https://ebookmass.com/product/calculus-for-biology-andmedicine-4th-edition-claudia-neuhauser/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Integrative Medicine 4th Edition
https://ebookmass.com/product/integrative-medicine-4th-edition/
ebookmass.com
Understanding Biology 4th 4th Edition Kenneth A. Mason
https://ebookmass.com/product/understanding-biology-4th-4th-editionkenneth-a-mason/
ebookmass.com
Biology: Concepts and Investigations 4th Edition Mariëlle Hoefnagels
https://ebookmass.com/product/biology-concepts-and-investigations-4thedition-marielle-hoefnagels/
ebookmass.com
Sonrie, Por Favor (0.5-Un Gin-Tonic, por favor) 1ª Edition Estrella Correa
https://ebookmass.com/product/sonrie-por-favor-0-5-un-gin-tonic-porfavor-1a-edition-estrella-correa/
ebookmass.com
Sanctuary (Gay Mpreg MM Shifter Romance) (A Tale from the Mercy Hills Universe Book 1) Byrde
https://ebookmass.com/product/sanctuary-gay-mpreg-mm-shifter-romancea-tale-from-the-mercy-hills-universe-book-1-byrde/
ebookmass.com
The New Power Elite Heather Gautney
https://ebookmass.com/product/the-new-power-elite-heather-gautney/
ebookmass.com
Proportionality in International Humanitarian Law: Consequences, Precautions, and Procedures Amichai Cohen And David Zlotogorski
https://ebookmass.com/product/proportionality-in-internationalhumanitarian-law-consequences-precautions-and-procedures-amichaicohen-and-david-zlotogorski/ ebookmass.com
Auditing: A Risk Based-Approach 11th Edition JohnstoneZehms
https://ebookmass.com/product/auditing-a-risk-based-approach-11thedition-johnstone-zehms/
ebookmass.com
The Secret in the Wall Ann Parker
https://ebookmass.com/product/the-secret-in-the-wall-ann-parker/
ebookmass.com
Cambridge Economics in the Post-Keynesian Era: The Eclipse of Heterodox Traditions Ashwani Saith
https://ebookmass.com/product/cambridge-economics-in-the-postkeynesian-era-the-eclipse-of-heterodox-traditions-ashwani-saith/
ebookmass.com
MyLab Math for Calculus for Biology and Medicine, 4e (access code required)
Used by over 3 million students a year, MyLab™ Math is the world’s leading online program for teaching and learning mathematics. MyLab Math delivers assessment, tutorials, and multimedia resources that provide engaging and personalized experiences for each student, so learning can happen in any environment. For the first time, instructors and students using Calculus for Biology and Medicine can access textspecific online homework and resources in and out of the classroom.
Complete eText Exercises with Immediate Feedback Homework and practice exercises for this text regenerate algorithmically to give students unlimited opportunity for practice and mastery. MyLab Math provides helpful feedback when students enter incorrect answers and includes the optional learning aids Help Me Solve This, View an Example, and/or the eText.
Students and instructors get unlimited access to the eText within any MyLab Math course using that edition of the textbook. The Pearson eText app allows existing subscribers to access their titles on an iPad or Android tablet for either online or offline viewing.
Questions that Deepen Understanding MyLab Math includes a variety of question types designed to help students succeed in the course. In Setup & Solve set up a problem as well as the solution, better mirroring what is required on tests.
Conceptual Questions
Cornell University and focus on deeper, theoretical understanding of the key concepts in calculus.
To learn more, visit pearson.com/mylab/math.
This page intentionally left blank
CALCULUS forBiologyandMedicine UniversityofMinnesota
UniversityofCalifornia—LosAngeles
Director,PortfolioManagement: DeirdreLynch
ExecutiveEditor: JeffWeidenaar
EditorialAssistant: JenniferSnyder
ContentProducer: PattyBergin
ManagingProducer: KarenWernholm
Producer,Production&DigitalStudio,Mathematics&Statistics: MarielleGuiney
Manager,CoursewareQA: MaryDurnwald
Manager,ContentDevelopment,Math: KristinaEvans
ProductMarketingManager: EmilyOckay
FieldMarketingManager: EvanSt.Cyr
MarketingAssistant: ErinRush
SeniorAuthorSupport/TechnologySpecialist: JoeVetere
TextDesign: TamaraNewnam
Composition: iEnergizerAptara,Inc.
