Instant ebooks textbook Integral equations for real-life multiscale electromagnetic problems (electr

Page 1


Integral Equations for Real-Life

Multiscale Electromagnetic Problems (Electromagnetic Waves) Francesca Vipiana

Visit to download the full and correct content document: https://ebookmass.com/product/integral-equations-for-real-life-multiscale-electromagn etic-problems-electromagnetic-waves-francesca-vipiana/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Techniques of Functional Analysis for Differential and Integral Equations 1st Edition Paul Sacks

https://ebookmass.com/product/techniques-of-functional-analysisfor-differential-and-integral-equations-1st-edition-paul-sacks/

Therapy in the Real World: Effective Treatments for Challenging Problems

https://ebookmass.com/product/therapy-in-the-real-worldeffective-treatments-for-challenging-problems/

eTextbook 978-1305965799 Differential Equations with Boundary-Value Problems

https://ebookmass.com/product/etextbook-978-1305965799differential-equations-with-boundary-value-problems/

Differential Equations with Boundary-Value Problems 9th Edition Dennis G. Zill

https://ebookmass.com/product/differential-equations-withboundary-value-problems-9th-edition-dennis-g-zill/

Integral Calculus 3D Geometry and Vector Booster with Problems and Solutions for JEE Main and Advanced Rejaul

https://ebookmass.com/product/integral-calculus-3d-geometry-andvector-booster-with-problems-and-solutions-for-jee-main-andadvanced-rejaul-makshud/

Unexplained: Real-Life Supernatural Stories for Uncertain Times Richard Maclean Smith

https://ebookmass.com/product/unexplained-real-life-supernaturalstories-for-uncertain-times-richard-maclean-smith/

First

Course in differential equations (11ed) / Differential Equations and Boundary Value Problems (9ed) Solutions manual Dennis Zill Roberto Martinez

https://ebookmass.com/product/first-course-in-differentialequations-11ed-differential-equations-and-boundary-valueproblems-9ed-solutions-manual-dennis-zill-roberto-martinez/

Elementary

Differential Equations and Boundary Value Problems 12th Edition William E. Boyce

https://ebookmass.com/product/elementary-differential-equationsand-boundary-value-problems-12th-edition-william-e-boyce/

Boundary value problems for systems of differential, difference and fractional equations : positive solutions 1st Edition Johnny Henderson

https://ebookmass.com/product/boundary-value-problems-forsystems-of-differential-difference-and-fractional-equationspositive-solutions-1st-edition-johnny-henderson/

IntegralEquationsfor Real-LifeMultiscale Electromagnetic Problems

AndrewF.Peterson,PhD-SeriesEditor

Thevolumesinthisserieswillencompassthedevelopmentandapplicationofnumerical techniquestoelectricalandelectronicsystems,includingthemodellingofelectromagnetic phenomenaoverallfrequencyrangesandcloselyrelatedtechniquesforacousticandoptical analysis.Thescopeincludestheuseofcomputationforengineeringdesignandoptimization, aswellastheapplicationofcommercialmodellingtoolstopracticalproblems.Theserieswill includetitlesforseniorundergraduateandpostgraduateeducation,researchmonographsfor reference,andpractitionerguidesandhandbooks.

TitlesintheSeries

K.Warnick,“NumericalMethodsforEngineering,”2010. W.Yu,X.YangandW.Li,“VALU,AVXandGPUAccelerationTechniquesforParallelFDTD Methods,”2014.

A.Z.Elsherbeni,P.NayeriandC.J.Reddy,“AntennaAnalysisandDesignUsingFEKOElectromagneticSimulationSoftware,”2014.

A.Z.ElsherbeniandV.Demir,“TheFinite-DifferenceTime-DomainMethodinElectromagneticswithMATLAB®Simulations,2ndEdition,”2015.

M.Bakr,A.Z.ElsherbeniandV.Demir,“AdjointSensitivityAnalysisofHighFrequencyStructureswithMATLAB®,”2017.

O.Ergul,“NewTrendsinComputationalElectromagnetics,”2019.

D.Werner,“NanoantennasandPlasmonics:Modelling,designandfabrication,”2020. K.KobayashiandP.D.Smith,“AdvancesinMathematicalMethodsforElectromagnetics,” 2020

V.Lancellotti,“AdvancedTheoreticalandNumericalElectromagnetics,Volume1:Static, stationaryandtime-varyingfields,”2021.

V.Lancellotti,“AdvancedTheoreticalandNumericalElectromagnetics,Volume2:Field representationsandthemethodofmoments,”2021.

S.Roy,“UncertaintyQuantificationofElectromagneticDevices,Circuits,andSystems,” 2021

A.Baghai-Wadji“MathematicalQuantumPhysicsforEngineersandTechnologists,Volume1:Fundamentals,”2023.

IntegralEquationsfor Real-LifeMultiscale Electromagnetic Problems

TheInstitutionofEngineeringandTechnology

PublishedbySciTechPublishing,animprintofTheInstitutionofEngineeringand Technology,London,UnitedKingdom

TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland&Wales (no.211014)and Scotland(no.SC038698).

©TheInstitutionofEngineeringandTechnology2024 Firstpublished2023

ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress:

TheInstitutionofEngineeringandTechnology FuturesPlace KingsWay,Stevenage Hertfordshire,SG12UA,UnitedKingdom

www.theiet.org

Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliability isdisclaimed.

Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988.

BritishLibraryCataloguinginPublicationData

AcataloguerecordforthisproductisavailablefromtheBritishLibrary

ISBN978-1-83953-476-8(hardback)

ISBN978-1-83953-477-5(PDF)

TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Eastbourne

CoverImage:Pobytov/DigitalVisionVectorsviaGettyImages

Abouttheeditorsxi

1Introduction1

FrancescaVipianaandZhenPeng References3

2Surfaceintegralequationformulations5 DonaldR.WiltonandWilliamA.Johnson

2.1Maxwell’sequations5

2.1.1IntegralformofMaxwell’sequations5

2.1.2PointordifferentialformofMaxwell’sequations7

2.1.3BoundaryformofMaxwell’sequations7

2.1.4TheHelmholtzequationsandpotentialrepresentations9

2.1.5Farfieldsandfarpotentials13

2.1.6Thedualityprinciple14

2.1.7Uniquenesstheorem15

2.2Equivalenceprinciples18

2.2.1Thevolumetricequivalenceprinciple18

2.2.2Thesurfaceequivalenceprinciple18

2.3Boundaryfieldrepresentations21

2.3.1TheCalderónidentities28

2.4TheLorentzreciprocitytheorem29

2.5Surfaceintegralequationformulationsandsolutionsbymoment methods31

2.5.1Surfacerepresentationbytriangulation31

2.5.2Definingelectromagneticquantitiesonamesh36

2.5.3Theelectricfieldintegralequation(EFIE)38

2.5.4Fillandassemblyofelementandsystemmatricesand columnexcitationvectors42

2.5.5Themagneticfieldintegralequation(MFIE)48

2.5.6ConductingsheetsandtheEFIEandMFIE52

2.5.7InternalresonancesandtheCFIE54

2.5.8Integralequationformulationsfordielectrics55

2.6Surfaceintegralequationchallenges58

2.6.1Vectornorms,matrixnorms,andconditionnumber58

2.6.2TheEFIEand L operator61

Integralequationsforreal-lifemultiscaleelectromagneticproblems

2.6.3TheMFIEand K operator64

2.6.4Mixedoperatorintegralequations70 References70

3Kernel-basedfastfactorizationtechniques75 ÖzgürErgül,BahramKhalichiandVakurB.Ertürk

