:4 3                                        mf



  

3



3



 

vl. Ib



con sord.

mp

    

      



f

f

mp

3

 

   

     

 3   





f

mp

sf

sfz.

 

mp

        

mp

 









f

    

sub. mp



   

mp





sf

vl. Ia

mp



mp



mf

cel.

   

 

mf

pno.

f

  

mp



mf

perc. 3

f

mp

mf

    



f

   



  



6:4 5:4     5:4  6:4                                                        



  tuba  

perc. 2

f



6:4 5:4 5:4  6:4                                                                sub. f mp f sub. mp

mf

perc. 1

mf



 



mf

tmb. 3



 

mf

tmb. 2





mp

mp f

sfp trp. 3

  

sfmp

   

  





3

sfmp

 



mp

                                                           

 

     

           

  

  

     

3     3    3      3     3     

    3


3  6:4 3 3    3                                                                                            

198 fl. SOLO

fl. 1

44

q = 40

accel.

  

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

   

f

mp

   

    



 



mp

    

     

  



  



 



 

mp

gliss.



 

 

   

sf

   

mf

(ord.)

 3

cl. 3





bsn. 1





    sf  

bsn. 2





 





 







 



hr. 1

 



mp



f

sub. sfz.(sim.)

   

mp

f



mp

f

sub. sfz.(sim.)

  

(ord.)

     sfz.

   sf  (ord.)  

sfz.

   

frull.

sf

sf



hr. 3





 







 





 

senza sord.





 

senza sord.

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

pno.

 



   

vl. Ia

 

vl. Ib



     

 

sfz. sfz.

sfz.

          mf          

vl. IIa

vl. IIb

vla. I

vla. II

vc. II

db. I

   

 

 3

 

mf



  

    sfp   



sfp

 



sfp

 



sfp

  

sfp

 

 

              sempre sf                sempre sf                    

   

 

 

  



                                                                                                                          

 

 

 

f

 f



f Bartòk pizz.

Bartòk pizz.

Bartòk pizz.

Bartòk pizz.

Bartòk pizz.



  

   

sfz.



p div. 1,2,3,4



arco normal



p

  

div. 1,2,3,4

arco normal

arco normal

p

         sfz.   





sfz.

 

sfz.

      sfz.       sfz.

        sfz. 

sfz.

sfz.

   

div. 1,2,3,4

p

  

 

   f

f

div. 1,2,3,4,5

div. 1,2,3,4,5

p

 

    p

f

 

p



f



p

f

  



f

  

arco/sulpont.

sfp

 

mf

mf

arco/sulpont.  



sfp

mf

sfp



arco/sulpont.

sfp

sfz.

sfp

  

sfp

sempre ff





sempre ff

   

        

p

sfz.

mf

f

sfz.

   mp 



6:4        6:4    

p

 

mf sempre ff

  

f

  

 

   sfffz.    

f

f

  



   7:8     7:8     

 

arco normal

 

3

sfp

            

     sfz.     sfz.     sfz.     

div. 1,2,3,4

sfmf

3

 

sfz.

Bartòk pizz.

  



  

f

  



  

 

  





sfp



        5:4    

sfz.

 

  f

mp

            

stacc.

sfp

sfmf

f

 

  

sfmf

sfz.

sfz.

sfmf

sfp



  

   

 

f

 

mp

  

         sempre sf

sf





sfp

 

mf

 

                  sempre sf              

 

sfp



sempre sf

db. II

f, molto secco

 



sempre sf

vc. I

9:8

 



        mf           

                  

sf

f, molto secco

 

 

mf

     mf  

    

 

sfz.

3

9:8

sf

      

 

        

 cel.

        

                 

sf



sfz.

sf

    

    

  sf  

f, molto secco



tmb. 2

  

                  9:8

   sf

 

senza sord.

  



tmb. 1

  5:4    

sf

 3       



trp. 3



     

trp. 2

sub. sfz.(sim.)

  3   



sub. sfz.(sim.)

hn. 2

trp. 1

 

 3  

sf

mf

sub. sfz.(sim.)

     mp  f   5:4        



 



sfz.

sf

3    

5:4   3           

  

gliss.

f

mp (ord.)

sub. sfz.(sim.)

