[FREE PDF sample] Introductory mathematical analysis for business, economics, and the life and socia

Page 1


https://ebookmass.com/product/introductory-mathematical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Calculus for Business, Economics, and the Social and Life Sciences, Brief Version, Media Update 11th Edition, (Ebook PDF)

https://ebookmass.com/product/calculus-for-business-economics-and-thesocial-and-life-sciences-brief-version-media-update-11th-editionebook-pdf/ ebookmass.com

Data Analysis for the Life Sciences with R 1st Edition

https://ebookmass.com/product/data-analysis-for-the-life-scienceswith-r-1st-edition/

ebookmass.com

Mathematical Analysis. A Very Short Introduction Richard Earl

https://ebookmass.com/product/mathematical-analysis-a-very-shortintroduction-richard-earl/

ebookmass.com

Strategies for Organization Design: Using the Peopletecture

Model

to Improve Collaboration and Performance Tiffany Mcdowell

https://ebookmass.com/product/strategies-for-organization-designusing-the-peopletecture-model-to-improve-collaboration-andperformance-tiffany-mcdowell/ ebookmass.com

Allured By Her (Mainely Books Club Book 5) Chelsea M. Cameron

https://ebookmass.com/product/allured-by-her-mainely-books-clubbook-5-chelsea-m-cameron/ ebookmass.com

Alien Bonding Anasha Vega

https://ebookmass.com/product/alien-bonding-anasha-vega/

ebookmass.com

Evidence-Based Physical Diagnosis, 5e (Sep 1, 2021)_(032375483X)_(Elsevier) 5th Edition Mcgee Md

https://ebookmass.com/product/evidence-based-physicaldiagnosis-5e-sep-1-2021_032375483x_elsevier-5th-edition-mcgee-md/

ebookmass.com

Mathematical Foundation of Fuzzy Sets 1st Edition HsienChung Wu

https://ebookmass.com/product/mathematical-foundation-of-fuzzysets-1st-edition-hsien-chung-wu/

ebookmass.com

016 - Liebes Kind, totes Kind Roxann Hill

https://ebookmass.com/product/016-liebes-kind-totes-kind-roxann-hill/

ebookmass.com

Consciousness, Life and the Universe Xue Fan

https://ebookmass.com/product/consciousness-life-and-the-universe-xuefan/

ebookmass.com

INTRODUCTORY MATHEMATICAL ANALYSIS

FOURTEENTH EDITION

FOR BUSINESS, ECONOMICS, AND THE LIFE AND SOCIAL SCIENCES

This page intentionally left blank

AlgebraicRulesfor Realnumbers

a C b D b C a

ab D ba

a C .b C c/ D .a C b/ C c

a.bc/ D .ab/c

a.b C c/ D ab C ac

a.b c/ D ab ac

.a C b/c D ac C bc

.a b/c D ac bc

a C 0 D a

a 0 D 0

a 1 D a

a C . a/ D 0 . a/ D a

. 1/a D a

a b D a C . b/

a . b/ D a C b

a 1 a D 1

a b D a 1 b

. a/b D .ab/ D a. b/

. a/. b/ D ab

a b D a b

a b D a b D a b a c C b c D a C b c

a c b c D a b c

a b c d D ac bd

a=b

c=d D ad bc

a b D ac bc .c ¤ 0/

SummationFormulas

ALGEBRA

Exponents

FactoringFormulas

SpecialProducts

QuadraticFormula

If ax2 C bx C c D 0,where a ¤ 0,then x D b ˙pb2 4ac 2a

Inequalities

If a < b,then a C c < b C c. If a < b and c > 0,then ac < bc

SpecialSums

StraightLines

m D y2 y1 x2 x1 (slopeformula)

y y1 D m.x x1/ (point-slopeform)

y D mx C b (slope-interceptform)

x D constant(verticalline)

y D constant(horizontalline)

AbsoluteValue

jabjDjaj jbj

ˇ ˇ ˇ a b ˇ ˇ ˇ D jaj jbj ja bjDjb aj

jaj a jaj ja C bj jajCjbj (triangleinequality)

Logarithms

logb x D y ifandonlyif x D by

logb.mn/ D logb m C logb n

logb m n D logb m logb n

logb mr D r logb m

logb 1 D 0

logb b D 1

logb br D r blogb p D p .p > 0/

logb m D loga m loga b

BusinessRelations

FINITEMATHEMATICS

Interest D (principal)(rate)(time)

Totalcost D variablecost C fixedcost

Averagecostperunit D totalcost quantity

Totalrevenue D (priceperunit)(numberofunitssold) Profit D totalrevenue totalcost

OrdinaryAnnuityFormulas

A D R 1 .1 C r/ n r D Ran r (presentvalue)

S D R .1 C r/n 1 r D Rsn r (futurevalue)

Counting

nPr D nŠ .n r/Š

nCr D nŠ rŠ.n r/Š

nC0 C nC1 C C nCn 1 C nCn D 2n

nC0 D 1 D nCn

nC1CrC1 D nCr C nCrC1

PropertiesofEvents

For E and F eventsforanexperimentwithsamplespace S

E [ E D E

E \ E D E

.E0/0 D E

E [ E0 D S

E \ E0 D;

E [ S D S

E \ S D E

E [;D E

E \;D;

E [ F D F [ E

E \ F D F \ E

.E [ F/0 D E0 \ F0

.E \ F/0 D E0 [ F0

E [ .F [ G/ D .E [ F/ [ G

E \ .F \ G/ D .E \ F/ \ G

E \ .F [ G/ D .E \ F/ [ .E \ G/

E [ .F \ G/ D .E [ F/ \ .E [ G/

CompoundInterestFormulas

S D P.1 C r/n

P D S.1 C r/ n

re D 1 C r n n 1

S D Pert

P D Se rt

re D er 1

MatrixMultiplication

.AB/ik D n X jD1 AijBjk D Ai1B1k C Ai2B2k C C Ainbnk

.AB/T D BTAT A 1A D I D AA 1 .AB/ 1 D B 1A 1

Probability

P.E/ D #.E/ #.S/

P.EjF/ D #.E \ F/ #.F/

P.E [ F/ D P.E/ C P.F/ P.E \ F/

P.E0/ D 1 P.E/

P.E \ F/ D P.E/P.FjE/ D P.F/P.EjF/

For X adiscreterandomvariablewithdistribution f X x f.x/ D 1

D .X/ D E.X/ D X x xf.x/

Var.X/ D E..X /2/ D X x .x /2f.x/

D .X/ D pVar.X/

Binomialdistribution

f.x/ D P.X D x/ D nCxpxqn x

D np

Dpnpq

(quotientrule) dy dx D

DefinitionofDerivativeof f.x/

DifferentiationFormulas

CALCULUS

GraphsofElementaryFunctions

IntegrationFormulas

Producers’SurplusforSupply

INTRODUCTORY MATHEMATICAL ANALYSIS

The Pennsylvania State University

RICHARD S. PAUL

The Pennsylvania State University

RICHARD J. WOOD

Dalhousie University

FOURTEENTH EDITION FOR BUSINESS, ECONOMICS, AND THE LIFE AND SOCIAL SCIENCES

VicePresident,Editorial: AnneWilliams

AcquisitionsEditor: JenniferSutton

MarketingManager: KyPruesse

ContentManager: EmilyDill

ProjectManager: PippaKennard

ContentDeveloper: TamaraCapar

MediaDeveloper: KelliCadet

ProductionServices: Cenveo® PublisherServices

PermissionsProjectManager: CatherineBelvedere,JoanneTang

PhotoPermissionsResearch: IntegraPublishingServices

TextPermissionsResearch: IntegraPublishingServices

CoverDesigner: AnthonyLeung

CoverImage: DayOwl/Shutterstock.com

Vice-President,CrossMediaandPublishingServices: GaryBennett

PearsonCanadaInc.,26PrinceAndrewPlace,NorthYork,OntarioM3C2H4.

