Complete Download Dsp first 2nd edition, (ebook pdf) PDF All Chapters

Page 1


https://ebookmass.com/product/dsp-first-2nd-edition-ebookpdf/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Emergency Medical Responder: First Responder in Action 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/emergency-medical-responder-firstresponder-in-action-2nd-edition-ebook-pdf/

ebookmass.com

Data Science from Scratch: First Principles with Python 2nd Edition

https://ebookmass.com/product/data-science-from-scratch-firstprinciples-with-python-2nd-edition/

ebookmass.com

Introductory Chemistry: An Atoms First Approach 2nd Edition Julia Burdge

https://ebookmass.com/product/introductory-chemistry-an-atoms-firstapproach-2nd-edition-julia-burdge/

ebookmass.com

Junqueira’s Basic Histology Text and Atlas 14th Edition

https://ebookmass.com/product/junqueiras-basic-histology-text-andatlas-14th-edition-anthony-l-mescher/

ebookmass.com

Métodos de investigación clínica y epidemiológica (Spanish Edition) Josep Maria Argimon Pallàs & Josep Jiménez Villa [Pallàs

https://ebookmass.com/product/metodos-de-investigacion-clinica-yepidemiologica-spanish-edition-josep-maria-argimon-pallas-josepjimenez-villa-pallas/ ebookmass.com

K IS FOR KARMA: The A, B, C's of Witchery (Moonbeam Chronicles Book 11) Carolina Mac

https://ebookmass.com/product/k-is-for-karma-the-a-b-cs-of-witcherymoonbeam-chronicles-book-11-carolina-mac/

ebookmass.com

Physiology E Book 6th Edition, (Ebook PDF)

https://ebookmass.com/product/physiology-e-book-6th-edition-ebook-pdf/

ebookmass.com

Birth Of The State: The Place Of The Body In Crafting

Modern Politics 1st Edition Edition Charlotte Epstein

https://ebookmass.com/product/birth-of-the-state-the-place-of-thebody-in-crafting-modern-politics-1st-edition-edition-charlotteepstein/ ebookmass.com

Wild Witches of Beaver Bay Kate Hill

https://ebookmass.com/product/wild-witches-of-beaver-bay-kate-hill/ ebookmass.com

https://ebookmass.com/product/xenes-2d-synthetic-materials-beyondgraphene-alessandro-molle/

ebookmass.com

DSPFirst SecondEdition

JamesH.McClellan GeorgiaInstituteofTechnology

RonaldW.Schafer StanfordUniversity

MarkA.Yoder Rose-HulmanInstituteofTechnology

7-2PropertiesoftheDTFT

7-2.1LinearityProperty

7-2.2Time-DelayProperty

7-2.3Frequency-ShiftProperty

7-2.3.1DTFTofaFinite-Length ComplexExponential

7-2.3.2DTFTofaFinite-LengthReal CosineSignal

7-2.4ConvolutionandtheDTFT

7-2.4.1FilteringisConvolution

7-2.5EnergySpectrumandtheAutocorrelationFunction...257

7-2.5.1AutocorrelationFunction

7-3IdealFilters ............................259

7-3.1IdealLowpassFilter

7-3.2IdealHighpassFilter

7-3.3IdealBandpassFilter

7-4PracticalFIRFilters

7-4.1Windowing

7-4.2FilterDesign

7-4.2.1WindowtheIdealImpulseResponse

7-4.2.2FrequencyResponseofPractical Filters

7-4.2.3PassbandDefinedfortheFrequency Response

7-4.2.4StopbandDefinedfortheFrequency Response

7-4.2.5TransitionZoneoftheLPF ..........270

7-4.2.6SummaryofFilterSpecifications .......271

7-4.3GUIforFilterDesign

7-5TableofFourierTransformPropertiesandPairs

7-6SummaryandLinks

7-7Problems

8-1DiscreteFourierTransform(DFT) ................

8-1.1TheInverseDFT

8-1.2DFTPairsfromtheDTFT

8-1.2.2DFTofComplexExponential

8-1.3ComputingtheDFT

8-1.4MatrixFormoftheDFTandIDFT

8-2PropertiesoftheDFT

8-2.1DFTPeriodicityfor X [k ]

8-2.2NegativeFrequenciesandtheDFT

8-2.3ConjugateSymmetryoftheDFT

8-2.3.1Ambiguityat X [N/2]

8-2.4Frequency-DomainSamplingandInterpolation

8-2.5DFTofaRealCosineSignal

8-3InherentTime-DomainPeriodicityof x [n]

8-3.1DFTPeriodicityfor x [n]

8-3.2TheTimeDelayPropertyfortheDFT

8-3.2.1ZeroPadding

8-3.3TheConvolutionPropertyfortheDFT

8-4TableofDiscreteFourierTransformPropertiesandPairs

8-5SpectrumAnalysisofDiscretePeriodicSignals

8-5.1PeriodicDiscrete-TimeSignal:Discrete FourierSeries

8-5.2SamplingBandlimitedPeriodicSignals

8-5.3SpectrumAnalysisofPeriodicSignals ..........314

8-6Windows ..............................317

8-6.1DTFTofWindows

8-7TheSpectrogram

8-7.1AnIllustrativeExample

8-7.2Time-DependentDFT

8-7.3TheSpectrogramDisplay

8-7.4InterpretationoftheSpectrogram

8-7.4.1FrequencyResolution

8-7.5SpectrogramsinMATLAB

8-8TheFastFourierTransform(FFT)

8-8.1DerivationoftheFFT

8-8.1.1FFTOperationCount

8-9SummaryandLinks

8-10Problems

9-1Definitionofthe z-Transform

9-2Basic z-TransformProperties

9-2.1LinearityPropertyofthe z-Transform

9-2.2Time-DelayPropertyofthe z-Transform

9-2.3AGeneral z-TransformFormula

9-3The z-TransformandLinearSystems

9-3.1Unit-DelaySystem

9-3.2 z 1 NotationinBlockDiagrams

9-3.3The z-TransformofanFIRFilter

9-3.4 z-TransformoftheImpulseResponse

9-3.5Rootsofa z-TransformPolynomial

9-4Convolutionandthe z-Transform

9-4.1CascadingSystems

9-4.2Factoring z-Polynomials

9-4.3Deconvolution

9-5RelationshipBetweenthe z-Domainandthe ˆ

-Domain

9-5.1The z-PlaneandtheUnitCircle

9-5.2The z-TransformandtheDFT

9-6TheZerosandPolesof H(z)

9-6.1Pole-ZeroPlot

9-6.2SignificanceoftheZerosof H(z)

9-6.3NullingFilters

9-6.4GraphicalRelationBetween z and ˆ

9-6.5Three-DomainMovies

9-7SimpleFilters

9-7.1Generalizethe L-PointRunning-SumFilter

9-7.2AComplexBandpassFilter

9-7.3ABandpassFilterwithRealCoefficients

9-8PracticalBandpassFilterDesign

9-9PropertiesofLinear-PhaseFilters

9-9.1TheLinear-PhaseCondition

9-9.2LocationsoftheZerosofFIRLinearPhaseSystems

9-10SummaryandLinks

9-11Problems

10-1TheGeneralIIRDifferenceEquation

10-2Time-DomainResponse

10-2.1LinearityandTimeInvarianceofIIRFilters

10-2.2ImpulseResponseofaFirst-OrderIIRSystem

10-2.3ResponsetoFinite-LengthInputs

10-2.4StepResponseofaFirst-OrderRecursiveSystem...402 10-3SystemFunctionofanIIRFilter

