Download Full Linear algebra and its applications, global edition lay PDF All Chapters

Page 1


https://ebookmass.com/product/linear-algebra-and-its-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Linear Algebra and Its Applications 5th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-and-its-applications-5thedition-ebook-pdf/

ebookmass.com

Linear Algebra and Its Applications 4th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-and-its-applications-4thedition-ebook-pdf/

ebookmass.com

Linear Algebra with Applications, Global Edition 9th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-with-applications-globaledition-9th-edition-ebook-pdf/

ebookmass.com

The Complete Enochian Dictionary: A Dictionary of the Angelic Language as Revealed to Dr. John Dee and Edward Kelley Donald C. Laycock

https://ebookmass.com/product/the-complete-enochian-dictionary-adictionary-of-the-angelic-language-as-revealed-to-dr-john-dee-andedward-kelley-donald-c-laycock/ ebookmass.com

John 4:1-42 Among the Biblical Well Encounters: Pentateuchal and Johannine Narrative Reconsidered (Wissenschaftliche Untersuchungen Zum Neuen Testament 2.Reihe) Eric John Wyckoff

https://ebookmass.com/product/john-41-42-among-the-biblical-wellencounters-pentateuchal-and-johannine-narrative-reconsideredwissenschaftliche-untersuchungen-zum-neuen-testament-2-reihe-ericjohn-wyckoff/ ebookmass.com

African psychology: the emergence of a tradition Augustine Nwoye

https://ebookmass.com/product/african-psychology-the-emergence-of-atradition-augustine-nwoye/

ebookmass.com

Desert

Armour 1st Edition Robert Forczyk

https://ebookmass.com/product/desert-armour-1st-edition-robertforczyk/

ebookmass.com

Between Psychology and Philosophy: East-West Themes and Beyond 1st Edition Michael Slote

https://ebookmass.com/product/between-psychology-and-philosophy-eastwest-themes-and-beyond-1st-edition-michael-slote/

ebookmass.com

The War Nurse Tracey Enerson Wood

https://ebookmass.com/product/the-war-nurse-tracey-enerson-wood-3/

ebookmass.com

A Spot of Trouble Teri Wilson

https://ebookmass.com/product/a-spot-of-trouble-teri-wilson-4/

ebookmass.com

Linear Algebra and Its Applications

SIXTH EDITION

LinearAlgebra andItsApplications

GLOBALEDITION

DavidC.Lay

UniversityofMaryland–CollegePark

StevenR.Lay

LeeUniversity

JudiJ.McDonald

WashingtonStateUniversity

Pearson Education Limited

KAO Two

KAO Park

Hockham Way

Harlow

Essex CM17 9SR

United Kingdom

and Associated Companies throughout the world

Visituson theWorldWideWebat: www.pearsonglobaleditions.com

© Pearson Education Limited, 2022

The rights of David C. Lay, Steven R. Lay, and Judi J. McDonald to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

AuthorizedadaptationfromtheUnitedStatesedition,entitledLinear Algebra and Its Applications,6thEdition,ISBN 978-0-13-585125-8byDavidC.Lay,StevenR.Lay,andJudiJ.McDonald , publishedbyPearsonEducation©2021.

All rights reserved. No part of this pub lication may be reproduced, stored in a re trieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership right s in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any time.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 1-292-35121-7

ISBN 13: 978-1-292-35121-6

eBook ISBN 13: 978-1-292-35122-3

Tomywife,Lillian,andourchildren, Christina,Deborah,andMelissa,whose support,encouragement,andfaithful prayersmadethisbookpossible.

AbouttheAuthors

DavidC.Lay

AsafoundingmemberoftheNSF-sponsoredLinearAlgebraCurriculumStudyGroup (LACSG),DavidLaywasaleaderinthemovementtomodernizethelinearalgebra curriculumandsharedthoseideaswithstudentsandfacultythroughhisauthorship ofthefirstfoureditionsofthistextbook.DavidC.LayearnedaB.A.fromAurora University(Illinois),andanM.A.andPh.D.fromtheUniversityofCaliforniaatLos Angeles.DavidLaywasaneducatorandresearchmathematicianformorethan40 years,mostlyattheUniversityofMaryland,CollegePark.Healsoservedasavisiting professorattheUniversityofAmsterdam,theFreeUniversityinAmsterdam,andthe UniversityofKaiserslautern,Germany.Hepublishedmorethan30researcharticleson functionalanalysisandlinearalgebra.Laywasalsoacoauthorofseveralmathematics texts,including IntroductiontoFunctionalAnalysis withAngusE.Taylor, Calculus andItsApplications,withL.J.GoldsteinandD.I.Schneider,and LinearAlgebra Gems—AssetsforUndergraduateMathematics,withD.Carlson,C.R.Johnson,and A.D.Porter.

DavidLayreceivedfouruniversityawardsforteachingexcellence,including,in 1996,thetitleofDistinguishedScholar-TeacheroftheUniversityofMaryland.In1994, hewasgivenoneoftheMathematicalAssociationofAmerica’sAwardsforDistinguishedCollegeorUniversityTeachingofMathematics.HewaselectedbytheuniversitystudentstomembershipinAlphaLambdaDeltaNationalScholasticHonorSociety andGoldenKeyNationalHonorSociety.In1989,AuroraUniversityconferredonhim theOutstandingAlumnusaward.DavidLaywasamemberoftheAmericanMathematicalSociety,theCanadianMathematicalSociety,theInternationalLinearAlgebra Society,theMathematicalAssociationofAmerica,SigmaXi,andtheSocietyforIndustrialandAppliedMathematics.Healsoservedseveraltermsonthenationalboardof theAssociationofChristiansintheMathematicalSciences.

InOctober2018,DavidLaypassedaway,buthislegacycontinuestobenefitstudents oflinearalgebraastheystudythesubjectinthiswidelyacclaimedtext.

StevenR.Lay

StevenR.LaybeganhisteachingcareeratAuroraUniversity(Illinois)in1971,after earninganM.A.andaPh.D.inmathematicsfromtheUniversityofCaliforniaatLos Angeles.Hiscareerinmathematicswasinterruptedforeightyearswhileservingasa missionaryinJapan.UponhisreturntotheStatesin1998,hejoinedthemathematics facultyatLeeUniversity(Tennessee)andhasbeenthereeversince.Sincethenhehas supportedhisbrotherDavidinrefiningandexpandingthescopeofthispopularlinear algebratext,includingwritingmostofChapters8and9.Stevenisalsotheauthorofthree college-levelmathematicstexts: ConvexSetsandTheirApplications,Analysiswithan IntroductiontoProof,andPrinciplesofAlgebra.

