Full download Stahl’s essential psychopharmacology: neuroscientific basis and practical pdf docx

Page 1


Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical

Visit to download the full and correct content document: https://ebookmass.com/product/stahls-essential-psychopharmacology-neuroscientificbasis-and-practical/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Prescriber’s Guide: Stahl’s Essential Psychopharmacology 5th Edition – Ebook PDF Version

https://ebookmass.com/product/prescribers-guide-stahls-essentialpsychopharmacology-5th-edition-ebook-pdf-version/

Apathy: Clinical and Neuroscientific Perspectives from Neurology and Psychiatry Krista Lanctot

https://ebookmass.com/product/apathy-clinical-andneuroscientific-perspectives-from-neurology-and-psychiatrykrista-lanctot/

Psychopharmacology (Fourth Edition) Jerry Meyer

https://ebookmass.com/product/psychopharmacology-fourth-editionjerry-meyer/

Self-Made Men: Widening Participation, Selfhood and First-in-Family Males Garth Stahl

https://ebookmass.com/product/self-made-men-wideningparticipation-selfhood-and-first-in-family-males-garth-stahl/

Introduction to 80×86 Assembly Language and Computer Architecture – Ebook PDF Version

https://ebookmass.com/product/introduction-to-8086-assemblylanguage-and-computer-architecture-ebook-pdf-version/

Clinical Psychopharmacology: Principles and Practice

1st Edition S. Nassir Ghaemi

https://ebookmass.com/product/clinical-psychopharmacologyprinciples-and-practice-1st-edition-s-nassir-ghaemi/

eTextbook 978-0323088541 Pathophysiology: The Biologic Basis for Disease in Adults and Children (Pathophysiology the Biologic Basis)

https://ebookmass.com/product/etextbook-978-0323088541pathophysiology-the-biologic-basis-for-disease-in-adults-andchildren-pathophysiology-the-biologic-basis/

Successful Psychopharmacology: Evidence-Based Treatment

Solutions for

https://ebookmass.com/product/successful-psychopharmacologyevidence-based-treatment-solutions-for/

Pediatric Psychopharmacology for Primary Care (Ebook PDF)

https://ebookmass.com/product/pediatric-psychopharmacology-forprimary-care-ebook-pdf/

Prefacetothefourthedition

Forthisfourtheditionof Stahl’sEssentialPsychopharmacology youwillnoticethereisanewlookandfeel. Withanewlayout,displayedovertwocolumns,and anincreasedpagesizewehaveeliminatedredundanciesacrosschapters,haveaddedsignificantnew material,andyethavedecreasedtheoverallsizeof thebook.

Highlights ofwhathasbeenaddedorchanged sincethe3rdeditioninclude:

Integratingmuchofthebasicneurosciencesinto theclinicalchapters,thusreducingthenumber ofintroductorychapterssolelycoveringbasic neurosciences.

Majorrevisionofthepsychosischapter, includingmuchmoredetailedcoverageofthe neurocircuitryofschizophrenia,theroleof glutamate,genomics,andneuroimaging.

Oneofthemostextensivelyrevisedchaptersis onantipsychotics,whichnowhas: newdiscussionandillustrationsonhowthe currentatypicalantipsychoticsactupon serotonin,dopamine,andglutamatecircuitry newdiscussionoftherolesof neurotransmitterreceptorsinthe mechanismsofactionsofsomebutnotall atypicalantipsychotics

5HT7 receptors

5HT2C receptors α1-adrenergicreceptors

completelyrevampedvisualsfordisplaying therelativebindingpropertiesof17 individualantipsychoticsagents,basedupon logbindingdatamadequalitativeandvisual withnovelgraphics reorganizationoftheknownatypical antipsychoticsas the “pines” (peens) the “dones”

two “pips” anda “rip”

inclusionofseveralnewantipsychotics

iloperidone(Fanapt) asenapine(Saphris) lurasidone(Latuda)

extensivecoverageofswitchingfromone antipsychotictoanother newideasaboutusinghighdosingand polypharmacyfortreatmentresistanceand violence newantipsychoticsinthepipeline brexpiprazole cariprazine selectiveglycinereuptakeinhibitors (SGRIs,e.g.,bitopertin[RG1678], Org25935,SSR103800)

Themoodchapterhasexpandedcoverageof stress,neurocircuitry,andgenetics.

Theantidepressantandmoodstabilizerchapters have:

newdiscussionandillustrationsoncircadian rhythms

discussionoftherolesofneurotransmitter receptorsinthemechanismsofactionsof someantidepressants

melatoninreceptors

5HT1A receptors

5HT2C receptors

5HT3 receptors

5HT7 receptors

NMDAglutamatereceptors

inclusionofseveralnewantidepressants agomelatine(Valdoxan) vilazodone(Viibryd)

vortioxetine(LuAA21004) ketamine(rapidonsetfortreatment resistance)

Theanxietychapterprovidesnewcoverageof theconceptsoffearconditioning,fear extinction,andreconsolidation,withOCD movedtotheimpulsivitychapter. Thepainchapterupdatesneuropathicpainstates. Thesleep/wakechapterprovidesexpanded coverageofmelatoninandnewdiscussionof orexinpathwaysandorexinreceptors,aswellas newdrugstargetingorexinreceptorsas antagonists,suchas: suvorexant/MK-6096 almorexant SB-649868

TheADHDchapterincludesnewdiscussionon hownorepinephrineanddopaminetunepyramidal neuronsinprefrontalcortex,andexpanded discussiononnewtreatmentssuchas: guanfacineER(Intuniv) lisdexamfetamine(Vyvanse)

Thedementiachapterhasbeenextensively revampedtoemphasizethenewdiagnosticcriteria forAlzheimer’sdisease,andtheintegrationof biomarkersintodiagnosticschemesincluding: Alzheimer’sdiagnostics

CSFAβ andtaulevels amyloidPETscans,FDG-PETscans, structuralMRIscans

multiplenewdrugsinthepipelinetargeting amyloidplaques,tangles,andtau vaccines/immunotherapy(e.g., bapineuzumab,solenezumab, crenezumab),intravenous immunoglobulin

γ-secretaseinhibitors(GSIs,e.g., semagacestat)

β-secretaseinhibitors(e.g.,LY2886721, SCH1381252,CTS21666,others)

Theimpulsivity–compulsivityandaddiction chapterisanotherofthemostextensivelyrevised chaptersinthisfourthedition,significantly expandingthedrugabusechapterofthethird editiontoincludenowalargenumberofrelated “impulsive–compulsive” disordersthat hypotheticallysharethesamebraincircuitry:

neurocircuitryofimpulsivityandreward involvingtheventralstriatum neurocircuitryofcompulsivityandhabits includingdrugaddictionandbehavioral addictioninvolvingthedorsalstriatum “bottom-up” striataldrivesand “top-down” inhibitorycontrolsfromtheprefrontal cortex

updateontheneurobiologyandavailable treatmentsforthedrugaddictions (stimulants,nicotine,alcohol,opioids, hallucinogens,andothers) behavioraladdictions

majornewsectiononobesity,eating disorders,andfoodaddiction,including theroleofhypothalamiccircuitsandnew treatmentsforobesity lorcaserin(Belviq) phentermine/topiramateER(Qsymia) bupropion/naltrexone(Contrave) zonisamide/naltrexone

obsessive–compulsiveandspectrum disorders

gambling,impulsiveviolence,mania, ADHDandmanyothers

Oneofthemajorthemesemphasizedinthisnew editionisthenotionof symptomendophenotypes, ordimensionsofpsychopathologythatcutacross numeroussyndromes.Thisisseenperhapsmostdramaticallyintheorganizationofnumerousdisorders ofimpulsivity/compulsivity,whereimpulsivityand/ orcompulsivityarepresentinmanypsychiatricconditionsandthus “travel” trans-diagnosticallywithout respectingtheDSM(DiagnosticandStatistical Manual)oftheAmericanPsychiatricAssociationor theICD(InternationalClassificationofDiseases).This isthefutureofpsychiatry – thematchingofsymptom endophenotypestohypotheticallymalfunctioning braincircuits,regulatedbygenes,theenvironment, andneurotransmitters.Hypothetically,inefficiencyof informationprocessinginthesebraincircuitscreates symptomexpressioninvariouspsychiatricdisorders thatcanbechangedwithpsychopharmacologic agents.EventheDSMrecognizesthisconceptand callsitResearchDomainCriteria(orRDoC).Thus, impulsivityandcompulsivitycanbeseenasdomains ofpsychopathology;otherdomainsincludemood, cognition,anxiety,motivation,andmanymore.Each chapterinthisfourtheditiondiscusses “symptoms

andcircuits” andhowtoexploitdomainsofpsychopathologybothtobecomeaneurobiologically empoweredpsychopharmacologist,andtoselectand combinetreatmentsforindividualpatientsinpsychopharmacologypractice.

