BUILDING STRUCTURES (ARC 2522) PROJECT 2: EXTENSION OF A R.C. STRUCTURE
CHOSEN EXISTING R.C. BUILDING: Parcel L Lotus Bungalow House
Name: Edner Patrick Stephen Student ID: 0314623 Lecturer: Mr. Adib Mohd. Ramli
3D SKETCHUP MODEL OF PROPOSED EXTENSION
Back Pespective
Front Perspective
EXTENSION PROPOSAL
Ground Floor Plan (Not To Scale)
EXTENSION PROPOSAL
First Floor Plan (Not To Scale)
EXTENSION PROPOSAL
Ground Floor Structural Plan (Not To Scale)
EXTENSION PROPOSAL
First Floor Structural Plan (Not To Scale)
EXTENSION PROPOSAL
Second Floor Structural Plan (Not To Scale)
BEAM ANALYSIS CALCULATION Ground Floor Beam, 1/A-E 1) Carries self-weight – Dead load 2) Slab Dead Load & Live Load A-B/1-3 (one way slab) B-C/1-3 (two way slab) C-D/1-2 (two way slab) D-E/1-4 (two way slab) 3) Brick wall – Dead load
-Beam self-weight
= Beam size x concrete density = 0.3m x 0.3m x 24 kN/m = 2.16 kN/m
-Brick wall weight
= 3.7m x 0.15m x 19 kN/m =10.545 kN/m
-Dead load on slab A-B/1-3 (one way slab) Load is transferred to beam 1/A-E in a UDL form. Dead load from slab A-B/1-3 = Dead load on slab x (Lx /2) = 3.75 kN/m x (3.75m2/2) =3.75 kN/m -Dead load on slab B-C/1-3 (two way slab) Load is transferred to beam 1/A-E in a triangular form. Dead load from slab B-C/1-3 = Dead load on slab x (Lx /2) = 3 kN/m x (4m2/2) = 6 kN/m Convert to Triangular load to UDL by applying a factor of 2/3. Dead load from slab B-C/1-3 = (2/3) x 6 kN/m) = 4 kN/m -Dead load on slab C-D/1-2 (two way slab) Load is transferred to beam 1/A-E in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab B C-D/1-2
= Dead load on slab x (Lx/2)
= 3.6 kN/m2 x (3m /2) = 5.4 kN/m
-Dead load on slab D-E/1-4 (two way slab) Load is transferred to beam 1/A-E in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab D-E/1-4 = Dead load on slab x (Lx/2) = 3.6 kN/m2 x (4.8m/2) = 7.2 kN/m -Total Dead Load Total for A-B = 2.16 kN/m + 3.75 kN/m + 4.0 kN/m = 9.9 kN/m Total for B-C = 2.16 kN/m + 10.545 kN/m + 3.75 kN/m + 5.4 kN/m = 21.9 kN/m Total for C-D = 2.16 kN/m + 10.545 kN/m +5.4 kN/m = 18.1 kN/m Total for D-E = 2.16 kN/m + 10.545 kN/m + 7.2 kN/m = 19.9 kN/m
-Total Dead Load Diagram
-Live load on slab A-B/1-3 (one way slab) Load is transferred to beam 1/A-E in a UDL form. Live load from slab A-B/1-3 = Live load on slab x (Lx/2) = 2.5 kN/ m2 x (1.5m/2) = 1.9 kN/m -Live load on slab B-C/1-3 (two way slab) Load is transferred to beam 1/A-E in a triangular form. Live load from slab B-C/1-3 = Live load on slab x (Lx/2) = 3.0 kN/ m2 x (3.2 m/2) = 4.8 kN/m Convert Triangular load to UDL by applying a factor of 2/3. Live load from slab B-C/1-3 = (2/3) x 4.8 kN/m = 3.2 kN/m -Live load on slab C-D/1-2 (two way slab) Load is transferred to beam 1/A-E in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab C-D/1-2 = Live load on slab x (Lx/2) = 2.5 kN/ m2 x (3.5m/2) = 4.4 kN/m -Live load on slab D-E/1-4 (two way slab) Load is transferred to beam 1/A-E in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab D-E/1-4 = Live load on slab x (Lx/2) = 2.0 kN/ m2 x (4.0m/2) = 4.0 kN/m -Total Live Load Total for A-B = 1.9 kN/m + 3.2 kN/m = 5.1 kN/m Total for B-C = 3.2 kN/m Total for C-D = 1.9 kN/m + 4.4 kN/m = 6.3 kN/m Total for D-E = 4.0 kN/m