3.1Introduction75

3.2Multilevelfastmultipolealgorithm76

3.2.1ConventionalMLFMAbasedonplanewaves77

3.2.2Low-frequencyandbroadbandMLFMAimplementations83

3.3Large-scalesimulationsandparallelcomputing86

3.4Materialmodeling89

3.4.1MaterialsimulationswiththeconventionalMLFMA90

3.4.2Simulationsofplasmonicstructures98

3.4.3Simulationsofnear-zero-index(NZI)structures101

3.5Problemswithdensediscretizations103

3.6Problemswithnon-uniformdiscretizations108

3.7Conclusionsandnewtrends111 Acknowledgments113 References113

4Kernel-independentfastfactorizationmethodsformultiscale electromagneticproblems125 MengmengLi,PaolaPirinoli,FrancescaVipianaandGiuseppeVecchi

4.1Introduction125

4.2Adaptivecrossapproximation(ACA)method126

4.3Multilevelmatrixcompressionmethodformultiscaleproblems128

4.3.1Backgroundandtheory128

4.3.2Accuracyvalidation130

4.3.3Computationalcomplexityanalysis130

4.3.4Numericalevaluationoftheinducedfieldsinareal-life aircraft131

4.4Nestedequivalencesourceapproximationforlow-frequency multiscaleproblems134

4.4.1Equivalentsourcedistributionsforfieldrepresentation134

4.4.2FieldrepresentationviaequivalentRWGbasisfunctions135

4.4.3Single-levelnestedmatrixcompressionapproximation algorithm135

4.4.4MultilevelNESA137

4.4.5Matrix–vectorproductandcomputationcomplexity140

4.4.6Numericalresults142

4.5Widebandnestedequivalencesourceapproximationformultiscale problems150

4.5.1Far-fieldfactorizationadmissibilityconditions151

4.5.2High-frequency-nestedapproximationindirections153

4.5.3MultilevelWNESA155

4.5.4MVPandcomputationcomplexity157

4.5.5Numericalresults160

4.6Mixed-formnestedequivalencesourceapproximationformultiscaleproblems163

4.6.1Multiscalesamplingforskeletons164

4.6.2Mixed-formwideband-nestedapproximation165

4.6.3Numericalresults167

4.7Conclusionandprospect172 Acknowledgments173 References173

5Domaindecompositionmethod(DDM)179

VíctorMartín,Hong-WeiGao,DiegoM.Solís,JoséM.Taboada, andZhenPeng

5.1DiscontinuousGalerkinDDmethodforPECobjects180

5.1.1IntroductiontodiscontinuousGalerkinmethod180

5.1.2SIEformulation181

5.1.3Domainpartitioningandbasisfunctionspace182

5.1.4Interiorpenaltyformulation184

5.1.5Matrixequationandpreconditioner186

5.1.6Iterativesolutionofpreconditionedmatrixequation187

5.1.7Numericalexperiments188

5.2DGDDmethodforpenetrableobjects194

5.2.1DG-DDM-SIEforhomogeneousobjects194

5.2.2DG-DDM-SIEforpiecewisehomogeneousobjects201

5.3Tear-and-interconnectDDM211

5.3.1Preconditionerformulation211

5.3.2Anoteonparallelization213

5.3.3Numericalexamples213 References223

6Multi-resolutionpreconditioner231

FrancescaVipiana,VictorF.MartinandJoseM.Taboada

6.1Preliminaries231

6.1.1Introductionandscope231

6.1.2Basisfunctions232

6.1.3MoMlinearsystem235

6.1.4Multi-resolutionstrategy236

6.2Basisfunctionsgeneration236

6.2.1Generalizedbasisfunctions238

6.2.2Multi-resolutionbasisfunctions245

6.2.3PECgroundplanehandling250

viii Integralequationsforreal-lifemultiscaleelectromagneticproblems

6.2.4Basisforelectricalsizesbeyondtheresonanceregion251

6.2.5Algorithmflowchartandcomputationalcomplexity251

6.3Generationofahierarchicalfamilyofmeshes253

6.3.1Cellsgroupingstrategy253

6.3.2Cellsrankingandaggregation257

6.3.3Cellsgroupingrefinement259

6.3.4Maximumcellsizegroupinglimiting260

6.3.5Computationalcomplexity261

6.4ApplicationtoMoM261

6.4.1Change-of-basismatrixmemoryallocation261

6.4.2Directsolution262

6.4.3Applicationtoiterativesolvers263

6.4.4Applicationtoelectricallylargemulti-scalestructures264

6.4.5Low-frequencymatrixentriesevaluation266

6.5Numericalresults268

6.5.1FerrariTestarossatestcase269

6.5.2Realisticvesseltestcase272

6.6Conclusionandperspectives273 Acknowledgments274 References274

7Calderónpreconditionersforelectromagneticintegralequations277 AdrienMerlini,SimonB.Adrian,AlexandreDély, andFrancescoP.Andriulli

7.1Introduction277

7.2Backgroundandnotations279

7.3Calderónidentities280

7.4Discretization282

7.5ElectricfieldIE284

7.5.1Theoriginalequation284

7.5.2Thepreconditionedequation288

7.6CombinedfieldIE292

7.6.1Theoriginalequation292

7.6.2Thepreconditionedequation292

7.7PMCHWT294

7.7.1Theoriginalequation294

7.7.2Thepreconditionedequation296

7.7.3Differentsolutionstrategies298

7.8Conclusions301 References301

8Decoupledpotentialintegralequation307 FelipeVicoandMiguelFerrando-Bataller

8.1Scatteringproblemandboundaryconditions307

8.2Low-frequencylimitboundaryvalueproblems309

8.3Stabilizingconditions314

8.4DecoupledpotentialsanddifferentLorenzgaugefixings316

8.5Incomingpotentialsinalow-frequencystableLorenzgauge319

8.6Decoupledpotentialboundaryvalueproblems322

8.7Second-kindintegralequation326

8.8Discretizationofanintegralequationofthesecondkind329

8.8.1High-orderaccurateself-interactionintegral340

8.9Nearinteractionquadrature346

AppendixA:Differentialgeometryofsurfaces346

AppendixB:Numericalintegrationandinterpolationin1D353

AppendixC:Numericalintegrationandinterpolationin2D355

AppendixD:GeneralizedGaussianquadratureforarbitrary non-smoothfunctions361

AppendixE:Functionspaces364 References365

9Conclusionandperspectives369 ZhenPengandFrancescaVipiana References371 Index375

This page intentionally left blank

Abouttheeditors

FrancescaVipiana isafullprofessorintheDepartmentofElectronicsand TelecommunicationsatPolitecnicodiTorino(POLITO),Italy.

Hermainresearchactivitiesconcernnumericaltechniquesbasedonintegral equationsandmethodofmomentapproaches,withafocusonmultiresolutionand hierarchicalschemes,domaindecomposition,preconditioningandfastsolutionmethods,andadvancedquadratureintegrationschemes.Moreover,herresearchinterests includethemodeling,design,realization,andtestingofmicrowaveimagingsystems formedicalandindustrialapplications.