Whathasnotchangedinthisneweditionisthe didacticstyle ofthefirstthreeeditions.Thistext attemptstopresentthefundamentalsofpsychopharmacologyin simplifiedandreadilyreadable form .Weemphasizecurrentformulationsof diseasemechanismsandalsodrugmechanisms. Asinpreviouseditions,thetextisnotextensively referencedtooriginalpapers,butrathertotextbooksandreviewsandafewselectedoriginal papers,withonlyalimitedreadinglistforeach chapter,butpreparingthereadertoconsultmore sophisticatedtextbooksaswellastheprofessional literature.

Theorganizationofinformationcontinuesto applytheprinciplesof programmedlearning for thereader,namelyrepetitionandinteraction, whichhasbeenshowntoenhanceretention.Therefore,itissuggestedthatnovicesfirstapproachthis textbygoingthroughitfrombeginningtoend, reviewingonlythecolorgraphicsandthelegends forthosegraphics.Virtuallyeverythingcoveredin thetextisalsocoveredinthegraphicsandicons. Oncehavinggonethroughallthecolorgraphicsin thesechapters,itisrecommendedthatthereader thengobacktothebeginningofthebook,andread theentiretext,reviewingthegraphicsatthesame time.Afterthetexthasbeenread,theentirebook canberapidlyreviewedagainmerelybyreferring tothevariouscolorgraphicsinthebook.This mechanismofusingthematerialswillcreatea certainamountofprogrammedlearningbyincorporatingtheelementsofrepetition,aswellasinteractionwithvisuallearningthroughgraphics. Hopefully,thevisualconceptslearnedviagraphics willreinforceabstractconceptslearnedfromthe writtentext,especiallyforthoseofyouwhoare primarily “ visuallearners ” (i.e.,thosewhoretain informationbetterfromvisualizingconceptsthan fromreadingaboutthem).Forthoseofyouwho arealreadyfamiliarwithpsychopharmacology,this bookshouldprovideeasyreadingfrombeginning toend.Goingbackandforthbetweenthetextand thegraphicsshouldprovideinteraction.Following reviewofthecompletetext,itshouldbesimpleto reviewtheentirebookbygoingthroughthe graphicsonceagain.

Expansionof EssentialPsychopharmacology books

Thisfourtheditionof EssentialPsychopharmacology istheflagship,butnottheentirefleet,asthe Essential Psychopharmacology serieshasexpandednowtoan entiresuiteofproductsfortheinterestedreader.For thoseofyouinterestedinspecificprescribinginformation,therearenowthreeprescriber ’sguides: forpsychotropicdrugs, Stahl’sEssential Psychopharmacology:thePrescriber’sGuide forneurologydrugs, Essential Neuropharmacology:thePrescriber’sGuide forpaindrugs: EssentialPainPharmacology:the Prescriber’sGuide

Forthoseinterestedinhowthetextbookandprescriber’sguidesgetappliedinclinicalpracticethereis abookcovering40casesfrommyownclinical practice:

CaseStudies:Stahl’sEssentialPsychopharmacology Forteachersandstudentswantingtoassessobjectivelytheirstateofexpertise,topursuemaintenance ofcertificationcreditsforboardrecertificationin psychiatryintheUS,andforbackgroundon instructionaldesignandhowtoteachthereare twobooks:

Stahl’sSelf-AssessmentExaminationinPsychiatry: MultipleChoiceQuestionsforClinicians BestPracticesinMedicalTeaching

Forthoseinterestedinexpandedvisualcoverageof specialtytopicsinpsychopharmacology,thereisthe Stahl’sIllustrated series:

Antidepressants

Antipsychotics:TreatingPsychosis,Maniaand Depression,2ndedition

Anxiety,Stress,andPTSD

AttentionDeficitHyperactivityDisorder ChronicPainandFibromyalgia

MoodStabilizers

SubstanceUseandImpulsiveDisorders

Finally,thereisanever-growingeditedseriesofsubspecialtytopics:

NextGenerationAntidepressants

EssentialEvidence-BasedPsychopharmacology, 2ndedition

EssentialCNSDrugDevelopment

EssentialPsychopharmacologyOnline

Now,youalsohavetheoptionofaccessingallthese booksplusadditionalfeaturesonlinebygoingto EssentialPsychopharmacologyOnline at www.stahlonline. org.Weareproudtoannouncethecontinuingupdate ofthisnewwebsitewhichallowsyoutosearchonline withintheentire EssentialPsychopharmacology suiteof products.Withpublicationofthefourthedition,two newfeatureswillbecomeavailableonthewebsite: downloadableslidesofallthefiguresinthebook narratedanimationsofseveralfiguresinthe textbook,hyperlinkedtotheonlineversionofthe book,playablewithaclick

Inaddition, www.stahlonline.org isnowlinkedto: ournewjournal CNSSpectrums (www.journals. cambridge.org/CNS),ofwhichIamthenew editor-in-chief,andwhichisnowtheofficial journaloftheNeuroscienceEducationInstitute (NEI),freeonlinetoNEImembers.Thisjournal nowfeaturesreadableandillustratedreviewsof currenttopicsinpsychiatry,mentalhealth, neurology,andtheneurosciencesaswellas psychopharmacology theNEIwebsite, www.neiglobal.com:

forCMEcreditsforreadingthebooksandthe journal,andforcompletingnumerous additionalprogramsbothonlineandlive foraccesstothelivecourseandplayback encorefeaturesfromtheannualNEI PsychopharmacologyCongress foraccesstotheNEIMaster PsychopharmacologyProgram,anonline fellowshipwithcertification plansforexpansiontoaCambridgeUniversity HealthPartnersco-accreditedonlineMasterclass andCertificateinPsychopharmacology,based uponliveprogramsheldoncampusinCambridge andtaughtbyUniversityofCambridgefaculty, includingmyself,havingjoinedthefacultythere asanHonoraryVisitingSeniorFellow

Hopefullythereadercanappreciatethatthisisan incrediblyexcitingtimeforthefieldsofneuroscience andmentalhealth,creatingfascinatingopportunities forclinicianstoutilizecurrenttherapeuticsandto anticipatefuturemedicationsthatarelikelytotransformthefieldofpsychopharmacology.Bestwishes foryourfirststeponthisfascinatingjourney.

CMEinformation

Release/expirationdates

Releasedate:February1,2013

CMEcreditexpirationdate:January31,2016(if thisdatehaspassed,pleasecontactNEIforupdated information)

Targetaudience

Thisactivityhasbeendevelopedforprescribersspecializinginpsychiatry.Therearenoprerequisites.All otherhealthcareproviderswhoareinterestedinpsychopharmacologyarewelcomeforadvancedstudy, especiallyprimarycarephysicians,nursepractitioners,psychologists,andpharmacists.

Statementofneed

Psychiatricillnesseshaveaneurobiologicalbasisand areprimarilytreatedbypharmacologicalagents; understandingeachofthese,aswellastherelationshipbetweenthem,isessentialinordertoselect appropriatetreatmentforapatient.Thefieldofpsychopharmacologyhasexperiencedincrediblegrowth; ithasalsoexperiencedamajorparadigmshiftfroma limitedfocusonneurotransmittersandreceptorsto anemphasisaswelluponbraincircuits,neuroimaging,genetics,andsignaltransductioncascades.

Thefollowingunmetneedsandprofessionalpracticegapsregardingmentalhealthwererevealed followingacriticalanalysisofactivityfeedback, expertfacultyassessment,literaturereview,and throughnewmedicalknowledge:

Mentaldisordersarehighlyprevalentandcarry substantialburdenthatcanbealleviatedthrough treatment;unfortunately,manypatientswith mentaldisordersdonotreceivetreatmentor receivesuboptimaltreatment.

Thereisadocumentedgapbetweenevidencebasedpracticeguidelinesandactualcarein clinicalpracticeforpatientswithmentalillnesses.

Thisgapisdueatleastinparttolackofclinician confidenceandknowledgeintermsofappropriate usageofthetherapeutictoolsavailabletothem.

Tohelpaddressclinicianperformancegapswith respecttodiagnosisandtreatmentofmentalhealth disorders,qualityimprovementeffortsneedtoprovideeducationregarding(1)thefundamentalsof neurobiologyasitrelatestothemostrecentresearch regardingtheneurobiologyofmentalillnesses;(2) themechanismsofactionoftreatmentoptionsfor mentalillnessesandtherelationshiptothepathophysiologyofthediseasestates;and(3)newtherapeutictoolsandresearchthatarelikelytoaffect clinicalpractice.

Learningobjectives

Aftercompletingthisactivity,participantsshouldbe betterableto

applyfundamentalprinciplesofneurobiologyto theassessmentofpsychiatricdiseasestates differentiatetheneurobiologicaltargetsfor psychotropicmedications

linktherelationshipofpsychotropicdrug mechanismofactiontothepathophysiologyof diseasestates

identifynovelresearchandtreatmentapproaches thatareexpectedtoaffectclinicalpractice

Accreditationandcreditdesignationstatements

TheNeuroscienceEducationInstitute(NEI)is accreditedbytheAccreditationCouncilforContinuing MedicalEducation(ACCME)toprovidecontinuing medicaleducationforphysicians.