-Total Live Load Diagram
-Ultimate Load Apply factor 1.4 & 1.6 to dead load and live load respectively. Dead load A-B = 9.9 kN/m x 1.4
= 13.9 kN/m
Dead load B-C = 21.9 kN/m x 1.4
= 30.7 kN/m
Dead load C-D = 18.1 kN/m x 1.4
= 25.3 kN/m
Dead load D-E = 19.9 kN/m x 1.4
= 27.9 kN/m
Live load A-B = 5.1 kN/m x 1.6
= 8.2 kN/m
Live load B-C = 3.2 kN/m x 1.6
= 5.1 kN/m
Live load C-D = 6.3 kN/m x 1.6
= 10.1 kN/m
Live load D-E = 4.0 kN/m x 1.6
= 6.4 kN/m
Ultimate load A-B
= 13.9 kN/m +8.2 kN/m
= 22.1 kN/m
Ultimate load B-C
= 30.7 kN/m + 5.1 kN/m
= 30.7 kN/m
Ultimate load C-D
= 25.3 kN/m + 10.1 kN/m
= 25.3 kN/m
Ultimate load D-E
= 27.9 kN/m + 6.4 kN/m
= 27.9 kN/m
-Total Ultimate Load Diagram
-Reactions ∑MA
=0 = REY (12.2) – 34.3 (4)(10.2) – 35.4 (3.5)(6.45) – 35.8 (3.2)(2.95) – 22.1 (1.5) (0.75) = 12.2 REY – 1399.4 – 799.2 – 338.0 – 24.9 = 12.2 REY – 2561.5
REY
= 209.95 kN
∑FY
=0 = REY + RAY – 137.2 – 123.9 – 32.6 – 33.15 = RAY + 209.95 – 326.85
RAY
= 116.9 kN
Load Diagram
Shear Force Diagram
Bending Moment Diagram
BEAM ANALYSIS CALCULATION Ground Floor Beam, B/1-3 1) Carries self weight – Dead load 2) Slab Dead Load & Live Load A-B/1-3 (one way slab) B-C/1-3 (two way slab) 3) Brick wall – Dead load
-Beam self weight
= Beam size x concrete density = 0.3m x 0.3m x 24 kN/m = 2.16 kN/m
-Brick wall weight
= 3.7m x 0.15m x 19 kN/m =10.545 kN/m
-Dead load on slab A-B/1-3 (one way slab) Load is transferred to beam B/1-3 in a UDL form. Dead load from slab A-B/1-3 = Dead load on slab x (Lx /2) = 3.75 kN/m x (3.75m2/2) =3.75 kN/m -Dead load on slab B-C/1-3 (two way slab) Load is transferred to beam B/1-3 in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab B C-D/1-2
= Dead load on slab x (Lx/2)
= 3.0 kN/m2 x (4m /2) = 6.0 kN/m ` -Total Dead Load Total for 1-3 = 3.75 kN/m + 6.0 kN/m + 2.16 kN/m + 10.545 kN/m = 22.5 kN/m
-Total Dead Load Diagram
-Live load on slab A-B/1-3 (one way slab) Load is transferred to beam B/1-3 in a UDL form. Live load from slab A-B/1-3 = Live load on slab x (Lx/2) = 2.5 kN/ m2 x (4.0m/2) = 5.0 kN/m -Live load on slab B-C/1-3 (two way slab) Load is transferred to beam B/1-3 in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab B-C/1-3 = Live load on slab x (Lx/2) = 3.0 kN/ m2 x (4.0m/2) = 6.0 kN/m -Total Live Load Total for 1-3 = 5.0 kN/m + 6.0 kN/m = 11 kN/m -Total Live Load Diagram
-Ultimate Load Apply factor 1.4 & 1.6 to dead load and live load respectively. Dead load 1-3
= 22.5 kN/m x 1.4 = 31.5 kN/m
Live load 1-3
= 11.0 kN/m x 1.6 = 17.6 kN/m
Ultimate load 1-3
= 31.5 kN/m +17.6 kN/m = 49.1 kN/m
-Ultimate Load Diagram
-Reactions ∑M3
=0 = R1Y (4) – 34.3 (4)(2) = 4 R1Y – 392.8
REY
= 98.2 kN
∑FY
=0 = R3Y + R1Y – 196.4 = RAY + 98.2 -196.4
RAY
= 98.2 kN
Load Diagram
Shear Force Diagram
Bending Moment Diagram
BEAM ANALYSIS CALCULATION Ground Floor Beam, D/1-4 1) Carries self weight – Dead load 2) Slab Dead Load & Live Load C-D/1-2 (two way slab) D-E/1-4 (two way slab) 3) Brick wall – Dead load
-Beam self weight