Currently,Prof.Vipianacoordinates“THERAD–MicrowaveTheranosticsfor Alzheimer’sDisease,”researchprojectfundedbythe“CompagniadiSanPaolo”bank foundation,and“INSIGHT–Aninnovativemicrowavesensingsystemfortheevaluationandmonitoringoffoodqualityandsafety,”jointresearchprojectwithinthe ExecutiveProgramofScientificandTechnologicalCooperationbetweenItalyand China,fundedbytheNationalNaturalScienceFoundationofChina(NSFC)and theItalianMinistryofForeignAffairsandInternationalCooperation.Moreover,she istheprincipalinvestigator,forthePOLITOresearchunit,inthenationalproject “BEST-Food,BroadbandElectromagneticSensingTechnologiesforFoodquality andsecurityassessment,”andintheMarieSkłodowska-CurieDoctoralNetwork “GENIUS–Glide-symmetricmEtamaterialsforiNnovativeradIo-frequencycommUnicationandSensing,”fundedbytheEuropeanUnion’sHorizonEuropeProgramme andbytheUKResearchandInnovation.

Shehas20yearsfull-timeequivalentresearchexperience.Since2007,shehas beenaninstructorattheEuropeanSchoolofAntennas(ESoA)coursesand,since 2008,theteachingprofessorofthecourse,“AdvancedComputationalEMforAntenna Analysis”atthePOLITODoctoralSchoolwheresheispartofthePhDadvisors board.Prof.VipianareceivedtheLotShafaiMid-CareerDistinguishedAwardfrom theIEEEAntennasandPropagationSocietyin2017andsheisanassociateeditor of IEEETransactionsonAntennasandPropagation andofthe IEEEAntennasand PropagationMagazine,where,in2020,shewasalsoaguesteditorforthespecialissue “ElectromagneticImagingandSensingforFoodQualityandSafetyAssessment.”

ZhenPeng isanassociateprofessorintheDepartmentofElectricalandComputer EngineeringattheUniversityofIllinoisatUrbana-Champaign,USA.Hisresearch interestsincludeclassicalelectromagnetismwithscalablealgorithms;statisticalelectromagneticsforcomplexenvironments,forexample,physics-orientedstatistical waveanalysisintegratingorderandchaos,andelectromagneticinformationtheory

xii Integralequationsforreal-lifemultiscaleelectromagneticproblems forwirelesscommunication;quantumelectromagnetics;andmeasurementandcontrolofuncertaintiesinchaoticreverberationchambers.HewasaguesteditorofIEEE TransactionsonComponents,PackagingandManufacturingTechnology in2023,and anassociateeditorofIEEE TransactionsonMicrowaveTheoryandTechniques from 2018to2020.HehaswonseveralbestpaperawardsincludingBestElectromagnetics PaperAwardatthe16thEuropeanConferenceonAntennasandPropagationin2022, theEPEPSBestPaperAwardatthe30thConferenceonElectricalPerformanceof ElectronicPackagingandSystems,theIEEEEMCSymposiumBestPaperAward atthe2019IEEEInternationalSymposiumonElectromagneticCompatibility,Signal&PowerIntegrity,the2018BestTransactionPaperAward-IEEETransactions onComponents,PackagingandManufacturingTechnology,the2014IEEEAntenna andPropagationSergeiA.SchelkunoffTransactionsPrizePaperAward.Hewasa recipientoftheNationalScienceFoundationCAREERAward(ENG/ECCS/CCSS) in2018.

Chapter1 Introduction

FrancescaVipiana1 andZhenPeng2

Inthecontextofcomputationalelectromagnetics(CEM),surfaceintegralequation (SIE)techniquesbasedonthemethodofmoments(MoM)[1]offerapotenttoolthat hasbecomeessentialforsimulatingandengineeringadiverserangeofapplications. Theseapplicationsencompassadvancedantennadesign[2,3],radarcross-section (RCS)[4],stealthtechnologies[5],electromagneticcompatibilityandinterference (EMC/EMI)[6],andnanoscienceapplications[7],amongothers.SIEmethodsare particularlyattractivewhendealingwithlarge-scaleradiationandscatteringissues. Unlikevolumetricapproachesthatrequirethecharacterizationofthree-dimensional (3D)structuresandembeddingspace,SIEmethodsnecessitatetheparameterization oftwo-dimensional(2D)boundarysurfacesonly.Althoughtheyresultindenseand extensivematrixsystemsforlarge-scaleproblems,theutilizationofiterativefast solvers,suchasthemultilevelfastmultipolealgorithm(MLFMA)[8,9],enables efficientresolutionofsuchproblems.

Thescopeofthisbook“IntegralEquationsforReal-LifeMultiscaleElectromagneticProblems”istocollectanddescribethemainrecentavailableapproachesforthe numericalsolutionofSIEstoanalyzereal-lifemultiscaleelectromagneticproblems. InCEM,formulationsbasedonSIEsarecurrentlythemostusedfortheanalysis ofelectricallylargeandcomplexstructures.Still,itisessentialtohaveavailable state-of-the-arttechniquestosolvetheminanefficientandaccurateway.

Thebookisorganizedintosevenscientificchapters,completedwiththe “Introduction”and“Conclusionandperspectives”chapters.

Chapter2“Surfaceintegralequationformulations,”authoredbyDonaldR. WiltonandWilliamA.Johnson,encompassesaconciseoverviewofessentialconcepts requiredtocomprehend,formulate,andcomputationallyaddressSIEsencounteredin thefieldofelectromagnetics.Utilizingthisknowledge,theprevalentintegralequationsemployedintime-harmonicproblemsareestablished,involvinglinear,piecewise homogeneous,andisotropicmaterials.Then,numericalmethodsemployedtosolve

1 WavisionResearchGroup,DepartmentofElectronicsandTelecommunications,PolitecnicodiTorino, Italy

2 ElectromagneticsLabandCenterforComputationalElectromagnetics,DepartmentofElectricaland ComputerEngineeringUniversityofIllinoisatUrbana—Champaign,USA

Integralequationsforreal-lifemultiscaleelectromagneticproblems theseintegralequationsarepresented,includingtechniquesforaccuratelyevaluating thesingularandnear-singularintegralsthatemergeintheprocess.

Thefollowingtwochapters,Chapter3“Kernel-basedfastfactorizationtechniques,”authoredbyÖzgürErgül,BahramKhalichi,andVakurB.Ertürk,and Chapter4“Kernel-independentfastfactorizationmethodsformultiscaleelectromagneticproblems,”authoredbyMengmengLi etal.,arebothdedicatedtofast factorizationtechniquesforanefficientandaccuratesolutiontotheelectromagnetic problem.Chapter3describeskernel-basedmethods,wheretheprimaryemphasislies ontheunderlyingkerneloftheproblem,adjustingitsutilizationtoeffectivelyhandleelectromagneticinteractionsinmoreefficientmannerswhilemaintainingaccurate numericalperformances.Inparticular,itfocusesonthemultilevelfastmultipolealgorithm(MLFMA),analyzingallitspropertiesandpossibleimplementationstoobtain accurate,efficient,andstablesolutionstomulti-scaleproblems.Instead,Chapter4 describeskernel-independenttechniquesthatareentirelyalgebraicandtakeadvantageoftherank-deficientnatureofMoMcouplingmatrixblocks,generatedbytwo distinctgroupsofbasicfunctionsthatarewellseparatedinspace.Byemployinglowrankfactorizationmethods,theMoMmatrixcanbeapproximated,enablingswift evaluationsofmatrix–vectorproductsiniterativesolutionsorrapiddirectsolvers.