TheNeuroscienceEducationInstitutedesignates thisenduringmaterialforamaximumof67 AMA PRACategory1Credits™.Physiciansshouldclaim onlythecreditcommensuratewiththeextentoftheir participationintheactivity.

Nurses: forallofyourCErequirementsforrecertification,theANCCwillaccept AMAPRACategory1 Credits™ fromorganizationsaccreditedbythe ACCME.

Physicianassistants: theNCCPAaccepts AMAPRA Category1Credits ™ fromorganizationsaccreditedby theAMA(providersaccreditedbytheACCME).

Acertificateofparticipationforcompletingthis activitywillalsobeavailable.

Activityinstructions

ThisCMEactivityisintheformofaprintedmonographandincorporatesinstructionaldesignto enhanceyourretentionoftheinformationand pharmacologicalconceptsthatarebeingpresented. Youareadvisedtogothroughthefiguresinthis activityfrombeginningtoend,followedbythetext, andthencompletetheposttestsandevaluations. Theestimatedtimeforcompletionofthisactivityis 67hours.

InstructionsforCMEcredit

CertificatesofCMEcreditorparticipationareavailableforeachtopicalsectionofthebook(totalof 12sections).Toreceiveasection-specificcertificate ofCMEcreditorparticipation,pleasecompletethe relevantposttestandevaluation,availableonlyonline at www.neiglobal.com/CME (under “Book”).Ifa passingscoreof70%ormoreisattained(required toreceivecredit),youcanimmediatelyprintyour certificate.Thereisafeeforeachposttest(varies persection),whichiswaivedforNEImembers.If youhavequestions,pleasecall888–535–5600,or emailcustomerservice@neiglobal.com.

NEIdisclosurepolicy

ItisthepolicyoftheNeuroscienceEducationInstitutetoensurebalance,independence,objectivity,and scientificrigorinallitseducationalactivities.Therefore,allindividualsinapositiontoinfluenceor controlcontentdevelopmentarerequiredbyNEIto discloseanyfinancialrelationshipsorapparentconflictsofinterest.Althoughpotentialconflictsofinterestareidentifiedandresolvedpriortotheactivity,it remainsfortheaudiencetodeterminewhetheroutsideinterestsreflectapossiblebiasineitherthe expositionortheconclusionspresented.

Thesematerialshavebeenpeer-reviewedtoensure thescientificaccuracyandmedicalrelevanceof informationpresentedanditsindependencefrom

commercialbias.TheNeuroscienceEducationInstitutetakesresponsibilityforthecontent,quality,and scientificintegrityofthisCMEactivity.

Individualdisclosurestatements

AdjunctProfessor,DepartmentofPsychiatry,University ofCalifornia,SanDiegoSchoolofMedicine HonoraryVisitingSeniorFellow,Universityof Cambridge,UK

Grant/research:AstraZeneca,CeNeRxBioPharma,Forest,Genomind,Lilly,Merck,Neuronetics,Pamlab,Pfizer,Roche,Sunovion,Servier, Shire,Torrent,Trovis

Consultant/advisor:Abbott,ACADIA,AstraZeneca, AVANIR,BioMarin,Bristol-MyersSquibb,CeNeRx, Forest,Genomind,GlaxoSmithKline,Johnson& Johnson,Lilly,Lundbeck,Merck,Mylan(f/k/aDey), Neuronetics,Novartis,Noven,OnoPharma,Orexigen, OtsukaAmerica,Pamlab,Pfizer,RCTLOGIC,Rexahn, Roche,Servier,Shire,Sunovion,Trius,Trovis,Valeant Speakersbureau:ArborScientia,AstraZeneca, Forest,Johnson&Johnson,Lilly,Merck,Pfizer,Servier,Sunovion Boardmember:Genomind

Contenteditors

MeghanGrady

Director,ContentDevelopment,NeuroscienceEducationInstitute,Carlsbad,CA

Nofinancialrelationshipstodisclose

DebbiAnnMorrissette,PhD

AdjunctProfessor,BiologicalSciences,CaliforniaState University,SanMarcos MedicalWriter,NeuroscienceEducationInstitute, Carlsbad,CA

Nofinancialrelationshipstodisclose

Peerreviewers

SteveS.Simring,MD

ClinicalAssociateProfessor,DepartmentofPsychiatry, ColumbiaUniversityCollegeofPhysiciansandSurgeons, NewYorkStatePsychiatricInstitute,NewYorkCity

Nofinancialrelationshipstodisclose

ElectaStern,PharmD ClinicalSupervisor,PharmacyServices,SharpGrossmontHospital,LaMesa,CA

Nofinancialrelationshipstodisclose

RonnieG.Swift,MD

ProfessorandAssociateChairman,Departmentof PsychiatryandBehavioralSciences,NewYorkMedical College,Valhalla

ProfessorofClinicalPublicHealth,SchoolofPublic Health,NewYork;NewYorkMedicalCollege,Valhalla

ChiefofPsychiatryandAssociateMedicalDirector, MetropolitanHospitalCenter,NewYorkCity

Nofinancialrelationshipstodisclose

MarkWilliams,MD

AssistantProfessor,DepartmentofPsychiatryand Psychology,MayoClinic,Rochester,MN

Nofinancialrelationshipstodisclose

Designstaff

NancyMuntner

Director,MedicalIllustrations,NeuroscienceEducationInstitute,Carlsbad,CA

Nofinancialrelationshipstodisclose

Disclosedfinancialrelationshipswithconflicts ofinteresthavebeenreviewedbytheNeuroscience EducationInstituteCMEAdvisoryBoardChairand resolved.Allfacultyandplanningcommitteemembers haveattestedthattheirfinancialrelationships,ifany, donotaffecttheirabilitytopresentwell-balanced, evidence-basedcontentforthisactivity.

Disclosureofoff-labeluse

Thiseducationalactivitymayincludediscussionof unlabeledand/orinvestigationalusesofagentsthat arenotcurrentlylabeledforsuchusebytheFDA. Pleaseconsulttheproductprescribinginformation forfulldisclosureoflabeleduses.

Disclaimer

Participantshaveanimpliedresponsibilitytousethe newlyacquiredinformationfromthisactivityto enhancepatientoutcomesandtheirownprofessional development.Theinformationpresentedinthiseducationalactivityisnotmeanttoserveasaguideline forpatientmanagement.Anyprocedures,medications,orothercoursesofdiagnosisortreatment discussedorsuggestedinthiseducationalactivity shouldnotbeusedbyclinicianswithoutevaluation oftheirpatients’ conditionsandpossiblecontraindicationsordangersinuse,reviewofanyapplicable manufacturer’sproductinformation,andcomparison withrecommendationsofotherauthorities.Primary referencesandfullprescribinginformationshouldbe consulted.

Culturalandlinguisticcompetency

Avarietyofresourcesaddressingculturalandlinguistic competencycanbefoundat http://cdn.neiglobal.com/ content/cme/regulations/ca_ab_1195_handout_non-ca_ 2008.pdf.

Sponsor

ThisactivityissponsoredbytheNeuroscienceEducation Institute.

Support

Thisactivityissupportedsolelybythesponsor, NeuroscienceEducationInstitute.

1

Chemicalneurotransmission

Anatomicalversuschemicalbasisof neurotransmission 1

Principlesofchemicalneurotransmission 5

Neurotransmitters 5

Neurotransmission:classic,retrograde, andvolume 6

Excitation–secretioncoupling 8

Signaltransductioncascades 9

Overview 9

Formingasecondmessenger 11

Beyondthesecondmessenger tophosphoproteinmessengers 13

Modernpsychopharmacologyislargelythestoryof chemicalneurotransmission.Tounderstandtheactions ofdrugsonthebrain,tograsptheimpactofdiseases uponthecentralnervoussystem,andtointerpretthe behavioralconsequencesofpsychiatricmedicines, onemustbefluentinthelanguageandprinciplesof chemicalneurotransmission.Theimportanceofthis factcannotbeoverstatedforthestudentofpsychopharmacology.Thischapterformsthefoundationforthe entirebook,andtheroadmapforone’sjourneythrough oneofthemostexcitingtopicsinsciencetoday,namely theneuroscienceofhowdisordersanddrugsactupon thecentralnervoussystem.