   

 3



     3     

f

mp



bsn. 3

  

sfz.(sim.)

   

cl. 2

sfmp

mp

mf

mp

sfz.

sfz. mp

  

5:4  3              3   3   3                          



mp

5:4               3

  

mp

    

sempre f





arco/sulpont. 

mf


45

202  

fl. SOLO

fl. 1

  5:4                sempre sfz.

5:4         

3

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2



sempre sfz.

3 3            

sempre sfz.

5:4    3         

sempre sfz.

 5:4        sempre sfz.

3       

sempre sfz.

 3  

 

  5:4       

sub. sfz.(sim.)

clar in Si



  



5:4









3        

3     5:4                 

              3

3

      3   

5:4                



  

 

3     

 3       

5:4 

 3       

  5:4      

3         

 

 

5:4      

  







 

3 3        



 



 3     3   3            



5:4

3 3             

3  



   

     

5:4







   5:4 

3 3      

 3 





  5:4      

        

3

      

    3    

      3 

 3     3   3           

   3 

bsn. 3

hr. 1

f

 

p

 

p

hn. 2

f

  

hr. 3

f

 

p

  sf     sf

p

 

sf

f

f

 sf   sf

5:4 3           

  

 







 



trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

tmb. 1



   3   3                  5:4    3      5:4                           

sf

f

p



     5:4   

5:4

  

  5:4    

3 3 5:4 5:4                  

p



 3   3   

  5:4                       



5:4

sub. sfz.(sim.)

bsn. 2

  5:4   

3

3

 

bsn. 1

                          3

3

    

   5:4     3   

sub. sfz.(sim.)

 

cl. 3

5:4 3                 

3

  sfmp

tmb. 3

sfmp

 tuba   perc. 1

 

ff

 

vl. IIb

vla. I

vla. II

vc. I

vc. II

f

  

 

6:4          6:4     

     

6:4

6:4

  

tutti

 

tutti

 

 

  

 

  

 



sfp

 

ff



sfp

 



  

 

sfp

ff

     

ff

p

ff

p

ff

ff

db. I

  

db. II

  

ff

ff

ff

sempre ff

 arco normal     sff

 

5:4

 



fff



 

sfp

 

sfp

 

sfp

 

          sff          6:4 6:4 5:4 6:4   5:4                        

fff

 

 

sempre ff

 



 

sfp

ff

ff

ff

 ff

sff

div. 1,2,3

ff

 5:4    3     ff

sfz.

7:8

 

 arco normal  

sempre ff

sff

div. 1,2,3

ff

 

sfmp

3 6:4 7:8 7:8 6:4 7:8                3                                     

    

arco normal

sfz.

  

 

6:4 5:4              

    

 

mp

 

div. 1,2,3,4

ff

  

 

div. 1,2,3,4

sff

ff

sfmp

 arco normal

sfmp

 

 

ff



ff

sfz.

   



    

 

tutti



sfp

tutti

     6:4     3 

sempre ff



f

 



 

 

   

tutti



 6:4              

   

sfp

 

sfp

 

sfp



sfp



ff

ff

ff

ff

 

sf tutti



fff

sff



fff



vl. IIa

sfz.

 7:8 7:8    7:8     7:8       7:8                             

vl. Ib

 

pno.

vl. Ia

  

mp

sempre ff

cel.

ff

sfmp

  

 perc. 2    perc. 3

 



tmb. 2

mp



 

mp

sf

p

  

sfp

   sfp

 

sulpont.

sulpont.

ff

sfp

p

p

p

sfp

ff

sulpont.

sulpont.

ff

ff

 

  sfp

 

sfp


46

204  

fl. SOLO

  



 





 

 

 

 

cl. 1

 



cl. 2

 

 

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 3

  

bsn. 1

ff

sfp

  

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

  

ff

sfp

ff

   sfp

ff

sfp

ff

 

 

 



 











ff

trp. 2

tuba

perc. 1

 



 

 

sf

    

ff

  

sempre sfff



    

  

  

 

sempre ff

sfp

vl. Ib

vl. IIa

vl. IIb

vla. I

     

 

sfp

sfp

  

  

sfp

sf

sfp

 

 

 

sfp

        

  

 

sfp

 

 

 

sfp

sffz. (sim.)