Chapter5,entitled“Domaindecompositionmethod”andauthoredbyVíctor Martín,Hong-WeiGao,DiegoM.Solís,JoséM.Taboada,andZhenPeng,focuses ontheapplicationofdomaindecomposition(DD)methodsinsolvingtime-harmonic electromagneticwaveproblemsbasedonSIE.Thesemethodsarehighlydesirable duetotheircapacitytoyieldefficientandeffectivepreconditionediterativesolution algorithms,andtotheirinherentlyparallelnaturethatmakesthemparticularlyattractive,accordingtothecurrenttrendsincomputerarchitecture.Thechapterpresents twoclassesofDDmethods.OneclassutilizesthelatestdevelopmentsinthesurfacebaseddiscontinuousGalerkin(DG)formulationwherethecontinuityofcurrentsat domainboundariesisdirectlyenforcedbyemployinganinteriorpenaltyDGformulation.Instead,theotherclassofDDmethodsfollowsthe“tear-and-interconnect” approach,wheretransmissionconditionsareimposedalongthetearingcontours betweensubdomains.

Thenexttwochapters,Chapter6“Multi-resolutionpreconditioning,”authored byFrancescaVipiana,VíctorMartínandJoséM.Taboada,andChapter7“Calderón preconditionersforelectromagneticintegralequations,”authoredbyAdrienMerlini, SimonB.Adrian,AlexandreDély,andFrancescoP.Andriulli,arebothdevotedtopreconditioningtechniquesappliedtotheMoMmatrixtoimproveitsconditioningandso enablingafasterconvergenceoftheusediterativesolutionalgorithm.Chapter6aims toprovideallthetheoreticalandpracticalknowledgeforaproficientimplementation ofthemulti-resolution(MR)preconditionerintheelectromagneticanalysisofperfect electricconductor(PEC)structureswitharbitrary3Dshapesviaboththeelectricfield integralequation(EFIE)andthecombinedfieldintegralequation(CFIE).TheobjectiveofChapter7istoofferabroadcomprehensionoftheunderlyingmechanisms ofCalderónpreconditioning,presentinganoverviewofitsdiverseapplicationsto commonlyusedelectromagneticformulations.Whilethechapteracknowledgesthe

existenceofintricatemathematicaldevelopments,itprimarilyfocusesonproviding referencestodetailedanalysesratherthandelvingintothosecomplexitiesextensively.

Finally,Chapter8,entitled“Thedecoupledpotentialintegralequation”and authoredbyFelipeVicoandMiguelFerrando-Bataller,exploresanexperimental approachknownasthedecoupledpotentialintegralequation(DPIE).Theobjective ofthisformulationistodevelopamethodthatexhibitsrobustnessacrossallfrequencies,withaspecificfocusonlowfrequencieswhendealingwithmultipleconnected geometries.

References

[1]HarringtonRF. FieldComputationbyMomentMethod.Piscataway,NJ:IEEE Press;1993.

[2]WangX,PengZ,LimKH, etal.Multisolverdomaindecompositionmethod formodelingEMCeffectsofmultipleantennasonalargeairplatform. IEEE TransactionsonElectromagneticCompatibility.2012;54(2):375–388.

[3]HesfordAJandChewWC.Onpreconditioningandtheeigensystemsofelectromagneticradiationproblems. IEEETransactionsonAntennasandPropagation. 2008;56(8):2413–2420.

[4]BlancaIGT,RodríguezJL,ObelleiroF, etal.Experienceonradarcross sectionreductionofawarship. MicrowaveandOpticalTechnologyLetters. 2014;56(10):2270–2273.

[5]PengZ,LimKH,andLeeJF.Nonconformaldomaindecompositionmethods forsolvinglargemultiscaleelectromagneticscatteringproblems. Proceedings oftheIEEE.2013;101(2):298–319.

[6]SolísDM,MartínVF,AraújoMG, etal.AccurateEMCengineeringonrealistic platformsusinganintegralequationdomaindecompositionapproach. IEEE TransactionsonAntennasandPropagation.2020;68(4):3002–3015.

[7]ObelleiroF,TaboadaJM,SolísDM, etal.Directiveantennananocouplerto plasmonicgapwaveguides. OpticsLetters.2013;38(10):1630–1632.

[8]SongJMandChewWC.Multilevelfast-multipolealgorithmforsolvingcombinedfieldintegralequationsofelectromagneticscattering. Microwaveand OpticalTechnologyLetters.1995;10(1):14–19.

[9]TaboadaJM,AraujoMG,BertoloJM, etal.MLFMA-FFTparallelalgorithm forthesolutionoflarge-scaleproblemsinelectromagnetics(InvitedPaper). ProgressinElectromagneticsResearch.2010;105:15–30.

This page intentionally left blank

Chapter2

Surfaceintegralequationformulations

Thischapterincludesabriefreviewoffundamentalmaterialneededforunderstanding,formulating,andnumericallysolvingsurfaceintegralequationsappearingin electromagnetics.Usingthismaterial,wethendevelopthemostcommonintegral equationsfortime-harmonicproblemsinvolvinglinear,piecewisehomogeneous,and isotropicmaterials.Methodsfornumericallysolvingtheintegralequationsaredevelopedanddiscussed,includingapproachesfornumericallyevaluatingthesingularand near-singularintegralsthatarise.

2.1Maxwell’sequations

TheMaxwellequationsareasetoffourlaws:Faraday’slaw,Ampere’slaw,andthe electricandmagneticformsofGauss’slaw.Eachofthesetoffourequationsmay, inturn,bewritteninthefollowingthreedifferentforms:integral,differential,and boundaryforms.Ithasbeenargued[1]thattheintegralformsofMaxwell’sequations arethemostfundamentalinthesensethatallotherformsderivefromthem.Wedeal hereonlywithtime-harmonicproblemsandassumethatallsourceandfieldquantities varyas e j ω t ,effectivelyreplacingtheoperator ∂/∂ t by j ω inthetime-domainforms ofMaxwell’sequations[2].