Anatomicalversuschemicalbasis ofneurotransmission

Whatisneurotransmission?Neurotransmissioncanbe describedinmanyways:anatomically,chemically,electrically.The anatomical basisofneurotransmissionis neurons(Figures1-1 through 1-3)andtheconnections betweenthem,calledsynapses(Figure1-4),sometimes alsocalledthe anatomicallyaddressed nervoussystem,a complexof “hard-wired” synapticconnectionsbetween

Beyondthesecondmessengertoa phosphoproteincascadetriggeringgene expression 16

Howneurotransmissiontriggersgene expression 18

Molecularmechanismofgeneexpression 18

Epigenetics 24

Whatarethemolecularmechanisms ofepigenetics? 24

Howepigeneticsmaintainsorchanges thestatusquo 26

Summary 26

neurons,notunlikemillionsoftelephonewires withinthousandsuponthousandsofcables.Theanatomicallyaddressedbrainisthusacomplexwiring diagram,ferryingelectricalimpulsestowherever the “ wire” ispluggedin(i.e.,atasynapse).Synapses canformonmanypartsofaneuron,notjustthe dendritesasaxodendriticsynapses,butalsoonthe somaasaxosomaticsynapses,andevenatthebeginningandattheendofaxons(axoaxonicsynapses) (Figure1-2).Suchsynapsesaresaidtobe “asymmetric” sincecommunicationisstructurallydesignedtobein onedirection;thatis,anterogradefromtheaxonofthe firstneurontothedendrite,soma,oraxonofthesecond neuron(Figures1-2 and 1-3).Thismeansthatthereare presynapticelementsthatdifferfrompostsynaptic elements(Figure1-4).Specifically,neurotransmitteris packagedinthepresynapticnerveterminallikeammunitioninaloadedgun,andthenfiredatthepostsynaptic neurontotargetitsreceptors.

Neuronsarethecellsofchemicalcommunication inthebrain.Humanbrainsarecomprisedoftensof billionsofneurons,andeachislinkedtothousands ofotherneurons.Thus,thebrainhastrillionsof specializedconnectionsknownassynapses.Neurons

dendrites

dendritic spines

havemanysizes,lengths,andshapesthatdetermine theirfunctions.Localizationwithinthebrainalso determinesfunction.Whenneuronsmalfunction, behavioralsymptomsmayoccur.Whendrugsalter neuronalfunction,behavioralsymptomsmaybe relieved,worsened,orproduced.

Generalstructureofaneuron .Althoughthis textbookwilloftenportrayneuronswithageneric structure(suchasthatshownin Figures1-1 through 1-3),thetruthisthatmanyneuronshaveunique structuresdependinguponwhereinthebrainthey arelocatedandwhattheirfunctionis.Allneurons haveacellbodyknownasthesoma,andareset upstructurallytoreceiveinformationfromother

Figure1-1. Generalstructureofa neuron. Thisisanartist’sconceptionof thegenericstructureofaneuron.All neuronshaveacellbodyknownasthe soma,whichisthecommandcenterof thenerveandcontainsthenucleusofthe cell.Allneuronsarealsosetupstructurally tobothsendandreceiveinformation. Neuronssendinformationviaanaxon thatformspresynapticterminalsasthe axonpassesby(enpassant)orasthe axonends.

neuronsthroughdendrites,sometimesviaspines onthedendritesandoftenthroughanelaborately branching “tree” ofdendrites(Figure1-2).Neurons arealsosetupstructurallytosendinformationtoother neuronsviaanaxonthatformspresynapticterminals astheaxonpassesby(enpassant, Figure1-1)orasthe axonends(presynapticaxonterminals, Figures1-1 through 1-4).

Neurotransmissionhasan anatomical infrastructure,butitisfundamentallyaveryelegant chemical operation.Complementarytotheanatomically addressednervoussystemisthe chemicallyaddressed nervoussystem,whichformsthe chemical basisof neurotransmission:namely,howchemicalsignals

cell body (soma)
axon
presynaptic axon terminals
en passant presynaptic axon terminals

dendritic tree

axodendritic synapse

axosomatic synapse

axoaxonic (initial segment) synapse

axon

axoaxonic (terminal) synapse

postsynaptic dendrite

dendritic spines

arecoded,decoded,transduced,andsentalong theway.Understandingtheprinciplesofchemical neurotransmissionisafundamentalrequirementfor graspinghowpsychopharmacologicagentswork, becausetheytargetkeymoleculesinvolvedinneurotransmission.Drugtargetingofspecificchemical sitesthatinfluenceneurotransmissionisdiscussed inChapters2and3.

spine synaptic vesicles

postsynaptic density

dendrite

Figure1-2. Axodendritic, axosomatic,andaxoaxonic connections. Afterneuronsmigrate, theyformsynapses.Asshowninthis figure,synapticconnectionscanform notjustbetweentheaxonand dendritesoftwoneurons(axodendritic) butalsobetweentheaxonandthe soma(axosomatic)ortheaxonsofthe twoneurons(axoaxonic). Communicationisanterogradefrom theaxonofthefirstneurontothe dendrite,soma,oraxonofthesecond neuron.

Understandingthechemicallyaddressednervous systemisalsoaprerequisiteforbecominga “neurobiologicallyinformed” clinician:thatis,beingabletotranslateexcitingnewfindingsonbraincircuitry,functional neuroimaging,andgeneticsintoclinicalpractice,and potentiallyimprovingthemannerinwhichpsychiatric disordersandtheirsymptomsarediagnosedand treated.Thechemistryofneurotransmissioninspecific

Classic Synaptic Neurotransmission

reception light

nerve impulse integration chemical encoding electrical encoding signal propagation

neurotransmitter

signal transduction

neurotransmitter

Figure1-3. Classicsynapticneurotransmission. Inclassicsynapticneurotransmission,stimulationofapresynapticneuron(e.g.,by neurotransmitters,light,drugs,hormones,nerveimpulses)causeselectricalimpulsestobesenttoitsaxonterminal.Theseelectricalimpulses arethenconvertedintochemicalmessengersandreleasedtostimulatethereceptorsofapostsynapticneuron.Thus,although communication within aneuroncanbeelectrical,communication between neuronsischemical.

Figure1-4. Enlargedsynapse. Thesynapseisenlargedconceptuallyheretoshowthespecializedstructuresthatenablechemical neurotransmissiontooccur.Specifically,apresynapticneuronsendsitsaxonterminaltoformasynapsewithapostsynapticneuron.Energyfor neurotransmissionfromthepresynapticneuronisprovidedbymitochondriathere.Chemicalneurotransmittersarestoredinsmallvesicles, readyforreleaseuponfiringofthepresynapticneuron.Thesynapticcleftisthegapbetweenthepresynapticneuronandthepostsynaptic neuron;itcontainsproteinsandscaffoldingandmolecularformsof “synapticglue” toreinforcetheconnectionbetweentheneurons. Receptorsarepresentonbothsidesofthiscleftandarekeyelementsofchemicalneurotransmission.

brainregionsandhowtheseprinciplesareappliedto variousspecificpsychiatricdisordersandtreatedwith variousspecificpsychotropicdrugsarediscussed throughouttherestofthebook.

Principlesofchemical neurotransmission

Neurotransmitters

Therearemorethanadozenknownorsuspectedneurotransmittersinthebrain.Forpsychopharmacologists,it isparticularlyimportanttoknowthesixkeyneurotransmittersystemstargetedbypsychotropicdrugs:

Eachisdiscussedindetailintheclinicalchapters relatedtothespecificdrugsthattargetthem.Other neurotransmittersthatarealsoimportantneurotransmittersandneuromodulators,suchashistamineand variousneuropeptidesandhormones,arementioned inbriefthroughouttherelevantclinicalchaptersin thistextbook.

GABA(γ-aminobutyricacid)

Someneurotransmittersareverysimilartodrugs andhavebeencalled “God’spharmacopeia.” For example,itiswellknownthatthebrainmakesitsown morphine(i.e., β-endorphin)anditsownmarijuana (i.e.,anandamide).Thebrainmayevenmakeitsown antidepressants,anxiolytics,andhallucinogens.Drugs oftenmimicthebrain’snaturalneurotransmitters, andsomedrugshavebeendiscoveredpriortothe naturalneurotransmitter.Thus,morphinewasusedin clinicalpracticebeforethediscoveryof β-endorphin; marijuanawassmokedbeforethediscoveryofcannabinoidreceptorsandanandamide;thebenzodiazepines Valium(diazepam)andXanax(alprazolam)were

mitochondrion
synaptic vesicles
synaptic cleft
postsynaptic neuron vesicles releasing neurotransmitter
presynaptic neuron

prescribedbeforethediscoveryofbenzodiazepine receptors;andtheantidepressantsElavil(amitriptyline) andProzac(fluoxetine)enteredclinicalpracticebefore molecularclarificationoftheserotonintransporter site.Thisunderscoresthepointthatthegreatmajorityofdrugsthatactinthecentralnervoussystemact upontheprocessofneurotransmission.Indeed,this apparentlyoccursattimesinamannerthatcan mimictheactionsofthebrainitself,whenthebrain usesitsownchemicals.