Copyright©2019,2011,2008PearsonCanadaInc.Allrightsreserved.

PrintedintheUnitedStatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriorto anyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopying, recording,orotherwise.Forinformationregardingpermissions,requestforms,andtheappropriatecontacts,pleasecontactPearsonCanada’s RightsandPermissionsDepartmentbyvisitingwww.pearsoncanada.ca/contact-information/permissions-requests.

Attributionsofthird-partycontentappearontheappropriatepagewithinthetext.

PEARSONisanexclusivetrademarkownedbyPearsonCanadaInc.oritsaffiliatesinCanadaand/orothercountries.

Unlessotherwiseindicatedherein,anythirdpartytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveownersandany referencestothirdpartytrademarks,logos,orothertradedressarefordemonstrativeordescriptivepurposesonly.Suchreferencesarenot intendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonCanadaproductsbytheownersofsuchmarks,orany relationshipbetweentheownerandPearsonCanadaoritsaffiliates,authors,licensees,ordistributors.

978-0-13-414110-7

10987654321

LibraryandArchivesCanadaCataloguinginPublication

Haeussler,ErnestF.,author

Introductorymathematicalanalysisforbusiness,economics,andthelife andsocialsciences/ErnestF.Haeussler,Jr.(ThePennsylvaniaState University),RichardS.Paul(ThePennsylvaniaStateUniversity),Richard J.Wood(DalhousieUniversity).—Fourteenthedition.

Includesbibliographicalreferencesandindex. ISBN978-0-13-414110-7(hardcover)

1.Mathematicalanalysis.2.Economics,Mathematical.3.Business mathematics.I.Paul,RichardS.,authorII.Wood,RichardJames,author III.Title.

