Full Download General relativity : a concise introduction carlip PDF DOCX

Page 1


General relativity : a concise introduction Carlip

Visit to download the full and correct content document: https://ebookmass.com/product/general-relativity-a-concise-introduction-carlip/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Window on Humanity: A Concise Introduction to General Anthropology 8th Edition, (Ebook PDF)

https://ebookmass.com/product/window-on-humanity-a-conciseintroduction-to-general-anthropology-8th-edition-ebook-pdf/

Window on Humanity: A Concise Introduction to General Anthropology 8th Edition Conrad Kottak

https://ebookmass.com/product/window-on-humanity-a-conciseintroduction-to-general-anthropology-8th-edition-conrad-kottak/

Window on Humanity: A Concise Introduction to General Anthropology 7th Edition – Ebook PDF Version

https://ebookmass.com/product/window-on-humanity-a-conciseintroduction-to-general-anthropology-7th-edition-ebook-pdfversion/

Introducing General Relativity Mark Hindmarsh

https://ebookmass.com/product/introducing-general-relativitymark-hindmarsh/

Special relativity, electrodynamics, and general relativity : from Newton to Einstein Second Edition Kogut

https://ebookmass.com/product/special-relativity-electrodynamicsand-general-relativity-from-newton-to-einstein-second-editionkogut/

Relativity Made Relatively Easy. Volume 2: General Relativity and Cosmology Andrew M. Steane

https://ebookmass.com/product/relativity-made-relatively-easyvolume-2-general-relativity-and-cosmology-andrew-m-steane/

(eBook PDF) Weather: A Concise Introduction

https://ebookmass.com/product/ebook-pdf-weather-a-conciseintroduction/

A Concise Introduction to Logic – Ebook PDF Version

https://ebookmass.com/product/a-concise-introduction-to-logicebook-pdf-version/

A Concise Introduction to Logic 13th Edition, (Ebook PDF)

https://ebookmass.com/product/a-concise-introduction-tologic-13th-edition-ebook-pdf/

GeneralRelativity

GeneralRelativity

AConciseIntroduction

TheUniversityofCaliforniaatDavis

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c StevenCarlip2019

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2018957383

ISBN978–0–19–882215–8(hbk.) ISBN978–0–19–882216–5(pbk.)

DOI:10.1093/oso/9780198822158.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

InmemoryofBryceDeWittandCecileDeWitt-Morette

Preface

Generalrelativitywasbornin1915,theculminationofeightyearsofwork,byEinstein andothers,aimedatreconcilingspecialrelativityandNewton’saction-at-a-distance gravity.Inmuchofthecenturythatfollowed,mostphysicistsviewedtheresultwith ambivalence.Generalrelativitywasseenasabeautiful,eleganttheory,amodelof whatphysicsshouldbe;butatthesametime,itwasatheorythatseemedalmost completelydivorcedfromtherestofphysics.

Thebeautywasobvious.Einsteinhadidentifiedanassumptionthathadbeen takenforgranted,thatspacetimewasflatandnondynamical;hehadchangeditinthe simplestwaypossible;andoutofthatsinglestephadsprungallofNewtoniangravity, smallbutmeasurablecorrections,andacompletelynewviewofcosmology.Butthe irrelevancealsoseemedobvious.Generalrelativityremainedstubbornlyoutsidethe quantumrevolutionthatwassweepingthroughphysics,and,asapracticalmatter,the bestavailabletechnologyhadtobestretchedtoitslimitstodetectthetinydeviations fromNewtoniangravity.

Thingshavechanged.Generalrelativityisstillwidelyviewedasthemodelofeleganceinphysics,thoughsomearguethatitssimplicitymaybeanaccidentallow energymanifestationofamorecomplicatedhighenergytheory.Buttheseparation fromtherestofphysicshasended.Cosmologistscannolongerrelyonafewsimple solutionsoftheEinsteinfieldequations;theymustunderstandperturbations,gravitationallensing,andalternativetheoriesofgravity.Gravitationalwavesareopening upanentirelynewwindowintotheUniverse,allowingustoobservephenomenasuch asblackholemergersthatwouldotherwisebecompletelyinvisible.Highenergytheoristsfinditincreasinglydifficulttoescapethequestionofan“ultravioletcompletion,” ahighenergylimitthatwillalmostcertainlyhavetoincorporatequantumgravity. Evensomecondensedmatterandheavyionphysicistsarelookingatthepeculiarlinks betweentheirfieldsandgravitysuggestedbytheAdS/CFTcorrespondence,andnew researchonevaporatingblackholesispointingtowardsurprisingconnectionsbetween generalrelativityandquantuminformationtheory.

Thismakesadifferenceinhowweteach,andlearn,generalrelativity.Acourse shouldbeajumping-offpointforpeoplegoinginmanydifferentdirections.Itshouldn’t bemathematicallysloppy—studentswillstillneedtoread,andperhapswrite,mathematicallysophisticatedpapers—butitshouldmoveasquicklyaspossibletophysics.It shouldtantalize,offeringstudentsglimpsesofthevastlandscapeofscienceconnected togeneralrelativitywithouttryingtoexplaineverythingatonce.