Inputtoanyneuroncaninvolvemanydifferent neurotransmitterscomingfrommanydifferentneuronalcircuits.Understandingtheseinputstoneurons withinfunctioningcircuitscanprovidearationalbasis forselectingandcombiningtherapeuticagents.This themeisdiscussedextensivelyineachchapteronthe variouspsychiatricdisorders.Theideaisthatforthe modernpsychopharmacologisttoinfluenceabnormal neurotransmissioninpatientswithpsychiatricdisorders,itmaybenecessarytotargetneuronsinspecific circuits.Sincethesenetworksofneuronssendand receiveinformationviaavarietyofneurotransmitters, itmaythereforebenotonlyrationalbutnecessaryto usemultipledrugswithmultipleneurotransmitter actionsforpatientswithpsychiatricdisorders,especiallyifsingleagentswithsingleneurotransmitter mechanismsarenoteffectiveinrelievingsymptoms.

Neurotransmission:classic,retrograde, andvolume

Classicneurotransmissionbeginswithanelectrical processbywhichneuronssendelectricalimpulses fromonepartofthecelltoanotherpartofthesame cellviatheiraxons(seeneuronAin Figure1-3). However,theseelectricalimpulsesdonotjump directlytootherneurons.Classicneurotransmission betweenneuronsinvolvesoneneuronhurlinga chemicalmessenger,orneurotransmitter,atthe receptorsofasecondneuron(seethesynapse betweenneuronAandneuronBin Figure1-3 ).This happensfrequentlybutnotexclusivelyatthesitesof synapticconnections.Inthehumanbrain,ahundred billionneuronseachmakethousandsofsynapses withotherneuronsforanestimatedtrillionchemicallyneurotransmittingsynapses.

Communication between alltheseneuronsat synapsesischemical,notelectrical.Thatis,anelectricalimpulseinthefirstneuronisconvertedtoa chemicalsignalatthesynapsebetweenitandasecond

neuron,inaprocessknownasexcitation–secretion coupling,thefirststageofchemicalneurotransmission.Thisoccurspredominantlybutnotexclusively inonedirection,fromthe presynaptic axonterminal toasecond postsynaptic neuron(Figures1-2 and 1-3). Finally,neurotransmissioncontinuesinthesecond neuroneitherbyconvertingthechemicalinformation fromthefirstneuronbackintoanelectricalimpulse inthesecondneuron,or,perhapsmoreelegantly,by thechemicalinformationfromthefirstneurontriggeringacascadeoffurtherchemicalmessageswithin thesecondneurontochangethatneuron’smolecular andgeneticfunctioning(Figure1-3).

Aninterestingtwisttochemicalneurotransmissionisthediscoverythatpostsynapticneuronscan also “talkback” totheirpresynapticneurons.They candothisvia retrogradeneurotransmission fromthe secondneurontothefirstatthesynapsebetweenthem (Figure1-5,rightpanel).Chemicalsproducedspecificallyasretrogradeneurotransmittersatsomesynapsesincludetheendocannabinoids(EC,alsoknown as “endogenousmarijuana”),whicharesynthesizedin thepostsynapticneuron.Theyarethenreleasedand diffusetopresynapticcannabinoidreceptorssuchas theCB1orcannabinoid1receptor(Figure1-5,right panel).Anotherretrogradeneurotransmitteristhe gaseousneurotransmitterNO,ornitricoxide,which issynthesizedpostsynapticallyandthendiffusesoutof thepostsynapticmembraneandintothepresynaptic membranetointeractwithcyclicguanosinemonophosphate(cGMP)-sensitivetargetsthere(Figure1-5, rightpanel).AthirdgroupofretrogradeneurotransmitterareneurotrophicfactorssuchasNGF(nerve growthfactor),whichisreleasedfrompostsynaptic sitesandthendiffusestothepresynapticneuron, whereitistakenupintovesiclesandtransportedall thewaybacktothecellnucleusviaretrogradetransportsystemstointeractwiththegenomethere ( Figure1-5 ,rightpanel).Whattheseretrograde neurotransmittershavetosaytothepresynaptic neuronandhowthismodifiesorregulatesthecommunicationbetweenpre-andpostsynapticneuron aresubjectsofintenseactiveinvestigation.

Inadditionto “ reverse ” orretrogradeneurotransmissionatsynapses,someneurotransmissiondoes notneedasynapseatall!Neurotransmissionwithout asynapseiscalled volumeneurotransmission,ornonsynapticdiffusionneurotransmission(examplesare showninFigures 1-6 through 1-8).Chemicalmessengerssentbyoneneurontoanothercanspilloverto

Classic Neurotransmission Versus Retrograde Neurotransmission

AFigure1-6. Volumeneurotransmission. Neurotransmission canalsooccurwithoutasynapse;thisiscalledvolume neurotransmissionornonsynapticdiffusion.Inthisfigure,two anatomicallyaddressedsynapses(neuronsAandB)areshown communicatingwiththeircorrespondingpostsynapticreceptors (aandb,arrows1).However,therearealsoreceptorsfor neurotransmitterA,neurotransmitterB,andneurotransmitterC,

Figure1-5. Retrograde neurotransmission. Notallneurotransmission isclassicoranterogradeorfromtoptobottom –namely,presynaptictopostsynaptic(left). Postsynapticneuronsmayalsocommunicate withpresynapticneuronsfromthebottomto thetopviaretrogradeneurotransmission,from postsynapticneurontopresynapticneuron (right).Someneurotransmittersproduced specificallyasretrogradeneurotransmittersat somesynapsesincludetheendocannabinoids (ECs,or “endogenousmarijuana”),which aresynthesizedinthepostsynaptic neuron,released,anddiffusetopresynaptic cannabinoidreceptorssuchasthecannabinoid 1receptor(CB1);thegaseousneurotransmitter nitricoxide(NO),whichissynthesized postsynapticallyandthendiffusesbothoutof thepostsynapticmembraneandintothe presynapticmembranetointeractwithcyclic guanosinemonophosphate(cGMP)-sensitive targetsthere;andneurotrophicfactorssuchas nervegrowthfactor(NGF),whichisreleased frompostsynapticsitesanddiffusestothe presynapticneuron,whereitistakenupinto vesiclesandtransportedallthewaybacktothe cellnucleusviaretrogradetransportsystemsto interactwiththegenomethere.

sitesdistanttothesynapsebydiffusion(Figure1-6). Thus,neurotransmissioncanoccuratanycompatible receptorwithinthediffusionradiusoftheneurotransmitter,notunlikemoderncommunication withcellulartelephones,whichfunctionwithinthe transmittingradiusofagivencelltower(Figure1-6). Thisconceptispartofthechemicallyaddressednervoussystem,andhereneurotransmissionoccursin chemical “puffs” (Figures1-6 through 1-8).Thebrain isthusnotonlyacollectionofwires,butalsoasophisticated “chemicalsoup.” Thechemicallyaddressed

whicharedistantfromthesynapticconnectionsoftheanatomically addressednervoussystem.IfneurotransmitterAorBcandiffuse awayfromitssynapsebeforeitisdestroyed,itwillbeabletointeract withothermatchingreceptorsitesdistantfromitsownsynapse (arrows2).IfneurotransmitterAorBencountersadifferentreceptor notcapableofrecognizingit(receptorc),itwillnotinteractwith thatreceptorevenifitdiffusesthere(arrow3).Thus,achemical messengersentbyoneneurontoanothercanspilloverbydiffusion tositesdistantfromitsownsynapse.Neurotransmissioncan occuratacompatiblereceptorwithinthediffusionradiusof thematchedneurotransmitter.Thisisanalogoustomodern communicationwithcellulartelephones,whichfunctionwithin thetransmittingradiusofagivencell.Thisconceptiscalledthe chemicallyaddressednervoussystem,inwhichneurotransmission occursinchemical “puffs.” Thebrainisthusnotonlyacollectionof wiresbutalsoasophisticated “chemicalsoup.”

nervoussystemisparticularlyimportantinmediating theactionsofdrugsthatactatvariousneurotransmitterreceptors,sincesuchdrugswillactwhereverthere arerelevantreceptors,andnotjustwheresuchreceptorsareinnervatedwithsynapsesbytheanatomically addressednervoussystem.Modifyingvolumeneurotransmissionmayindeedbeamajorwayinwhich severalpsychotropicdrugsworkinthebrain.

Agoodexampleofvolumeneurotransmissionis dopamineactionintheprefrontalcortex.Herethere areveryfewdopaminereuptaketransportpumps(dopaminetransportersorDATs)toterminatetheactionof dopaminereleasedintheprefrontalcortexduringneurotransmission.Thisismuchdifferentfromotherbrain areas,suchasthestriatum,wheredopaminereuptake pumpsarepresentinabundance.Thus,whendopamine neurotransmissionoccursatasynapseintheprefrontal cortex,dopamineisfreetospilloverfromthatsynapse anddiffusetoneighboringdopaminereceptorstostimulatethem,eventhoughthereisnosynapseatthese “spillover” sites(Figure1-7).