QA300.H322017 515 C2017-903584-3

ForBronwen

This page intentionally left blank

PARTI COLLEGEALGEBRA

CHAPTER0 ReviewofAlgebra 1

0.1 SetsofRealNumbers 2

0.2 SomePropertiesofRealNumbers 3

0.3 ExponentsandRadicals 10

0.4 OperationswithAlgebraicExpressions 15

0.5 Factoring 20

0.6 Fractions 22

0.7 Equations,inParticularLinearEquations 28

0.8 QuadraticEquations 39 Chapter0Review 45

CHAPTER1 ApplicationsandMoreAlgebra 47

1.1 ApplicationsofEquations 48

1.2 LinearInequalities 55

1.3 ApplicationsofInequalities 59

1.4 AbsoluteValue 62

1.5 SummationNotation 66

1.6 Sequences 70 Chapter1Review 80

CHAPTER2 FunctionsandGraphs 83

2.1 Functions 84

2.2 SpecialFunctions 91

2.3 CombinationsofFunctions 96

2.4 InverseFunctions 101

2.5 GraphsinRectangularCoordinates 104

2.6 Symmetry 113

2.7 TranslationsandReflections 118

2.8 FunctionsofSeveralVariables 120 Chapter2Review 128

CHAPTER3 Lines,Parabolas,andSystems 131

3.1 Lines 132

3.2 ApplicationsandLinearFunctions 139

3.3 QuadraticFunctions 145

3.4 SystemsofLinearEquations 152

3.5 NonlinearSystems 162

3.6 ApplicationsofSystemsofEquations 164 Chapter3Review 172

CHAPTER4 ExponentialandLogarithmicFunctions 175

4.1 ExponentialFunctions 176

4.2 LogarithmicFunctions 188

4.3 PropertiesofLogarithms 194

4.4 LogarithmicandExponentialEquations 200 Chapter4Review 204

PARTII FINITEMATHEMATICS

CHAPTER5 MathematicsofFinance 208

5.1 CompoundInterest 209

5.2 PresentValue 214

5.3 InterestCompoundedContinuously 218

5.4 Annuities 222

5.5 AmortizationofLoans 230

5.6 Perpetuities 234 Chapter5Review 237

CHAPTER6 MatrixAlgebra 240

6.1 Matrices 241

6.2 MatrixAdditionandScalarMultiplication 246

6.3 MatrixMultiplication 253

6.4 SolvingSystemsbyReducingMatrices 264

6.5 SolvingSystemsbyReducingMatrices(Continued) 274

6.6 Inverses 279

6.7 Leontief’sInput--OutputAnalysis 286 Chapter6Review 292

CHAPTER7 LinearProgramming 294

7.1 LinearInequalitiesinTwoVariables 295

7.2 LinearProgramming 299

7.3 TheSimplexMethod 306

7.4 ArtificialVariables 320

7.5 Minimization 330

7.6 TheDual 335 Chapter7Review 344

CHAPTER8 IntroductiontoProbabilityandStatistics 348

8.1 BasicCountingPrincipleandPermutations 349

8.2 CombinationsandOtherCountingPrinciples 355

8.3 SampleSpacesandEvents 367

8.4 Probability 374

8.5 ConditionalProbabilityandStochasticProcesses 388

8.6 IndependentEvents 401

8.7 Bayes’Formula 411 Chapter8Review 419

CHAPTER9 AdditionalTopicsinProbability 424

9.1 DiscreteRandomVariablesandExpectedValue 425

9.2 TheBinomialDistribution 432

9.3 MarkovChains 437 Chapter9Review 447

PARTIII CALCULUS

CHAPTER10

LimitsandContinuity 450

10.1 Limits 451

10.2 Limits(Continued) 461

10.3 Continuity 469

10.4 ContinuityAppliedtoInequalities 474 Chapter10Review 479

CHAPTER11 Differentiation 482

11.1 TheDerivative 483

11.2 RulesforDifferentiation 491

11.3 TheDerivativeasaRateofChange 499

11.4 TheProductRuleandtheQuotientRule 509

11.5 TheChainRule 519 Chapter11Review 527

CHAPTER12

AdditionalDifferentiationTopics 531

12.1 DerivativesofLogarithmicFunctions 532

12.2 DerivativesofExponentialFunctions 537

12.3 ElasticityofDemand 543

12.4 ImplicitDifferentiation 548

12.5 LogarithmicDifferentiation 554

12.6 Newton’sMethod 558

12.7 Higher-OrderDerivatives 562 Chapter12Review 566

CHAPTER13

CurveSketching 569

13.1 RelativeExtrema 570

13.2 AbsoluteExtremaonaClosedInterval 581

13.3 Concavity 583

13.4 TheSecond-DerivativeTest 591

13.5 Asymptotes 593

13.6 AppliedMaximaandMinima 603 Chapter13Review 614

CHAPTER14 Integration 619

14.1 Differentials 620

14.2 TheIndefiniteIntegral 625

14.3 IntegrationwithInitialConditions 631

14.4 MoreIntegrationFormulas 635

14.5 TechniquesofIntegration 642

14.6 TheDefiniteIntegral 647

14.7 TheFundamentalTheoremofCalculus 653 Chapter14Review 661

CHAPTER15 ApplicationsofIntegration 665

15.1 IntegrationbyTables 666

15.2 ApproximateIntegration 672

15.3 AreaBetweenCurves 678

15.4 Consumers’andProducers’Surplus 687

15.5 AverageValueofaFunction 690

15.6 DifferentialEquations 692

15.7 MoreApplicationsofDifferentialEquations 699

15.8 ImproperIntegrals 706 Chapter15Review 709

CHAPTER16 ContinuousRandomVariables 713

16.1 ContinuousRandomVariables 714

16.2 TheNormalDistribution 721

16.3 TheNormalApproximationtotheBinomialDistribution 726 Chapter16Review 730

CHAPTER17 MultivariableCalculus 732

17.1 PartialDerivatives 733

17.2 ApplicationsofPartialDerivatives 738

17.3 Higher-OrderPartialDerivatives 744

17.4 MaximaandMinimaforFunctionsofTwoVariables 746

17.5 LagrangeMultipliers 754

17.6 MultipleIntegrals 761 Chapter17Review 765

APPENDIXA CompoundInterestTables 769

APPENDIXB TableofSelectedIntegrals 777

APPENDIXC AreasUndertheStandardNormalCurve 780

AnswerstoOdd-NumberedProblems AN-1

Index I-1

Preface

Thefourteentheditionof IntroductoryMathematicalAnalysisforBusiness,Economics,andtheLifeandSocialSciences(IMA) continuestoprovideamathematical foundationforstudentsinavarietyoffieldsandmajors,assuggestedbythetitle. Asbeguninthethirteenthedition,thebookhasthreeparts:CollegeAlgebra,Chapters0–4; FiniteMathematics,Chapters5–9;andCalculus,Chapters10–17.

SchoolsthathavetwoacademictermsperyeartendtogiveBusinessstudentsaterm devotedtoFiniteMathematicsandatermdevotedtoCalculus.FortheseschoolswerecommendChapters0through9forthefirstcourse,startingwhereverthepreparationofthe studentsallows,andChapters10through17forthesecond,includingasmuchasthestudents’backgroundallowsandtheirneedsdictate.

Forschoolswiththreequarterorthreesemestercoursesperyearthereareanumber ofpossibleusesforthisbook.IftheirprogramallowsthreequartersofMathematics,wellpreparedBusinessstudentscanstartafirstcourseonFiniteMathematicswithChapter1 andproceedthroughtopicsofinterestuptoandincludingChapter9.Inthisscenario,a secondcourseonDifferentialCalculuscouldstartwithChapter10onLimitsandContinuity,followedbythethree“differentiationchapters”,11through13inclusive.Here,Section 12.6onNewton’sMethodcanbeomittedwithoutlossofcontinuity,whilesomeinstructors mayprefertoreviewChapter4onExponentialandLogarithmicFunctionspriortostudyingthemasdifferentiablefunctions.Finally,athirdcoursecouldcompriseChapters14 through17onIntegralCalculuswithanintroductiontoMultivariableCalculus.Notethat Chapter16iscertainlynotneededforChapter17andSection15.8onImproperIntegrals canbesafelyomittedifChapter16isnotcovered.

Approach

IntroductoryMathematicalAnalysisforBusiness,Economics,andtheLifeandSocial Sciences(IMA) takesauniqueapproachtoproblemsolving.Ashasbeenthecaseinearliereditionsofthisbook,weestablishanemphasisonalgebraiccalculationsthatsetsthis textapartfromotherintroductory,appliedmathematicsbooks.Theprocessofcalculating withvariablesbuildsskillinmathematicalmodelingandpavesthewayforstudentstouse calculus.Thereaderwillnotfinda“definition-theorem-proof”treatment,butthereisasustainedefforttoimpartagenuinemathematicaltreatmentofappliedproblems.Inparticular, ourguidingphilosophyleadsustoincludeinformalproofsandgeneralcalculationsthat shedlightonhowthecorrespondingcalculationsaredoneinappliedproblems.Emphasis ondevelopingalgebraicskillsisextendedtotheexercises,ofwhichmany,eventhoseof thedrilltype,aregivenwithgeneralratherthannumericalcoefficients.

Wehaverefinedtheorganizationofourbookovermanyeditionstopresentthecontent inverymanageableportionsforoptimalteachingandlearning.Inevitably,thatprocess tendstoput“weight”onabook,andthepresenteditionmakesaveryconcertedeffortto parethebookbacksomewhat,bothwithrespecttodesignfeatures—makingforacleaner approach—andcontent—recognizingchangingpedagogicalneeds.

ChangesfortheFourteenthEdition

Wecontinuetomaketheelementarynotionsintheearlychapterspavethewayfortheir useinmoreadvancedtopics.Forexample,whilediscussingfactoring,atopicmanystudentsfindsomewhatarcane,wepointoutthattheprinciple“ab D 0implies a D 0or b D 0”,togetherwithfactoring,enablesthesplittingofsomecomplicatedequationsinto severalsimplerequations.Wepointoutthatpercentagesarejustrescalednumbersviathe “equation” p% D p 100 sothat,incalculus,“relativerateofchange”and“percentagerate ofchange”arerelatedbythe“equation” r D r 100%.Wethinkthatatthistime,when negativeinterestratesareoftendiscussed,evenifseldomimplemented,itiswisetobe absolutelypreciseaboutsimplenotionsthatareoftentakenforgranted.Infact,inthe

Finance,Chapter5,weexplicitlydiscussnegativeinterestratesandask,somewhatrhetorically,whybanksdonotusecontinuouscompounding(giventhatforalongtimenow continuouscompoundinghasbeenabletosimplifycalculations inpractice aswellasin theory).

Wheneverpossible,wehavetriedtoincorporatetheextraideasthatwereinthe“Explore andExtend”chapter-closersintothebodyofthetext.Forexample,thefunctionstaxrate t.i/ andtaxpaid T.i/ ofincome i,areseenforwhattheyare:everydayexamplesofcase-defined functions.Wethinkthatintheprocessoflearningaboutpolynomialsitishelpfultoinclude Horner’sMethodfortheirevaluation,sincewithevenasimplecalculatorathandthismakes thecalculationmuchfaster.Whiledoinglinearprogramming,itsometimeshelpstothink oflinesandplanes,etcetera,intermsofinterceptsalone,soweincludeanexercisetoshow thatifalinehas(nonzero)intercepts x0 and y0 thenitsequationisgivenby

and,moreover,(forpositive x0 and y0)weaskforageometricinterpretationoftheequivalent equation y0x C x0y D x0y0

But,turningtoour“paring”oftheprevious IMA,letusbeginwithLinearProgramming.ThisissurelyoneofthemostimportanttopicsinthebookforBusinessstudents.We nowfeelthat,whilestudentsshouldknowaboutthepossibilityof MultipleOptimumSolutions and DegeneracyandUnboundedSolutions,theydonothaveenoughtimetodevote anentire,albeitshort,sectiontoeachofthese.TheremainingsectionsofChapter7are alreadydemandingandwenowcontentourselveswithprovidingsimplealertstothese possibilitiesthatareeasilyseengeometrically.(Thedeletedsectionswerealwaystagged as“omittable”.)