ThisbookhasgrownoutofanintroductorygraduatecourseI’vetaughtatthe UniversityofCaliforniaatDavissince1991.Davisoperatesonaquartersystem—in practice,about25hoursofinstructionpercourse—andI’vetriedtowriteatextbook thatcouldbeusedforsuchacourse,althoughinstructorswithmoretimeshouldfind

Preface

iteasytoaddmaterial.Thebookisdirectedprimarilytowardgraduatestudents,but myclasseshaveoftenincludedafewundergraduates,whohavekeptupwithouttoo muchextrawork.Iassumebasicknowledgeofspecialrelativity(includingfour-vectors andLorentzinvariance),somefamiliaritywithLagrangiansandvariationalprinciples, areasonablelevelofcomfortwithpartialdifferentialequationsandlinearalgebra,and anacquaintancewithasmallbitofsettheory(opensets,intersections,andthelike), butnopriorknowledgeofdifferentialgeometryortensoranalysis.

Myassumptionisthatmoststudentsusingthisbookwillbephysicsstudents.I takethe“physicsfirst”approach,popularizedbyJimHartle,inwhichaclassmoves veryquicklytocalculationsofgravityintheSolarSystemandonlylaterreturnstoa moresystematicdevelopmentofthenecessarymathematics.Ihaveincludedashort introductiontotheHamiltonianformulationofgeneralrelativity,atopicoftenleftout ofintroductorycourses,andIclosewitha“bonus”chapterthatbrieflydescribessome ofthemanydirectionsonecouldgofromhere.

IlearnedgeneralrelativityfromBryceDeWittandCecileDeWitt-Morette,to whomIoweadeepdebtofgratitude.Mystudentsoverthepast25yearstaughtme more.Oneofthem,JosephMitchell,undertookaverycarefulreadingofadraft.I thankmysons,PeterandDavidCarlip,fortheirhelpineditingandproofreadingthis book,andmybrother,WalterCarlip,forextensiveproofreadingandinvaluablehelp withtypography.ThisworkwassupportedinpartbytheU.S.DepartmentofEnergy undergrantDE-FG02-91ER40674.

Gravityasgeometry

Generalrelativityisanelegantandpowerfultheory,butitisalsoastrangeone. AccordingtoEinstein,thephenomenonweusuallythinkofastheforceofgravityis reallynotaforceatall,butratherabyproductofthecurvatureofspacetime.Although wehavebecomeaccustomedtothisideaovertime,itisstillapeculiarnotion,and it’sworthtryingtounderstandwhatitmeansbeforeplungingintothedetails.

Startwiththefoundationofmechanics,Newton’ssecondlaw,

Studentswhofirstseethisequationsometimesworrythatitmightbeatautology. True,forcescauseaccelerations;butthewaywerecognizeandmeasureaforceisby theaccelerationitcauses.Isthisnotcircular?

Lookingdeeper,though,wecanseethatthesecondlawisrichwithinsight.Newton hassplittheUniverseintotwopieces:theright-handside,theobjectwhosemotionwe wanttounderstand,andtheleft-handside,therestoftheUniverse,everythingthat mightinfluencethatmotion.HetellsusthattherestoftheUniversecausesaccelerations,secondderivativesofposition—notvelocities(firstderivatives),not“jerks” (thirdderivatives),notanythingelse.Thisbehaviorisreflectedthroughoutphysics, wheresecondorderdifferentialequationsarefoundeverywhere;itisonlyrecentlythat wehavebeguntounderstandtheunderlyingreasonforthispattern(seeBox1.1).

Beyondthis,Newton’ssecondlawtellsusthattheresponseofabodytothe Universehastwoseparateelements:itsacceleration,butalsoitsinertia,orresistance toacceleration,asexpressedbyasingle“inertialmass” m.Thisallowsustoextract informationabouttheforcebymeasuringtheresponseofotherwiseidenticalbodies withdifferentmasses.Sophysicsreallyisaboutforces.

Butthereisoneexception.Considerthemotionofanobjectinagravitational field.GoingbackagaintoNewton—nowtohislawofgravity—wehave

Themasses m ontheleft-handandright-handsidecancel,andweareleftonlywith acceleration.

Thisdidnothavetobe.Themass m ontheleft-handsideof(1.2)isinertial mass,ameasureofresistancetoacceleration,whilethemass m ontheright-handside isgravitationalmass,akindof“gravitationalcharge”analogoustoelectriccharge. FromthepointofviewofNewtoniangravity,thereisnoreasonforthesetobethe

GeneralRelativity:AConciseIntroduction.StevenCarlip c StevenCarlip2019. Publishedin2019byOxfordUniversityPress.DOI:10.1093/oso/9780198822158.001.0001

Box1.1Ostrogradsky’stheorem

TheimportanceofaccelerationinNewtonianmechanicsisechoedthroughout physics:almostallfundamentalinteractionsaredescribedbyequationswithat mosttwoderivatives.Wenowunderstandthatagoodpartoftheexplanation liesinan1850theoremofOstrogradsky[1].