2.1.1IntegralformofMaxwell’sequations

TheintegralformofMaxwell’sequationsforexp(j ω t )timedependenceis

1 DepartmentofElectricalandComputerEngineering,UniversityofHouston,USA

2 Consultant,JemezSprings,NM,USA

Integralequationsforreal-lifemultiscaleelectromagneticproblems

where S isan open surfacewith closed boundary C .Ontheotherhand,if S isa closed surface,enclosingavolume V ,wecanalsowrite

Theelectricandmagneticfieldstrengthquantities,(E , H ),arerelatedtothecorrespondingfluxdensityquantities(D, B)viathe constitutiveequations involvingthe localpermittivityandpermeability,(ε , μ),respectively:

Intheproblemsconsideredhere,weassumethatthematerialparameters(ε , μ)are linear,piecewisehomogeneous,andisotropic.InthefirsttwoMaxwell’sequations, asshowninFigure2.1, S hasaunitnormal ˆ n andtheclosedcurve C hasaunit tangent ˆ chosensuchthattheunitvector ˆ u = ˆ ׈n isbothnormalto C andpoints awayfrom S .Inthelasttwoequations, S isa closed surfacewithunitnormal ˆ n,the boundaryofavolume V .Volumetricelectricandmagneticsourcecurrents J and M , withunits[A /m 2 ]and[V /m 2 ]appearin(2.1)and(2.2),respectively.Whilethere isnoexperimentalevidencefortheexistenceofmagneticmonopolesorcurrents, magneticcurrentsandchargesnotonlygiveanelegantsymmetrytoMaxwell’sequationsbutalsoprovideflexibleandmathematicallyconvenientmeansforrepresenting electromagneticfields.Magneticandelectriccurrentsmerelycomprisemagneticand electricchargesinmotion;thevolumechargedensitiesofthosechargeswedefineas m [Wb/m 3 ]and q [C/m 3 ],respectively.Theconservationofchargeprinciplestates thatineveryboundedregionofspace,electricchargeisconserved;forbothconvenienceandmathematicalsymmetries,weassumethatthissameconservationlawalso holdsformagneticcharges.Thus,thetotalchargeforeitherchargetypechangesina regiononlyaschargescrosstheregion’sboundaries(i.e.,enterorleavetheregion). Therate(in[C/s]),forexample,atwhichelectricchargesdecreaseinaregionmust

Figure2.1ThesurfaceSwithunitnormal ˆ n isboundedbythecurve ∂ S = C.The unitvectors ˆ and ˆ u lieinthetangentplaneofS; ˆ isalsotangenttoC while ˆ u isnormaltoCandpointsawayfromS.Thethreeunitvectors satisfy ˆ u × ˆ =ˆn andformamutuallyorthogonalright-handedtriad alongC.

equalthenetelectriccurrentflux(in[C/s])exitingtheregion’sboundaries.Magnetic chargesandcurrentsaresimilarlyrelated;bothresultsaresuccinctlysummarizedby the continuityequations,

where,fortime-harmonicquantities, j ω playstheroleof ∂/∂ t ,withbothsidesof (2.7)and(2.8)representingratesofdecreaseofthetotalchargein V .Thoughthecontinuityequationsfollowfromphysics,independentofMaxwell’sequations,thelatter areconsistentwiththem.Forexample,ifwereplacethefirstsurfaceintegralin(2.2) withthe closed boundarysurfaceof(2.3),thenthecontourintegralof(2.2)vanishes (i.e.,surface S nolongerhasaboundarycontour C ),and(2.7)follows.Similarly, (2.8)followsfromapplyingboth(2.1)and(2.4)toacommonclosedsurface S

2.1.2PointordifferentialformofMaxwell’sequations

EachMaxwellequationindifferentialorso-calledpointformcorrespondstoanequationofthesamenameinintegralform.Moreover,eachdifferentialformequation maybederivedfromalimitingprocedureofitscorrespondingintegralform.For instance,oneusuallyappliesStokestheoremtothetwocurlequations,andthedivergencetheoremtothetwoscalarequations,shrinkingeachtoadifferentialsurfaceor volume,respectively,andfinallyobtaining

Theintegralformofthecontinuityequationscanbesimilarlytreated,resultingin

NotethattakingthedivergenceofthefirsttwoMaxwellequations,usingtheidentity ∇ ∇ × A = 0,theconstitutiveequationsandthecontinuityequations,oneobtains thelasttwoMaxwellequations,provided ω = 0 Forthisreason,whendealingwith time-harmonicelectromagneticsproblems,ifchargesandcurrentsareassumedtobe relatedviathecontinuityequations,oneneedsonlysatisfyFaraday’sandAmpere’s laws,withtheGausslawsautomaticallyfollowing.

2.1.3BoundaryformofMaxwell’sequations

TheboundaryformsofMaxwell’sequationsarealsoobtainedfromtheintegralforms. Forthefirstpair,Figure2.2,ashortlength,infinitesimalheight(h << a)rectangular

Integralequationsforreal-lifemultiscaleelectromagneticproblems

Rectangularpathforderivingtheboundary formofAmpere'slaw. (a)(b)Pillboxsurfacefortheboundaryformof Gauss'slaw.

Figure2.2GeometriesusedtoderiveboundaryformsofMaxwell’sequations pathwhoselongestsidesareparalleltoandonoppositesidesofamaterialboundary relatethefieldintensitycomponents(E , H )onoppositesidestoany surfacecurrent flux(Js , Ms )throughtherectanglethatmightbepresentontheboundary;fluxintegral contributionsfromfinitevolumetriccurrents(J , M )orthefluxfields(B, D)donot contributetothelimitastheareaenclosedbythepathvanishes,leavingonlysurface currentfluxcontributions.Thisresultsintheequations(2.15)and(2.16)belowwhere

ˆ n isnormaltotheinterfaceandpointsfromthe tothe + regionassociatedwitheach sideoftheinterface.Forthesecondpair,twosuchrectangularpathsperpendicularto oneanotherarethecross-sectionsofacylindricalpillboxofinfinitesimalheightsides andradius a (h << a)whosecircularendfacesareparalleltoandonoppositesides oftheinterfaceofthetwomedia.IntegratingthetwoGausslawsoverthevolume enclosedcapturesanysurfacechargedensitycontributionsfromtheinterface;volume chargeandcylindricalfacecontributionsvanishinthelimitastheheightvanishes, whereasthearea(π a2 )commontothetwofluxfaceandchargedensityintegrals cancels,resultingin(2.17)and(2.18)below. Ms = (E + E ) ׈n,(2.15) Js =ˆn × (H + H ),(2.16) qs =ˆn (D+ D ),(2.17) ms =ˆn · (B+ B ),(2.18)

where Ms and Js aremagneticandelectricsurfacecurrentdensitiesand qs and ms are electricandmagneticsurfacecurrentdensities,respectively.Similarly,theboundary formofthecontinuityequationsforvolumetriccurrents J and M ataninterfaceis obtainedas

ˆ n (J + J ) + ∇ s Js =−j ω qs ,(2.19)

ˆ n · (M + M ) + ∇ s · Ms =−j ω ms ,(2.20)

where ∇s · isthesurfacedivergenceoperator.Weremindthereaderthatthetwoline integralsontheLHSoftheintegralformsofFaraday’sandAmpere’slawshavethe units(V)and(A),respectively,asdothemagneticandelectricline(filament)currents K and I passingthroughanenclosedpath;hence,theunitsof surface currentdensities Ms and Js mustbe[V /m]and[A /m],while volumetric currentdensityunitsfor M and J are[V /m 2 ]and[A /m 2 ].Notealsothatadifferentialvolumetricintegralover afilamentcurrentproducesa dipolemoment result, Id ,where d isthedifferential lengthofthefilamentthatfallsinsidethedifferentialvolume.Thus,inthesense thattheydonotradiate,pointsourcesofcurrentareessentiallynon-existentbecause aradiatingcurrentelementmusthaveatleastsomenon-vanishinglength, d > 0. Sinceadipole’sorientationisalsoimportant,itsmomentisoftenexpressedinvector formas Id or Id .