10-3.1TheGeneralFirst-OrderCase ..............405 10-3.2 H(z) fromtheImpulseResponse

10-4TheSystemFunctionandBlockDiagramStructures

10-4.1DirectFormIStructure

10-4.2DirectFormIIStructure

10-4.3TheTransposedFormStructure

10-5PolesandZeros

10-5.1RootsinMATLAB

10-5.2PolesorZerosat z = 0or ∞

10-5.3OutputResponsefromPoleLocation

10-6StabilityofIIRSystems ......................416

10-6.1TheRegionofConvergenceandStability

10-7FrequencyResponseofanIIRFilter

10-7.1FrequencyResponseUsingMATLAB

10-7.2Three-DimensionalPlotofaSystemFunction

10-8ThreeDomains ..........................424 10-9TheInverse z-TransformandApplications

10-9.1RevisitingtheStepResponseofa First-OrderSystem

10-9.2AGeneralProcedureforInverse z-Transformation...429 10-10Steady-StateResponseandStability

10-11Second-OrderFilters

10-11.1 z-TransformofSecond-OrderFilters

10-11.2StructuresforSecond-OrderIIRSystems

10-11.3PolesandZeros

10-11.4ImpulseResponseofaSecond-OrderIIRSystem...440 10-11.4.1DistinctRealPoles

10-11.5ComplexPoles

10-12FrequencyResponseofSecond-OrderIIRFilter

10-12.1FrequencyResponseviaMATLAB

10-12.23-dBBandwidth

10-12.3Three-DimensionalPlotofaSystemFunction

10-12.4Pole-ZeroPlacingwiththe PeZ

10-13ExampleofanIIRLowpassFilter

10-14SummaryandLinks

10-15Problems

A-5.1GeometricViewofAddition

A-5.2GeometricViewofSubtraction

A-5.3GeometricViewofMultiplication

A-5.4GeometricViewofDivision

A-5.5GeometricViewoftheInverse, z 1

A-5.6GeometricViewoftheConjugate, z

A-6PowersandRoots

A-6.1RootsofUnity

A-6.1.1ProcedureforFindingMultipleRoots

A-7SummaryandLinks

B-1MATLABHelp ..........................

B-2MatrixOperationsandVariables

B-2.1TheColonOperator

B-2.2MatrixandArrayOperations

B-2.2.1AReviewofMatrixMultiplication

B-2.2.2PointwiseArrayOperations

B-3PlotsandGraphics

B-3.1FigureWindows

B-3.2MultiplePlots

B-3.3PrintingandSavingGraphics

B-4ProgrammingConstructs

B-4.1MATLABBuilt-InFunctions

B-4.2ProgramFlow

B-5MATLABScripts

B-6WritingaMATLABFunction

B-6.1CreatingaClipFunction

B-6.2DebuggingaMATLABM-file

B-7ProgrammingTips

B-7.1AvoidingLoops

B-7.2RepeatingRowsorColumns

B-7.3VectorizingLogicalOperations

B-7.4CreatinganImpulse

B-7.5TheFindFunction

B-7.6SeektoVectorize

B-7.7ProgrammingStyle

C-1FourierSeriesDerivation .....................

C-1.1FourierIntegralDerivation

C-2ExamplesofFourierAnalysis

C-2.1ThePulseWave

C-2.1.1SpectrumofaPulseWave

C-2.1.2FiniteSynthesisofaPulseWave

C-2.2TriangularWave

C-2.2.1SpectrumofaTriangularWave

C-2.2.2FiniteSynthesisofaTriangularWave

C-2.3Half-WaveRectifiedSine

C-2.3.1FiniteSynthesisofaHalf-Wave RectifiedSine

C-3OperationsonFourierSeries

C-3.1ScalingorAddingaConstant

C-3.2AddingSignals

C-3.3Time-ScalingProperty

C-3.4Time-ShiftingProperty

C-3.5DifferentiationProperty

C-3.6Frequency-ShiftingPropertyandMultiplying byaSinusoid

C-4AveragePower,Convergence,andOptimality

C-4.1DerivationofParseval’sTheorem

C-4.2ConvergenceofFourierSynthesis

C-4.3MinimumMean-SquareApproximation

C-5TheSpectruminPulsed-DopplerRadarWaveformDesign

C-5.1MeasuringRange

C-5.2MeasuringVelocityfromDopplerShift

C-5.3Pulsed-DopplerRadarWaveform

C-5.4MeasuringtheDopplerShift

C-6Problems

Preface

Thisbook,entitledsimply DSPFirst,isthesecondeditionofthetext DSPFirst:A MultimediaApproach (1998)whichwaspackagedwithaCD-ROMthatprovidedmany resourcestoextendtheboundariesofatraditionaltextbook.In2003,asecondbook entitled SignalProcessingFirst wasproducedwithabroadersetoftopicsthatincluded fournewchaptersoncontinuous-timesignalprocessingandtheFouriertransform,aswell asupdatedversionsofthefirsteightchaptersof DSPFirst.Newmaterialwasproduced fortheCD-ROMbundledwiththe2003textbook,andallthesupportingresourceshave nowmovedtoawebsiteforeasieraccess.

ThesethreebooksandtheCompanionWebsitearetheresultofmorethan20years ofworkgroundedonthepremisethatdigitalsignalprocessing(DSP)isanidealstarting pointforthestudyofbothelectricalengineeringandcomputerengineering.Inthesummer of1993,twoofus(JHMcandRWS)begantodevelopaone-quartercoursethatwasto becometherequiredintroductorycourseforGeorgiaTechcomputerengineering(CmpE) students.Wearguedthatthesubjectofdigitalsignalprocessinghadeverythingwe wantedinafirstcourseforcomputerengineers:itintroducedthestudentstotheuse ofmathematicsasalanguageforthinkingaboutandsolvingengineeringproblems;it laidusefulgroundworkforsubsequentcourses;itmadeastrongconnectiontodigital computationasameansforimplementingsystems;anditprovidedthetoolstodiscuss interestingapplicationsthatwouldmotivatebeginningengineerstodothehardworkof connectingmathematicsandcomputationtoproblemsolving.Nothinghashappenedin

thepast22yearstochangeourmindsonthispoint.Indeed,ourteachingexperience withmorethan6,000studentsatGeorgiaTechhasonlystrengthenedourconvictionthat digitalsignalprocessing,distilledtoitsessence,isanidealintroductorysubjectfor both electricalandcomputerengineeringstudents.1 Infact,wehavebecomefirmlyconvinced thatacourseonDSPatthelevelofthistextshouldberequiredofeveryengineeringand computersciencestudent.

Fromthebeginning,webelievedthat“hands-on”experiencewithrealsignals wascrucial,soweexpendedconsiderableeffortondevelopingadditionalmaterialfor laboratoryexercisesandprojectsbasedonMATLAB.Inthelaboratoryassignments, studentscanexperiencetheeffectsofsignalprocessingoperationsthattheyhave implementedonsoundandimagesignals.Forexample,theycansynthesizemusicfrom sinusoids,buttheycanalsoseethatthosesamesinusoidsarethebasisforthewireless systemsthattheyuseroutinelytoaccesstheInternet.Theseexperiences,availableonthe CompanionWebsite,willaugmentandreinforcethemathematicalconceptsthatformthe basisofDSP.