vc. II

db. I

db. II

         

   



ff

ff

   5:4      6:4   

 

     5:4    

sff

        

  

sff

ff

  

    5:4     6:4

   

 ff

 



6:4

6:4

6:4

     sff

    5:4  

mf

mf

ff

 





mf

ff

ff



 



 



ff



ff

 

ff

  p



             3      frull.                                         



sempre sffz.

  trem.     sfz.



p





       sffz.

fff



sff



















fff



 

    f





f

 f



f

f

 f arco normal

ff

ff arco normal

ff

   p

 

 



  

   

  

   

p

arco normal

ff

  

p

ff

ff

ff

ff



     p

arco normal

ff



mf



p

    3    

 

p

 

   5:4     

ff

ff



frull.    

sffz. sff

 

  3     

6:4 3 6:4                                           5:4    

                    

frull.

fff

    

sempre ff

ff

7:8 7:8    7:8       7:8                      

5:4

 

 

 

   



sffz. sff

fff

   

ff

sffz. sff



ff

vc. I



sfmp

ff

vla. II

ff

 

ff

sfp



sempre ff

   

vl. Ia

 

sempre ff

 

sfp

6:4 6:4             



   

  

 

 

sfz. sfz.

sfp

cel.

 



sfp

pno.

3

sf

      

 

    perc. 2   perc. 3

sf

 

  sf

sf



ff

 

   

frull.



 

   



ff





tmb. 3



fff



fff

 

tmb. 2

  

5:4



 

ff

     



fff

  3           



     6:4        



fff

sf

fff

3           

 

tmb. 1

 3      

ff

sfp

 

     fff            fff   5:4       

trp. 1

trp. 3

fff

ff

 

 sfp  

  3       

ff

sfp

  



sfp

sfp

sfp

sf

fff

ff

 

ff

  

  

sfp

sfp

    sf



 

   

sf

5:4             3

     sfp

fff

sfp

fff

sfp

fff

   

sfp

fff










47

P

207 fl. SOLO

fl. 1

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

 

   

 

  

 

  

 

  

 

  

 

  

 

  



  



  



   



   



    



    



   



   











   



   



    











   



   



   







     

              

    

              

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

db. II

q = 40

  

                                         

p

p

p

ff



 



 



  





ff

ff

p

ff

  

ff

   ff

  

       sfff p  div.        sfff p div.         div.

  

ff

ff



ff







            ff

ff

  

sfff

  sfp 

tutti

  sfp 

tutti

 

 

      



p





p

 

   

 

   p



   



 



  





p

p

ff



f

 f

 



 

   

 

 

 sf

  sf

 

            sempre sffz.          

           

sempre sffz.

 

sf

  sf 



sempre sffz.

sf





ff

sf

 





sf

   

p

tutti

p

  

 ff

f

sfp

   



   

          sempre sffz.             sempre sffz.           sempre sffz.

 

          sempre sffz.

 p



sfp





p



ff



p

      sf  div.     sf   div.        sf    div.       sf  div.          div. sf      sf  div.      sf div.



sfp

 ff

sfp

ff

  p

 

p

  p

 

  

 

ff

   ff



                            sempre sffz.                    sempre sffz.                                               sempre sffz.                                    sempre sffz.                                    sempre sffz.                      sempre sffz.                                sempre sffz.

  

  sff      sff      sff 

 

 

tutti     p   tutti     p       p 



p

  

   sff

p

sff

ff   div. tutti tutti                sffz. p  p tutti        p   div. tutti tutti              p   sffz. p  tutti      p  

   sff  

p

       


48

214  

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

  

    

  

 

 

 

fl. SOLO

fl. 1

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

tuba

perc. 1

perc. 2

perc. 3

     

pno.

cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

      

     

 

 

p

  div.         f

vc. I

vc. II

f

p

 

f

  

p

f

sffz.

db. II

   

 div.         

sffz. p

   p

p

      

sffz.



     p div.

sffz.

 tutti        

div.

sffz. p

p



f

tutti

 f

   





sffz.



tutti

 tutti        p p

div.

sffz.

 

 tutti div.           sffz. p

p

sffz.



      f

div.

sffz.