In1985,StevenreceivedtheExcellenceinTeachingAwardatAuroraUniversity. HeandDavid,andtheirfather,Dr.L.ClarkLay,arealldistinguishedmathematicians, andin1989,theyjointlyreceivedtheOutstandingAlumnusawardfromtheiralma mater,AuroraUniversity.In2006,StevenwashonoredtoreceivetheExcellencein ScholarshipAwardatLeeUniversity.HeisamemberoftheAmericanMathematical Society,theMathematicsAssociationofAmerica,andtheAssociationofChristiansin theMathematicalSciences.

JudiJ.McDonald

JudiJ.McDonaldbecameaco-authoronthefifthedition,havingworkedcloselywith Davidonthefourthedition.SheholdsaB.Sc.inMathematicsfromtheUniversity ofAlberta,andanM.A.andPh.D.fromtheUniversityofWisconsin.Asaprofessor ofMathematics,shehasmorethan40publicationsinlinearalgebraresearchjournals andmorethan20studentshavecompletedgraduatedegreesinlinearalgebraunderher supervision.SheisanassociatedeanoftheGraduateSchoolatWashingtonStateUniversityandaformerchairoftheFacultySenate.Shehasworkedwiththemathematics outreachprojectMathCentral(http://mathcentral.uregina.ca/)andisamemberofthe secondLinearAlgebraCurriculumStudyGroup(LACSG2.0).

Judihasreceivedthreeteachingawards:twoInspiringTeachingawardsattheUniversityofRegina,andtheThomasLutzCollegeofArtsandSciencesTeachingAwardat WashingtonStateUniversity.ShealsoreceivedtheCollegeofArtsandSciencesInstitutionalServiceAwardatWashingtonStateUniversity.Throughouthercareer,shehas beenanactivememberoftheInternationalLinearAlgebraSocietyandtheAssociation forWomeninMathematics.ShehasalsobeenamemberoftheCanadianMathematical Society,theAmericanMathematicalSociety,theMathematicalAssociationofAmerica, andtheSocietyforIndustrialandAppliedMathematics.

AbouttheAuthors 3

Preface 12

ANotetoStudents 22

Chapter1 LinearEquationsinLinearAlgebra 25

INTRODUCTORYEXAMPLE: LinearModelsinEconomics andEngineering 25

1.1SystemsofLinearEquations 26

1.2RowReductionandEchelonForms 37

1.3VectorEquations 50

1.4TheMatrixEquation Ax D b 61

1.5SolutionSetsofLinearSystems 69

1.6ApplicationsofLinearSystems 77

1.7LinearIndependence 84

1.8IntroductiontoLinearTransformations 91

1.9TheMatrixofaLinearTransformation 99

1.10LinearModelsinBusiness,Science,andEngineering 109 Projects 117

SupplementaryExercises 117

Chapter2

MatrixAlgebra 121

INTRODUCTORYEXAMPLE: ComputerModelsinAircraftDesign 121

2.1MatrixOperations 122

2.2TheInverseofaMatrix 135

2.3CharacterizationsofInvertibleMatrices 145

2.4PartitionedMatrices 150

2.5MatrixFactorizations 156

2.6TheLeontiefInput–OutputModel 165

2.7ApplicationstoComputerGraphics 171

2.8Subspacesof Rn 179

2.9DimensionandRank 186 Projects 193

SupplementaryExercises 193

Chapter3 Determinants 195

INTRODUCTORYEXAMPLE: WeighingDiamonds 195

3.1IntroductiontoDeterminants 196

3.2PropertiesofDeterminants 203

3.3Cramer’sRule,Volume,andLinearTransformations 212 Projects 221

SupplementaryExercises 221

Chapter4 VectorSpaces 225

INTRODUCTORYEXAMPLE: Discrete-TimeSignalsandDigital SignalProcessing 225

4.1VectorSpacesandSubspaces 226

4.2NullSpaces,ColumnSpaces,RowSpaces,andLinear Transformations 235

4.3LinearlyIndependentSets;Bases 246

4.4CoordinateSystems 255

4.5TheDimensionofaVectorSpace 265

4.6ChangeofBasis 273

4.7DigitalSignalProcessing 279

4.8ApplicationstoDifferenceEquations 286 Projects 295

SupplementaryExercises 295

Chapter5 EigenvaluesandEigenvectors 297

INTRODUCTORYEXAMPLE: DynamicalSystemsandSpottedOwls 297

5.1EigenvectorsandEigenvalues 298

5.2TheCharacteristicEquation 306

5.3Diagonalization 314

5.4EigenvectorsandLinearTransformations 321

5.5ComplexEigenvalues 328

5.6DiscreteDynamicalSystems 335

5.7ApplicationstoDifferentialEquations 345

5.8IterativeEstimatesforEigenvalues 353

5.9ApplicationstoMarkovChains 359 Projects 369

SupplementaryExercises 369

Chapter6 OrthogonalityandLeastSquares 373

INTRODUCTORYEXAMPLE: ArtificialIntelligenceandMachine Learning 373

6.1InnerProduct,Length,andOrthogonality 374

6.2OrthogonalSets 382

6.3OrthogonalProjections 391

6.4TheGram–SchmidtProcess 400

6.5Least-SquaresProblems 406

6.6MachineLearningandLinearModels 414

6.7InnerProductSpaces 423

6.8ApplicationsofInnerProductSpaces 431 Projects 437

SupplementaryExercises 438

Chapter7 SymmetricMatricesandQuadraticForms 441

INTRODUCTORYEXAMPLE: MultichannelImageProcessing 441

7.1DiagonalizationofSymmetricMatrices 443

7.2QuadraticForms 449

7.3ConstrainedOptimization 456

7.4TheSingularValueDecomposition 463

7.5ApplicationstoImageProcessingandStatistics 473 Projects 481

SupplementaryExercises 481

Chapter8 TheGeometryofVectorSpaces 483

INTRODUCTORYEXAMPLE: ThePlatonicSolids 483

8.1AffineCombinations 484

8.2AffineIndependence 493

8.3ConvexCombinations 503

8.4Hyperplanes 510

8.5Polytopes 519

8.6CurvesandSurfaces 531 Project 542

SupplementaryExercises 543

Chapter9 Optimization 545

INTRODUCTORYEXAMPLE: TheBerlinAirlift 545

9.1MatrixGames 546

9.2LinearProgramming GeometricMethod 560

9.3LinearProgramming SimplexMethod 570

9.4Duality 585 Project 594

SupplementaryExercises 594

Chapter10 Finite-StateMarkovChains C-1 (AvailableOnline)