Wethinkfurtherthat,inIntegralCalculus,itisfarmoreimportantforAppliedMathematicsstudentstobeadeptatusingtablestoevaluateintegralsthantoknowabout IntegrationbyParts and PartialFractions.Infact,thesetopics,ofendlessjoytosomeasrecreationalproblems,donotseemtofitwellintothegeneralschemeofseriousproblemsolving. Itisafactoflifethatanelementaryfunction(inthetechnicalsense)caneasilyfailtohave anelementaryantiderivative,anditseemstousthat Parts doesnotgofarenoughtorescue thisdifficultytowarranttheconsiderabletimeittakestomasterthetechnique.Since PartialFractions ultimatelyleadtoelementaryantiderivativesforall rational functions,they are partofseriousproblemsolvingandabettercasecanbemadefortheirinclusioninan appliedtextbook.However,itisvainglorioustodosowithouttheinversetangentfunction athandand,bylongstandingtacitagreement,appliedcalculusbooksdonotventureinto trigonometry.

Afterdeletingthesectionsmentionedabove,wereorganizedtheremainingmaterialof the“integrationchapters”,14and15,torebalancethem.ThefirstconcludeswiththeFundamentalTheoremofCalculuswhilethesecondismoreproperly“applied”.Wethinkthatthe formerlydauntingChapter17hasbenefitedfromdeletionof ImplicitPartialDifferentiation,the ChainRule forpartialdifferentiation,and LinesofRegression.SinceMultivariable CalculusisextremelyimportantforAppliedMathematics,wehopethatthismoremanageablechapterwillencourageinstructorstoincludeitintheirsyllabi.

ExamplesandExercises

Mostinstructorsandstudentswillagreethatthekeytoaneffectivetextbookisinthe qualityandquantityoftheexamplesandexercisesets.Tothatend,morethan850examplesareworkedoutindetail.Someoftheseexamplesincludea strategy boxdesigned toguidestudentsthroughthegeneralstepsofthesolutionbeforethespecificsolution isobtained.(See,forexample,Section14.3Example4.)Inaddition,anabundantnumberofdiagrams(almost500)andexercises(morethan5000)areincluded.Oftheexercises,approximately20percenthavebeeneitherupdatedorwrittencompletelyanew.In eachexerciseset,groupedproblemsareusuallygiveninincreasingorderofdifficulty. Inmostexercisesetstheproblemsprogressfromthebasicmechanicaldrill-typetomore

interestingthought-provokingproblems.Theexerciseslabeledwithacolouredexercise numbercorrelatetoa“NowWorkProblemN”statementandexampleinthesection. Basedonthefeedbackwehavereceivedfromusersofthistext,thediversityofthe applicationsprovidedinboththeexercisesetsandexamplesistrulyanassetofthisbook. Manyrealappliedproblemswithaccuratedataareincluded.Studentsdonotneedtolook hardtoseehowthemathematicstheyarelearningisappliedtoeverydayorwork-related situations.Agreatdealofefforthasbeenputintoproducingaproperbalancebetween drill-typeexercisesandproblemsrequiringtheintegrationandapplicationoftheconcepts learned.

PedagogyandHallmarkFeatures

Applications: Anabundanceandvarietyofapplicationsfortheintendedaudienceappear throughoutthebooksothatstudentsseefrequentlyhowthemathematicstheyarelearningcanbeused.Theseapplicationscoversuchdiverseareasasbusiness,economics, biology,medicine,sociology,psychology,ecology,statistics,earthscience,andarchaeology.Manyoftheseapplicationsaredrawnfromliteratureandaredocumentedby references,sometimesfromtheWeb.Insome,thebackgroundandcontextaregiven inordertostimulateinterest.However,thetextisself-contained,inthesensethatit assumesnopriorexposuretotheconceptsonwhichtheapplicationsarebased.(See,for example,Chapter15,Section7,Example2.)

NowWorkProblemN: Throughoutthetextwehaveretainedthepopular NowWork ProblemN feature.Theideaisthatafteraworkedexample,studentsaredirectedto anend-of-sectionproblem(labeledwithacoloredexercisenumber)thatreinforcesthe ideasoftheworkedexample.Thisgivesstudentsanopportunitytopracticewhatthey havejustlearned.Becausethemajorityofthesekeyedexercisesareodd-numbered,studentscanimmediatelychecktheiranswerinthebackofthebooktoassesstheirlevelof understanding.Thecompletesolutionstotheodd-numberedexercisescanbefoundin theStudentSolutionsManual.

Cautions: Cautionarywarningsarepresentedinverymuchthesamewayaninstructor wouldwarnstudentsinclassofcommonlymadeerrors.Theseappearinthemargin, alongwithotherexplanatorynotesandemphases.

Definitions,keyconcepts,andimportantrulesandformulas: Theseareclearlystated anddisplayedasawaytomakethenavigationofthebookthatmucheasierforthe student.(See,forexample,theDefinitionofDerivativeinSection11.1.)

Reviewmaterial: Eachchapterhasareviewsectionthatcontainsalistofimportant termsandsymbols,achaptersummary,andnumerousreviewproblems.Inaddition, keyexamplesarereferencedalongwitheachgroupofimportanttermsandsymbols.

Inequalitiesandslackvariables: InSection1.2,wheninequalitiesareintroducedwe pointoutthat a b isequivalentto“thereexistsanon-negativenumber, s,suchthat a C s D b”.Theideaisnotdeepbutthepedagogicalpointisthat slackvariables,key toimplementingthesimplexalgorithminChapter7,shouldbefamiliarandnotdistract fromtherathertechnicalmaterialinlinearprogramming.

Absolutevalue: Itiscommontonotethat ja bj providesthedistancefrom a to b.In Example4eofSection1.4wepointoutthat“x islessthan unitsfrom ”translatesas jx j < .InSection1.4thisisbutanexercisewiththenotation,asitshouldbe,but thepointhereisthatlater(inChapter9) willbethemeanand thestandarddeviation ofarandomvariable.Againwehaveseparated,inadvance,asimpleideafromamore advancedone.Ofcourse,Problem12ofProblems1.4,whichasksthestudenttosetup jf.x/ Lj < ,hasasimilaragendatoChapter10onlimits.

Earlytreatmentofsummationnotation: ThistopicisnecessaryforstudyofthedefiniteintegralinChapter14,butitis useful longbeforethat.Sinceitisanotationthatis newtomoststudentsatthislevel,butnomorethananotation,wegetitoutoftheway inChapter1.Byusingitwhenconvenient, beforecoverageofthedefiniteintegral,itis notadistractionfromthatchallengingconcept.

Section1.6onsequences: Thissectionprovidesseveralpedagogicaladvantages. Theverydefinitionisstatedinafashionthatpavesthewayforthemoreimportantand morebasicdefinitionoffunctioninChapter2.Insummingthetermsofasequencewe areabletopracticetheuseofsummationnotationintroducedintheprecedingsection. Themostobviousbenefitthoughisthat“sequences”allowsusabetterorganization intheannuitiessectionofChapter5.Boththepresentandthefuturevaluesofanannuityareobtainedbysumming(finite)geometricsequences.Laterinthetext,sequences ariseinthedefinitionofthenumber e inChapter4,inMarkovchainsinChapter9,and inNewton’smethodinChapter12,sothatahelpfulunifyingreferenceisobtained.