StartingwiththeLagrangianformalism,Ostrogradskyexploredtheproblemof constructingaHamiltonianforatheorywithmorethantwotimederivatives. Inanordinarytwo-derivativetheory,eachgeneralizedposition q isaccompanied byageneralizedmomentum p,whichisrelatedtothetimederivative˙ q.For higher-derivativetheories,newgeneralizedmomentaappear,relatedtohigher derivativesofthegeneralizedpositions.Ostrogradskyshowedthat,withaclearly demarcatedsetofexceptions,theresultingHamiltoniansarelinearinatleastone ofthesenewmomenta.Thismeanstheenergyisnotboundedbelow:sincethe momentumcanhaveanysign,thereareconfigurationswitharbitrarilynegative energies.Suchtheorieshavenostableclassicalconfigurations,andnoquantum groundstates;theycannotdescribearealworld.

same.Buttheequalityofthesetwomasses—aformofwhatiscalledtheequivalence principle—hasbeenverifiedexperimentallytobetterthanapartin1014

Forgravity,then,physicsisreallynotaboutforces,butaboutaccelerations,or trajectories.Anysufficientlysmall“testbody”willmovealongthesamepathina gravitationalfield,nomatterwhatitsmass,shape,orinternalcomposition.Agravitationalfieldpicksoutasetofpreferredpaths.

Butthisiswhatwe mean byageometry.Euclideangeometryisultimatelya theoryofstraightlines;itconsistsofthestatement,“Thesearethestraightlines,” andadescriptionoftheirproperties.Sphericalgeometryconsistsofthestatement, “Thesearethegreatcircles,”andadescriptionoftheirproperties.Ifagravitational fieldpicksoutasetofpreferred“lines”—thepathsoftestbodies—andtellsustheir properties,itisdeterminingageometry.

TheequivalenceprinciplewasalreadyknowntoGalileo.Thefamousexperiment inwhichheissaidtohavedroppedtwoballsofdifferentmassesofftheLeaningTower ofPisamaynothavetakenplace—itwasfirstdescribedyearsafterhisdeath—buthe knewfrommanyotherexperimentsthatbodieswithdifferentmassesandcompositions respondedidenticallytogravity.Couldhehaveformulatedgravityasgeometry?

Probablynot:thereisonemoresubtletytotakeintoaccount.InEuclideangeometry,twopointsdetermineauniqueline.Foranobjectmovinginagravitationalfield, ontheotherhand,themotiondependsnotonlyontheinitialandfinalpositions,but alsoontheinitialvelocity.Icandropacointothefloor,orIcanthrowitstraightup andallowittofall.Ineithercase,itwillstartandendatthesameposition.

Butthecoinwillreachtheflooratdifferent times.IfIspecifytheinitialandfinal positions and times,thetrajectoryisunique.Gravitydoes,indeed,specifypreferred

Box1.2Equivalenceprinciples

Theprincipleofequivalencehastwocommonformulations.Thefirstis“universalityoffreefall,”thestatementthatthetrajectoryofasmallobjectin agravitationalfieldisindependentofitsmassandinternalpropertiessuchas structureandcomposition.Thesecondis“weightlessness,”thestatementthat inasmallenoughfreelyfallinglaboratory,nolocalmeasurementcandetectthe presenceoftheexternalgravitationalfield.Thetwoformulationsareessentially equivalent:wedetectedgravitybymeasuringaccelerations,butuniversalityof freefallimpliestheabsenceofrelativeaccelerationsinafreelyfallinglaboratory. Therearenuances,though,dependingonexactlywhatobjectsareincluded. The“weakequivalenceprinciple”appliestoobjectswhoseinternalgravitational fieldscanbeneglected.The“Einsteinequivalenceprinciple”addslocalposition invarianceandlocalLorentzinvariance,thestatementthattheoutcomeofany experimentinafreelyfallingreferenceframeisindependentofthelocationand velocityoftheframe.The“strongequivalenceprinciple”extendstheseclaims toobjectswhoseself-gravitationcannotbeignored.

Precisiontestsoftheweakequivalenceprincipledatebacktoexperimentsby E¨otv¨osintheearly20thcentury.Today,theprinciplehasbeentestedtoexquisite accuracy:relativeaccelerationsofbodieswithdifferentcompositionshavebeen showntobeequaltoaboutapartin1014.Progresshasbeenmadeontesting thestrongequivalenceprincipleaswell(seeBox8.1).

“lines,”butthelinesarenotinspace,theyareinspacetime.GalileoandNewtondidn’t havespecialrelativity—theyhadnounifiedtreatmentofspaceandtime.Einstein did.Oncethatframeworkwasavailable,thepossibilityofunderstandinggravityas geometrybecameavailableaswell.

Furtherreading

Agoodintroductiontothevariousformsof theprincipleofequivalenceandtheirtests canbefoundinWill’sbook, TheoryandExperimentinGravitationalPhysics [2].The first“modern”testsoftheequivalenceprinciplewereperformedbyE¨otv¨osintheearly 1900s[3].Moreup-to-dateinformationon

experimentaltestscanbefoundin,forinstance,[4].AbeautifulreviewofOstrogradsky’stheoremisgivenin[5].Foranonmathematicalbutdeepandthought-provoking introductiontotheideaofgravityasspacetimegeometry,seeGeroch’sbook, General RelativityfromAtoB [6].