INTRODUCTORYEXAMPLE: GooglingMarkovChains C-1

10.1IntroductionandExamples C-2

10.2TheSteady-StateVectorandGoogle’sPageRank C-13

10.3CommunicationClasses C-25

10.4ClassificationofStatesandPeriodicity C-33

10.5TheFundamentalMatrix C-42

10.6MarkovChainsandBaseballStatistics C-54

Appendixes

AUniquenessoftheReducedEchelonForm 597 BComplexNumbers 599

Credits 604

Glossary 605

AnswerstoOdd-NumberedExercises A-1

Index I-1

ApplicationsIndex

BiologyandEcology

Estimatingsystolicbloodpressure,422

Laboratoryanimaltrials,367

Molecularmodeling,173–174

Netprimaryproductionofnutrients, 418–419

Nutritionproblems,109–111,115

Predator-preysystem,336–337,343

Spottedowlsandstage-matrixmodels, 297–298,341–343

BusinessandEconomics

Accelerator-multipliermodel,293

Averagecostcurve,418–419

Carrentalfleet,116,368

Costvectors,57

Equilibriumprices,77–79,82

Exchangetable,82

Feasibleset,460,562

Grossdomesticproduct,170

Indifferencecurves,460–461

Intermediatedemand,165

Investment,294

Leontiefexchangemodel,25,77–79

Leontiefinput–outputmodel,25, 165–171

Linearprogramming,26,111–112,153, 484,519,522,560–566

Loanamortizationschedule,293

Manufacturingoperations,57,96

Marginalpropensitytoconsume,293

Markovchains,311,359–368,C-1–C-63

Maximizingutilitysubjecttoabudget constraint,460–461

Populationmovement,113,115–116, 311,361

Priceequation,170

Totalcostcurve,419

Valueaddedvector,170

Variablecostmodel,421

ComputersandComputerScience

Béziercurvesandsurfaces,509,531–532

CAD,537,541

Colormonitors,178

Computergraphics,122,171–177, 498–500

Craysupercomputer,153

Datastorage,66,163

Error-detectinganderror-correcting codes,447,471

Gametheory,519

High-endcomputergraphicsboards,176 Homogeneouscoordinates,172–173,174

Parallelprocessing,25,132

Perspectiveprojections,175–176

Vectorpipelinearchitecture,153 Virtualreality,174

VLSImicrochips,150

Wire-framemodels,121,171

ControlTheory

Controllablesystem,296

Controlsystemsengineering,155

Decoupledsystem,340,346,349

Deepspaceprobe,155

State-spacemodel,296,335

Steady-stateresponse,335

Transferfunction(matrix),155

ElectricalEngineering

Branchandloopcurrents,111–112 Circuitdesign,26,160

Currentflowinnetworks,111–112, 115–116

Discrete-timesignals,228,279–280

Inductance-capacitancecircuit,242

Kirchhoff’slaws,161

Laddernetwork,161,163–164 Laplacetransforms,155,213 Linearfilters,287–288

Low-passfilter,289,413

Minimalrealization,162 Ohm’slaw,111–113,161 RCcircuit,346–347

RLCcircuit,254

Seriesandshuntcircuits,161

Transfermatrix,161–162,163

Engineering

Aircraftperformance,422,437

BoeingBlendedWingBody,122

Cantileveredbeam,293

CFDandaircraftdesign,121–122

Deflectionofanelasticbeam,137,144

Deformationofamaterial,482

Equilibriumtemperatures,36,116–117, 193

Feedbackcontrols,519

Flexibilityandstiffnessmatrices,137, 144

Heatconduction,164

Imageprocessing,441–442,473–474, 479

LUfactorizationandairflow,122

Movingaveragefilter,293

Superpositionprinciple,95,98,112

Mathematics

Areaandvolume,195–196,215–217

Attractors/repellersinadynamical system,338,341,343,347,351

Bessel’sinequality,438

Bestapproximationinfunctionspaces, 426–427

Cauchy-Schwarzinequality,427

Conicsectionsandquadraticsurfaces, 481

Differentialequations,242,345–347 Fourierseries,434–436

Hermitepolynomials,272 Hypercube,527–529

Interpolatingpolynomials,49,194

Isomorphism,188,260–261

Jacobianmatrix,338

Laguerrepolynomials,272

Laplacetransforms,155,213

Legendrepolynomials,430

Lineartransformationsincalculus,241, 324–325

Simplex,525–527

Splines,531–534,540–541

Triangleinequality,427

Trigonometricpolynomials,434

NumericalLinearAlgebra

Bandmatrix,164

Blockdiagonalmatrix,153,334

Choleskyfactorization,454–455,481

Companionmatrix,371

Conditionnumber,147,149,211,439, 469

Effectiverank,190,271,465

Floatingpointarithmetic,33,45,221

Fundamentalsubspaces,379,439, 469–470

Givensrotation,119 Grammatrix,482 Gram–Schmidtprocess,405 Hilbertmatrix,149

Householderreflection,194 Ill-conditionedmatrix(problem),147 Inversepowermethod,356–357 Iterativemethods,353–359

Jacobi’smethodforeigenvalues,312 LAPACK,132,153

Large-scaleproblems,119,153 LUfactorization,157–158,162–163,164

Operationcounts,142,158,160,206

Outerproducts,133,152

Parallelprocessing,25 Partialpivoting,42,163

Polardecomposition,482 Powermethod,353–356 Powersofamatrix,129 Pseudoinverse,470,482