Inadditiontothe25detailedlabassignments,theCompanionWebsiteincludes manyresourcesthatextendtheprintedtextbookwithmaterialsuchasdemonstrations andanimationsusedinclasses,andhundredsofsolvedhomeworkproblems.Theimpetus forhavingthiswebsitecamefromMarkYoderwho,in1995,whileonsabbaticalleaveat GeorgiaTechfromRose-Hulman,hadtheideatoputallofthismaterialintoaformthat otherteachers(andstudents)couldaccesseasily.InteractiveMATLABdemonstrations havebeencreatedfordemonstratingspecifictopicssuchasconvolutionandfrequency response,andmostofthesearenowusedasthebasisforsomeofthelaboratoryexercises. Asteachers,allthismaterialhaschangedthewaywepresentideas,becauseitexpands thewaystovisualizeaconcept“beyondtheequations.”Overtheyears,thecollection ofresourcesonourwebsitehascontinuedtogrow.Inthefuture,wewillexplorenew ideasforpresentingtheconceptsofDSP,andhopetomovebeyondtheprintedpagetoan e-Textversionthatwouldtrulyintegratethenarrativeofthebookwiththevisualizations ofthecompanionwebsite.

Thedistinguishingfeatureofthistext(anditsprogenitors)isthatitpresentssignal processingatalevelconsistentwithanintroductoryECEcourse,i.e.,thesophomore level(secondyear)inatypicalU.S.university.Thelistoftopicsinthebookisnot surprisinggivenitsemphasisondiscrete-timesignalprocessing,butsincewewanta coursethatisbroadlyaccessibletosophomores,wefeelthatwemustcombinesignal processingconceptswithsomeintroductoryideas.Partofthereasonforthisisthatin manyelectricalengineeringcurriculums,signalsandsystemsandDSPtypicallyhave beentreatedasjunior-andsenior-levelcourses,forwhichatraditionalbackgroundof

1 Inourdevelopmentoftheseideas,twobooksbyProfessorKenSteiglitzofPrincetonUniversityhada majorimpactonourthinking: AnIntroductiontoDiscreteSystems,JohnWiley&Sons,1972,and ADigital SignalProcessingPrimer:WithApplicationstoComputerMusic,Addison-WesleyPublishingCompany, 1996.Steiglitz’s1972bookwaswellaheadofitstime,sinceDSPhadfewpracticalapplications,andeven simplesimulationsonthen-availablebatchprocessingcomputersrequiredsignificantprogrammingeffort. However,by1993whenwebeganourwork,easy-to-usesoftwareenvironmentssuchasMATLABwere widelyavailableforimplementingDSPcomputationsonpowerfulpersonalcomputers.

linearcircuitsandlinearsystemsisassumed.Ourapproach,ontheotherhand,makes thesubjectmuchmoreaccessibletostudentsinothermajorssuchascomputerscience andotherengineeringfields.Thispointisincreasinglyimportantbecausenon-specialists needtouseDSPtechniquesroutinelyinmanyareasofscienceandtechnology.

ContentoftheNewEdition. Thisneweditionhasanorganizationsimilartothefirst editionof DSPFirst.Alookatthetableofcontentsshowsthatthebookbeginsvery simply(Chapter2)withadetaileddiscussionofcontinuous-timesinusoidalsignalsand theirrepresentationbycomplexexponentials.Thisisatopictraditionallyintroducedin alinearcircuitscourse,butincludingitheremakesitimmediatelyaccessiblefortherest ofthisbook,especiallyforstudentswhocomefromotherbackgrounds.Ifstudentshave alreadystudiedlinearcircuits,thischaptercanbeskipped,orrapidlycovered.Wethen proceedtointroducethespectrumconcept(Chapter3)byconsideringsumsofsinusoidal signals,culminatingwithabriefintroductiontoFourierseries.AlthoughChapter3of thefirsteditioncoveredthesamebasicideas,thischapterhassomenewmaterial.2

Nextwemakethetransitiontodiscrete-timesignalsbyconsideringsampled sinusoidalsignals(Chapter4).Wehavefoundthatitisnotnecessarytoinvokethe continuous-timeFouriertransformtomaketheimportantissuesinsamplingclear.All thatisneededisthesimpletrigonometricidentitycos(θ + 2π) = cos(θ).Infact,in Chapters2–4(withtheexceptionofFourierSeries),wehaveonlyneededtorelyonthe simplemathematicsofsineandcosinefunctions.Thebasiclinearsystemconceptsare thenintroducedwithrunningaveragesystemsandothersimpleFIRfilters(Chapter5). Impulsesequencesareintroducedwhichleadstotheimpulseresponsecharacterizinga filter.Convolutionistreatedasanumericaloperationinthefirstpassatthisidea.The keyconceptoffrequencyresponseisderivedandinterpretedforFIRfilters(Chapter6). Sinusoidsaretheprimarysignalsofinterest,andweemphasizethemagnitudeandphase changeexperiencedbyasinusoidwhenfilteredbyalineartime-invariantsystem.

Atthispointwedepartsignificantlyfromthefirsteditionbyintroducing(Chapter7) theconceptofdiscrete-timeFouriertransform(DTFT),whicharisesnaturallyfromthe frequencyresponseofadiscrete-timesystem.TheconceptoftheinverseDTFTcompletes thedescriptionofaninvertibletransformandalsoenablesustodescribeidealfilters.It isthennaturaltomovefromtheDTFTtothediscreteFouriertransform(DFT),which issimplyasampledversionoftheDTFTandthuscomputablethroughfastalgorithms thatarereadilyavailable(Chapter8).Chapters7and8arecompletelynew.Theyare aresponsetofrequentrequestsfromteacherswhowanttoexposetheirstudentstothe powerfulconceptoftheFouriertransform,andwehavefoundthatsophomoresarefully capableofunderstandingtheseconceptsandputtingthemtouse.Thesetwochaptersbring manyoftheideasofpracticalspectrumanalysisintofocuswiththegoalofprovidingthe knowledgetosuccessfullyemploythepowerfulspectrumanalysistoolsreadilyavailable insoftwareenvironmentssuchasMATLAB.

2 Furthermore,forinstructorswhoprefertodivedeeperintoFourieranalysisofperiodicsignals,Appendix ConFourierseriesisessentiallyanotherentirechapteronthattopic.

Finally,thelasttwochaptersreturntotheflowofthefirstedition.Weintroduce z-transforms(Chapter9)andIIRsystems(Chapter10).Atthisstage,astudentwho hasfaithfullyreadthetext,workedhomeworkproblems,anddonethelaboratory assignmentswillberewardedwiththeabilitytounderstandapplicationsinvolvingthe samplingtheorem,discrete-timefiltering,andspectrumanalysis.Furthermore,theyare wellpreparedtomoveontocoursesinlinearanalogcircuits,continuous-timesignalsand systems,andcontrolsystems.Allofthesecoursescanbuildonthefoundationestablished throughthestudyofthistext.