Sumofaninfinitesequence: Inthecourseofsummingthetermsofafinitesequence, itisnaturaltoraisethepossibilityofsummingthetermsofaninfinitesequence.Thisis anonthreateningenvironmentinwhichtoprovideafirstforayintotheworldoflimits. Wesimplyexplainhowcertaininfinitegeometricsequenceshavewell-definedsumsand phrasetheresultsinawaythatcreatesatoeholdfortheintroductionoflimitsinChapter 10.Theseparticularinfinitesumsenableustointroducetheideaofaperpetuity,first informallyinthesequencesection,andthenagaininmoredetailinaseparatesectionin Chapter5.

Section2.8,FunctionsofSeveralVariables: Theintroductiontofunctionsofseveral variablesappearsinChapter2becauseitisatopicthatshouldappearlongbeforeCalculus.Oncewehavedonesomecalculusthereareparticularwaystousecalculusinthe studyoffunctionsofseveralvariables,buttheseaspectsshouldnotbeconfusedwiththe basicsthatweusethroughoutthebook.Forexample,“a-sub-n-angle-r”and“s-sub-nangle-r”studiedintheMathematicsofFinance,Chapter5,areperfectlygoodfunctions oftwovariables,andLinearProgrammingseekstooptimizelinearfunctionsofseveral variablessubjecttolinearconstraints.

Leontief’sinput-outputanalysisinSection6.7: Inthissectionwehaveseparatedvariousaspectsofthetotalproblem.WebeginbydescribingwhatwecalltheLeontiefmatrix A asanencodingoftheinputandoutputrelationshipsbetweensectorsofaneconomy. Sincethismatrixcanoftenbeassumedtobeconstantforasubstantialperiodoftime, webeginbyassumingthat A isagiven.Thesimplerproblemisthentodeterminethe production, X,whichisrequiredtomeetanexternaldemand, D,foraneconomywhose Leontiefmatrixis A.Weprovideacarefulaccountofthisasthesolutionof .I A/X D D Since A canbeassumedtobefixedwhilevariousdemands, D,areinvestigated,thereis some justificationtocompute .I A/ 1 sothatwehave X D .I A/ 1D.However,use ofamatrixinverseshouldnotbeconsideredanessentialpartofthesolution.Finally,we explainhowtheLeontiefmatrixcanbefoundfromatableofdatathatmightbeavailable toaplanner.

BirthdayprobabilityinSection8.4: Thisisatreatmentoftheclassicproblemofdeterminingtheprobabilitythatatleast2of n peoplehavetheirbirthdayonthesameday. Whilethisproblemisgivenasanexampleinmanytexts,therecursiveformulathatwe giveforcalculatingtheprobabilityasafunctionof n isnotacommonfeature.Itisreasonabletoincludeitinthisbookbecauserecursivelydefinedsequencesappearexplicitlyin Section1.6.

MarkovChains: Wenoticedthatconsiderablesimplificationoftheproblemoffinding steadystatevectorsisobtainedbywritingstatevectorsascolumnsratherthanrows. Thisdoesnecessitatethatatransitionmatrix T D Œtij have tij D“probabilitythatnext stateis i giventhatcurrentstateis j”butavoidsseveralartificialtranspositions.

SignChartsforafunctioninChapter10: Thesignchartsthatweintroducedinthe 12theditionnowmaketheirappearanceinChapter10.Ourpointisthatthesecharts canbemadeforanyreal-valuedfunctionofarealvariableandtheirhelpingraphingafunctionbeginspriortotheintroductionofderivatives.Ofcoursewecontinueto exploittheiruseinChapter13“CurveSketching”where,foreachfunction f,weadvocatemakingasignchartforeachof f, f0,and f00,interpretedfor f itself.Whenthisis possible,thegraphofthefunctionbecomesalmostself-evident.Wefreelyacknowledge thatthisisablackboardtechniqueusedbymanyinstructors,butitappearstoorarelyin textbooks.

Supplements

MyLabMathOnlineCourse(accesscoderequired) BuiltaroundPearson’sbestsellingcontent,MyLab™Math,isanonlinehomework,tutorial,andassessment programdesignedtoworkwiththistexttoengagestudentsandimproveresults.MyLab Mathcanbesuccessfullyimplementedinanyclassroomenvironment—lab-based, hybrid,fullyonline,ortraditional.Byaddressinginstructorandstudentneeds,MyLab Mathimprovesstudentlearning.Usedbymorethan37millionstudentsworldwide, MyLabMathdeliversconsistent,measurablegainsinstudentlearningoutcomes,retentionandsubsequentcoursesuccess.Visitwww.mymathlab.com/resultstolearnmore.

StudentSolutionsManual includesworkedsolutionsforallodd-numberedproblems. ISBN0-134-77040-4 j 978-0-134-77040-6

Theseinstructorsupplementsareavailablefordownloadfromapassword-protected sectionofPearsonCanada’sonlinecatalogue(catalogue.pearsoned.ca).Navigatetoyour book’scataloguepagetoviewalistofthosesupplementsthatareavailable.Speaktoyour localPearsonsalesrepresentativefordetailsandaccess.

Instructor’sSolutionManual hasworkedsolutionstoallproblems,includingthosein the ApplyIt exercises.Itisdownloadablefromapassword-protectedsectionofPearson Canada’sonlinecatalogue(catalogue.pearsoned.ca).

– ComputerizedTestBank. Pearson’scomputerizedtestbanksallowinstructorsto filterandselectquestionstocreatequizzes,tests,orhomework.Instructorscanrevise questionsoraddtheirown,andmaybeabletochooseprintoronlineoptions.These questionsarealsoavailableinMicrosoftWordformat.

– PowerPoint® LectureSlides. Thechapter-by-chapterPowerPointlectureslides includekeyconcept,equations,andworkedexamplesfromthetext.

– LearningSolutionsManagers. Pearson’sLearningSolutionsManagersworkwith facultyandcampuscoursedesignerstoensurethatPearsontechnologyproducts, assessmenttools,andonlinecoursematerialsaretailoredtomeetyourspecificneeds. Thishighlyqualifiedteamisdedicatedtohelpingschoolstakefulladvantageofa widerangeofeducationalresources,byassistingintheintegrationofavarietyof instructionalmaterialsandmediaformats.YourlocalPearsonCanadasalesrepresentativecanprovideyouwithmoredetailsonthisserviceprogram.

– PearsoneText. ThePearsoneTextgivesstudentsaccesstotheirtextbookanytime, anywhere.Inadditiontonotetaking,highlighting,andbookmarking,thePearson eTextoffersinteractiveandsharingfeatures.Instructorscansharetheircomments orhighlights,andstudentscanaddtheirown,creatingatightcommunityoflearners withintheclass.

E.Adibi, ChapmanUniversity

Acknowledgments

Weexpressourappreciationtothefollowingcolleagueswhocontributedcommentsand suggestionsthatwerevaluabletousintheevolutionofthistext.(Professorsmarkedwith anasteriskreviewedthefourteenthedition.)