2.1.4TheHelmholtzequationsandpotentialrepresentations

Wehavealreadynotedthatif ω = 0,thetwoGausslawsareimpliedbythedifferential formsofFaraday’sandAmpere’slawsplusthecontinuityequations.Togetherwith theirbehavioratinfinity,thetwocurlequationsshouldbesufficienttodetermine (E , H )foragivenpairofcurrentsources(J , M ).Onestepinthisdirectionisto eliminateeither E or H betweenthetwo.Forexample,theeliminationofthemagnetic fieldiseasilyaccomplishedbytakingthecurlofbothsidesofFaraday’slaw,(2.9),and substitutingfromAmpere’slaw,(2.10),toeliminatethemagneticfield.Thisyields theso-calledvectorHelmholtzequationfortheelectricfield:

where k = ω √με = 2π/λ isthe wavenumber andwhere λ isthewavelengthofa wavepropagatinginthematerialifboth μ and ε arebothreal(i.e.,themedium islossless).Applyingthesameprocedure,butreversingtherolesofFaraday’sand Ampere’slaws,andeliminatingtheelectricfieldleadstothemagneticformofthe vectorHelmholtzequation:

Unfortunately,itstillremainsdifficulttofindgeneralsolutionsof(2.21)and(2.22). Itturnsoutthat potential representationsofthefieldsarebettersuitedtofinding solutionssincetheycanbechosentoautomaticallysatisfyconditionssuchasthe vanishingofacurlordivergence.Tothisend,wefirstnotethatsinceMaxwell’s equationsarelinear,thesourcepair(J , M )canbepartitionedintoasumofsimpler sourcepairsetsas(J , 0) + (0, M ),eachofwhichinvolvesbuta single currentspecies (electricormagnetic,respectively).Onceweobtainthefieldsduetoeachsingle currentspeciesactingalone,weobtainsolutionsforbothpresentbysuperposingthe resultsforeachspecies.Forexample,forelectriccurrentsonly,weset M = 0 and m = 0in(2.9)and(2.12),respectively,anddeterminethefields(E J , H J ),withthe superscriptindicatingthesourcetype.Forthiscase,andunderthemildhypothesisof derivativecontinuity[3],themagneticformofGauss’slaw, ∇ ∇· BJ = 0,impliesthat BJ =∇ ∇ ∇× A (andviceversa)foravector A wecallthe magneticvectorpotential since

Integralequationsforreal-lifemultiscaleelectromagneticproblems

weuseittodirectlydeterminemagneticfieldquantities, H J = 1 μ BJ = 1 μ ∇ ∇ ∇× A. A is notuniquelyspecified,however,sincebothitscurlanddivergencecanbespecified independently,accordingtotheHelmholtzdecompositiontheorem[4].Laterwewill alsospecify ∇ ∇ ∇· A soastosimplifythedefiningequationfor A;forthemoment, however,wesubstitutethisrepresentationof H into(2.9),andrearrangeto ∇ ∇ ∇× (E J + j ω A) = 0.Theidentity ∇ ∇ ∇× (∇ ∇ ∇ ) = 0 impliesthatif E J hastheform E J = j ω A −∇ ∇ ∇ ,itwouldautomaticallysatisfythiszerocurlcondition;butitcanalsobe shownthatunderrathermildrestrictions,every E J canalwaysbesorepresented[3]. Thenewlyintroducedfunction iscalledthe electricscalarpotential andthenegative signischosentoagreewiththefamiliarelectrostatic(i.e., ω → 0)representationfor E J involvingscalarpotentialonly.Insummary,wehavenowdevelopedthepotential fieldrepresentation(E J , H J ) = ( j ω A −∇ ∇ ∇ , 1 μ ∇ ∇ ∇× A)forthefieldsduetoelectric currentsources J actingalone.Similarly,formagneticcurrents M actingalone,the potentialfieldrepresentationis(E M , H M ) = ( 1 ε ∇ ∇ ∇× F , j ω F −∇ ∇ ∇ ),involving the electricvectorpotential F and magneticscalarpotential .Superposingthese results,weobtainfinallytheso-called mixedpotential representationof(E , H ) = (E J + E M , H J + H M ):

Toobtainwaveequationsforthepotentials,itisconvenienttoreturntothepotentialfieldrepresentationsgeneratedbyelectricormagneticsourcespecies,respectively, asfollows:

M = 0 : E J =−j ω A −∇ ∇

Substitutingthepotentialrepresentation(2.25)for(E J , H J )intoAmpere’slaw,using theidentity ∇ ∇ ∇× (∇ ∇× A) =∇ ∇ (∇ ∇ ∇·

2 A,andrearranging,weobtain

Similarly,substituting(E M , H M ),(2.26),intoFaraday’slaw,wefind

Despitestrongsimilaritiesbetweentheequationpair(2.21)and(2.22)andthepair (2.27)and(2.28),thelatterprovideanimportantopportunityforsimplificationsince thedivergencesof A and F remainyettobespecified.Ofmanypossibleso-called gauge choiceshere,theso-calledLorenzgauges,areobviousones:

sothat(2.27)and(2.28)immediatelysimplifyto ∇ 2 A + k 2 A =−μJ ,(2.31)

2 F + k 2 F =−ε M ,(2.32)

respectively.Equationsforthescalarpotentials and areeasilyobtainedbysubstituting(2.25)and(2.26)intothetwoGausslaws,(2.11)and(2.12),respectively, yielding

and

Additionaladvantagesofthevector-valuedequations(2.31)and(2.32)arethatthe operator ∇ 2 ,whenappliedtotherectangularcomponentsofthepotentialvectors, reducestothescalarLaplacianoperatorsothatalltherectangularcomponentsof (2.31)and(2.32)plusthetwoscalarpotentials(2.33)and(2.34)satisfythesame genericscalarwaveequation,

2 ψ + k 2 ψ =−f (r ),(2.35) forsomepotential ψ withscalarvolumesourcedensity f (r ).Wenotethesourceterm f (r )canbewrittenasasuperpositionorconvolutionintegral

f (r ) = V f (r )δ (r r ) dV ,(2.36)

where V includesatleastthe support of f (r ),supp (f (r )),thatis,thesmallestclosed regionoutsideofwhichthefunction f (r )vanishesidentically.Thus,thesetsupp (f (r )) iscompletelycontainedwithin V .Thethree-dimensionaldeltafunction δ (r r ) = δ (x x )δ (y y )δ (z z )representsa pointsourceofunitdensityat r ;noteits unitsare[1/m 3 ].Wewishtoexpress ψ asasource-weightedsumoverpointsource solutions,andtodosowefirstintroduceascalarfunction G (r , r ),asolutionofthe point-sourceequation

∇ 2 G + k 2 G =−δ (r r ),(2.37)

where G (r , r )representsagenericpotentialfieldat r duetoaunitdensitysource at r .Sincea(scalar)pointsourceisbothnon-directionaland(2.37)iscoordinate systemindependent,weshouldalsoexpectthesameof G ,i.e.,thatitdependsonly ontheradialseparation R =|r r | betweentheobservationpoint r andsourcepoint r .Wealsonotethatinalocalsphericalcoordinatesystemwithanoriginat r , ∇ 2 G = 1 R2 d dR R2 dG dR ,fromwhichoneeasilyverifiesthat

G (r , r ) = e jkR 4π R (2.38) satisfies(2.37)everywhereexceptpossiblyat R = 0(sincetheexpressionfor ∇ 2 involvesdivisionbyzerothere).Toalsoverifytheunitvolumeintegralbehaviorof the3Ddeltafunctionat R = 0,wemustexaminetheequalityofvolumeintegralsover

Integralequationsforreal-lifemultiscaleelectromagneticproblems termsonbothsidesof(2.37).Thenon-directionalnatureoftheproblemalsosuggests integratingoveravolumetrictestsphere, Va ,ofradius a centeredat R = 0,noting that ∇ 2 = ∇ · ∇ ,andevaluatingtheintegraloftheLaplaciantermviathedivergencetheorem.Indeed,onefinds Va (

independent ofthetestsphereradius a.