SummaryofWhat’sNewinThisEdition

• NewmaterialontheDiscrete-TimeFourierTransform(DTFT)hasbeendeveloped andispresentedinChapter7.Thepresentationmakesaneasytransitionfromthe frequencyresponseconcepttobeginthestudyofthegeneralideaofaFourier transform.

• NewmaterialonidealfiltersanddigitalfilterdesignispresentedinChapter7asa veryusefulapplicationoftheDTFT.ThewindowmethodforFIRfilterdesignis presentedindetail.

• NewmaterialontheDiscreteFourierTransform(DFT)hasbeendevelopedandis presentedinChapter8.ThepresentationadoptsthepointofviewthattheDFTis asampledversionoftheDTFT,andalsodevelopstherelationshipoftheDFTto thediscreteFourierseries(DFS).

• Newmaterialonspectrumanalysisandthespectrogramhasbeendevelopedfor thelastsectionsofChapter8.Thisprovidesasolidfoundationforunderstanding time-frequencyanalysisofsignalsasiscommonlydonewiththeFFTalgorithm, aswellastheroleofwindowinginfrequencyresolution.

• Chapters7and8arederivedfromChapter9inthefirsteditionandChapter13 in SignalProcessingFirst.Thenewchaptersareasignificantrewritetomakethis materialaccessibleattheintroductorylevel.Thebenefitisthatstudentscanlearn theideasofpracticalspectrumanalysiswhichcanthenbereinforcedwithalab experiencewhereactualsignalsareprocessedwiththetoolsavailableinMATLAB.

• ThepresentationofthespectruminChapter3hasbeenexpandedtoincludeaformal discussionofpropertiesofthespectrum(e.g.,time-delay,frequencyshifting).This setsthestageforlaterdiscussionsoftheDTFTandDFT.

• ThematerialonFourierSerieswhichwaspartofChapter3hasbeenexpanded,but mostofitisnowplacedinAppendixC.Chapter3containsasufficientdescription oftheFourierseriestopresentthespectrumofoneperiodicsignal,thefullwave rectifiedsine.AppendixCprovidesanin-depthpresentationforinstructorswho choosetoemphasizethetopic.Detailsofotherperiodicsignals(squarewave, triangularwave,andhalf-waverectifiedsine)aregivenalongwithaderivation

ofParseval’stheoremandaheuristicdiscussionofconvergence.Propertiesofthe FourierSeriesarealsodeveloped.

• Extensivechangeshavebeenmadetotheend-of-chapterproblems.Therearea totalof241problemsinthebook:83arenew,86aredifferentfromthefirstedition byvirtueofchangingthedetails,and72arethesameasinthefirstedition.

• TheCompanionWebsitecontainsnewmaterialforlabs,MATLABvisualizations, andsolvedhomeworkproblems.TheCompanionWebsitemaybefoundat http://www.pearsonhighered.com/engineering-resources/.

AtGeorgiaTech,oursophomore-level,3creditcoursecoversmostofthecontentof Chapters2–10inaformatinvolvingtwoone-hourlectures,one1.5hourrecitation,and one1.5hourlaboratoryperiodperweek.Asmentionedpreviously,weplaceconsiderable emphasisonthelabbecausewebelievethatitisessentialformotivatingourstudents tolearnthemathematicsofsignalprocessing,andbecauseitintroducesourstudentsto theuseofpowerfulsoftwareinengineeringanalysisanddesign.AtRose-Hulman,we use DSPFirst inafreshman-level,10-weekcoursethatcoversChapters1–6,9,and10. TheRoseformatis3one-hourlecturesperweekandonethree-hourlab.Thestudents useMATLABthroughoutthecourse.Theentirecontentofthepresenttextwasusedby RWSfora10-week,fourcreditcourseatStanfordUniversity.Sincethiscoursefollowed quarter-longcoursesincontinuous-timesignalsandsystemsandlinearcircuits,itwas possibletoskipChapters2and3andmoveimmediatelyintoafocusondiscrete-time signalsandsystemsusingtheremainingchapters.Onecreditwasdevotedtoaweekly labassignmentwhichwasdoneindividuallywithoutaregularlyscheduledlaboratory period.

Theseexamplesfromourownteachingexperienceshowthatthetextanditsassociated supportingmaterialscanbeusedinmanydifferentwaysdependingoninstructor preferenceandnumberofcoursehours.Ascanbeseenfromthepreviousdiscussion, thesecondeditionof DSPFirst isnotaconventionalsignalsandsystemsbook.One differenceistheinclusionofasignificantamountofmaterialonsinusoidsandcomplex phasorrepresentations.Inatraditionalelectricalengineeringcurriculum,thesebasic notionsarecoveredundertheumbrellaoflinearcircuitstakenbeforestudyingsignals andsystems.Indeed,ourchoiceoftitleforthisbookandthefirsteditionisdesigned toemphasizethisdeparturefromtradition.Animportantpointisthatteachingsignal processingfirstalsoopensupnewapproachestoteachinglinearcircuits,sincethereis muchtobuilduponthatwillallowredirectedemphasisinthecircuitscourse.

Aseconddifferencefromconventionalsignalsandsystemstextsisthat DSPFirst emphasizestopicsthatrelyon“frequencydomain”concepts.Thismeansthat,in anelectricalengineeringcurriculum,topicslikeLaplacetransforms,statespace,and feedbackcontrol,wouldhavetobecoveredinlatercoursessuchaslinearcircuitsoran upper-levelcourseoncontrolsystems.Althoughourtexthasclearlybeenshapedbya specificpointofview,thisdoesnotmeanthatitandtheassociatedwebsitecanbeusedin onlyoneway.Indeed,asourownexperienceshows,byappropriateselectionoftopics,

ourtextcanbeusedforeitheraone-quarterorone-semestersignalsandsystemscourse thatemphasizescommunicationsandsignalprocessingapplicationsfromthefrequency domainpointofview.Formostelectricalengineeringcurricula,thecontrol-oriented topicswouldbecoveredinanothercourse.

Inotherdisciplinessuchascomputerscienceandcomputerengineering, DSPFirst emphasizesthosetopicsthataremostrelevanttocomputingforsignalanalysis.Thisis alsolikelytobetrueinotherengineeringfieldswheredataacquisitionandfrequency domainanalysisplayanimportantroleinmodernengineeringanalysisanddesign.

ThistextanditsCompanionWebsiterepresentsanuntoldamountofworkbythe threeauthors,numerouscolleagues,andmanystudents.Fortunately,wehavebeenable tomotivateanumberofextremelytalentedstudentstocontributeMATLABdemostothis project.Therearesomanythattonamethemallwouldbeimpractical.Wesimplythank themallfortheirvaluablecontributionstoourproject.GregKrudyszwhoauthored severalofthedemoshasnowtakenovertheprimaryroleofdevelopingnewdemos andvisualizationswithGUIsandupdatingtheexistingones.Sincethebeginningin 1993,manyprofessorshaveparticipatedinthesophomorecourseECE-2025(andnow ECE-2026)atGeorgiaTechaslecturersandrecitationinstructors.Onceagain,naming alltherecitationinstructorswouldbeimpractical,buttheircommentsandfeedbackhave givenlifetothecourseasitevolvedduringthepast12years.Forexample,Pamela BhattidevelopedalaboratoryonsimulatingthefilterbankofaCochlearImplanthearing system.Recently,thelecturingandadministrationofthecoursehasbeensharedby RussMersereau,FredJuang,ChinLee,ElliotMoore,MarkClements,ChrisRozell, G.K.Chang,DavidTaylor,DavidAnderson,JohnBarry,DougWilliams,andAaron Lanterman.Weareindebtedtothemfortheirmanysuggestionsthathavemadeapositive impactonthissecondedition,especiallythenewmaterialontheDFTandDTFT.We arealsoindebtedtoWaynePadgettandBruceBlack,whohavetaughtECE-380at Rose-Hulmanandhavecontributedmanygoodideas,andweappreciatetheworkof EdDoeringwhocreatedawholenewsetoflabsforECE-180,thenewfreshman-level DSPFirst.Theselabsstartwithtraditionalaudioprocessingandendwithvideoobject tracking.Anewfirstforfreshman.