QRalgorithm,312–313,357

QRfactorization,403–404,405,413,438

Rank-revealingfactorization,163,296, 481

Rayleighquotient,358,439

Relativeerror,439

Schurcomplement,154 Schurfactorization,439

Singularvaluedecomposition,163, 463–473

Sparsematrix,121,168,206

Spectraldecomposition,446–447

Spectralfactorization,163

Tridiagonalmatrix,164 Vandermondematrix,194,371

Vectorpipelinearchitecture,153

PhysicalSciences

Cantileveredbeam,293 Centerofgravity,60 Chemicalreactions,79,83

Crystallattice,257,263

Decomposingaforce,386

Gaussianelimination,37 Hooke’slaw,137

Interpolatingpolynomial,49,194

Kepler’sfirstlaw,422

Landsatimage,441–442

Linearmodelsingeologyandgeography, 419–420

Massestimatesforradioactive substances,421

Mass-springsystem,233,254

Modelforglacialcirques,419

ModelforsoilpH,419

Paulispinmatrices,194

Periodicmotion,328

Quadraticformsinphysics,449–454

Radardata,155

Seismicdata,25

Spaceprobe,155

Steady-stateheatflow,36,164

Superpositionprinciple,95,98,112

Three-momentequation,293

Trafficflow,80

Trendsurface,419

Weather,367

Windtunnelexperiment,49

Statistics

Analysisofvariance,408,422

Covariance,474–476,477,478,479

Fullrank,465

Least-squareserror,409

Least-squaresline,413,414–416

Linearmodelinstatistics,414–420

Markovchains,359–360

Mean-deviationformfordata,417,475

Moore-Penroseinverse,471

Multichannelimageprocessing, 441–442,473–479

Multipleregression,419–420

Orthogonalpolynomials,427

Orthogonalregression,480–481

Powersofamatrix,129

Principalcomponentanalysis,441–442, 476–477

Quadraticformsinstatistics,449

Regressioncoefficients,415

Sumsofsquares(inregression),422, 431–432

Trendanalysis,433–434

Variance,422,475–476

Weightedleast-squares,424,431–432

This page is intentionally left blank

Preface

Theresponseofstudentsandteacherstothefirstfiveeditionsof LinearAlgebraandIts Applications hasbeenmostgratifying.This SixthEdition providessubstantialsupport bothforteachingandforusingtechnologyinthecourse.Asbefore,thetextprovides amodernelementaryintroductiontolinearalgebraandabroadselectionofinteresting classicalandleading-edgeapplications.Thematerialisaccessibletostudentswiththe maturitythatshouldcomefromsuccessfulcompletionoftwosemestersofcollege-level mathematics,usuallycalculus.

Themaingoalofthetextistohelpstudentsmasterthebasicconceptsandskillsthey willuselaterintheircareers.Thetopicsherefollowtherecommendationsoftheoriginal LinearAlgebraCurriculumStudyGroup(LACSG),whichwerebasedonacareful investigationoftherealneedsofthestudentsandaconsensusamongprofessionalsin manydisciplinesthatuselinearalgebra.IdeasbeingdiscussedbythesecondLinear AlgebraCurriculumStudyGroup(LACSG2.0)havealsobeenincluded.Wehopethis coursewillbeoneofthemostusefulandinterestingmathematicsclassestakenby undergraduates.

What’sNewinThisEdition

The SixthEdition hasexcitingnewmaterial,examples,andonlineresources.Aftertalkingwithhigh-techindustryresearchersandcolleaguesinappliedareas,weaddednew topics,vignettes,andapplicationswiththeintentionofhighlightingforstudentsand facultythelinearalgebraicfoundationalmaterialformachinelearning,artificialintelligence,datascience,anddigitalsignalprocessing.

ContentChanges

• Sincematrixmultiplicationisahighlyusefulskill,weaddednewexamplesinChapter2toshowhowmatrixmultiplicationisusedtoidentifypatternsandscrubdata. Correspondingexerciseshavebeencreatedtoallowstudentstoexploreusingmatrix multiplicationinvariousways.

• Inourconversationswithcolleaguesinindustryandelectricalengineering,weheard repeatedlyhowimportantunderstandingabstractvectorspacesistotheirwork.After readingthereviewers’commentsforChapter4,wereorganizedthechapter,condensingsomeofthematerialoncolumn,row,andnullspaces;movingMarkovchainsto theendofChapter5;andcreatinganewsectiononsignalprocessing.Weviewsignals

asaninfinitedimensionalvectorspaceandillustratetheusefulnessoflineartransformationstofilteroutunwanted“vectors”(a.k.a.noise),analyzedata,andenhance signals.

• BymovingMarkovchainstotheendofChapter5,wecannowdiscussthesteady statevectorasaneigenvector.Wealsoreorganizedsomeofthesummarymaterialon determinantsandchangeofbasistobemorespecifictothewaytheyareusedinthis chapter.

• InChapter6,wepresentpatternrecognitionasanapplicationoforthogonality,and thesectiononlinearmodelsnowillustrateshowmachinelearningrelatestocurve fitting.

• Chapter9onoptimizationwaspreviouslyavailableonlyasanonlinefile.Ithasnow beenmovedintotheregulartextbookwhereitismorereadilyavailabletofacultyand students.Afteranopeningsectiononfindingoptimalstrategiestotwo-personzerosumgames,therestofthechapterpresentsanintroductiontolinearprogramming— fromtwo-dimensionalproblemsthatcanbesolvedgeometricallytohigherdimensionalproblemsthataresolvedusingtheSimplexMethod.

OtherChanges

• Inthehigh-techindustry,wheremostcomputationsaredoneoncomputers,judging thevalidityofinformationandcomputationsisanimportantstepinpreparingand analyzingdata.Inthisedition,studentsareencouragedtolearntoanalyzetheirown computationstoseeiftheyareconsistentwiththedataathandandthequestionsbeing asked.Forthisreason,wehaveadded“ReasonableAnswers”adviceandexercisesto guidestudents.

• Wehaveaddedalistofprojectstotheendofeachchapter(availableonlineandin MyLabMath).Someoftheseprojectswerepreviouslyavailableonlineandhavea widerangeofthemesfromusinglineartransformationstocreatearttoexploring additionalideasinmathematics.Theycanbeusedforgroupworkortoenhancethe learningofindividualstudents.

• PowerPointlectureslideshavebeenupdatedtocoverallsectionsofthetextandcover themmorethoroughly.

DistinctiveFeatures

EarlyIntroductionofKeyConcepts

Manyfundamentalideasoflinearalgebraareintroducedwithinthefirstsevenlectures, intheconcretesettingof Rn,andthengraduallyexaminedfromdifferentpointsofview. Latergeneralizationsoftheseconceptsappearasnaturalextensionsoffamiliarideas, visualizedthroughthegeometricintuitiondevelopedinChapter1.Amajorachievement ofthistextisthatthelevelofdifficultyisfairlyeventhroughoutthecourse.