Finally,thelinearityofthescalarwaveequationsuggeststhatifanarbitrarysource densitydistributioncanbeexpressedasaweightedsuperpositionofpointsources, (2.36),thenthedistribution’spotentialcanbeexpressedasasimilarlyweighted superpositionofpotentialsduetopointsources:

Indeed,that(2.39)isasolutionof(2.35)iseasilyverifiedbydirectsubstitutionand useof(2.37)and(2.36).Weremarkthat,byimplication,theintegralin(2.39)must alsoincludeanycontributionsfromsurface,filament,orpointsourcespresent,which onewritesintheforms S G (r , r )fs (r ) dS , C G (r , r )f (r ) d ,or

respectively.

Using(2.23),(2.24),(2.31)–(2.35),and(2.39),wearenowabletowritethefields intermsofpotentialsasfollows[2]:

Beforeleavingthissection,wecallthereader’sattentiontothefollowingobservations concerning(2.40)–(2.45):

● Thoughtheintegrationdomainsandsourcesintheintegralsabovearevolumetric, theyimplicitlyincludesourceintegralsoversurfacesandfilaments,aswellas sumsoverpointsources.

● Notetheextenttowhichwerelyonlinearityandsuperposition:thefields(E , H ) arevectorcomponentsums,eachtermofwhichisasumofrealandimaginary parts,andconstructedasalinearsuperpositionofavectorpotential,thevectorvaluedgradientofascalarpotential,andthecurlofavectorpotential,i.e.,a

sumoverbothcurrentandchargeterms,respectively.Eachofthese,inturn,is aconvolutionintegral,i.e.,asumofapoint-sourceresponses G (r , r )weighted bysourcedensitiesoftheappropriatechargeorcurrentspeciesdefinedon V . Lateron,indiscretizingaproblem,wefurthersubdividethesourcedomainsinto collectionsofsimplersubdomains,eachwithsimplifiedlocalsourcerepresentations.Inthelattercase,however,thenewlevelofsumsistypicallyrepresented asmatrix–vectorproducts.

2.1.5Farfieldsandfarpotentials

Inthefarfield,itisconvenienttoexpressafieldobservationpoint r inspherical coordinatesas r = r (cos φ sin θ ˆ x + sin φ sin θ ˆ y + cos θ ˆ z )whoseoriginisat r = 0, assumednotfarfromorevenwithinthesourceregion.Atlargeradialdistances r =|r | fromallsourcepoints r ,theapproximation R =|r r |≈ r −ˆ r r where ˆ r = r /r , canbeusedinthelocallyvaryingphasefactorterminthenumeratorof G (r , r )while R ≈ r canbeusedinthedenominatortoapproximate G (r , r )as e jkr 4π r e jk r r inthefar vectorpotentials,yielding

Similarly,thefarscalarpotentialsare

Butsince

,wemaysimplyreplace

r inthefar field.CombinedwiththeLorenzgaugeconditions,itthenfollowsthatthegradients ofthescalarpotentialsareentirelyradiallydirectedandcompletelycancelradial componentsofthevectorpotentialcontributionstothefarfield;thus,inthefarfield, fields(E , H )becomecompletelytransversetotheobservationvector r andcanbe writtenas

Integralequationsforreal-lifemultiscaleelectromagneticproblems where η = √μ/ε isthelocalintrinsicimpedanceofthehostmedium.Forcompactnessabove,wehaveusedadyadicnotationfortermssuchas ˆ φ ˆ θ · A,forexample, whichisassumedtobeevaluatedas ˆ φ ( ˆ θ · A) = ˆ φ Aθ ,andtheunitvectorstransverse to ˆ r insphericalcoordinatesare

WenoteherethatthereexistsasecondsolutionofthefreespaceGreen’sfunction equation(2.37)thatisoftheform e+jkR 4π R ,butthesignchangeintheexponentialphase factorimpliesitrepresentsa(non-physical)incoming,ratherthananoutgoingwave. Inunboundedregionswithboundedsources,impositionoftheso-calledscalaror Sommerfeldradiationcondition [5–7]

guaranteesauniquesolutionandonethatinvolvesonlyoutgoingwavesolutions of(2.37).Itisclearthateachvectorcomponentof(2.40)and(2.41)satisfiesthe Sommerfeldcondition.Thetransversenatureandplane-wave-likerelationbetween far-fieldcomponents(E , H )aswellastheiroutgoingbehaviorarecapturedtogether intheso-called Silver–Müllerradiationconditions [8,9],

2.1.6Thedualityprinciple

ThereisasymmetrybetweenpairsofMaxwell’sequationsthatclearlyappearswhen magneticcurrentandchargesareincludedintheequations.Thisismadeevidentin Table2.1which,whenthequantitiesonthefirstrowarereplacedbythecorresponding quantitiesonthesecondrow,leaveMaxwell’sequations(andallwaveandpotential equations,etc.thatfollowfromthem)invariantininfinite,homogeneousmedia.The dualityprinciplethusmaybeusedeithertoderiveorserveasaquickcross-check onderivedexpressions.Itsmostfrequentuseistoreducethemathematicallabor ofderivingnewresults.Forexample,inSection2.1.4,weassumedtwosituations, thefirstwithelectricandthesecondwithmagneticcurrentspresentonly.Oncean expressionforthemagneticvectorpotential A duetoelectriccurrentswasavailable,

Table2.1Ifthevariablesinthefirstrowofthetablearereplacedbythoseofthe secondrow,expressionsforMaxwell’sequations,potentials,andwave equationsforfieldsininfinitehomogeneousmediaremaininvariant.

wecouldthenhaveuseddualitytodirectlyobtaintheelectricvectorpotential F duetomagneticcurrents.Aswasdone,superpositioncanthenbeusedtoobtain theresultwhenbothcurrentspeciesarepresent.Suchusesofdualitywilloftenbe impliedinsubsequentderivationsinthischapter.Whenusingduality,however,some caremustbeexercisedifboundaryconditionsarepresent.Forexample,thedualof theperfectelectricconductor(PEC)boundarycondition ˆ n × E = 0 istheperfect magneticconductor(PMC)boundarycondition ˆ n × H = 0;hereitisnotsimplythe variablesthatareexchanged,butthephysicalproblemparametersmustalsobedual totheoriginal.Furtherdiscussionofandusesfordualitymaybefoundin[2,10,11].