R.M.Alliston, PennsylvaniaStateUniversity

R.A.Alo, UniversityofHouston

K.T.Andrews, OaklandUniversity

M.N.deArce, UniversityofPuertoRico

E.Barbut, UniversityofIdaho

G.R.Bates, WesternIllinoisUniversity

*S.Beck, NavarroCollege

D.E.Bennett, MurrayStateUniversity

C.Bernett, HarperCollege

A.Bishop, WesternIllinoisUniversity

P.Blau, ShawneeStateUniversity

R.Blute, UniversityofOttawa

S.A.Book, CaliforniaStateUniversity

A.Brink, St.CloudStateUniversity

R.Brown, YorkUniversity

R.W.Brown, UniversityofAlaska

S.D.Bulman-Fleming, WilfridLaurierUniversity

D.Calvetti, NationalCollege

D.Cameron, UniversityofAkron

K.S.Chung, KapiolaniCommunityCollege

D.N.Clark, UniversityofGeorgia

E.L.Cohen, UniversityofOttawa

J.Dawson, PennsylvaniaStateUniversity

A.Dollins, PennsylvaniaStateUniversity

T.J.Duda, ColumbusStateCommunityCollege

G.A.Earles, St.CloudStateUniversity

B.H.Edwards, UniversityofFlorida

J.R.Elliott, WilfridLaurierUniversity

J.Fitzpatrick, UniversityofTexasatElPaso

M.J.Flynn, RhodeIslandJuniorCollege

G.J.Fuentes, UniversityofMaine

L.Gerber, St.John’sUniversity

T.G.Goedde, TheUniversityofFindlay

S.K.Goel, ValdostaStateUniversity

G.Goff, OklahomaStateUniversity

J.Goldman, DePaulUniversity

E.Greenwood, TarrantCountyCollege,Northwest Campus

J.T.Gresser, BowlingGreenStateUniversity

L.Griff, PennsylvaniaStateUniversity

R.Grinnell, UniversityofTorontoatScarborough

F.H.Hall, PennsylvaniaStateUniversity

V.E.Hanks, WesternKentuckyUniversity

*T.Harriott, MountSaintVincentUniversity

R.C.Heitmann, TheUniversityofTexasatAustin

J.N.Henry, CaliforniaStateUniversity

W.U.Hodgson, WestChesterStateCollege

*J.Hooper, AcadiaUniversity

B.C.Horne,Jr., VirginiaPolytechnicInstituteandState University

J.Hradnansky, PennsylvaniaStateUniversity

P.Huneke, TheOhioStateUniversity

C.Hurd, PennsylvaniaStateUniversity

J.A.Jiminez, PennsylvaniaStateUniversity

*T.H.Jones, Bishop’sUniversity

W.C.Jones, WesternKentuckyUniversity

R.M.King, GettysburgCollege

M.M.Kostreva, UniversityofMaine

G.A.Kraus, GannonUniversity

J.Kucera, WashingtonStateUniversity

M.R.Latina, RhodeIslandJuniorCollege

L.N.Laughlin, UniversityofAlaska,Fairbanks

P.Lockwood-Cooke, WestTexasA&MUniversity

J.F.Longman, VillanovaUniversity

*F.MacWilliam, AlgomaUniversity

I.Marshak, LoyolaUniversityofChicago

D.Mason, ElmhurstCollege

*B.Matheson, UniversityofWaterloo

F.B.Mayer, Mt.SanAntonioCollege

P.McDougle, UniversityofMiami

F.Miles, CaliforniaStateUniversity

E.Mohnike, Mt.SanAntonioCollege

C.Monk, UniversityofRichmond

R.A.Moreland, TexasTechUniversity

J.G.Morris, UniversityofWisconsin-Madison

J.C.Moss, PaducahCommunityCollege

D.Mullin, PennsylvaniaStateUniversity

E.Nelson, PennsylvaniaStateUniversity

S.A.Nett, WesternIllinoisUniversity

R.H.Oehmke, UniversityofIowa

Y.Y.Oh, PennsylvaniaStateUniversity

J.U.Overall, UniversityofLaVerne

*K.Pace, TarrantCountyCollege

A.Panayides, WilliamPattersonUniversity

D.Parker, UniversityofPacific

N.B.Patterson, PennsylvaniaStateUniversity

V.Pedwaydon, LawrenceTechnicalUniversity

E.Pemberton, WilfridLaurierUniversity

M.Perkel, WrightStateUniversity

D.B.Priest, HardingCollege

J.R.Provencio, UniversityofTexas

L.R.Pulsinelli, WesternKentuckyUniversity

M.Racine, UniversityofOttawa

*B.Reed, NavarroCollege

N.M.Rice, Queen’sUniversity

A.Santiago, UniversityofPuertoRico

J.R.Schaefer, UniversityofWisconsin–Milwaukee

S.Sehgal, TheOhioStateUniversity

W.H.Seybold,Jr., WestChesterStateCollege

*Y.Shibuya, SanFranciscoStateUniversity

G.Shilling, TheUniversityofTexasatArlington

S.Singh, PennsylvaniaStateUniversity

L.Small, LosAngelesPierceCollege

E.Smet, HuronCollege

J.Stein, CaliforniaStateUniversity,LongBeach

M.Stoll, UniversityofSouthCarolina

T.S.Sullivan, SouthernIllinoisUniversityEdwardsville

E.A.Terry, St.Joseph’sUniversity

A.Tierman, SaginawValleyStateUniversity

B.Toole, UniversityofMaine

J.W.Toole, UniversityofMaine

*M.Torres, AthabascaUniversity

D.H.Trahan, NavalPostgraduateSchool

J.P.Tull, TheOhioStateUniversity

L.O.Vaughan,Jr., UniversityofAlabamain Birmingham

L.A.Vercoe, PennsylvaniaStateUniversity

M.Vuilleumier, TheOhioStateUniversity

B.K.Waits, TheOhioStateUniversity

A.Walton, VirginiaPolytechnicInstituteandState University

H.Walum, TheOhioStateUniversity

E.T.H.Wang, WilfridLaurierUniversity

A.J.Weidner, PennsylvaniaStateUniversity

L.Weiss, PennsylvaniaStateUniversity

N.A.Weigmann, CaliforniaStateUniversity

S.K.Wong, OhioStateUniversity

G.Woods, TheOhioStateUniversity

C.R.B.Wright, UniversityofOregon

C.Wu, UniversityofWisconsin–Milwaukee

B.F.Wyman, TheOhioStateUniversity

D.Zhang, WashingtonStateUniversity

SomeexercisesaretakenfromproblemsupplementsusedbystudentsatWilfridLaurier University.WewishtoextendspecialthankstotheDepartmentofMathematicsofWilfrid LaurierUniversityforgrantingPrenticeHallpermissiontouseandpublishthismaterial, andalsotoPrenticeHall,whointurnallowedustomakeuseofthismaterial.

WeagainexpressoursinceregratitudetothefacultyandcoursecoordinatorsofThe OhioStateUniversityandColumbusStateUniversitywhotookakeeninterestinthisand othereditions,offeringanumberofinvaluablesuggestions.

SpecialthanksareduetoMPSNorthAmerica,LLC.fortheircarefulworkonthesolutionsmanuals.Theirworkwasextraordinarilydetailedandhelpfultous.Wealsoappreciate thecarethattheytookincheckingthetextandexercisesforaccuracy.