Geodesics

Letusnowlookforamathematicalexpressionofthisideaofgravityasgeometry. Todoso,weneedtogeneralizetheideaofa“straightline”toarbitrarygeometries. InordinaryEuclideangeometry,astraightlinecanbecharacterizedineitheroftwo ways:

• Astraightlineis“straight,”orautoparallel:itsdirectionatanypointisthesame asitsdirectionatanyother.Thisturnsouttobecomplicatedtogeneralize—it requiresustoknowwhethertwovectorsatdifferentlocationsareparallel—and wewillhavetowaituntilChapter5foramathematicaltreatment.

• Astraightlineistheshortestdistancebetweentwopoints.Thisismucheasier togeneralize;it’sexactlythekindofquestionthatthecalculusofvariationswas designedfor.

Thischapterwilldevelopthegeneralequationfortheshortest,ormoregenerallythe extremal,linebetweentwopoints,a“geodesic.”

2.1Straightlinesandgreatcircles

Westartwiththesimplestexample,astraightlineinatwo-dimensionEuclidean spacewithCartesiancoordinates x and y.Chooseinitialandfinalpoints(x0,y0)and (x1,y1).Amongallcurvesbetweenthesetwopoints,wewanttofindtheshortest. Tospecifyacurve,we could give y asafunctionof x,or x asafunctionof y.Butthis iscontrarytothespiritofgeneralrelativity,inwhichallcoordinatesshouldbetreated equally.Foramoredemocraticdescription,wechooseaparameter σ ∈ [0,σmax],and describethecurveasapairoffunctions(x(σ),y(σ))with (x(0),y(0))=(x0,y0), (x(σmax),y(σmax))=(x1,y1) .

Mathematically,wearedescribingacurveasamapfromtheinterval[0,σmax]to R2 Physically,wecanthinkof σ asasortof“time”alongthecurve,thoughnottheusual timecoordinate,whichweshouldtreatasacoordinatelikeanyother.

Wenextneedthelengthofsuchacurve.Ifthecurveissmoothenough,ashort enoughsegmentwillbeapproximatelystraight,andwecanusePythagoras’theorem towrite

foran“infinitesimaldistance” ds,oftenreferredtoasa“lineelement.”Mathematically inclinedreadersmaybeuncomfortablewiththisequation;wewillseeinChapter4 howtomakeitintoamathematicallywell-definedstatementaboutcovarianttensors.

GeneralRelativity:AConciseIntroduction.StevenCarlip c StevenCarlip2019. Publishedin2019byOxfordUniversityPress.DOI:10.1093/oso/9780198822158.001.0001

Fornow,wewilltakethephysicists’approachandthinkof“ds”asrepresentinga smallbutfinitedistance,takinglimitswhentheymakesense.

Letusdefine

Thelengthofourcurveisthen

Weextremizebysettingthevariationtozerowhileholdingtheendpointsfixed:

It’shelpfultorememberthatthevariation δ isreallyjustaderivative,albeitaderivativeinaninfinite-dimensionalspaceoffunctions.Inparticular,theusualproductrule andchainruleofcalculuscontinuetohold.I’vealsousedthefactthat

whenavariationchanges x(σ)to x(σ)+ δx(σ),thederivativechangesaccordingly.

Tofinish,weintegrate(2.4)bypartstoisolate δx and δy.Ingeneral,integration bypartsleadstoboundaryterms,butherethesetermsareproportionalto δx and δy,whicharezeroattheendpoints,sinceweareholding(x0,y0)and(x1,y1)fixed. Hence

Sincethevariations δx and δy arearbitrary,theircoefficientsmustbezero,givingus theequationsweseek.

Onefinaltricksimplifiesthisresult.Sofar, σ hasbeenanarbitrarylabelforpoints onthecurve.Nowthatwehaveaparticularcurve,though,wecanmakethespecific choice σ = s,labelingpointsbytheirdistancefromtheinitialpoint.(Thereadermay checkthatmakingthisidentification before thevariationleadsnowhere.)Withthis parametrization, E =1,andtheequationsfortheextremalcurvearesimply

(2.6) theexpectedequationsforastraightline.

Thismayseemtobearathercomplicatedwaytogetasimpleresult.Theadvantageisthatitgeneralizeseasily.Consider,forexample,thesameprobleminpolar coordinates, x = r cos θ,y = r sin θ. (2.7)

Substituting dx =cos θdr r sin θdθ and dy =sin θdr +r cos θdθ intothelineelement (2.1),wefind

Now E =

,andrepeatingthestepsthatledto(2.5),wehave

Notethat E nowdependsexplicitlyon r,andnotjustitsderivative;thisfactorof r mustalsobevaried.Againchoosing σ = s,weobtain

Theseequationsareeasyenoughtointegrate,butwecanalsointroduceanew trick.From(2.8),wehavetheidentity

Thisisnotanindependentequation—wewillseebelowthatitisa“firstintegral”of (2.10)—butitsavesusastep.