= Beam size x concrete density = 0.3m x 0.3m x 24 kN/m = 2.16 kN/m
-Brick wall weight
= 3.7m x 0.15m x 19 kN/m =10.545 kN/m
-Dead load on slab C-D/1-2 (two way slab) Load is transferred to beam D/1-4 in a trapezoidal form. Convert the trapezoidal load into UDL.. Dead load from slab C-D/1-2 = Dead load on slab x (Lx /2) = 3.6 kN/m x (3.0 m2/2) =5.4 kN/m -Dead load on slab D-E/1-4 (two way slab) Load is transferred to beam B/1-3 in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab B C-D/1-2
= Dead load on slab x (Lx/2)
= 3.0 kN/m2 x (4.8m /2) = 7.2 kN/m ` -Total Dead Load Total for 1-2 = 2.16 kN/m + 10.545 kN/m + 5.4 kN/m = 18.1 kN/m Total for 2-4 = 2.16 kN/m + 10.545 kN/m + 7.2 kN/m = 19.9 kN/m
-Total Dead Load Diagram
-Live load on slab C-D/1-2 (two way slab) Load is transferred to beam B/1-3 in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab A-B/1-3 = Live load on slab x (Lx/2) = 2.5 kN/ m2 x (3.0m/2) = 3.75 kN/m -Live load on slab D-E/1-4 (two way slab) Load is transferred to beam B/1-3 in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab D-E/1-4 = Live load on slab x (Lx/2) = 2.0 kN/ m2 x (4.8m/2) = 4.8 kN/m -Total Live Load Total for 1-2 = 3.75 kN/m Total for 2-4 = 4.8 kN/m -Total Live Load Diagram
-Ultimate Load Apply factor 1.4 & 1.6 to dead load and live load respectively. Dead load 1-2
= 18.1 kN/m x 1.4 = 23.3 kN/m
Dead load 2-4
= 19.9 kN/m x 1.4 = 27.9 kN/m
Live load 1-2
= 3.75 kN/m x 1.6 = 6.0 kN/m
Live load 2-4
= 4.8 kN/m x 1.6 = 7.7 kN/m
Ultimate load 1-2
= 23.3 kN/m +6.0 kN/m = 29.3 kN/m
Ultimate load 2-4
= 27.9 kN/m + 7.7 kN/m = 35.6 kN/m
-Total Ultimate Load Diagram
-Reactions ∑M1
=0 = R1Y (4.8) – 29.3 (3.0)(3.3) – 35.6 (1.8)(1) = 4 R1Y – 354.2
REY
= 73.8 kN
∑FY
=0 = R4Y + R1Y – 87.9 – 64.1 = R4Y + 73.8 -152
RAY
= 78.2 kN
Load Diagram
Shear Force Diagram
Bending Moment Diagram
BEAM ANALYSIS CALCULATION Ground Floor Beam, 2/C-E 1) Carries self weight – Dead load 2) Slab Dead Load & Live Load B-C/1-3 (two way slab) C-D/1-4 (two way slab) 3) Brick wall – Dead load
-Beam self weight
= Beam size x concrete density = 0.3m x 0.3m x 24 kN/m = 2.16 kN/m
-Brick wall weight
= 3.7m x 0.15m x 19 kN/m =10.545 kN/m
-Dead load on slab B-C/1-3 (two way slab) Load is transferred to beam 2/C-E in a trapezoidal form. Convert the trapezoidal load into UDL.. Dead load from slab B-C/1-3 = Dead load on slab x (Lx /2) = 3.0 kN/m x (4.0 m2/2) =6.0 kN/m -Dead load on slab C-D/1-2 (two way slab) Load is transferred to beam 2/C-E in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab B C-D/1-2
= Dead load on slab x (Lx/2)
= 3.0 kN/m2 x (4.8m /2) = 7.2 kN/m ` -Total Dead Load Total for C-D = 2.16 kN/m + 10.545 kN/m + 6.0 kN/m = 18.7 kN/m Total for D-E = 2.16 kN/m + 10.545 kN/m + 7.2 kN/m = 19.9 kN/m
-Total Dead Load Diagram
-Live load on slab B-C/1-3 (two way slab) Load is transferred to beam 2/C-E in a trapezoidal form. Convert the trapezoidal load into UDL. Live load from slab B-C/1-3 = Live load on slab x (Lx/2) = 3.0 kN/ m2 x (4.0m/2) = 6.0 kN/m -Live load on slab C-D/1-2 (two way slab) Load is transferred to beam 2/C-E in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab B C-D/1-2