AModernViewofMatrixMultiplication

Goodnotationiscrucial,andthetextreflectsthewayscientistsandengineersactually uselinearalgebrainpractice.Thedefinitionsandproofsfocusonthecolumnsofamatrix ratherthanonthematrixentries.Acentralthemeistoviewamatrix–vectorproduct Ax asalinearcombinationofthecolumnsof A.Thismodernapproachsimplifiesmany arguments,andittiesvectorspaceideasintothestudyoflinearsystems.

LinearTransformations

Lineartransformationsforma“thread”thatiswovenintothefabricofthetext.Their useenhancesthegeometricflavorofthetext.InChapter1,forinstance,lineartransformationsprovideadynamicandgraphicalviewofmatrix–vectormultiplication.

EigenvaluesandDynamicalSystems

Eigenvaluesappearfairlyearlyinthetext,inChapters5and7.Becausethismaterialis spreadoverseveralweeks,studentshavemoretimethanusualtoabsorbandreviewthese criticalconcepts.Eigenvaluesaremotivatedbyandappliedtodiscreteandcontinuous dynamicalsystems,whichappearinSections1.10,4.8,and5.9,andinfivesectionsof Chapter5.SomecoursesreachChapter5afteraboutfiveweeksbycoveringSections 2.8and2.9insteadofChapter4.Thesetwooptionalsectionspresentallthevectorspace conceptsfromChapter4neededforChapter5.

OrthogonalityandLeast-SquaresProblems

Thesetopicsreceiveamorecomprehensivetreatmentthaniscommonlyfoundinbeginningtexts.TheoriginalLinearAlgebraCurriculumStudyGrouphasemphasized theneedforasubstantialunitonorthogonalityandleast-squaresproblems,because orthogonalityplayssuchanimportantroleincomputercalculationsandnumericallinear algebraandbecauseinconsistentlinearsystemsarisesoofteninpracticalwork.

PedagogicalFeatures

Applications

Abroadselectionofapplicationsillustratesthepoweroflinearalgebratoexplain fundamentalprinciplesandsimplifycalculationsinengineering,computerscience, mathematics,physics,biology,economics,andstatistics.Someapplicationsappear inseparatesections;othersaretreatedinexamplesandexercises.Inaddition,each chapteropenswithanintroductoryvignettethatsetsthestageforsomeapplication oflinearalgebraandprovidesamotivationfordevelopingthemathematicsthat follows.

AStrongGeometricEmphasis

Everymajorconceptinthecourseisgivenageometricinterpretation,becausemanystudentslearnbetterwhentheycanvisualizeanidea.Therearesubstantiallymoredrawings herethanusual,andsomeofthefigureshaveneverbeforeappearedinalinearalgebra text.InteractiveversionsofmanyofthesefiguresappearinMyLabMath.

Examples

Thistextdevotesalargerproportionofitsexpositorymaterialtoexamplesthandomost linearalgebratexts.Therearemoreexamplesthananinstructorwouldordinarilypresent inclass.Butbecausetheexamplesarewrittencarefully,withlotsofdetail,studentscan readthemontheirown.

TheoremsandProofs

Importantresultsarestatedastheorems.Otherusefulfactsaredisplayedintintedboxes, foreasyreference.Mostofthetheoremshaveformalproofs,writtenwiththebeginner studentinmind.Inafewcases,theessentialcalculationsofaproofareexhibitedina carefullychosenexample.Someroutineverificationsaresavedforexercises,whenthey willbenefitstudents.

PracticeProblems

AfewcarefullyselectedPracticeProblemsappearjustbeforeeachexerciseset.Completesolutionsfollowtheexerciseset.Theseproblemseitherfocusonpotentialtrouble spotsintheexercisesetorprovidea“warm-up”fortheexercises,andthesolutionsoften containhelpfulhintsorwarningsaboutthehomework.

Exercises

Theabundantsupplyofexercisesrangesfromroutinecomputationstoconceptualquestionsthatrequiremorethought.Agoodnumberofinnovativequestionspinpointconceptualdifficultiesthatwehavefoundonstudentpapersovertheyears.Eachexercise setiscarefullyarrangedinthesamegeneralorderasthetext;homeworkassignments arereadilyavailablewhenonlypartofasectionisdiscussed.Anotablefeatureofthe exercisesistheirnumericalsimplicity.Problems“unfold”quickly,sostudentsspend littletimeonnumericalcalculations.Theexercisesconcentrateonteachingunderstandingratherthanmechanicalcalculations.Theexercisesinthe SixthEdition maintainthe integrityoftheexercisesfrompreviouseditions,whileprovidingfreshproblemsfor studentsandinstructors.

Exercisesmarkedwiththesymbol T aredesignedtobeworkedwiththeaidof a“matrixprogram”(acomputerprogram,suchasMATLAB,Maple,Mathematica, MathCad,orDerive,oraprogrammablecalculatorwithmatrixcapabilities,suchasthose manufacturedbyTexasInstruments).

True/FalseQuestions

Toencouragestudentstoreadallofthetextandtothinkcritically,wehavedeveloped over300simpletrue/falsequestionsthatappearthroughoutthetext,justafterthecomputationalproblems.Theycanbeanswereddirectlyfromthetext,andtheyprepare studentsfortheconceptualproblemsthatfollow.Studentsappreciatethesequestionsaftertheygetusedtotheimportanceofreadingthetextcarefully.Basedonclasstesting anddiscussionswithstudents,wedecidednottoputtheanswersinthetext.(The Study Guide,inMyLabMath,tellsthestudentswheretofindtheanswerstotheodd-numbered questions.)Anadditional150true/falsequestions(mostlyattheendsofchapters)test understandingofthematerial.ThetextdoesprovidesimpleT/Fanswerstomostofthese supplementaryexercises,butitomitsthejustificationsfortheanswers(whichusually requiresomethought).

WritingExercises

AnabilitytowritecoherentmathematicalstatementsinEnglishisessentialforallstudentsoflinearalgebra,notjustthosewhomaygotograduateschoolinmathematics.