Solvingthesystem(2.10)–(2.11)isnowstraightforward.From(2.10),

where b isanintegrationconstant.Substitutinginto(2.11)andintegrating,weobtain

andthus r cos(θ θ0)= b.Thisisonceagainastraightline,asofcourseitmustbe. Again,thismayseemaroundaboutwaytofindanobviousresult.Foralesstrivial example,considera“straightline”onasphereofradius r0, x2 + y2 = r2 0 .Toobtain thelineelement,westartwithflatthree-dimensionalspaceinsphericalcoordinates

forwhichitiseasytocheckthat

Wenowrestricttothesurface r = r0,toobtainthelineelementforasphere,

Box2.1Coordinates:partI

Thelineelements(2.1)and(2.8)lookverydifferent,buttheydescribethe sameflatspace.Similarly,thegeodesicequations(2.6)and(2.10)givedifferent descriptionsofthesamestraightlines.Thisisafirstsignofarecurringtheme ingeneralrelativity,theneedtoseparateouttherealphysicsfrom“coordinate effects.”

Forflatspace,thereisapreferredcoordinatesystem,Cartesiancoordinates. Thiscangiveusafalsesenseofsecurity:wemaythinkweunderstandwhat coordinatesmean,especiallyifthey’recalled x and y,or r and θ.Butcurved spacetimestypicallyhavenopreferredcoordinates,andagoodpartoftheworkis tofigureoutwhatsomechosencoordinatesreallymean.Muchofthemathematics developedinChapters4and5isdesignedtoensurethatthefinalresultsdon’t dependoncoordinates,buteventhenitcanbetrickytointerpretoutcomesin termsofhonestphysicalobservables.

Proceedingasbefore,with

Setting σ = s,weobtaintheequations

andfrom(2.16),afirstintegral

Thefirstequationin(2.18)gives

whichallowsustointegrate(2.19):

,wehave

Tointerpretthissolution,wecangobacktotheCartesiancoordinates(2.14).Itis straightforwardtocheckthat

whichmayberecognizedastheequationforaplanethroughtheorigin.Thegeodesics arethusintersectionsofthespherewithaplanethroughtheorigin.Bydefinition, thesearepreciselythegreatcircles.

Thereisashortcuttothissolution,whichwewilluseinthenextchapter.Note firstthatifwechoosetheintegrationconstants b =1/r0, ϕ0 = π/2,then(2.21)isthe greatcirclearoundtheequator, θ = π/2,ϕ =(s s0)/r0.Thisisaspecialcase,but sincethelineelementissphericallysymmetric,wecanalwaysrotateourcoordinates sothat θ = π/2and dθ/ds =0attheinitialpoint s =0.Thenfrom(2.18)–(2.19),

Since(2.18)isasecondordersystemofdifferentialequations,weareguaranteedthat thehigherderivativesaddnoinformation,so

isasolutionforall s.Bynowundoingtherotationofcoordinates,wecanobtainany othergreatcircle,reproducingthegeneralsolution.

2.2Spacetimeandcausalstructure

Intheprecedingsection,wesawsomesimpleexamplesofgeodesicsinflatandcurved two-dimensionalspaces.Theseexampleswereall spatial geodesics,though,geodesics inspaceswhoselineelementswerepositivedefinite.Weareinterestedinspacetime, notjustspace,andthiswillrequireafurtherstep.

Tostart,weneedageneralizationofthelineelementtospacetime.Fortheflat spacetimeofspecialrelativity,weknowtheanswer.Inspecialrelativity,neitherintervalsintimealonenorinspacealonehaveanyinvariantmeaning.ButasEinstein andMinkowskitaughtus,thereisaninvariantcombination,thespacetimeinterval (orpropertime)

alsoknownasthe“Minkowskimetric.”Wewillnormallyuseunitsinwhichthespeed oflightis c =1:ifwemeasuretimeinseconds,wemeasuredistanceinlight-seconds. Wecanthuswrite

Fig.2.1 Thelightconeofthepoint p.Theexpandingcircularcross-sectionsofthefuturelightcone,picturedinthreedimensions,representanexpandingsphereoflightinfour dimensions.

Thecalculationofgeodesicsforthelineelement(2.26)ismathematicallyidentical tothecalculationinflatspace,andthegeodesicsareagainstraightlines.Thephysics, though,isratherdifferent.Ageodesiccannowhavea“length” s thatispositivereal, zero,orimaginary.If ds2 ispositive,ageodesic,ormoregenerallyasegmentofa curve,is“timelike.”Asimpleexampleisthetrajectory x = y = z =0, t = s,for whichanobjectonly“moves”intime.If ds2 isnegative,thesegmentis“spacelike.” Atypicalexampleisacurveinspaceatafixedtime t =0.If ds2 =0,thesegment is“lightlike”or“null.”Atypicalexampleisthetrajectory x = ct.Moregenerally,a nullcurveisapossiblepathofapulseoflight,having“distanceinspace”equalto c timesa“distanceintime.”

Apathiscausalifitistimelikeornulleverywhere.Suchapathcanbetraversed byanobjectmovingnofasterthanlight.Apoint q issaidtobeinthefutureofthe point p ifthereisfuture-directedcausalpathfrom p to q;itisinthepastof p ifthere isafuture-directedcausalpathfrom q to p.Thelightconeof p—thesetofnullcurves passingthrough p—dividesspacetimeintothreeregions,thefuture,past,andpresent of p (seeFig.2.1).Thepathofamassiveobject,calledits“worldline,”alwayslies insideitslightcone.Thisstructureisfamiliarinspecialrelativity,butitexistslocally incurvedspacetimesaswell,althoughtheglobalstructurecanbemorecomplicated.