 

f

  tutti    

 p

      mf

 tutti div.       p

sffz. p



ff

  div.        ff sf  div.      sf   ff div.         ff

     ff sf   div.        ff sf   div.       sf ff  div.          ff   

p

 

p

pp

sf

ff



 

ff

div.

pp

div.



pp

div.



 

div.

       mf

mf

sffz.

tutti

     

 tutti       

sffz. p

 sffz. div. tutti      p

 

sf

div.

sffz.

 tutti    

   

div.

sffz.

 

sf

f

f

  sf

f

p

 tutti div.       p

sffz.

 f  tutti            sffz. p tutti  div.                sffz.  p  div. div. tutti                f  div.   p

sffz.

p

 div.   

   

p

   

p



p

tutti





 tutti div.      p

   p

tutti

sffz.

f

f



f

tutti

sffz. p

db. I



 tutti      

div.

  

    sf      sf      sf

 f  div.   tutti   



p

div.

f

vla. II

 

p

sff

sffz.

p

p

  sff   tutti     div.   f

vla. I

   sff 

 

arco

div.

sf

     sff       sff     

              fff

fff

        fff

      fff  sff            fff sff               fff sff             sff  fff            sff  fff        sff  fff               sff

sff

fff

                   sempre sfz.             tutti               sempre sfz.                   tutti/sub. sulponti      

  

    

tutti

sfp

 

ff

f

 f

f

          div.

A.n.

  

pp

     div.



pp

div.

pp

tutti/sub. sulponti

   ff sfp ff  sf   tutti/sub.  sulponti   A.n.        ff sfp ff sf tutti/sub. sulponti        A.n.       ff sfp ff sf tutti/sub. sulponti   A.n.             sf sfp ff ff tutti/sub. sulponti  A.n.               ff sf sfp ff  tutti/sub. sulponti A.n.         sfp  ff sf ff tutti/sub. sulponti   A.n.            ff sfp sf ff



 

sulponti

  pp

 

sulponti

pp

sulponti



pp







 

 



 

sulponti

pp

sulponti

pp

sulponti

pp



sulponti

pp


49

220 

 

fl. 2

fl. 3

ob. 1

ob. 2

ob. 3

cl. 1

cl. 2

cl. 3

bsn. 1

bsn. 2

hr. 1



hn. 2

hr. 3

trp. 1

trp. 2

trp. 3

tmb. 1

tmb. 2

tmb. 3

 

 

 

fl. SOLO

fl. 1

bsn. 3

tuba

perc. 1

perc. 2

perc. 3

   

pno.

cel.

vl. Ia

        

    

ff

vl. Ib

vl. IIa

 

   ff

ff vl. IIb

vla. I

 



vc. I

vc. II

  

db. I

 

db. II

 



3      

sub. p

sub. p

 

sub. p



 

  p       

   

p

3

p

f

f

 f

 f

 f

mp

   

   

p

 







tutti/sub. sulponti

f



   

tutti/sub. sulponti

f

vla. II

  

tutti/sub. sulponti

    

   

      mp    mp

mp

       

     

   p

  

 arco normal 

sfp

arco normal   sfp

arco normal  

  

  

  3arco normal    



      



sfp

sfp

3

arco normal

mp

    

mp

mp



mp

sfp

 arco normal    sfp

 arco normal     

arco normal

sfp



arco normal

sfp

 

 

sempre sfz.

 

         3

div.

sffz.



sempre sfz.

  

  

      

    p

sfp

         mp

p

    

    

mp

 

3 arco normal            

       

 

 

 3     

 

 

sempre sfz.

 

sempre sfz.           

    sempre sfz. sf     3   3           sf

3 3                                sempre sfz. sf 3 3                                sempre sfz. sf              sempre sfz. sf                    

sempre sfz.

sempre sfz.

sf

 div.  tutti     

       div. sffz.  div.        sffz.

sffz. p

 tutti     div.

sffz. p

       sffz.

   div.  tutti      p

sffz.    tutti          

p

p

  div. tutti       sffz. p tutti      p   sffz. tutti div.      p 

p

 p

  div.  tutti     sffz.





p

p

p

sffz.

p

 f

f

 f

 tutti         p

div.

sffz.

f

sffz.



f

sffz.

sffz.