WealsowanttoacknowledgethecontributionsofTomRobbins(formerlyatPearson Prentice-Hall)whowasanearlysupporterofoureffortstobringDSPtotheforein ECEeducation.Tomboughtintoourconceptof DSPFirst fromthebeginning,andhe encouragedusduringtheinitialproject,aswellasthe2003book.Morerecently,Andrew GilfillanandJulieBaihavebeentheeditorswhohelpedmakethissecondeditionareality. Finally,wewanttorecognizetheunderstandingandsupportofourwives(Carolyn McClellan,DorothySchafer,andSarahYoder).Carolyn’sphotoofthecatKilbyappears inChapter1.Theyhavepatientlysupportedusasthismulti-yearprojectcontinuedto consumeenergyandtimethatmighthavebeenspentwiththem.

1 Introduction

Thisisabookaboutsignalsandsystems.Inthisageofmultimediagamingcomputers, audioandvideoentertainmentsystems,andsmartphones,itisalmostcertainthatyou, thereaderofthistext,haveformedsomeimpressionofthemeaningoftheterms signal and system,andyouprobablyusethetermsoftenindailyconversation.

Itislikelythatyourusageandunderstandingofthetermsarecorrectwithinsome ratherbroaddefinitions.Forexample,youmaythinkofasignalas“something”that carriesinformation.Usually,thatsomethingisapatternofvariationsofaphysicalquantity thatcanbemanipulated,stored,ortransmittedbyphysicalprocesses.Examplesinclude speechsignals,audiosignals,videoorimagesignals,biomedicalsignals,radarsignals, andseismicsignals,tonamejustafew.Animportantpointisthatsignalscantakemany equivalentformsor representations. Forexample,aspeechsignalisproducedasan acousticsignal,butitcanbeconvertedtoanelectricalsignalbyamicrophone,andthen toastringofnumbersasindigitalaudiorecording.

Theterm system maybesomewhatmoreambiguousandsubjecttointerpretation. Forexample,weoftenuse“system”torefertoalargeorganizationthatadministers orimplementssomeprocess,suchasthe“SocialSecuritysystem”orthe“airline transportationsystem.”However,weareinterestedinamuchnarrowerdefinitionthatis verycloselylinkedtosignals.Morespecifically,asystem,forourpurposes,issomething thatcanmanipulate,change,record,ortransmitsignals.Forexample,aDVDrecording

storesorrepresentsamovieoramusicsignalasasequenceofnumbers.ADVDplayeris asystemforconvertingthenumbersstoredonthedisc(i.e.,thenumericalrepresentation ofthesignal)toavideoand/oracousticsignal.Ingeneral,systems operate onsignalsto producenewsignalsornewsignalrepresentations.

Ourgoalinthistextistodevelopaframeworkwhereinitispossibletomake precisestatementsaboutbothsignalsandsystems.Specifically,wewanttoshowthat mathematicsisanappropriatelanguagefordescribingandunderstandingsignalsand systems.Wealsowanttoshowthattherepresentationofsignalsandsystemsby mathematicalequationsallowsustounderstandhowsignalsandsystemsinteractand howwecandesignandimplementsystemsthatachieveaprescribedpurpose.

1-1MathematicalRepresentationofSignals

Signalsarepatternsofvariationsthatrepresentorencodeinformation.Manysignals arenaturallythoughtofasapatternofvariationsintime.Afamiliarexampleisaspeech signal,whichinitiallyarisesasapatternofchangingairpressureinthevocaltract. Thispattern,ofcourse,evolveswithtime,creatingwhatweoftencalla timewaveform. Figure1-1showsaplotofarecordedspeechwaveform.Inthisplot,theverticalaxis representsmicrophonevoltage(proportionaltoairpressure),andthehorizontalaxis representstime.Noticethattherearefourplotsinthefigurecorrespondingtofour contiguoustimesegmentsofthespeechwaveform.Thesecondplotisacontinuationofthe first,andsoon,witheachgraphcorrespondingtoatimeintervalof50milliseconds(ms).

Figure1-1 Stripplotofaspeechsignal whereeachrowisacontinuationoftherow above.Thissignal s(t) canberepresentedas afunctionofasingle(time)variable.The shadedregionisshowninmoredetailin Fig.1-2.

ThespeechsignalinFig.1-1isanexampleofaone-dimensional continuoustimesignal .Suchsignalscanberepresentedmathematicallyasafunctionofasingle independentvariable,whichisnormallycalledtimeanddenoted t .Althoughinthis particularcasewecannotwriteasimpleequationthatdescribesthegraphofFig.1-1in termsoffamiliarmathematicalfunctions,wecanneverthelessassociateafunction s(t) withthegraph.Indeed,thegraphitselfcanbetakenasadefinitionofthefunctionthat assignsanumber s(t) toeachinstantoftime(eachvalueof t ).

Many,ifnotmost,signalsoriginateascontinuous-timesignals.However,forreasons thatwillbecomeincreasinglyobviousasweprogressthroughthistext,itisoftendesirable toobtainadiscrete-timerepresentationofasignal.Thiscanbedoneby sampling a continuous-timesignalatisolated,equallyspacedpointsintime.Theresultisasequence ofnumbersthatcanberepresentedasafunctionofanindexvariablethattakesononly integervalues.Thiscanberepresentedmathematicallyas s [n]= s(nTs ),where n isan integer(i.e., {..., 2, 1, 0, 1, 2,... }),and Ts isthe samplingperiod .Notethatour conventionistouseparentheses () toenclosetheindependentvariableofacontinuousvariablefunctionsuchas s(t),andsquarebrackets [] toenclosetheindependentvariable ofadiscrete-variablefunction,e.g.,thesequence s [n].Samplingis,ofcourse,exactly whatwedowhenweplotvaluesofafunctionongraphpaperoronacomputerscreen. Wecannotevaluatethefunctionateverypossiblevalueofacontinuousvariable,but onlyatasetofdiscretepoints.Intuitively,weknowthatthecloserthespacingintime ofthepoints,themorethesequenceretainstheshapeoftheoriginalcontinuous-variable function.Figure1-2showsanexampleofashortsegmentofadiscrete-timesignalthat wasderivedbysamplingthespeechwaveformofFig.1-1withasamplingperiodof Ts = 1/8ms.Inthiscase,thedotsshowthesamplevaluesforthesequence s [n].