Thetermsspacelike,timelike,andnullcanalsobeappliedtocertainsubspaces. Definea“hypersurface”tobeasubspaceofspacetime—technically,asubmanifold— thathasadimensiononelessthanthedimensionofspacetime(d =3forourfourdimensionalspacetime).Ahypersurfaceissaidtobespacelikeifitsnormalvectoris timelike,timelikeifitsnormalisspacelike,andnullifitsnormalisnull.

2.3Themetric

Wearenowreadytotackletheproblemoffindinggeodesicsinanarbitrarycurved spacetime.Thestartingpointisagainthelineelement.Thelessonwetakefrom

Box2.2Conventions:partI

Aspacetimelineelementrequiresachoiceofsign.Thepropertime(2.26)is positiveforpointswithtimelikeseparations(seeSection2.2)andnegativefor pointswithspacelikeseparations.Butwecouldjustaswellhavestartedwith properdistance,

whichdiffersinsign.Option(2.26)iscalledthe“mostlyminuses”or“West Coast”convention;theoppositeis“mostlypluses”or“EastCoast.”Todescribe motioninagravitationalfield,theWestCoastconventionisconvenient,since theparameter s isthenpropertimealongatrajectory.Particlephysicistsalso tendtopreferthatconvention,sinceitmakesthesquareofthefour-momentum positiveonshell.Incosmology,ontheotherhand,theEastCoastconventionis easier,sincethemetricofspaceatconstanttimeisthenpositivedefinite.With onepossibleobscureexception[7],eitherchoicecanbemade.Whatmatters,here andwithotherconventions,isconsistency.

ourexamples—thehallmarkofwhatmathematicianscallRiemannianorpseudoRiemanniangeometry—isaversionofPythagoras’theorem,theprinciplethatthe squareofthedistancebetweentwopointsisquadraticinthecoordinatedifferences. Ina d-dimensionalspacetime,thismeans

forsomesetofcoordinates {xµ} andsomefunctions gµν (x).Notethattheindicesused tolabelcoordinatesinspacetimeconventionallyrangefrom0to d 1,where x0 is normallythe“time”coordinate.Thepositionoftheindices—upforcoordinateslike xµ,downfor gµν —encodesamathematicaldistinctionbetweentangentandcotangent vectors.WewillexplorethisinChapter4;fornow,it’sjustanotationalconvention. Wecanalwaysassumethat gµν issymmetric,thatis, gµν = gνµ,sinceit’seasyto checkthatanyadditionalantisymmetricpiecewouldcanceloutinthesum(2.27).

Thefunctions gµν arecalledthecomponentsofthemetrictensorinthecoordinate system {xµ}.Thisratherlongappellationissometimesabbreviatedto“themetric.” Theshortenedterminologycanbeabitmisleading,though.Wehaveseenthattheline elementinflattwo-dimensionalspacemaybewritteneitheras dx2 + dy2 inCartesian coordinatesoras dr2 + r2dθ2 inpolarcoordinates.Thecomponentsofthemetricare clearlydifferent,butthegeometryisthesame.WeshallseeinChapter4thatthe metrictensor,properlydefined,isindependentofthechoiceofcoordinates;wehave merelyexpressedasingleobjectintwodifferentways.

Equation(2.27),andmanyothers,becomesimplerifweadopttheEinsteinsummationconvention.Thisconventionhastwoparts:

Box2.3Indexgymnastics

Apractitionerofgeneralrelativitymustbecomeadeptatjugglingindices.Here areafewtricks(makesuretoworkoutwheretheycomefrom)!

• Anindexthatissummedoveriscalleda“dummyindex.”Anylettermaybe usedforadummyindex,provideditisn’tusedelsewhereinthesameterm:

sincethesumsconsistofexactlythesameterms.

• Suppose Aµν isantisymmetricinitsindices, Sµν issymmetric,and T µν has noparticularsymmetries.Then Aµν Sµν =0and

• If δµ ν istheKroneckerdelta,then

= A

and

= d,where d isthe dimensionofthespaceorspacetime.

1.Agivenindexcanappearatmosttwiceinanytermofanequation.Ifitappears twice,thismustbeonceasalowerindexandonceasanupperindex.

2.Ifanindexappearstwiceinaterm,summationoverthatindexisimplied,and noexplicitsummationsignisneeded.

Thus(2.27)becomes

Thecomponents gµν canbeviewedasasymmetric d × d matrix,withthefirst indexlabelingtherowandthesecondthecolumn.Suchamatrixhas d eigenvalues. Weassumethat gµν isnondegenerate,thatis,thattheeigenvaluesareallnonzero. Thenumbers p ofpositiveeigenvaluesand n ofnegativeeigenvaluesdeterminethe “signature”ofthemetric,whichcanbedenoted(p,n)or p + n,or,mostcommonly inphysics,(+... ...).Thelineelement(2.26),forinstance,hassignature(1, 3) or1+3or(+ ).Whileitisnotobvious,thesignatureisindependentofthe choiceofcoordinates.Alineelementwithsignature(d, 0),like(2.8)or(2.16),iscalled Riemannian;onewithsignature(1,d 1)or(d 1, 1),like(2.26),iscalledLorentzian.