      

     

     

div.



f

div.





sffz.

 tutti       f

sffz.

       sffz.          sffz.      

 

  div.  tutti       f

div.    sffz. 

sffz. p

 f

 



f

 tutti     p

sffz.

div.

f

sffz.



f

p

 f

 f


50

226  

fl. SOLO

 



 

 



mp

   

  



  



       mp

       

sub. molto chèvroter

3

sfp

mf

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

 

 

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

tuba

  

perc. 1

 

fl. 1

bsn. 1

bsn. 2

bsn. 3

hr. 1

hn. 2

hr. 3

tmb. 1

tmb. 2

tmb. 3

  perc. 3

  

  

sfp

  

mf

mp p

mp

   



ppp

mf

  

p

 

mf

  

 

3

 

 

mf

ppp

mf



  

  

ppp

 



 

 

         

p

 

mf

mp

pno.

    mf   sfz. 



 

6:4

         

3

  cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

 

vc. I

  

 

 

   fff

       fff 

 

   

   

mp

vc. II

mp

db. I

mp

db. II

mp

sff

   fff 

  

      fff         fff     fff          fff

              fff  sff                    fff  sff                                               fff sff                           sff       fff                    sff   fff                         fff  sff                                       fff  sff

                               fff sff                             fff sff                                            fff 

        fff        fff            fff

  

f

vla. II

  

 

 

 

 



 

 



ppp

   

 

    

 

pizz.

 

pizz.

      

  

 



 

ppp

 

pizz.



 

  

ppp

ppp

 

ppp



    mp





    mp

 

p

 

ppp

mf

   p

  

mf



    mf

  

   mf







pizz.

   

pizz.

mp

   

pizz.

mp

   

   

pizz.

p

   p

   p

   mf

   mf

ppp

ppp

p

ppp



 ppp



p









 

ppp

 



6:4



ppp

   

3

ppp



mp

 



sfz.

    

  



   

mp

pizz.

 

ppp



sf

mp

p


51

232 

fl. SOLO





mf

flag.

  

 ord.  ord.  ord.            mf p

p

mf p

mf

p

6:4

   

6:4

    p

p



     

  

p

    

6:4

   

p

  

fl. 2

 

fl. 3

 

ob. 1

 

ob. 2

 

ob. 3

 

cl. 1

 

cl. 2

 

cl. 3

 

 

fl. 1

bsn. 1

bsn. 2

bsn. 3

6:4

   

p



p



      frull.

sff

 

 

    

frull.

      sff

frull.

 

 

 

trp. 1

 

trp. 2

 

trp. 3

 

 

 

 

tuba

  

perc. 1

 







 

 

   

  

 

 

tmb. 2

tmb. 3

   perc. 3

  

 

  cel.

vl. Ia

vl. Ib

vl. IIa

vl. IIb

vla. I

vla. II

vc. I

vc. II

db. I

db. II

        

     

p



p



 



p



ppp

 

ppp

 

p

 

                6:4         sfz. sfz.                         p   6:4      sf     



pno.

3     p

mf

p

mf



  

p

p

   





 



 



  



  



 3  33 pp

mf

ppp







 



 ppp

  

 





   

 

    

   p

   

p

mf

    mf    



mf

mf

 p





 

p

      p

mp





 p

 p

 

mf

mp

ppp









      sfz.         



  

 

ppp  



     

ppp

ppp

           

     mf       

       sf



ppp



ppp



ppp



ppp

 

sfz.

mf

p

p

 

   

ppp

          mp















 

ppp

mp

mf

   

p

          

p

ppp



mf

p

 

ppp

mf

  

p

 

 

          

mp

pp

   

  

mp

      mp pp





 

ppp

 

ppp

mp

mp

ppp

ppp

  



ppp

       p sfz.  Bartok   pizz.     sfz. p   Bartok pizz.     sfz. p  Bartok   pizz.    

ppp

Bartok pizz.

p sfz.

  

sfz.        

  

mp





mp

ppp

ppp

       pp mp    

     mp pp    

       sfz.

mp

     



     sfz.        

 

tmb. 1

 

hr. 3

 

hn. 2



hr. 1

sff

               

pizz. normal

p

            p pizz. normal            p     pizz. normal         p

pizz. normal


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.