Thetextincludesmanyexercisesforwhichawrittenjustificationispartoftheanswer. Conceptualexercisesthatrequireashortproofusuallycontainhintsthathelpastudent getstarted.Forallodd-numberedwritingexercises,eitherasolutionisincludedatthe backofthetextorahintisprovidedandthesolutionisgiveninthe StudyGuide.

Projects

Alistofprojects(availableonline)havebeenidentifiedattheendofeachchapter.They canbeusedbyindividualstudentsoringroups.Theseprojectsprovidetheopportunity forstudentstoexplorefundamentalconceptsandapplicationsinmoredetail.Twoofthe projectsevenencouragestudentstoengagetheircreativesideanduselineartransformationstobuildartwork.

ReasonableAnswers

Manyofourstudentswillenteraworkforcewhereimportantdecisionsarebeingmade basedonanswersprovidedbycomputersandothermachines.TheReasonableAnswers boxesandexerciseshelpstudentsdevelopanawarenessoftheneedtoanalyzetheir answersforcorrectnessandaccuracy.

ComputationalTopics

Thetextstressestheimpactofthecomputeronboththedevelopmentandpracticeof linearalgebrainscienceandengineering.FrequentNumericalNotesdrawattention toissuesincomputinganddistinguishbetweentheoreticalconcepts,suchasmatrix inversion,andcomputerimplementations,suchasLUfactorizations.

Acknowledgments

DavidLaywasgratefultomanypeoplewhohelpedhimovertheyearswithvarious aspectsofthisbook.HewasparticularlygratefultoIsraelGohbergandRobertEllisfor morethanfifteenyearsofresearchcollaboration,whichgreatlyshapedhisviewoflinear algebra.AndhewasprivilegedtobeamemberoftheLinearAlgebraCurriculumStudy GroupalongwithDavidCarlson,CharlesJohnson,andDuanePorter.Theircreative ideasaboutteachinglinearalgebrahaveinfluencedthistextinsignificantways.Heoften spokefondlyofthreegoodfriendswhoguidedthedevelopmentofthebooknearlyfrom thebeginning—givingwisecounselandencouragement—GregTobin,publisher;Laurie Rosatone,formereditor;andWilliamHoffman,formereditor.

JudiandStevenhavebeenprivilegedtoworkonrecenteditionsofProfessorDavid Lay’slinearalgebrabook.Inmakingthisrevision,wehaveattemptedtomaintainthe basicapproachandtheclarityofstylethathasmadeearliereditionspopularwithstudents andfaculty.WethankEricSchulzforsharinghisconsiderabletechnologicalandpedagogicalexpertiseinthecreationoftheelectronictextbook.Hishelpandencouragement wereessentialinbringingthefiguresandexamplestolifeintheWolframCloudversion ofthistextbook.

MathewHudelsonhasbeenavaluablecolleagueinpreparingthe SixthEdition; he isalwayswillingtobrainstormaboutconceptsorideasandtestoutnewwritingand exercises.HecontributedtheideafornewvignetteforChapter3andtheaccompanying

project.Hehashelpedwithnewexercisesthroughoutthetext.HarleyWestonhasprovidedJudiwithmanyyearsofgoodconversationsabouthow,why,andwhoweappeal towhenwepresentmathematicalmaterialindifferentways.KaterinaTsatsomeros’ artisticsidehasbeenadefiniteassetwhenweneededartworktotransform(thefish andthesheep),improvedwritinginthenewintroductoryvignettes,orinformationfrom theperspectiveofcollege-agestudents.

WeappreciatetheencouragementandsharedexpertisefromNellaLudlow,Thomas Fischer,AmyJohnston,CassandraSeubert,andMikeManzano.Theyprovidedinformationaboutimportantapplicationsoflinearalgebraandideasfornewexamplesand exercises.Inparticular,thenewvignettesandmaterialinChapters4and6wereinspired byconversationswiththeseindividuals.

WeareenergizedbySepidehStewartandtheothernewLinearAlgebraCurriculumStudyGroup(LACSG2.0)members:SheldonAxler,RobBeezer,EugeneBoman, MinervaCatral,GuershonHarel,DavidStrong,andMeganWawro.Initialmeetingsof thisgrouphaveprovidedvaluableguidanceinrevisingthe SixthEdition.

Wesincerelythankthefollowingreviewersfortheircarefulanalysesandconstructivesuggestions:

MailaC.Brucal-Hallare, NorfolkStateUniversity

StevenBurrow, CentralTexasCollege KristenCampbell, ElginCommunityCollege J.S.Chahal, BrighamYoungUniversity CharlesConrad, VolunteerStateCommunityCollege KevinFarrell, LyndonStateCollege R.DarrellFinney, WilkesCommunityCollege ChrisFuller, CumberlandUniversity XiaofengGu, UniversityofWestGeorgia JeffreyJauregui, UnionCollege JeongMi-Yoon, UniversityofHouston–Downtown ChristopherMurphy, GuilfordTech.C.C. MichaelT.Muzheve, TexasA&MU.–Kingsville CharlesI.Odion, HoustonCommunityCollege IasonRusodimos, PerimeterC.atGeorgiaStateU.DesmondStephens, FloridaAg.andMech.U. RebeccaSwanson, ColoradoSchoolofMines JiyuanTao, LoyolaUniversity–Maryland CaseyWynn, KenyonCollege AmyYielding, EasternOregonUniversity TaoyeZhang, PennStateU.–WorthingtonScranton HoulongZhuang, ArizonaStateUniversity

WeappreciatetheproofreadingandsuggestionsprovidedbyJohnSamonsand JenniferBlue.Theircarefuleyehashelpedtominimizeerrorsinthisedition.

WethankKristinaEvans,PhilOslin,andJeanChoefortheirworkinsettingup andmaintainingtheonlinehomeworktoaccompanythetextinMyLabMath,andfor continuingtoworkwithustoimproveit.Thereviewsoftheonlinehomeworkdone byJoanSaniuk,RobertPierce,DoronLubinskyandAdrianaCorinaldesiweregreatly appreciated.WealsothankthefacultyatUniversityofCaliforniaSantaBarbara,UniversityofAlberta,WashingtonStateUniversityandtheGeorgiaInstituteofTechnology fortheirfeedbackontheMyLabMathcourse.JoeVeterehasprovidedmuchappreciated technicalhelpwiththe StudyGuide and Instructor’sSolutionsManual.