Thematrixinverseof gµν ,looselyreferredtoastheinversemetric,iswrittenwith upperindices,as gρσ.Itsexistenceisguaranteedbythenondegeneracyofthematrix ofcomponents.Bydefinition,theinversemetricsatisfies

where δµ ν istheusualKroneckerdelta.(Readersshouldcheckthatthisis,infact,usual matrixmultiplication.)

2.4Thegeodesicequation

Startingwiththegenerallineelement(2.28),wecannowderivethegeodesicequation foranarbitraryspacetime.TheprocedureisexactlythesameasinSection2.1:

whereIhaveusedthenotation

Notethatthevariationhereis not avariationofthemetriccomponents gµν ,but ratherofthepath xµ(σ).But“gµν ”in(2.30)meansthevalue gµν (x(σ))onthepath, sobythechainrule,whenthepathchanges, δgµν = δxρ∂ρ

Thefirsttwotermsinthesecondlineof(2.31)areactuallyequivalent:theydifferonlybyarenamingofthedummyindices µ to ν and ν to µ.Combiningthem, integratingbyparts,andrenamingsomedummyindices,weseethat

Asbefore,thevariation δxρ isarbitrary,soitscoefficientmustvanish:

Equation(2.34)isthegeneralformofthegeodesicequation.Forspacelikeand timelikegeodesics,wecanperformthesametrickweusedinSection2.1,andchoose σ = s.Then

Fornullgeodesics,though, s =0and E =0.Herewehavetwoalternatives.Wecan returntotheideaofageodesicasanautoparallelline—wewilldosoinChapter5—or wecantakealimitof(say)atimelikegeodesic,definingaparameter

andletting E gotozero.Ineithercase,theresultingequationis

Aparameter λ forwhichthegeodesicequationtakesthisformiscalledanaffine parameter.

Thereisanothercommonformforthegeodesicequation,obtainedbydifferentiatingthefirsttermin(2.35)or(2.36)andusingtheproductrule.Themetriccomponents gµν dependon s throughtheirdependenceon x(s),so

Usingtheinversemetric(2.29),itiseasytocheckthat

with

TheΓρ µν arecalledthecomponentsoftheChristoffelortheLevi-Civitaconnection, orsometimesthe“Christoffelsymbols”;inolderpaperstheymaybewrittenas {ρ µν }. Finally,letusconsiderthegeneralizationofthefirstorderequations(2.11)and (2.19).Itisevidentfromthedefinitionofthelineelementthat

Thesearenotindependentequations,though.Theirfirstderivativesgivebackalinear combinationofthegeodesicequations:forinstance,

Inthatsense,(2.41)are“firstintegrals,”obtainedbyintegratinganappropriatecombinationofthegeodesicequations,butwithfixedintegrationconstantsdetermined fromthedefinitionsoftheparameters s and λ

2.5TheNewtonianlimit

Generalrelativityisatheoryofphysics,notmathematics,andweoughttocheckthat thisdescriptionofgeodesicsmakesphysicalsense.Aminimaltestisthat,atleastto averygoodapproximation,wemustbeabletoreproducetheremarkablesuccessesof

Newtoniangravity.Thatis,wemustbeabletofindametricwhosegeodesicsduplicate thetrajectoriesthatobjectsfollowinaNewtoniangravitationalfield.

Forthis,weneedthespacetimemetricintheNewtonianapproximation.Such ametriccomesasasolutionoftheEinsteinfieldequations,whichwewillnotsee untilChapter6.Fornow,letusanticipatetheresultofSection8.2.Asonemight expect,theapproximatemetricdependsontheNewtoniangravitationalpotentialΦ. Itis,further,a“slowmotion”solution—allspeedsaremuchlessthan c—anda“weak field”solution—Φ/c2 isoforder v2/c2,asistypicalforsystemsofgravitationally boundbodies.Thelineelementthentakestheapproximateform

Thegeodesicequationsforthislineelementaresimple.Equation(2.41)becomes

while(2.35)becomes

Ifwenowneglecttermsoforder v2/c2—theorderatwhichordinaryspecialrelativistic correctionsbecomeimportant—theseequationsreduceto

whicharejusttheNewtonianequationsofmotionforanobjectinagravitationalfield. TheappropriatespacetimegeometrycanthusreproduceNewtonianmotion.

Furtherreading

ThegeodesicequationcanalsobederivedbymeansoftheusualEuler-Lagrange equations:see,forexample,Section7.6of d’Inverno’s IntroducingEinstein’sRelativity [8].Anintroductiontothelineelement(2.26)inspecialrelativity,focusing onitsgeometricsignificance,maybefound inTaylorandWheeler’sclassic, Spacetime

Physics [9],orinChapter1ofthetextbookbySchutz, AFirstCourseinGeneralRelativity [10].TheinsidecoverofMisner,Thorne,andWheeler’sfamoustextbook Gravitation [11]hasatableofconventionsusedbyvariousauthors;whilesomewhatoutdated,itgivesanoverviewofthe varietyofchoices.