Whilemanysignalscanbethoughtofasevolvingpatternsintime,manyothersignals arenottime-varyingpatterns.Forexample,animageformedbyfocusinglightthrougha lensisaspatialpattern,andthusisappropriatelyrepresentedmathematicallyasafunction oftwospatialvariables.Suchasignalwouldbeconsidered,ingeneral,asafunctionof twoindependentvariables[i.e.,apicturemightbedenoted p(x,y)].Aphotographis anotherexample,suchasthegray-scaleimageshowninFig.1-3.Inthiscase,thevalue p(x0 ,y0 ) representstheshadeofgrayatposition (x0 ,y0 ) intheimage.

ImagessuchasthatinFig.1-3aregenerallyconsideredtobetwo-dimensional continuous-variablesignals,sincewenormallyconsiderspacetobeacontinuum.

Figure1-2 Discrete-timesignalrepresentedas aone-dimensionalsequencewhichisa functionofadiscretevariable n.Signal samplesaretakenfromtheshadedregionof Fig.1-1.Thecontinuous-timespeechsignal s(t) isshowningray.

Figure1-3 Exampleofasignalthatcanbe representedbyafunctionoftwospatialvariables.

However,samplingcanlikewisebeusedtoobtainadiscrete-variabletwo-dimensional signalfromacontinuous-variabletwo-dimensionalsignal.Inadigitalcamera,this samplingisdonebyrecordinglightvalueswhichhavebeenfocusedonasensorarray composedofmillionsofpoints,ormega-pixels.Inacolorcamera,therewouldbethree separatearraysforRGB:red,green,andblue.Atwo-dimensionalgray-scaleimagelike Fig.1-3wouldberepresentedbyatwo-dimensionaldiscrete-variablesequenceoran arrayofnumbers,andwouldbedenoted p [m,n]= p(m x ,n y ),whereboth m and n wouldtakeononlyintegervalues,and x and y arethehorizontalandverticalsampling periods,respectively.

Two-dimensionalfunctionsareappropriatemathematicalrepresentationsofstill imagesthatdonotchangewithtime;ontheotherhand,videosaretime-varyingimages thatwouldrequireathirdindependentvariablefortime,soavideosignalwouldbe denoted v(x,y,t).Inanalogtelevision,timeisdiscrete(30frames/s),eachhorizontal line (x) iscontinuous,butthereareafinitenumberofhorizontallines,so y isdiscrete. Inpresentdaydigitalvideo,allthreevariablesofthevideosignal v(x,y,t) arediscrete sincethesignalisasequenceofdiscreteimages.

Ourpurposeinthissectionhasbeentointroducetheideathatsignalscanbe representedbymathematicalfunctions.Althoughwewillsoonseethatmanyfamiliar functionsarequitevaluableinthestudyofsignalsandsystems,wehavenoteven attemptedtodemonstratethatfact.Oursoleconcernistomaketheconnectionbetween functionsandsignals,and,atthispoint,functionssimplyserveasabstractsymbolsfor signals.Thus,forexample,nowwecanreferto“thespeechsignal s(t)”or“thesampled image p [m,n].”Althoughthismaynotseemhighlysignificant,wewillseeinthenext

sectionthatitisindeedaveryimportantsteptowardourgoalofusingmathematicsto describesignalsandsystemsinasystematicway.

1-2MathematicalRepresentationofSystems

Aswehavealreadysuggested,asystemissomethingthattransformssignalsintonew signalsordifferentsignalrepresentations.Thisisarathervaguedefinition,butitisuseful asastartingpoint.Tobemorespecific,wesaythataone-dimensionalcontinuous-time systemtakesaninputsignal x(t) andproducesacorrespondingoutputsignal y(t).This canberepresentedmathematicallyby y(t) = T {x(t)}

whichmeansthattheinputsignal(waveform,image,etc.)isoperatedonbythesystem (symbolizedbytheoperator T )toproducetheoutput y(t).Whilethissoundsveryabstract atfirst,asimpleexampleshowsthatthisneednotbemysterious.Considerasystemsuch thattheoutputsignalisthesquareoftheinputsignal.Themathematicaldescriptionof thissystemissimply

whichsaysthatateachtimeinstantthevalueoftheoutputisequaltothesquareofthe inputsignalvalueatthatsametime.Suchasystemwouldlogicallybetermeda“squarer system.”Figure1-4showstheoutputsignalofthesquarerfortheinputofFig.1-1.As wouldbeexpectedfromthepropertiesofthesquaringoperation,weseethattheoutput signalisalwaysnonnegativeandthelargersignalvaluesareemphasizedrelativetothe smallersignalvalues.

Thesquarersystemdefinedby(1.2)isasimpleexampleofa continuous-timesystem (i.e.,asystemwhoseinputandoutputarecontinuous-timesignals).Canwebuilda physicalsystemthatactslikethesquarersystem?Theanswerisyes;thesystemof(1.2) canbeapproximatedthroughappropriateconnectionsofelectroniccircuits.Ontheother hand,iftheinputandoutputofthesystemarebothdiscrete-timesignals(sequencesof numbers)relatedby

thenthesystemwouldbea discrete-timesystem.Theimplementationofthediscretetimesquarersystemwouldbetrivialgivenadigitalcomputer;onesimplymultiplieseach discretesignalvaluebyitself.

Inthinkingandwritingaboutsystems,itisoftenusefultohaveavisualrepresentation ofthesystem.Forthispurpose,engineersuse blockdiagrams torepresentoperations performedinanimplementationofasystemandtoshowtheinterrelationsamongthe manysignalsthatmayexistinanimplementationofacomplexsystem.Anexampleof thegeneralformofablockdiagramisshowninFig.1-5.Whatthisdiagramshowsis simplythatthesignal y(t) isobtainedfromthesignal x(t) bytheoperation T {}.

Figure1-4 Outputofasquarersystemfor thespeechsignalinputofFig.1-1.The squarersystemisdefinedbytheequation y(t) =[x(t)]2

Aspecificexampleofasystemwassuggestedearlierwhenwediscussedthesampling relationshipbetweencontinuous-timesignalsanddiscrete-timesignals.A sampler is definedasasystemwhoseinputisacontinuous-timesignal x(t) andwhoseoutputisthe correspondingsequenceofsamples,definedbytheequation

whichsimplystatesthatthesampler“takesaninstantaneoussnapshot”ofthecontinuoustimeinputsignalonceevery Ts s.1 Thus,theoperationofsamplingfitsourdefinitionof asystem,anditcanberepresentedbytheblockdiagraminFig.1-6.Oftenwewillrefer tothesamplersystemasan“idealcontinuous-to-discreteconverter”or idealC-to-D converter.Inthiscase,asinthecaseofthesquarer,thenamethatwegivetothesystem isreallyjustadescriptionofwhatthesystemdoes.

Figure1-5 Blockdiagramrepresentation ofacontinuous-timesystem.

Figure1-6 Blockdiagramrepresentationofa sampler.