ErnestF.Haeussler,Jr. RichardS.Paul RichardJ.Wood

This page intentionally left blank

0

0.1 SetsofRealNumbers

0.2 SomePropertiesofReal Numbers

0.3 ExponentsandRadicals

0.4 Operationswith AlgebraicExpressions

0.5 Factoring

0.6 Fractions

0.7 Equations,inParticular LinearEquations

0.8 QuadraticEquations Chapter0 Review

ReviewofAlgebra

LesleyGriffithworkedforayachtsupplycompanyinAntibes,France.Often, sheneededtoexaminereceiptsinwhichonlythetotalpaidwasreportedand thendeterminetheamountofthetotalwhichwasFrench“value-addedtax”. ItisknownasTVAfor“TaxeàlaValueAjouté”.TheFrenchTVAratewas 19.6%(butinJanuaryof2014itincreasedto20%).AlotofLesley’sbusinesscame fromItaliansuppliersandpurchasers,soshealsohadtodealwiththesimilarproblem ofreceiptscontainingItaliansalestaxat18%(now22%).

Aproblemofthiskinddemandsaformula,sothattheusercanjustpluginatax ratelike19.6%or22%tosuitaparticularplaceandtime,butmanypeopleareable toworkthroughaparticularcaseoftheproblem,usingspecifiednumbers,without knowingtheformula.Thus,ifLesleyhada200-EuroFrenchreceipt,shemighthave reasonedasfollows:Iftheitemcost100Eurosbeforetax,thenthereceipttotalwould befor119.6Euroswithtaxof19.6,so taxinareceipttotalof200isto200as19.6is to119.6.Statedmathematically,

4%

IfherreasoningiscorrectthentheamountofTVAina200-Euroreceiptisabout16.4% of200Euros,whichis32.8Euros.Infact,manypeoplewillnowguessthat

taxin R D R p 100 C p

givesthetaxinareceipt R,whenthetaxrateis p%.Thus,ifLesleyfeltconfidentabout herdeduction,shecouldhavemultipliedherItalianreceiptsby 18 118 todeterminethetax theycontained.

Ofcourse,mostpeopledonotrememberformulasforverylongandareuncomfortablebasingamonetarycalculationonanassumptionsuchastheoneweitalicized above.Therearelotsofrelationshipsthataremorecomplicatedthansimpleproportionality!Thepurposeofthischapteristoreviewthealgebranecessaryforyoutoconstruct yourownformulas, withconfidence, asneeded.Inparticular,wewillderiveLesley’s formulafromprincipleswithwhicheverybodyisfamiliar.Thisusageofalgebrawill appearthroughoutthebook,inthecourseofmaking generalcalculationswithvariable quantities

Inthischapterwewillreviewrealnumbersandalgebraicexpressionsandthebasic operationsonthem.Thechapterisdesignedtoprovideabriefreviewofsometermsand methodsofsymboliccalculation.Probably,youhaveseenmostofthismaterialbefore. However,becausethesetopicsareimportantinhandlingthemathematicsthatcomes later,animmediatesecondexposuretothemmaybebeneficial.Devotewhatevertime isnecessarytothesectionsinwhichyouneedreview.

Objective

Tobecomefamiliarwithsets,in particularsetsofrealnumbers,and thereal-numberline.

0.1SetsofRealNumbers

A set isacollectionofobjects.Forexample,wecanspeakofthesetofevennumbers between5and11,namely,6,8,and10.Anobjectinasetiscalledan element of thatset.Ifthissoundsalittlecircular,don’tworry.Thewords set and element arelike line and point ingeometry.Wecannotdefinetheminmoreprimitiveterms.Itisonly withpracticeinusingthemthatwecometounderstandtheirmeaning.Thesituationis alsoratherlikethewayinwhichachildlearnsafirstlanguage.Withoutknowing any words,achildinfersthemeaningofafewverysimplewordsbywatchingandlistening toaparentandultimatelyusestheseveryfewwordstobuildaworkingvocabulary. Noneofusneedstounderstandthemechanicsofthisprocessinordertolearnhowto speak.Inthesameway,itispossibletolearnpracticalmathematicswithoutbecoming embroiledintheissueofundefinedprimitiveterms.

Onewaytospecifyasetisbylistingitselements,inanyorder,insidebraces.For example,theprevioussetis f6; 8; 10g,whichwecoulddenotebyalettersuchas A, allowingustowrite A Df6; 8; 10g.Notethat f8; 10; 6g alsodenotesthesameset,as does f6; 8; 10; 10g. Asetisdeterminedbyitselements,andneitherrearrangementsnor repetitionsinalistingaffecttheset.Aset A issaidtobeasubsetofaset B ifand onlyifeveryelementof A isalsoanelementof B.Forexample,if A Df6; 8; 10g and B Df6; 8; 10; 12g,then A isasubsetof B but B isnotasubsetof A.Thereisexactly onesetwhichcontains no elements.Itiscalled theemptyset andisdenotedby ;. Certainsetsofnumbershavespecialnames.Thenumbers1,2,3,andsoonform thesetof positiveintegers:

setofpositiveintegers Df1; 2; 3;:::g

Thethreedotsareaninformalwayofsayingthatthelistingofelementsisunending andthereaderisexpectedtogenerateasmanyelementsasneededfromthepattern.

Thepositiveintegerstogetherwith0andthe negativeintegers 1; 2; 3;:::; formthesetof integers:

setofintegers Df:::; 3; 2; 1; 0; 1; 2; 3;:::g

Thereasonfor q ¤ 0isthatwecannot dividebyzero.

Everyintegerisarationalnumber.

Thesetof rationalnumbers consistsofnumbers,suchas 1 2 and 5 3 ,thatcanbe writtenasaquotientoftwointegers.Thatis,arationalnumberisanumberthatcan bewrittenas p q ,where p and q areintegersand q ¤ 0.(Thesymbol“¤”isread“isnot equalto.”)Forexample,thenumbers 19 20 , 2 7 ,and 6 2 arerational.Weremarkthat 2 4 , 1 2 , 3 6 , 4 8 ,0 5,and50%allrepresentthesamerationalnumber.Theinteger2isrational, since2 D 2 1 .Infact,everyintegerisrational.

Allrationalnumberscanberepresentedbydecimalnumbersthat terminate, such as 3 4 D 0 75and 3 2 D 1 5,orby nonterminating,repeatingdecimalnumbers (composed ofagroupofdigitsthatrepeatswithoutend),suchas 2 3 D 0:666 :::; 4 11 D 0:3636 :::; and 2 15 D 0 1333 Numbersrepresentedby nonterminating,nonrepeating decimals

Everyrationalnumberisarealnumber. arecalled irrationalnumbers.Anirrationalnumbercannotbewrittenasaninteger dividedbyaninteger.Thenumbers (pi)and p2areexamplesofirrationalnumbers. Together,therationalnumbersandtheirrationalnumbersformthesetof realnumbers

Thesetofrealnumbersconsistsofall decimalnumbers.

Realnumberscanberepresentedbypointsonaline.Firstwechooseapointonthe linetorepresentzero.Thispointiscalledthe origin.(SeeFigure0.1.)Thenastandard measureofdistance,calleda unitdistance, ischosenandissuccessivelymarkedoff bothtotherightandtotheleftoftheorigin.Witheachpointonthelineweassociatea directeddistance,whichdependsonthepositionofthepointwithrespecttotheorigin.