WethankJeffWeidenaar,ourcontentmanager,forhiscontinuedcareful,wellthought-outadvice.ProjectManagerRonHamptonhasbeenatremendoushelpguiding usthroughtheproductionprocess.WearealsogratefultoStaceySveumandRosemary Morton,ourmarketers,andJonKrebs,oureditorialassociate,whohavealsocontributed tothesuccessofthisedition.

StevenR.LayandJudiJ.McDonald

AcknowledgmentsfortheGlobalEdition

PearsonwouldliketoacknowledgeandthankthefollowingfortheirworkontheGlobal Edition.

Contributors

JoséLuisZuletaEstrugo, ÉcolePolytechniqueFédéraledeLausanne MohamadRafiSegiRahmat, UniversityofNottinghamMalaysia

Reviewers

SibelDoğruAkgöl, AtilimUniversity HossamM.Hassan, CairoUniversity KwaKiamHeong, UniversityofMalaya YanghongHuang, UniversityofManchester NatanaelKarjanto, SungkyunkwanUniversity SomitraSanadhya, IndraprasthaInstituteofInformationTechnology VeroniqueVanLierde, AlAkhawaynUniversityinIfrane

Get the most out of MyLab Math

MyLab Math for Linear Algebra and Its Applications

Lay, Lay, McDonald

MyLab Math features hundreds of assignable algorithmic exercises that mirror range of author-created resources, so your students have a consistent experience.

eText with Interactive Figures

The eText includes Interactive Figures that bring the geometry of linear algebra to life. Students can manipulate with matrices to provide a deeper geometric understanding of key concepts and examples.

Teaching with Interactive Figures

as a teaching tool for classroom demonstrations. Instructors can illustrate concep for students to visualize, leading to greater conceptual understanding.

Supporting Instruction

MyLab Math provides resources to help you assess and improve student results and unparalleled flexibility to create a course tailored to you and your students.

PowerPoint® Lecture Slides

Fully editable PowerPoint slides are available for all sections of the text. The slides include definitions, theorems, examples and solutions. When used in the classroom, these slides allow the instructor to focus on teaching, rather than writing on the board. PowerPoint slides are available to students (within the Video and Resource Library in MyLab Math) so that they can follow along.

Sample Assignments

Sample Assignments are crafted to maximize student performance in the course. They make course set-up easier by giving instructors a starting point for each section.

Comprehensive Gradebook

The gradebook includes enhanced reporting functionality, such as item analysis and a reporting dashboard to course. Student performance data are presented at the class, section, and program levels in an accessible, visual manner so you’ll have the information you need to keep your students on track.

pearson.com/myla

Resources for Success

Instructor Resources

Online resources can be downloaded from MyLab Math or from www.pearsonglobaleditions.com.

Instructor’s Solution Manual

Includes fully worked solutions to all exercises in the text and teaching notes for many sections.

PowerPoint® Lecture Slides

These fully editable lecture slides are available for all sections of the text.

Instructor’s Technology Manuals

Each manual provides detailed guidance for integrating technology throughout the course, written by faculty who teach with the software and this text. Available For MATLAB, Maple, Mathematica, and Texas Instruments graphing calculators.

TestGen®

TestGen (www pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

Student Resources

Additional resources to enhance student success. All resources can be downloaded from MyLab Math.

Study Guide

Pr ovid es d eta

e v er y t hi r d odd-nu

c o m pl ete e xpl a n

a n o dd - nu m b ere d w r i t ing e x erc i se h as a Hin t in t h e a n s w ers. Sp ec i a l s ub sect ion s o f t h e S tud y G u i d e s ugg est h o w to master k e y c on ce p ts of t h e co u rse. Fre qu e n t “ W ar ning s ” id e n t ify c o mm on errors a nd s how how t o p re v e n t t h em. MA TL AB box es in tr odu c e c o mma nd s as t h e y are n ee d e d . App e ndix e s in t h e S tud y G u i d e p ro vid e c o m p ara bl e info rmat i o n a bou t M a pl e, M at h emat i ca, a nd T I g ra phing ca l c ul at o rs. Av a il a bl e wi t hin My La b math.

Getting Started with Technology

A quick-start guide for students to the technology they may use in this course. Available for MATLAB, Maple, Mathematica, or Texas Instrument graphing calculators. Downloadable from MyLab Math.

Projects

Exploratory projects, written by experienced faculty members, invite students to discover applications of linear algebra

pearson.com/myla b/math

ANotetoStudents

Thiscourseispotentiallythemostinterestingandworthwhileundergraduatemathematicscourseyouwillcomplete.Infact,somestudentshavewrittenorspokentous aftergraduationandsaidthattheystillusethistextoccasionallyasareferenceintheir careersatmajorcorporationsandengineeringgraduateschools.Thefollowingremarks offersomepracticaladviceandinformationtohelpyoumasterthematerialandenjoy thecourse.

Inlinearalgebra,the concepts areasimportantasthe computations. Thesimple numericalexercisesthatbegineachexercisesetonlyhelpyoucheckyourunderstanding ofbasicprocedures.Laterinyourcareer,computerswilldothecalculations,butyou willhavetochoosethecalculations,knowhowtointerprettheresults,analyzewhether theresultsarereasonable,thenexplaintheresultstootherpeople.Forthisreason,many exercisesinthetextaskyoutoexplainorjustifyyourcalculations.Awrittenexplanation isoftenrequiredaspartoftheanswer.IfyouareworkingonquestionsinMyLabMath, keepanotebookforcalculationsandnotesonwhatyouarelearning.Forodd-numbered exercisesinthetextbook,youwillfindeitherthedesiredexplanationoratleastagood hint.Youmustavoidthetemptationtolookatsuchanswersbeforeyouhavetriedtowrite outthesolutionyourself.Otherwise,youarelikelytothinkyouunderstandsomething wheninfactyoudonot.

Tomastertheconceptsoflinearalgebra,youwillhavetoreadandrereadthetext carefully.Newtermsareinboldfacetype,sometimesenclosedinadefinitionbox. Aglossaryoftermsisincludedattheendofthetext.Importantfactsarestatedas theoremsorareenclosedintintedboxes,foreasyreference.Weencourageyoutoread thePrefacetolearnmoreaboutthestructureofthistext.Thiswillgiveyouaframework forunderstandinghowthecoursemayproceed.