2.1.7Uniquenesstheorem

Consideraregion V boundedbyaclosedsurface S withunitoutwardnormal ˆ n, asshowninFigure2.3(a).Ourconcernisthefollowingquestion:“Givenasetof sources J and M ,underwhatconditionsaresolutionstoMaxwell’sequationsunique in V ?”Uniquenessquestionsareimportantnotonlyinestablishingwhetherornota givenproblemhasauniquesolutionin V butalsoindiscoveringwhatinformationis neededtoobtainauniquesolution.Uniquenesstheoremsalsodirectlyconnectfields inaregiontotheirsourcesandviceversa.Theyalsosuggestwhatchangescanbe madetoaproblemoutside V whilemaintainingthesamefieldsinside V andon S Oneoftheirmoreimportantuses,however,isinprovidingshortcutproofsortests forproposed,hypotheticalsolutionsofMaxwell’sequations.Wefindthemespecially usefulinprovingimageandsourceequivalenceprinciplesfrom“guesses,”based perhapsonexperienceorintuition.

Uniquenesstheoremsaregenerallyprovenbycontradiction.Thatis,assumethat thefieldsarenon-uniquesothattwofieldsolutions(E a , H a )and(E b , H b )existfor

(a)(b)

Figure2.3In(a),aninteriorregionVisboundedbyasurfaceSofboundedextent andwithoutwardunitnormal ˆ n.In(b),regionVisexteriortoSand boundedbyasurfaceS ∞ ofradiusrwithoutwardunitnormal ˆ n =ˆ r , wherer →∞.Thelocationofthecoordinateoriginforrisarbitrary, butmustbeafinitedistancefromS.

Integralequationsforreal-lifemultiscaleelectromagneticproblems thesameboundaryconditionson S andthesamesetofsources(J , M )in V .We assume(E a , H a ) = (E b , H b ),andeasilyfindthatthedifferencefields(δ E , δ H )= (E a E b , H a H b )mustsatisfythesource-freeFaradayandAmpere’slaws,

Next,weconsiderthatthenetoutwardcomplexpowerflow δ S across S ,which fromthePoyntingvector δ S = 1

andPoynting’stheorem,isgivenby

wherewehaveassumed μ = μ j μ and ε = ε j ε toaccountforeitherlossless orlossymedia.Inobtaining(2.56),weusethedivergencetheorem,theidentity ∇

,and(2.55).Below,wetreat separatelythecaseswherethehomogeneousmediumassociatedwith V islossy, unboundedandlossless,orboundedandlossless.Wealsoassumeoneofthefollowing threeboundaryconditionson S :

● Thetangentialelectricfield ˆ n × E isspecified(i.e., ˆ n × δ E = 0)on S .

● Thetangentialmagneticfield ˆ n × H isspecified(i.e., ˆ n × δ H = 0)on S .

● Thetangentialfield ˆ n × E isspecified(i.e., ˆ n × δ E = 0 )onaportionof S while ˆ n × H isspecified(i.e., ˆ n × δ H = 0 )ontheremainderof S .

Boundeddissipativemedia: Forlossyboundedmedia,atleastoneoftheterms μ or ε inthelastintegralontheright-handsideof(2.56)ispositive.Ifweassumefields interiorto V arenon-unique,then δ E or δ H cannotvanisheverywherein V .Butfor anyoftheaboveboundaryconditionsontheboundedsurface S ofFigure2.3(a),at leastoneof ˆ n × δ E or ˆ n × δ H vanishesateverypointof S ,and,hence,sodoesthe complexpowerflow δ S across S in(2.56).Inalossymedium,however,thisrepresents acontradictionsincefor ω> 0,thelastvolumeintegralin(2.56)mustbenegative ifeither μ or ε orbotharepositive,whereastheintegralsonthefirstlinevanish. Henceatleastoneofthedifferencefields, δ E or δ H ,mustalsovanishin V .But by(2.55),ifonevanishes,thenbothvanish.Thusfieldsinalossyregion V with boundary S areuniqueiftheysatisfyMaxwell’sequationsin V andoneoftheabove threeprescribedboundaryconditionson S

Bounded,losslessmedia: WeconsidernexttheboundedregionofFigure2.3(a)with alosslessinterior(μ = ε = 0)withboundary S enclosing V .Wenotefirstthatfor S boundedandclosed,theabovethreespecifiedboundaryconditionsdescribeacavity witheitherPECorPMCwalls,oramixtureofbothtypesofwalls.Next,wenotethat sincenosourcesarepresent,withlosslessmedia,andwithboundaryfieldssatisfying

17 eitherofthethreeboundaryconditionsspecifiedabove,thesurfaceintegral(bothreal andimaginaryparts)of(2.56)aswellasthelast(real-valued)volumeintegralvanish identically.Thenext-to-last(imaginary-valued)volumeintegralthenmustalsovanish, implyingeitherthat(a) δ E = δ H = 0,inturnimplyinguniqueness,or(b)thenettimeaveragedstoredelectricandmagneticenergiesin V mustexactlybalancein V .Butthis latterconditionisaknownpropertyofcavityresonatorswithPMCorPECconducting wallsattheirdiscreteresonancefrequencies.Thesewell-knownsource-freesolutions ofMaxwell’sequationsforinteriorproblemswithimpenetrableboundariescanexist atdiscretefrequenciesthatdependstronglyonthecavitygeometryand(lossless) materialproperties.Atcavityresonancefrequencies,nosourceisrequiredtosustain thefieldoscillations,norealaveragepowerisdissipatedorradiated,andassociated modalelectricandmagneticfieldsareinphasequadrature.Finally,thetime-average storedelectricandmagneticenergiesareequalandtheiramplitudesareproportional tothesquaredmagnitudesofthemodalfieldamplitudes.Thecavityproblemisof interestinsurfaceintegralequationmodelingincomputationalelectromagneticsfor twoprincipalreasons:

● Onewantstouseasurfaceintegralformulationtodeterminetheresonant frequenciesofaclosedcavityofshape S withimpenetrableboundaries.

● One’sinterestinsteadisinsolvinganexteriorscatteringorradiationproblem involvingaclosedPEC,PMC,ormixedPMC,PECboundary S ,butdueto inevitablemodelingerrorsthatoccur,solutionstotheexternalproblemare severelycontaminatedatfrequenciesneartheinternalresonancesbytheweak excitationofandcouplingtothehighlyresonantinteriorcavityproblem.Thisis theso-called internalresonanceproblem oftenassociatedwithsurfaceintegral equationmodelingofelectromagneticscatteringproblems.

Unboundedmedia: WeconsiderlastthesituationofFigure2.3(b)withaninterior boundary S andwith V anexteriorboundaryenclosedwithinasphericalboundary surface S ∞ ofradius r andoutwardnormal ˆ n =ˆ r .Wenowevaluatetheintegrals (2.56)inthelimitas r approachesinfinity.Notethatwemustfirstreplacetheoriginal Poyntingsurfaceintegralon S in(2.56)withthetwoboundaryintegrals, S + S ∞ , withthenegativesignappearinginthefirstintegralsince,for V now exterior to S ,the divergencetheoremrequiresanoutwardnormalto V thatnowpoints intoS .Again, theintegralon S vanishesforanyofthethreeboundaryconditionsspecifiedabove. Hence,(2.56)reducesto

AlemmabyRellich[7,12–14]forscalaracousticfieldshasbeenextendedtothe electromagneticcasewhichshowsthatiftheintegralontherightabovevanishes,all fieldswithin V mustvanish.Thatis,thevanishingoftheintegral(2.57)becomesthe conditionforuniquenessfortheunbounded,lossless,orlossycase.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.