1 Theunitsoftimeinsecondsareabbreviatedass.

1-3SystemsasBuildingBlocks

Blockdiagramsareusefulforrepresentingcomplexsystemsintermsofsimplersystems, whicharemoreeasilyunderstood.Forexample,Fig.1-7showsablockdiagram representationoftheprocessofrecordingandplaybackofmusicusingMP3compression. Thisblockdiagrambreakstheoperationdownintofoursubsystems,eachofwhichcould bebrokendownfurtherintosmallersubsystems.ThefirstoperationisA-to-D(analogto-digital)conversiontoacquirethemusicwaveformindigitalform.TheA-to-Dsystem isaphysicalapproximationtotheidealC-to-Dconverterdefinedin(1.4).AnA-to-D converterproducesfinite-precisionnumbersassamplesoftheinputsignal(quantizedto alimitednumberofbits),whiletheidealC-to-Dconverterproducessampleswithinfinite precision.Forthehigh-accuracyA-to-Dconvertersusedinprecisionaudiosystems,the differencebetweenanA-to-DconverterandouridealizedC-to-Dconverterisslight,but thedistinctionisveryimportant—onlyfinite-precisionquantizedsamplevaluescanbe storedindigitalmemoryoffinitesize.

Figure1-7showsthattheoutputoftheA-to-Dconverteristheinputtoasystemthat compressesthenumbers x [n] intoamuchsmallerbitstreamusingtheMP3method.This isacomplexprocess,butforourpurposesitissufficienttoshowitasasingleoperation. Theoutputisacompresseddigitalrepresentationthatmaybeefficientlystoredasdata onaserverortransmittedtoauser.Onceanotheruserhasthecompresseddatafile, theMP3compressionmustbereversedinordertolistentotheaudiosignal.Since MP3isa“lossy”compressionscheme,thesignalsynthesizedbytheMP3decoderis onlyanapproximationtotheoriginal.ThevalueofMP3isthatthisapproximationis audiblyindistinguishablefromtheoriginalbecausetheMP3encodingmethodexploits aspectsofhumanhearingthatrendercertaincodingerrorsinaudible.Oncethemusic waveformisreconstitutedindigitalformas ˆ x [n],thelastblockdoestheconversionofthe signalfromdiscrete-timeformtocontinuous-time(acoustic)formusingasystemcalleda D-to-A(digital-to-analog)converter.Thissystemtakesfinite-precisionbinarynumbers insequenceandfillsinacontinuous-timefunctionbetweenthesamples.Theresulting continuous-timeelectricalsignalcouldthenbefedtoothersystems,suchasamplifiers, loudspeakers,andheadphones,forconversiontosound.InChapter4,wewilldiscussthe idealD-to-Cconverter,whichisanidealizationofthephysicaldevicecalledanD-to-A converter.

SystemslikeMP3audioareallaroundus.Forexample,digitalcamerasuseJPEG encodingtoreducedigitalimagefilesizespriortostorage,andJPEGdecodingtoview pictures.Mostofthetimewedonotneedtothinkabouthowsuchsystemswork,butthis exampleillustratesthevalueofthinkingaboutacomplexsysteminahierarchicalform.

Figure1-7 SimplifiedblockdiagramforMP3audiocompressionandplaybacksystem.

Inthisway,wecanfirstunderstandtheindividualparts,thentherelationshipamongthe parts,andfinallythewholesystem.BylookingattheMP3audiosysteminthismanner, wecandiscusstwothings.Firstofall,theconversionfromcontinuous-timetodiscretetimeandbacktocontinuous-timecanbeconsideredseparatelyfromtheotherpartsof thesystem.Theeffectofconnectingtheseblockstothesystemisthenrelativelyeasy tounderstandbecausetheyprovidetheinputandoutputinterfacetorealaudiosignals. Secondly,detailsofsomepartscanbehiddenandlefttoexpertswho,forexample,can developmoredetailedbreakdownsoftheMP3encoderanddecodersubsystems.Infact, thosesystemsinvolvemanysignalprocessingoperations,anditispossibletospecify theiroperationsbyconnectingseveralcanonicalDSPblocksthatwewillstudyinthis text.

1-4TheNextStep

NOTE

CompanionWebsite hasmanylabs, demonstrationsand homeworkproblems withsolutions

TheMP3audiocodingsystemisagoodexampleofarelativelycomplicateddiscretetimesystem.BuriedinsidetheblocksofFig.1-7aremanydiscrete-timesubsystems andsignals.WhilewedonotpromisetoexplainallthedetailsofMP3codersorany othercomplexsystem,wedohopetoestablishthefoundationsfortheunderstandingof discrete-andcontinuous-timesignalsandsystemssothatthisknowledgecanbeapplied tounderstandingcomponentsofmorecomplicatedsystems.InChapter2,wewillstart atabasicmathematicallevelandshowhowthewell-knownsineandcosinefunctions fromtrigonometryplayafundamentalroleinsignalandsystemtheory.Next,weshow howcomplexnumberscansimplifythealgebraoftrigonometricfunctions.Subsequent chaptersintroducetheconceptofthefrequencyspectrumofasignalandtheconceptof filteringwithalineartime-invariantsystem.Bytheendofthebook,ifyouhavediligently workedtheproblems,experiencedthedemonstrations,anddonethelaboratoryexercises ontheCompanionWebsite(whicharemarkedwithicons),youwillberewardedwith asolidunderstandingofmanyofthekeyconceptsunderlyingmuchofmodernsignal processingtechnology.

2 Sinusoids

Webeginourdiscussionbyintroducingageneralclassofsignalsthatarecommonly called cosinesignals or,equivalently, sinesignals,whicharealsocommonlyreferredto ascosineorsine waves,particularlywhenspeakingaboutacousticorelectricalsignals.

Collectively,suchsignalsarecalled sinusoidalsignals or,moreconcisely, sinusoids Sinusoidalsignalsarethebasicbuildingblocksinthetheoryofsignalsandsystems,and itisimportanttobecomefamiliarwiththeirproperties.Themostgeneralmathematical formulaforasinusoidis

wherecos(·) denotesthecosinefunctionthatisfamiliarfromthestudyoftrigonometry. Whendefiningacontinuous-timesignal,wetypicallyuseafunctionwhoseindependent variableis t ,acontinuousrealvariablethatrepresentstime.From(2.1)itfollowsthat x(t) isamathematicalfunctioninwhichtheangle(orargument)ofthecosinefunction is,inturn,afunctionofthevariable t .Sincewenormallythinkoftimeasincreasing uniformly,theangleofthecosinefunctionlikewiseincreasesinproportiontotime.The parameters A, ω0 ,and ϕ arefixednumbersforaparticularcosinesignal.Specifically, A iscalledthe amplitude, ω0 the radianfrequency,and ϕ the phase ofthecosine signal.

x(t) = A cos(ω0 t + ϕ)
(2.1)

Figure2-1 Sinusoidalsignalgeneratedfrom theformula: x(t) = 10cos(2π(440)t 0.4π).

Figure2-1showsaplotofthecontinuous-timesinusoid

x(t) = 10cos(2π(440)t 0.4π)

where A = 10, ω0 = 2π(440),and ϕ =−0.4π in(2.1).Notethat x(t) oscillatesbetween A and A, andrepeatsthesamepatternofoscillationsevery1/440 = 0.00227s (approximately).Thistimeintervaliscalledthe period ofthesinusoid.Wewillshow laterinthischapterthatmostfeaturesofthesinusoidalwaveformaredirectlydependent onthechoiceoftheparameters A, ω0 ,and ϕ

2-1Tuning-ForkExperiment

Oneofthereasonsthatcosinewavesaresoimportantisthatmanyphysicalsystems generatesignalsthatcanbemodeled(i.e.,representedmathematically)assineorcosine functionsversustime.Amongthemostprominentofthesearesignalsthatareaudibleto humans.Thetonesornotesproducedbymusicalinstrumentsareperceivedasdifferent pitches.Althoughitisanoversimplificationtoequatenotestosinusoidsandpitch tofrequency,themathematicsofsinusoidsisanessentialfirststeptounderstanding complicatedsoundsignalsandtheirperceptionbyhumans.