Positionstotherightoftheoriginareconsideredpositive .C/ andpositionstotheleft arenegative . /.Forexample,withthepoint 1 2 unittotherightoftheoriginthere correspondsthenumber 1 2 ,whichiscalledthe coordinate ofthatpoint.Similarly,the coordinateofthepoint1.5unitstotheleftoftheoriginis 1:5.InFigure0.1,the coordinatesofsomepointsaremarked.Thearrowheadindicatesthatthedirectionto therightalongthelineisconsideredthepositivedirection.

Toeachpointonthelinetherecorrespondsauniquerealnumber,andtoeach realnumbertherecorrespondsauniquepointontheline.Thereisa one-to-onecorrespondence betweenpointsonthelineandrealnumbers.Wecallsuchaline,with coordinatesmarked,a real-numberline.Wefeelfreetotreatrealnumbersaspoints onareal-numberlineandviceversa.

EXAMPLE1IdentifyingKindsofRealNumbers

Isittruethat0:151515 ::: isanirrationalnumber?

Solution: Thedotsin0:151515 ::: areunderstoodtoconveyrepetitionofthedigit string“15”.Irrationalnumbersweredefinedtoberealnumbersthatarerepresentedbya nonterminating,nonrepeating decimal,so0 151515 isnotirrational.Itisthereforea rationalnumber.Itisnotimmediatelyclearhowtorepresent0 151515 asaquotient ofintegers.InChapter1wewilllearnhowtoshowthat0 151515 D 5 33 .Youcan checkthatthisis plausible byentering5 33onacalculator,butyoushouldalsothink aboutwhythecalculatorexercisedoesnot prove that0 151515 D 5 33

NowWorkProblem7 G

PROBLEMS0.1

InProblems1–12,determinethetruthofeachstatement.Ifthe statementisfalse,giveareasonwhythatisso.

1. p 13isaninteger.

2. 2 7 isrational.

3. 3isapositiveinteger.

4. 0isnotrational.

5. p3isrational.

6. 1 0 isarationalnumber.

Objective

Toname,illustrate,andrelate propertiesoftherealnumbersand theiroperations.

7. p25isnotapositiveinteger.

8. p2isarealnumber.

9. 0 0 isrational.

10. isapositiveinteger.

11. 0istotherightof p2onthereal-numberline.

12. Everyintegerispositiveornegative.

13. Everyterminatingdecimalnumbercanberegardedasa repeatingdecimalnumber.

14. p 1isarealnumber.

0.2SomePropertiesofRealNumbers

Wenowstateafewimportantpropertiesoftherealnumbers.Let a, b,and c bereal numbers.

1. TheTransitivePropertyofEquality

If a D b and b D c; then a D c

Thus,twonumbersthatarebothequaltoathirdnumberareequaltoeachother. Forexample,if x D y and y D 7,then x D 7.

Zerodoesnothaveareciprocalbecause thereisnonumberthatwhenmultiplied by0gives1.Thisisaconsequenceof 0 a D 0in7.TheDistributiveProperties.

2. TheClosurePropertiesofAdditionandMultiplication

Forallrealnumbers a and b,thereareuniquerealnumbers a C b and ab.

Thismeansthatanytwonumberscanbeaddedandmultiplied,andtheresultin eachcaseisarealnumber.

3. TheCommutativePropertiesofAdditionandMultiplication a C b D b C a and ab D ba

Thismeansthattwonumberscanbeaddedormultipliedinanyorder.Forexample, 3

4. TheAssociativePropertiesofAdditionandMultiplication

C .b C c/ D .a C b/ C c and a.bc/ D .ab/c

Thismeansthat,forbothadditionandmultiplication,numberscanbegroupedin anyorder.Forexample,2 C .3 C 4/ D .2 C 3/ C 4;inbothcases,thesumis9.Similarly,2x C .x C y/ D .2x C x/ C y,andobservethattherightsidemoreobviouslysimplifiesto3x C y thandoestheleftside.Also, .6 1 3 / 5 D 6. 1 3 5/,andheretheleftside obviouslyreducesto10,sotherightsidedoestoo.

5. TheIdentityProperties

Thereareuniquerealnumbersdenoted0and1suchthat,foreachrealnumber a, 0 C a D a and1a D a

6. TheInverseProperties

Foreachrealnumber a,thereisauniquerealnumberdenoted a suchthat a C . a/ D 0

Thenumber a iscalledthe negative of a

Forexample,since6 C . 6/ D 0,thenegativeof6is 6.Thenegativeofanumberisnotnecessarilyanegativenumber.Forexample,thenegativeof 6is6,since . 6/ C .6/ D 0.Thatis,thenegativeof 6is6,sowecanwrite . 6/ D 6.

Foreachrealnumber a, except 0,thereisauniquerealnumberdenoted a 1 such that a a 1 D 1

Thenumber a 1 iscalledthe reciprocal of a

Thus,allnumbers except 0haveareciprocal.Recallthat a 1 canbewritten 1 a .For example,thereciprocalof3is 1 3 ,since3. 1 3 / D 1.Hence, 1 3 isthereciprocalof3.The reciprocalof 1 3 is3,since . 1 3 /.3/ D 1. Thereciprocalof0isnotdefined

7. TheDistributiveProperties

a.b C c/ D ab C ac and .b C c/a D ba C ca

0 a D 0 D a 0

Similarly,

and

Thedistributivepropertycanbeextendedtotheform

Infact,itcanbeextendedtosumsinvolvinganynumberofterms. Subtraction isdefinedintermsofaddition:

a b means a C . b/ where b isthenegativeof b.Thus,6 8means6 C . 8/ Inasimilarway,wedefine division intermsofmultiplication.If b ¤ 0,then a b means a.b 1/

Usually,wewriteeither

Thus, 3 5 means3times 1 5 ,where 1 5 isthereciprocalof5.Sometimeswereferto a b as the ratio of a to b.Weremarkthatsince0doesnothaveareciprocal, divisionby0is notdefined. a b means a timesthereciprocalof b. Thefollowingexamplesshowsomemanipulationsinvolvingthepreceding properties.

EXAMPLE1ApplyingPropertiesofRealNumbers

a. x.y 3z C 2w/ D .y 3z C 2w/x,bythecommutativepropertyofmultiplication.

b. Bytheassociativepropertyofmultiplication,3.4 5/ D .3 4/5.Thus,theresultof multiplying3bytheproductof4and5isthesameastheresultofmultiplyingthe productof3and4by5.Ineithercase,theresultis60.

c. Showthat a.b c/ ¤ .ab/ .ac/

Solution: Toshowthenegationofageneralstatement,itsufficestoprovidea counterexample.Here,taking a D 2and b D 1 D c,weseethatthat a.b c/ D 2while .ab/ .ac/ D 4.

NowWorkProblem9 G

EXAMPLE2ApplyingPropertiesofRealNumbers

a. Showthat2 p2 D p2 C 2.

Solution: Bythedefinitionofsubtraction,2 p2 D 2 C . p2/.However,bythe commutativepropertyofaddition,2 C . p2/ D p2 C 2.Hence,bythetransitive propertyofequality,2 p2 D p2 C 2.Similarly,itisclearthat,forany a and b, wehave a b D b C a

b. Showthat .8 C x/ y D 8 C .x y/

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.