Anotherimportantexampleofvolumeneurotransmissionisatthesitesofautoreceptorsonmonoamine

Figure1-7. Volume neurotransmission:dopamine. An exampleofvolumeneurotransmission wouldbethatofdopamineinthe prefrontalcortex.Sincetherearefew dopaminereuptakepumpsinthe prefrontalcortex,dopamineisavailable todiffusetonearbyreceptorsites.Thus, dopaminereleasedfromasynapse (arrow1)targetingpostsynapticneuron Aisfreetodiffusefurtherintheabsence ofareuptakepumpandcanreach dopaminereceptorsonthatsame neuronbutoutsideofthesynapsefrom whichitwasreleased,onneighboring dendrites(arrow2).Shownhereis dopaminealsoreachingextrasynaptic receptorsonaneighboringneuron (arrow3).

neurons(Figure1-8).Atthesomatodendriticendofthe neuron(topoftheneuronsinFigure 1-8)areautoreceptorsthatinhibitthereleaseofneurotransmitterfrom theaxonalendoftheneuron(bottomoftheneuronsin Figure1-8).Althoughsomerecurrentaxoncollaterals andothermonoamineneuronsmaydirectlyinnervate somatodendriticreceptors,theseso-calledsomatodendriticautoreceptorsalsoreceiveneurotransmitterfrom dendriticrelease(Figure1-8,middleandrightpanels). Thereisnosynapsehere,justneurotransmitterleaked fromtheneuronuponitsownreceptors.Thenatureofa neuron ’sregulationbyitssomatodendriticautoreceptorsisasubjectofintenseinterest,andistheoretically linkedtothemechanismofactionofmanyantidepressants,aswillbeexplainedin Chapter7.Thetake-home pointhereisthatnotallchemicalneurotransmission occursatsynapses.

Excitation– secretioncoupling

Anelectricalimpulseinthefirst – orpresynaptic –neuronisconvertedintoachemicalsignalatthe synapsebyaprocessknownas excitation–secretion

autoreceptor synaptic vesicles dendritic monoamine

Figure1-8. Volumeneurotransmission:monoamineautoreceptors. Anotherexampleofvolumeneurotransmissioncouldinvolve autoreceptorsonmonoamineneurons.Autoreceptorslocatedonthedendritesandsomaofaneuron(atthetopoftheneuronintheleft panel)normallyinhibitreleaseofneurotransmitterfromtheaxonofthatneuron(atthebottomoftheneuronintheleftpanel),andthus inhibitimpulseflowthroughthatneuronfromtoptobottom.Monoaminesreleasedfromthedendritesofthisneuron(atthetopofthe neuroninthemiddlepanel),thenbindtotheseautoreceptors(atthetopoftheneuronintherightpanel)andwouldinhibitneuronalimpulse flowinthatneuron(fromthebottomoftheneuronintherightpanel).Thisactionoccursduetovolumeneurotransmissionanddespite theabsenceofsynapticneurotransmissioninthesomatodendriticareasoftheseneurons.

coupling.Onceanelectricalimpulseinvadesthe presynapticaxonterminal,itcausesthereleaseof chemicalneurotransmitterstoredthere(Figures1-3 and 1-4).Electricalimpulsesopenionchannels –both voltage-sensitivesodiumchannels (VSSCs)and voltage-sensitivecalciumchannels (VSCCs) – by changingtheionicchargeacrossneuronalmembranes. Assodiumflowsintothepresynapticnervethrough sodiumchannelsintheaxonmembrane,theelectrical chargeoftheactionpotentialmovesalongtheaxon untilitreachesthepresynapticnerveterminal,whereit alsoopenscalciumchannels.Ascalciumflowsintothe presynapticnerveterminal,itcausessynapticvesicles anchoredtotheinnermembranetospilltheirchemical contentsintothesynapse.Thewayispavedfor chemicalcommunicationbyprevioussynthesisof neurotransmitterandstorageofneurotransmitterin thefirstneuron’spresynapticaxonterminal.

Excitation–secretioncouplingisthusthewaythat theneurontransducesanelectricalstimulusintoa

chemicalevent.Thishappensveryquicklyoncethe electricalimpulseentersthepresynapticneuron.Itis alsopossiblefortheneurontotransduceachemical messagefromapresynapticneuronbackintoan electricalchemicalmessageinthepostsynaptic neuronbyopeningionchannelslinkedtoneurotransmittersthere.Thisalsohappensveryquicklywhen chemicalneurotransmittersopenionchannelsthat changetheflowofchargeintotheneuron,andultimately,actionpotentialsinthepostsynapticneuron. Thus,theprocessofneurotransmissionisconstantly transducingchemicalsignalsintoelectricalsignals, andelectricalsignalsbackintochemicalsignals.

Signaltransductioncascades Overview

Neurotransmissioncanbeseenaspartofamuch largerprocessthanjustthecommunicationofa presynapticaxonwithapostsynapticneuronatthe

Figure1-9. Signaltransductioncascade. Thecascadeofeventsthatoccursfollowingstimulationofapostsynapticreceptorisknownas signaltransduction.Signaltransductioncascadescanactivatethird-messengerenzymesknownaskinases,whichaddphosphategroups toproteinstocreatephosphoproteins(ontheleft).Othersignaltransductioncascadescanactivatethird-messengerenzymesknownas phosphatases,whichremovephosphatesfromphosphoproteins(ontheright).Thebalancebetweenkinaseandphosphataseactivity, signaledbythebalancebetweenthetwoneurotransmittersthatactivateeachofthem,determinesthedegreeofdownstreamchemical activitythatgetstranslatedintodiversebiologicalresponses,suchasgeneexpressionandsynaptogenesis.

synapsebetweenthem.Thatis,neurotransmission canalsobeseenascommunicationfromthegenome ofthepresynapticneuron(neuronAin Figure1-3 ) tothegenomeofthepostsynapticneuron(neuron Bin Figure1-3),andthenbackfromthegenomeof thepostsynapticneurontothegenomeofthepresynapticneuronviaretrogradeneurotransmission (rightpanelin Figure1-5 ).Suchaprocessinvolves longstringsofchemicalmessageswithinbothpresynapticandpostsynapticneurons,calledsignal transductioncascades.

Signaltransductioncascadestriggeredbychemicalneurotransmissionthusinvolvenumerous molecules,startingwithneurotransmitterfirstmessenger,andproceedingtosecond,third,fourth,and moremessengers(Figures1-9 through 1-30 ).The initialeventsoccurinlessthanasecond,butthe long-termconsequencesaremediatedbydownstreammessengersthattakehourstodaystoactivate,yetcanlastformanydaysorevenforthe lifetimeofasynapseorneuron( Figure1-10 ).Signal transductioncascadesaresomewhatakintoa molecular “ ponyexpress ” withspecializedmolecules actingasasequenceofriders,handingonthemessagetothenextspecializedmolecule,untilthe messagehasreachedafunctionaldestination,such asgeneexpressionoractivationofotherwise “sleeping ” andinactivemolecules(seeforexample, Figures1-9 through 1-19 ).

Anoverviewofsuchamolecular “ ponyexpress, ” fromfirst-messengerneurotransmitterthroughseveral “molecularriders” totheproductionofdiverse biologicalresponses,isshownin Figure1-9.Specifically,afirst-messengerneurotransmitteronthe leftactivatestheproductionofachemicalsecond messengerthatinturnactivatesathirdmessenger, namelyanenzymeknownasakinasethataddsphosphategroupstofourth-messengerproteinstocreate phosphoproteins(Figure1-9,left).Anothersignal transductioncascadeisshownontherightwitha first-messengerneurotransmitteropeninganion channelthatallowscalciumtoentertheneuronand

Time Course of Signal Transduction

actasthesecondmessengerforthiscascadesystem (Figure1-9,right).Calciumthenactivatesadifferent thirdmessenger,namelyanenzymeknownasaphosphatasethatremovesphosphategroupsfromfourthmessengerphosphoproteinsandthusreversesthe actionsofthethirdmessengerontheleft.Thebalance betweenkinaseandphosphataseactivity,signaledby thebalancebetweenthetwoneurotransmittersthat activateeachofthem,determinesthedegreeof downstreamchemicalactivitythatgetstranslatedinto activefourthmessengersabletotriggerdiversebiologicalresponses,suchasgeneexpressionandsynaptogenesis(Figure1-9).Eachmolecularsitewithinthe transductioncascadeofchemicalandelectricalmessagesisapotentiallocationforamalfunctionassociatedwithamentalillness;itisalsoapotentialtarget forapsychotropicdrug.Thus,thevariouselementsof multiplesignaltransductioncascadesplayvery importantrolesinpsychopharmacology.