= Live load on slab x (Lx/2)
= 2.0 kN/ m2 x (4.8m/2) = 4.8 kN/m -Total Live Load Total for C-D = 6.0 kN/m Total for D-E = 4.8 kN/m -Total Live Load Diagram
-Ultimate Load Apply factor 1.4 & 1.6 to dead load and live load respectively. Dead load C-D
= 18.7 kN/m x 1.4 = 26.2 kN/m
Dead load D-E
= 19.9 kN/m x 1.4 = 27.9 kN/m
Live load C-D
= 6.0 kN/m x 1.6 = 9.6 kN/m
Live load D-E
= 4.8 kN/m x 1.6 = 7.7 kN/m
Ultimate load C-D
= 26.2 kN/m + 9.6 kN/m = 35.8 kN/m
Ultimate load D-E
= 27.9 kN/m + 7.7 kN/m = 35.6 kN/m
-Ultimate Load Diagram
-Reactions ∑Mc
=0 = REY (7.5) – 35.8 (3.5)(5.8) – 35.6 (4)(2) = 7.5 REY – 1011.5
REY
= 134.9 kN
∑FY
=0 = REY + RCY – 125.3 – 142.4 = RCY + 134.9 -267.7
RCY
= 132.8 kN
Load Diagram
Shear Force Diagram
Bending Moment Diagram
BEAM ANALYSIS CALCULATION Ground Floor Beam, 1/A-D 1) Carries self weight – Dead load 2) Slab Dead Load & Live Load A-C/1-3 (two way slab) C-D/1-2 (two way slab) 3) Brick wall – Dead load
-Beam self weight
= Beam size x concrete density = 0.3m x 0.3m x 24 kN/m = 2.16 kN/m
-Brick wall weight
= 3.7m x 0.15m x 19 kN/m =10.545 kN/m
-Dead load on slab A-C/1-3 (two way slab) Load is transferred to beam 1/A-D in a trapezoidal form. Convert the trapezoidal load into UDL.. Dead load from slab A-C/1-3 = Dead load on slab x (Lx /2) = 3.6 kN/m x (4.0 m2/2) =7.2 kN/m -Dead load on slab C-D/1-2 (two way slab) Load is transferred to beam 1/A-D in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab C-D/1-2 = Dead load on slab x (Lx/2) = 2.4 kN/m2 x (3.0m /2) = 3.6 kN/m ` -Total Dead Load Total for A-C = 2.16 kN/m + 10.545 kN/m + 7.2 kN/m = 19.9 kN/m Total for C-D = 2.16 kN/m + 10.545 kN/m + 3.6 kN/m = 16.3 kN/m
-Total Dead Load Diagram
-Live load on slab A-C/1-3 (two way slab) Load is transferred to beam 1/A-D in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab A-C/1-3 = Live load on slab x (Lx/2) = 2.4 kN/ m2 x (4.0m/2) = 4.8 kN/m -Live load on slab C-D/1-2 (two way slab) Load is transferred to beam 1/A-D in a trapezoidal form. Convert the trapezoidal load into UDL. Dead load from slab C-D/1-2 = Live load on slab x (Lx/2) = 2.4 kN/ m2 x (3.0m/2) = 3.6 kN/m -Total Live Load Total for A-C = 4.8 kN/m Total for C-D = 3.6 kN/m -Total Live Load Diagram
-
Ultimate Load Apply factor 1.4 & 1.6 to dead load and live load respectively. Dead load A-C
= 7.2 kN/m x 1.4 = 10.1 kN/m
Dead load C-D
= 3.6 kN/m x 1.4 = 5.0 kN/m
Live load A-C
= 4.8 kN/m x 1.6 = 7.7 kN/m
Live load C-D
= 3.6 kN/m x 1.6 = 5.8 kN/m
Ultimate load A-C
= 10.1 kN/m + 7.7 kN/m = 17.8 kN/m
Ultimate load C-D
= 5.0 kN/m + 5.8 kN/m = 10.8 kN/m
-Total Ultimate Load Diagram
-Reactions ∑MA
=0 = RDY (8.2) – 17.8 (4.7)(5.9) – 10.8 (3.5)(1.75) = 8.2 RDY – 659.8
RDY
= 80.5 kN
∑FY
=0 = RDY + RAY – 83.66 – 37.8 = RAY + 80.5 – 37.8
RAY
= 41.0 kN
Load Diagram
Shear Force Diagram
Bending Moment Diagram
References Analysis of Beams | Shear Force & Bending Moment Diagram ~ Learn Engineering. Retrieved from http://www.learnengineering.org/2013/08/shear-force-bending-momentdiagram.html
Structural Beam Deflection and Stress Formula and Calculation - Engineers Edge.