Inapracticalsense,linearalgebraisalanguage.Youmustlearnthislanguagethe samewayyouwouldaforeignlanguage—withdailywork.Materialpresentedinone sectionisnoteasilyunderstoodunlessyouhavethoroughlystudiedthetextandworked theexercisesfortheprecedingsections.Keepingupwiththecoursewillsaveyoulots oftimeanddistress!

NumericalNotes

WehopeyoureadtheNumericalNotesinthetext,evenifyouarenotusingacomputeror graphingcalculatorwiththetext.Inreallife,mostapplicationsoflinearalgebrainvolve numericalcomputationsthataresubjecttosomenumericalerror,eventhoughthaterror maybeextremelysmall.TheNumericalNoteswillwarnyouofpotentialdifficultiesin

usinglinearalgebralaterinyourcareer,andifyoustudythenotesnow,youaremore likelytorememberthemlater.

IfyouenjoyreadingtheNumericalNotes,youmaywanttotakeacourselaterin numericallinearalgebra.Becauseofthehighdemandforincreasedcomputingpower, computerscientistsandmathematiciansworkinnumericallinearalgebratodevelop fasterandmorereliablealgorithmsforcomputations,andelectricalengineersdesign fasterandsmallercomputerstorunthealgorithms.Thisisanexcitingfield,andyour firstcourseinlinearalgebrawillhelpyouprepareforit.

StudyGuide

Tohelpyousucceedinthiscourse,wesuggestthatyouusethe StudyGuide availablein MyLabMath.Notonlywillithelpyoulearnlinearalgebra,italsowillshowyouhow tostudymathematics.Atstrategicpointsinyourtextbook,marginalnoteswillremind youtocheckthatsectionofthe StudyGuide forspecialsubsectionsentitled“Mastering LinearAlgebraConcepts.”Thereyouwillfindsuggestionsforconstructingeffective reviewsheetsofkeyconcepts.Theactofpreparingthesheetsisoneofthesecretsto successinthecourse,becauseyouwillconstruct linksbetweenideas. Theselinksare the“glue”thatenablesyoutobuildasolidfoundationforlearningand remembering the mainconceptsinthecourse.

The StudyGuide containsadetailedsolutiontomorethanathirdoftheoddnumberedexercises,plussolutionstoallodd-numberedwritingexercisesforwhich onlyahintisgivenintheAnswerssectionofthisbook.The Guide isseparatefrom thetextbecauseyoumustlearntowritesolutionsbyyourself,withoutmuchhelp.(We knowfromyearsofexperiencethateasyaccesstosolutionsinthebackofthetextslows themathematicaldevelopmentofmoststudents.)The Guide alsoprovideswarningsof commonerrorsandhelpfulhintsthatcallattentiontokeyexercisesandpotentialexam questions.

Ifyouhaveaccesstotechnology—MATLAB,Octave,Maple,Mathematica,oraTI graphingcalculator—youcansavemanyhoursofhomeworktime.The StudyGuide is your“labmanual”thatexplainshowtouseeachofthesematrixutilities.Itintroduces newcommandswhentheyareneeded.Youwillalsofindthatmostsoftwarecommands youmightuseareeasilyfoundusinganonlinesearchengine.Specialmatrixcommands willperformthecomputationsforyou!

Whatyoudoinyourfirstfewweeksofstudyingthiscoursewillsetyourpattern forthetermanddeterminehowwellyoufinishthecourse.Pleaseread“HowtoStudy LinearAlgebra”inthe StudyGuide assoonaspossible.Manystudentshavefoundthe strategiesthereveryhelpful,andwehopeyouwill,too.

This page is intentionally left blank

1

LinearEquationsin LinearAlgebra

IntroductoryExample

LINEARMODELSINECONOMICS ANDENGINEERING

Itwaslatesummerin1949.HarvardProfessorWassily Leontiefwascarefullyfeedingthelastofhispunchedcards intotheuniversity’sMarkIIcomputer.Thecardscontained informationabouttheU.S.economyandrepresenteda summaryofmorethan250,000piecesofinformation producedbytheU.S.BureauofLaborStatisticsaftertwo yearsofintensivework.LeontiefhaddividedtheU.S. economyinto500“sectors,”suchasthecoalindustry, theautomotiveindustry,communications,andsoon. Foreachsector,hehadwrittenalinearequationthat describedhowthesectordistributeditsoutputtotheother sectorsoftheeconomy.BecausetheMarkII,oneofthe largestcomputersofitsday,couldnothandletheresulting systemof500equationsin500unknowns,Leontiefhad distilledtheproblemintoasystemof42equationsin 42unknowns.

ProgrammingtheMarkIIcomputerforLeontief’s 42equationshadrequiredseveralmonthsofeffort,andhe wasanxioustoseehowlongthecomputerwouldtaketo solvetheproblem.TheMarkIIhummedandblinkedfor 56hoursbeforefinallyproducingasolution.Wewill discussthenatureofthissolutioninSections1.6and2.6.

Leontief,whowasawardedthe1973NobelPrize inEconomicScience,openedthedoortoanewera inmathematicalmodelingineconomics.Hiseffortsat Harvardin1949markedoneofthefirstsignificantuses ofcomputerstoanalyzewhatwasthenalarge-scale

mathematicalmodel.Sincethattime,researchersin manyotherfieldshaveemployedcomputerstoanalyze mathematicalmodels.Becauseofthemassiveamountsof datainvolved,themodelsareusually linear;thatis,they aredescribedby systemsoflinearequations

Theimportanceoflinearalgebraforapplicationshas risenindirectproportiontotheincreaseincomputing power,witheachnewgenerationofhardwareandsoftware triggeringademandforevengreatercapabilities.Computer scienceisthusintricatelylinkedwithlinearalgebrathrough theexplosivegrowthofparallelprocessingandlarge-scale computations.

Scientistsandengineersnowworkonproblemsfar morecomplexthanevendreamedpossibleafewdecades ago.Today,linearalgebrahasmorepotentialvaluefor studentsinmanyscientificandbusinessfieldsthanany otherundergraduatemathematicssubject!Thematerialin thistextprovidesthefoundationforfurtherworkinmany interestingareas.Hereareafewpossibilities;otherswill bedescribedlater.

Oilexploration. Whenashipsearchesforoffshore oildeposits,itscomputerssolvethousandsof separatesystemsoflinearequations everyday. Theseismicdatafortheequationsareobtained fromunderwatershockwavescreatedbyexplosions fromairguns.Thewavesbounceoffsubsurface

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.