Fourofthemostimportantsignaltransduction cascadesinthebrainareshownin Figure1-11 . TheseincludeG-protein-linkedsystems,ionchannel-linkedsystems, hormone-linkedsystems, andneurotrophin-linkedsystems.Therearemany chemicalmessengersforeachofthesefourcritical signaltransductioncascades;theG-protein-linked andtheion-channel-linkedcascadesaretriggered

Figure1-10. Timecourseofsignal transduction. Thetimecourseofsignal transductionisshownhere.Theprocess beginswithbindingofafirstmessenger (bottom),whichleadstoactivationof ionchannelsorenzymaticformation ofsecondmessengers.This,inturn, cancauseactivationofthirdand fourthmessengers,whichareoften phosphoproteins.Ifgenesare subsequentlyactivated,thisleadstothe synthesisofnewproteins,whichcanalter theneuron’sfunctions.Onceinitiated,the functionalchangesduetoprotein activationornewproteinsynthesiscan lastforatleastmanydaysandpossibly muchlonger.Thus,theultimateeffects ofsignaltransductioncascadestriggered bychemicalneurotransmissionarenot onlydelayedbutalsolong-lasting.

byneurotransmitters( Figure1-11).Manyofthe psychotropicdrugsusedinclinicalpracticetoday targetoneofthesetwosignaltransductioncascades. DrugsthattargettheG-protein-linkedsystemare discussedin Chapter2;drugsthattargettheionchannel-linkedsystemarediscussedin Chapter3 .

Formingasecondmessenger

Eachofthefoursignaltransductioncascades (Figure1-11)passesitsmessagefromanextracellular firstmessengertoanintracellularsecondmessenger. InthecaseofG-protein-linkedsystems,thesecond messengerisachemical,butinthecaseofanionchannel-linkedsystem,thesecondmessengercanbe anionsuchascalcium(Figure1-11).Forsome hormone-linkedsystems,asecondmessengeris formedwhenthehormonefindsitsreceptorinthe cytoplasmandbindstoittoformahormone–nuclear receptorcomplex(Figure1-11).Forneurotrophins,a complexsetofvarioussecondmessengersexist (Figure1-11),includingproteinsthatarekinase enzymeswithanalphabetsoupofcomplicatednames. Thetransductionofanextracellularfirstneurotransmitterfromthepresynapticneuronintoan intracellularsecondmessengerinthepostsynaptic neuronisknownindetailforsomesecond-messenger

G-protein-linked neurotransmitter

First Messenger

Second Messenger

Fourth Messenger/ Gene Expression ion-channel-linked neurotransmitter

Third Messenger

Figure1-11. Differentsignaltransductioncascades. Fourofthemostimportantsignaltransductioncascadesinthebrainareshown here.TheseincludeG-protein-linkedsystems,ion-channel-linkedsystems,hormone-linkedsystems,andneurotrophin-linkedsystems.Each beginswithadifferentfirstmessengerbindingtoauniquereceptor,leadingtoactivationofverydifferentdownstreamsecond,third,and subsequentchemicalmessengers.Havingmanydifferentsignaltransductioncascadesallowsneuronstorespondinamazinglydiverse biologicalwaystoawholearrayofchemicalmessagingsystems.Neurotransmitters(NT)activateboththeG-protein-linkedsystemandthe ion-channel-linkedsystemontheleft,andbothofthesesystemsactivategenesinthecellnucleusbyphosphorylatingaproteintherecalled cAMPresponseelement-bindingprotein(CREB).TheG-protein-linkedsystemworksthroughacascadeinvolvingcAMP(cyclicadenosine monophosphate)andproteinkinaseA,whereastheion-channel-linkedsystemworksthroughcalciumanditsabilitytoactivateadifferent kinasecalledcalcium/calmodulin-dependentproteinkinase(CaMK).Certainhormones,suchasestrogenandothersteroids,canenterthe neuron,findtheirreceptorsinthecytoplasm,andbindthemtoformahormone–nuclearreceptorcomplex.Thiscomplexcanthenenter thecellnucleustointeractwithhormoneresponseelements(HRE)theretotriggeractivationofspecificgenes.Finally,theneurotrophin systemonthefarrightactivatesaseriesofkinaseenzymes,withaconfusingalphabetsoupofnames,totriggergeneexpression,whichmay controlsuchfunctionsassynaptogenesisandneuronalsurvival.RasisaGprotein,Rafisakinase,andtheotherelementsinthiscascadeare proteinsaswell(MEKstandsformitogen-activatedproteinkinase/extracellular-signal-regulatedkinase;ERKstandsforextracellular-signalregulatedkinaseitself;RSKisribosomalS6kinase;MAPKisMAPkinaseitself,andGSK-3isglycogensynthasekinase3).

systems,suchasthosethatarelinkedtoGproteins (Figures1-12 through 1-15).Therearefourkeyelementstothissecond-messengersystem: thefirst-messengerneurotransmitter; areceptorfortheneurotransmitterthatbelongsto thereceptorsuperfamilyinwhichallhavethe structureofseventransmembraneregions (designatedbythenumber7onthereceptorin Figures1-12 through 1-15);

aGproteincapableofbindingbothtocertain conformationsoftheneurotransmitterreceptor (7)andtoanenzymesystem(E)thatcan synthesizethesecondmessenger; andfinallytheenzymesystemitselfforthesecond messenger.

Thefirststepistheneurotransmitterbindingtoits receptor(Figure1-13).Thischangestheconformation ofthereceptorsoitcannowfitwiththeGprotein,as

Figure1-12. ElementsofG-protein-linkedsystem. Shownhere arethefourelementsofaG-protein-linkedsecond-messengersystem. Thefirstelementistheneurotransmitteritself,sometimesalsoreferred toasthefirstmessenger.ThesecondelementistheG-protein-linked neurotransmitterreceptor,whichisaproteinwithseven transmembraneregions.Thethirdelement,aGprotein,isaconnecting protein.Thefourthelementofthesecond-messengersystemisan enzyme(E),whichcansynthesizeasecondmessengerwhenactivated.

indicatedbythereceptor(7)turninggreenanditsshape changingatthebottom.Nextcomesthebindingofthe Gproteintothisnewconformationofthereceptor–neurotransmittercomplex(Figure1-14).Thetworeceptorscooperatewitheachother:namely,theneurotransmitterreceptoritselfandtheGprotein,whichcanbe thoughtofasanothertypeofreceptorassociatedwith theinnermembraneofthecell.Thiscooperationis indicatedinFigure 1-14 bytheGproteinturninggreen anditsconformationchangingontherightsoitisnow capableofbindingtoanenzyme(E)thatsynthesizesthe secondmessenger.Finally,theenzyme,inthiscase adenylatecyclase,bindstotheGproteinandsynthesizes cAMP(cyclicadenosinemonophosphate),whichserves assecondmessenger(Figure1-15).Thisisindicatedin Figure1-15 bytheenzymeturninggreenandgenerating cAMP(theiconwithnumber2onit).

Beyondthesecondmessenger tophosphoproteinmessengers

Recentresearchhasbeguntoclarifythecomplex molecularlinksbetweenthesecondmessengerandits ultimateeffectsuponcellularfunctions.Theselinksare

The first messenger causes the receptor to change

G protein can now bind to the receptor

Figure1-13. Firstmessenger. Inthisfigure,theneurotransmitter hasdockedintoitsreceptor.Thefirstmessengerdoesitsjob bytransformingtheconformationofthereceptorsothatthereceptor canbindtotheGprotein,indicatedherebythereceptorturningthe samecolorastheneurotransmitterandchangingitsshapeatthe bottominordertomakeitcapableofbindingtotheGprotein.

specificallythethird,fourth,andsubsequentchemical messengersinthesignaltransductioncascadesshown in Figures1-9, 1-11,and 1-16 through 1-30.Eachofthe fourclassesofsignaltransductioncascadesshownin Figure1-11 notonlybeginswithadifferentfirstmessengerbindingtoauniquereceptor,butalsoleadsto activationofverydifferentdownstreamsecond,third, andsubsequentchemicalmessengers.Havingmany differentsignaltransductioncascadesallowsneurons torespondinamazinglydiversebiologicalwaystoa wholearrayofchemicalmessagingsystems.

Whatistheultimatetargetofsignaltransduction? Therearetwomajortargetsofsignaltransduction: phosphoproteinsandgenes.Manyoftheintermediate targetsalongthewaytothegenearephosphoproteins, suchasthefourth-messengerphosphoproteinsshown in Figures1-18 and 1-19 thatliedormantintheneuron untilsignaltransductionwakesthemupandtheycan springintoaction.

Theactionsshownin Figure1-9 onfourthmessengerphosphoproteinsastargetsofsignaltransductioncanbeseeninmoredetailin Figures1-16 through 1-19.Thus,onesignaltransductionpathway canactivateathird-messengerkinasethroughsecondmessengercAMP(Figure1-16),whereasanothersignal transductionpathwaycanactivateathird-messenger phosphatasethroughsecond-messengercalcium

Once bound to the receptor, the G protein changes shape so it can bind to an enzyme capable of synthesizing a second messenger.

Figure1-14. Gprotein. Thenextstageinproducingasecond messengerisforthetransformedneurotransmitterreceptorto bindtotheGprotein,depictedherebytheGproteinturningthe samecolorastheneurotransmitteranditsreceptor.Bindingofthe binaryneurotransmitterreceptorcomplextotheGproteincauses yetanotherconformationalchange,thistimeintheGprotein, representedhereasachangeintheshapeoftheright-handsideof theGprotein.ThispreparestheGproteintobindtotheenzyme capableofsynthesizingthesecondmessenger.