Toprovidesomemotivationforourstudyofsinusoids,wewillbeginbyconsidering averysimpleandfamiliarsystemforgeneratingasinusoidalsignal.Thissystem isa tuningfork ,anexampleofwhichisshowninFig.2-2.Whenstrucksharply, thetinesofthetuningforkvibrateandemita“pure”tone.Thistonehasasingle frequency,whichisusuallystampedonthetuningfork.Itiscommontofind “A–440”tuningforks,because440hertz(Hz)isthefrequencyofAabovemiddleC onamusicalscale,andisoftenusedasthereferencenotefortuningapianoand othermusicalinstruments.Ifyoucanobtainatuningfork,performthefollowing experimentwhichisshowninamovieontheCompanionWebsite.

Strikethetuningforkagainstyourknee,andthenholditclosetoyourear. Youshouldhearadistinct“hum”atthefrequencydesignatedforthetuning fork.Thesoundwillpersistforaratherlongtimeifyouhavestruckthe tuningforkproperly;however,itiseasytodothisexperimentincorrectly. Ifyouhitthetuningforksharplyonahardsurfacesuchasatable,youwill hearahighpitchedmetallic“ting”sound.Thisis not thecharacteristicsound

DEMO TuningFork

Figure2-2 Pictureofatuningforkfor440Hz. thatyouareseeking.Ifyouholdthetuningforkclosetoyourear,youwill heartwotones:Thehigher-frequency“ting”willdieawayrapidly,andthen thedesiredlower-frequency“hum”willbeheard.

WithamicrophoneandacomputerequippedwithanA-to-Dconverter,wecanmake adigitalrecordingofthesignalproducedbythetuningfork.Themicrophoneconverts thesoundintoanelectricalsignal,whichinturnisconvertedtoasequenceofnumbers storedinthecomputer.ThenthesenumberscanbeplottedasawaveforminMATLAB. Atypicalplotofashortsectionofthesignaltakenwellaftertheinitialstrikeofthe tuningforkisshowninFig.2-3(a)foranA–440tuningfork.Inthiscase,theA-to-D convertersampledtheoutputofthemicrophoneatarateof10,000samples/s.Thesignal

Figure2-3 (a)RecordingofanA–440 tuning-forksignalsampledatasamplingrate of10,000samples/s.(b)Zoomintothefirst 3mstakenfromthetopplot(shadedregion), showingtheindividualsamplevalues (connectedbyathingrayline).

(a) A−440 Tuning-Fork Signal
(b)SampleValuesat10,000Hz

samplesfortheinitial3msofthesignalareshownonafinerscaleinFig.2-3(b).The “continuouslooking”plotinFig.2-3(a)wasconstructedbyconnectingthesamplevalues bystraightlines.Itappearsthatthesignalgeneratedbythetuningforkisverymuchlike thecosinesignalofFig.2-1.Itoscillatesbetweensymmetriclimitsofamplitudeandit alsorepeatsperiodicallywithaperiodofabout2.27ms(0.00227s).Aswewillseein Section2-3.1,thisperiodisproportionaltothereciprocalof ω0 (i.e.,2π/(2π(440)) ≈ 0.00227).

Thisexperimentshowsthatcommonphysicalsystemsproducesignalswhose graphicalrepresentationslookverymuchlikecosinesignals,asinthegraphicalplotsof themathematicalfunctionsdefinedin(2.1).Later,inSection2-7,wewilladdfurther credencetothesinusoidalmodelforthetuning-forksoundbyshowingthatcosine functionsariseassolutionstothedifferentialequationthat(throughthelawsofphysics) describesthemotionofthetuningfork’stines.Beforelookingatthephysicsofthetuning fork,however,weshouldbecomemorefamiliarwithsinusoidsandsinusoidalsignals.

2-2ReviewofSineandCosineFunctions

Sinusoidalsignalsaredefinedintermsofthefamiliarsineandcosinefunctionsof trigonometry.Abriefreviewofthepropertiesofthesebasictrigonometricfunctions isusefulforunderstandingthepropertiesofsinusoidalsignals.

Thesineandcosinefunctionsareoftenintroducedanddefinedthroughatriangle diagramlikeFig.2-4.Thetrigonometricfunctionssineandcosinetakeanangleastheir argument.Weoftenthinkofanglesindegrees,butwheresineandcosinefunctionsare concerned,anglesmustbedimensionless.Anglesarethereforespecifiedinradians.If theangle θ isinthefirstquadrant(0 ≤ θ<π/2rad),thenthesineof θ isthelength y ofthesideofthetriangleoppositetheangle θ dividedbythelength r ofthehypotenuse oftherighttriangle.Similarly,thecosineof θ istheratioofthelengthoftheadjacent side x tothelengthofthehypotenuse.

Notethatas θ increasesfrom0to π/2,cos θ decreasesfrom1to0andsin θ increases from0to1.Whentheangleisgreaterthan π/2radians,thealgebraicsignsof x and y comeintoplay, x beingnegativeinthesecondandthirdquadrantsand y beingnegative inthethirdandfourthquadrants.Thisismosteasilyshownbyplottingthevaluesofsin θ

Figure2-4 Definitionofsineandcosine ofanangle θ withinarighttriangle.

Figure2-5 (a)Sinefunctionand(b)cosine functionplottedversusangle θ .Bothfunctions haveaperiodof2π

andcos θ asafunctionof θ ,asinFig.2-5.Severalfeaturesoftheseplots1 areworthy ofcomment.Thetwofunctionshaveexactlythesameshape.Indeed,thesinefunctionis justacosinefunctionthatisshiftedtotherightby π/2(i.e.,sin θ = cos(θ π/2)).Both functionsoscillatebetween +1and 1,andtheyrepeatthesamepatternperiodically withperiod2π .Furthermore,thesinefunctionisanoddfunctionofitsargument,and thecosineisanevenfunction.Asummaryoftheseandotherpropertiesispresentedin Table2-1.

Table2-2showsthatthesineandcosinefunctionsareverycloselyrelated.Thisoften leadstoopportunitiesforsimplificationofexpressionsinvolvingbothsineandcosine functions.Incalculus,wehavetheinterestingpropertythatthesineandcosinefunctions arederivativesofeachother:

d sin θ

dθ = cos θ and d cos θ dθ =− sin θ

Table2-1 Basicpropertiesofthesineandcosinefunctions.

Property

Equation

Equivalence sin θ = cos(θ π/2) orcos(θ) = sin (θ + π/2)

Periodicity cos(θ + 2πk) = cos θ ,when k isaninteger

Evennessofcosine cos( θ) = cos θ

Oddnessofsine sin ( θ) =− sin θ

Zerosofsine sin (πk) = 0,when k isaninteger

Onesofcosine cos(2πk) = 1,when k isaninteger

Minusonesofcosine cos[2π(k + 1 2 )]=−1,when k isaninteger

1 Itisagoodideatomemorizetheformoftheseplotsandbeabletosketchthemaccurately.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.