GeodesicsintheSolarSystem

Attheendoftheprecedingchapter,wesawthatgeneralrelativitycansuccessfully reproducetheequationsofmotionofNewtoniangravity.Itdoesmorethanthat, ofcourse:evenintheSolarSystem,itpredictssmallbutobservablecorrectionsto Newtonianphysics.Thefour“classicaltests”ofgeneralrelativity—theprecessionof planetaryorbits,thedeflectionoflightbyagravitationalfield,thegravitationaltime delayoflight,andgravitationalredshiftandtimedilation—canalsobeobtainedfrom thegeodesicequation.

3.1TheSchwarzschildmetric

Toinvestigatethesepredictions,weneedalineelementthatismoreaccuratethan theweakfieldapproximation(2.43).Thespacetimegeometryoutsideanonrotating sphericalmasswasfirstworkedoutbyKarlSchwarzschildin1916,verysoonafter Einsteinpublishedthefieldequationsofgeneralrelativity.Wewillderivetheresulting SchwarzschildmetricinChapter10,wherewewillobtainalineelement

Notethatwhen m =0,thisreducestotheflatMinkowskimetric(2.26)inthespherical coordinatesofeqn(2.15).Similarly,as r approachesinfinity,themetricapproaches theMinkowskimetric;theSchwarzschildmetricis“asymptoticallyflat.”

Theparameter m isproportionaltothemassofthegravitatingobject,

where M istheordinarymassand G isNewton’sgravitationalconstant.Thequantity m hasunitsoflength,withavalueofabout4.5mmfortheEarthand1.5kmforthe Sun.Theratio m/r in(3.1)isthereforetypicallyverysmall;evenatthesurfaceofthe Sun,itisonlyabout2 × 10 6.TheSchwarzschildlineelementfortheSolarSystem thusdeviatesonlyveryslightlyfromthelineelementofflatspacetime.Nevertheless, thissmalldifferenceisresponsibleforthemotionoftheplanets.

3.2GeodesicsintheSchwarzschildmetric

Letusnowcalculatethegeodesicsforthelineelement(3.1).Wewillstartwiththe timelikegeodesicsthatdescribethemotionofplanets,andthenturntothenull

GeneralRelativity:AConciseIntroduction.StevenCarlip c StevenCarlip2019. Publishedin2019byOxfordUniversityPress.DOI:10.1093/oso/9780198822158.001.0001

Box3.1Coordinates:partII

Itistemptingtothinkofthecoordinate r asthefamiliarradialcoordinateof flatspace.Forlarge r,thisisagoodapproximation,sincethelineelementis nearlyflat.Forsmall r,though,thispicturebreaksdown.Asweshallseein Chapter10,theflatspacecoordinate r servesmanydifferentfunctions—itis, forexample,botharadialdistanceandasquarerootoftheareaofasphere.In acurvedspacetime,thesearenolongerequivalent,anddifferentchoicesleadto differentformsofthelineelement.

Forinstance,in(3.1),coordinatedistancesintheradialdirectiondifferfrom thoseinangulardirections.Butifwetransformto“isotropiccoordinates,”

thelineelementbecomes

with“Cartesian”coordinates x, y,and z thatcontributesymmetricallyto isotropicdistance¯ r =(x2 + y2 + z2)1/2.Atlargedistances,thedifferencebetween r and¯ r isinsignificant,andtofirstorderin m/r thepredictionsforphenomena suchasthedeflectionoflightareidentical.Atthenextorder,though,theequationsdependonwhich“r”weuse.Thisisnotatruephysicaldifference,butto seethistakessomecarefulwork[12]:wehavetoreexpresstheresultsinterms ofunambiguouslymeasurablecoordinate-independentquantities.

geodesicsthatdescribethepathsoflightrays.From(3.1),thenonzerocomponentsof themetricare

wheretheindexlabels t,r,θ,ϕ meanthesamethingas0, 1, 2, 3.Inwritingoutthe geodesicequation,it’shelpfultokeeptwoshortcutsinmind:

• Themetricisdiagonal,soinsumslike gρµ dxµ ds onlytermswith µ = ρ appear.

• Thecomponents(3.3)dependonlyon r and θ,so ∂µgστ iszerounless µ is r or θ. Wenowlookatthefourequations(2.35)andthefirstintegral(2.41):

µ = r :complicatedexpression;we’llusethefirstintegralinstead ,

Letusstartwith(3.7).AsinSection2.1,wecanrotateourcoordinatessothatatan initialtime, θ = π/2and dθ/ds =0.Then(3.7)impliesthat

foralltimes.JustasinNewtoniangravity,trajectoriesremaininasingleplane. Next,wecanintegrate(3.6)and3.8):

where E and L areintegrationconstants.(Thetildesareaconventiontodistinguish timelikegeodesics,thecasehere,fromnullgeodesics,whichwillcomelater.)Weare leftwith(3.9),whichnowsimplifiesto

Equation(3.13)isintegrable,andinprinciple(3.10)–(3.13)giveacompletedescriptionofthegeodesicsoftheSchwarzschildgeometry.Buttheresultscanonlybe expressedintermsofcertainspecialfunctions,ellipticintegrals,thatareunfamiliar tomostphysicists.Soeventhoughexactsolutionsareavailable,itisusefultofind approximationsthatinvolvemoreeasilyunderstoodfunctions.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.