Once this binding takes place, the second messenger will be released.

Figure1-15. Secondmessenger. Thefinalstepinformation ofthesecondmessengerisfortheternarycomplex neurotransmitter–receptor–Gproteintobindtoamessengersynthesizingenzyme,depictedherebytheenzymeturningthe samecolorastheternarycomplex.Oncetheenzymebindstothis ternarycomplex,itbecomesactivatedandcapableofsynthesizing thesecondmessenger.Thus,itisthecooperationofallfour elements,wrappedtogetherasaquaternarycomplex,thatleads totheproductionofthesecondmessenger.Informationfromthe firstmessengerthuspassestothesecondmessengerthroughuseof receptor–Gprotein–enzymeintermediaries.

Activating a Third-Messenger Kinase through Cyclic AMP

Figure1-16. Third-messengerproteinkinase. Thisfigureillustratesactivationofathird-messengerproteinkinasethroughthe second-messengercAMP.Neurotransmittersbegintheprocessofactivatinggenesbyproducingasecondmessenger(cAMP),asshownin Figures 1-12 through 1-15.Somesecondmessengersactivateintracellularenzymesknownasproteinkinases.Thisenzymeisshownhereas inactivewhenitispairedwithanothercopyoftheenzymeplustworegulatoryunits(R).Inthiscase,twocopiesofthesecondmessenger interactwiththeregulatoryunits,dissociatingthemfromtheproteinkinasedimer.Thisdissociationactivateseachproteinkinase,readyingthis enzymetophosphorylateotherproteins.

Activating a Third-Messenger Phosphatase through Calcium

(Figure1-17).Inthecaseofkinaseactivation,twocopies ofthesecondmessengertargeteachregulatoryunitof dormantor “sleeping” proteinkinase(Figure1-16). Whensomeproteinkinasesareinactive,theyexistin dimers(twocopiesoftheenzyme)whilebindingtoa regulatoryunit,thusrenderingtheminaconformation thatisnotactive.Inthisexample,whentwocopiesof cAMPbindtoeachregulatoryunit,theregulatoryunit dissociatesfromtheenzyme,thedimerdissociatesinto twocopiesoftheenzyme,andtheproteinkinaseisnow activated,shownwithbowandarrowreadytoshoot phosphategroupsintounsuspectingfourth-messenger phosphoproteins(Figure1-16).

Meanwhile,thenemesisofproteinkinaseisalso forming,namelyaproteinphosphatase(Figure1-17).

Anotherfirstmessengerisopeninganionchannel here,allowingsecond-messengercalciumtoenter, whichactivatesthephosphataseenzymecalcineurin.

Figure1-17. Third-messenger phosphatase. Thisfigureillustrates activationofathird-messenger phosphatasethroughthesecondmessengercalcium.Shownhereis calciumbindingtoaninactive phosphataseknownascalcineurin, therebyactivatingitandthusreadying ittoremovephosphatesfrom fourth-messengerphosphoproteins.

Inthepresenceofcalcium,calcineurinbecomesactivated,shownwithscissorfingersreadytoripphosphategroupsofffourth-messengerphosphoproteins (Figure1-17).

Theclashbetweenkinaseandphosphatasecanbe seenbycomparingwhathappensin Figures1-18 and 1-19.In Figure1-18,third-messengerkinaseis puttingphosphatesontovariousfourth-messenger phosphoproteinssuchasligand-gatedionchannels, voltage-gatedionchannels,andenzymes.In Figure1-19, third-messengerphosphataseistakingthosephosphatesoff.Sometimesphosphorylationactivatesa dormantphosphoprotein;forotherphosphoproteins, dephosphorylationcanbeactivating.Activationof fourth-messengerphosphoproteinscanchangethesynthesisofneurotransmitters,alterneurotransmitter release,changetheconductanceofions,andgenerally maintainthechemicalneurotransmissionapparatusin

Third-Messenger Kinase put Phosphates on Critical Proteins

eitherastateofreadinessordormancy.Thebalance betweenphosphorylationanddephosphorylationof fourth-messengerkinasesandphosphatasesplaysa vitalroleinregulatingmanymoleculescriticaltothe chemicalneurotransmissionprocess.

Beyondthesecondmessengerto aphosphoproteincascadetriggering geneexpression

Theultimatecellularfunctionthatneurotransmission oftenseekstomodifyisgeneexpression,either turningageneonorturningageneoff.Allfour signaltransductioncascadesshownin Figure1-11 endwiththelastmoleculeinfluencinggenetranscription.Bothcascadestriggeredbyneurotransmittersare shownactingupontheCREBsystem,whichis responsivetophosphorylationofitsregulatoryunits (Figure1-11 ontheleft).CREBiscAMPresponse

Figure1-18. Third-messengerkinase putsphosphatesoncriticalproteins. Heretheactivationofathird-messenger kinaseaddsphosphatestoavarietyof phosphoproteins,suchasligand-gated ionchannels,voltage-gatedionchannels, andvariousregulatoryenzymes. Addingaphosphategrouptosome phosphoproteinsactivatesthem;for otherproteins,thisinactivatesthem.

element-bindingprotein,atranscriptionfactorinthe cellnucleuscapableofactivatingexpressionofgenes, especiallyatypeofgeneknownasimmediategenesor immediateearlygenes.WhenG-protein-linkedreceptorsactivateproteinkinaseA,thisactivatedenzyme cantranslocateormoveintothecellnucleusandstick aphosphategrouponCREB,thusactivatingthis transcriptionfactorandcausingthenearbygeneto becomeactivated.Thisleadstogeneexpression,first asRNAandthenastheproteincodedbythegene.

Interestingly,itisalsopossibleforion-channel-linked receptorsthatenhanceintracellularsecond-messenger calciumlevelstoactivateCREBbyphosphorylatingit. Aproteinknownascalmodulin,whichinteractswith calcium,canleadtoactivationofcertainkinases calledcalcium/calmodulin-dependentproteinkinases (Figure1-11).Thisisanentirelydifferentenzymethan thephosphataseshownin Figures1-9, 1-17 and 1-19 Here,akinaseandnotaphosphataseisactivated. Whenactivated,thiskinasecantranslocateintothe

Phosphatases Undo what Kinases Create - Take Phosphates Off Critical Proteins

Figure1-19. Third-messengerphosphataseremovesphosphatesfromcriticalproteins. Incontrasttothepreviousfigure,thethird messengerhereisaphosphatase;thisenzymeremovesphosphategroupsfromphosphoproteinssuchasligand-gatedionchannels, voltage-gatedionchannels,andvariousregulatoryenzymes.Removingaphosphategroupfromsomephosphoproteinsactivatesthem; forothers,itinactivatesthem.

cellnucleusand,justlikethekinaseactivatedbythe G-proteinsystem,addaphosphategrouptoCREB andactivatethistranscriptionfactorsothatgene expressionistriggered.

Itisimportanttobearinmindthatcalciumisthus abletoactivatebothkinasesandphosphatases.Thereis averyrichandsometimesconfusingarrayofkinases andphosphatases,andthenetresultofcalciumactionis dependentuponwhatsubstratesareactivated,because differentphosphatasesandkinasestargetverydifferent substrates.Thus,itisimportanttokeepinmindthe specificsignaltransductioncascadeunderdiscussion, andthespecificphosphoproteinsactingasmessengers inthecascade,inordertounderstandtheneteffectof varioussignaltransductioncascades.Inthecaseillustratedin Figure1-11,theG-proteinsystemandtheionchannelsystemareworkingtogethertoproducemore activatedkinasesandthusmoreactivationofCREB.

However,in Figures1-9,and 1-16 through 1-19,they areworkinginopposition.

Genesarealsotheultimatetargetofthehormone signaltransductioncascadein Figure1-11.Some

hormones,suchasestrogen,thyroid,andcortisol,act atcytoplasmicreceptors,bindthem,andproducea hormone–nuclearreceptorcomplexthattranslocates tothecellnucleus,findselementsinthegenethatit caninfluence(calledhormoneresponseelements, orHREs),andthenactsasatranscriptionfactorto triggeractivationofnearbygenes(Figure1-11).

Finally,averycomplicatedsignaltransduction systemwithterrible-soundingnamesfortheirdownstreamsignalcascademessengersisactivatedby neurotrophinsandrelatedmolecules.Activatingthis systembyfirst-messengerneurotrophinsleadstoactivationofenzymesthataremostlykinases,onekinase activatinganotheruntilfinallyoneofthemphosphorylatesatranscriptionfactorinthecellnucleusandstarts transcribinggenes(Figure1-11).RasisaGproteinthat activatesacascadeofkinaseswithconfusingnames.For thosewhoaregoodsportswithaninterestinthespecifics,thiscascadestartswithRasactivatingRaf,which phosphorylatesandactivatesMEK(MAPkinase/ERK kinase,ormitogen-activatedproteinkinase/extracellularsignal-regulatedkinasekinase),whichactivatesERK

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.