Illustrations: NetworkGraphics
CoverDesign: TamaraNewnam
CoverandChapteropeningImage: SteveGschmeissner/SciencePhotoLibrary/AGEFotostock
Copyright c 2018,2011,2004byPearsonEducation,Inc.AllRightsReserved.PrintedintheUnitedStatesofAmerica.Thispublicationis protectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrieval system,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopying,recording,orotherwise.Forinformationregarding permissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissionsdepartment,pleasevisit www.pearsoned.com/permissions/.
MICROSOFTAND/ORITSRESPECTIVESUPPLIERSMAKENOREPRESENTATIONSABOUTTHESUITABILITYOFTHE INFORMATIONCONTAINEDINTHEDOCUMENTSANDRELATEDGRAPHICSPUBLISHEDASPARTOFTHESERVICES FORANYPURPOSE.ALLSUCHDOCUMENTSANDRELATEDGRAPHICSAREPROVIDED“ASIS”WITHOUTWARRANTY OFANYKIND.MICROSOFTAND/ORITSRESPECTIVESUPPLIERSHEREBYDISCLAIMALLWARRANTIESAND CONDITIONSWITHREGARDTOTHISINFORMATION,INCLUDINGALLWARRANTIESANDCONDITIONSOF MERCHANTABILITY,WHETHEREXPRESS,IMPLIEDORSTATUTORY,FITNESSFORAPARTICULARPURPOSE,TITLE ANDNON-INFRINGEMENT.INNOEVENTSHALLMICROSOFTAND/ORITSRESPECTIVESUPPLIERSBELIABLEFOR ANYSPECIAL,INDIRECTORCONSEQUENTIALDAMAGESORANYDAMAGESWHATSOEVERRESULTINGFROMLOSS OFUSE,DATAORPROFITS,WHETHERINANACTIONOFCONTRACT,NEGLIGENCEOROTHERTORTIOUSACTION, ARISINGOUTOFORINCONNECTIONWITHTHEUSEORPERFORMANCEOFINFORMATIONAVAILABLEFROMTHE SERVICES.
THEDOCUMENTSANDRELATEDGRAPHICSCONTAINEDHEREINCOULDINCLUDETECHNICALINACCURACIESOR TYPOGRAPHICALERRORS.CHANGESAREPERIODICALLYADDEDTOTHEINFORMATIONHEREIN.MICROSOFT AND/ORITSRESPECTIVESUPPLIERSMAYMAKEIMPROVEMENTSAND/ORCHANGESINTHEPRODUCT(S)AND/OR THEPROGRAM(S)DESCRIBEDHEREINATANYTIME.PARTIALSCREENSHOTSMAYBEVIEWEDINFULLWITHINTHE SOFTWAREVERSIONSPECIFIED.
PEARSON,ALWAYSLEARNING,andMYLABareexclusivetrademarksownedbyPearsonEducation,Inc.oritsaffiliatesintheU.S. and/orothercountries.
Unlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveownersand anyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeordescriptivepurposesonly.Suchreferencesarenot intendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearson’sproductsbytheownersofsuchmarks,orany relationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesordistributors.
LibraryofCongressCataloging-in-PublicationData
Names:Neuhauser,Claudia,1962-author. | Roper,MarcusL.,author.
Title:Calculusforbiologyandmedicine.
Description:Fourthedition/ClaudiaNeuhauser,UniversityofMinnesota, MarcusL.Roper,UniversityofCalifornia—LosAngeles. | Boston: Pearson,[2018] | Includesbibliographicalreferencesandindex.
Identifiers:LCCN2017036101 | ISBN9780134070049(hardcover)
Subjects:LCSH:Biomathematics–Textbooks. | Medicine–Mathematics–Textbooks. Classification:LCCQH323.5.N462018 | DDC570.1/51–dc23LCrecordavailable athttps://lccn.loc.gov/2017036101
117
ISBN13:978-0-13-407004-9
ISBN10:0-13-407004-6
Contents ThroughoutthisTableofContentsweuseanasterisk(*)fortopicsthatarenotdirectlyusedinthelatersectionsofthetext.Thatis, youcanstudytheentirebookwithoutstudyingthesetopics.Someofthesetopicsgodeeperintorigorousdefinitionsoflimitsand bounds(forexample,3.6or10.2).Othersexploreextensionsofthemajormathematicalideas,likestabilityinrecurrenceequations (in5.7)ormodelsusingsystemsofrecurrenceequations(in9.3.3and10.9).Athirdclassofasteriskedtopicsprovidesmoremodeling examplesusingthemathematicaltoolsdevelopedinthetext(forexample,2.3.4,5.9,9.4,and11.5).Instructorsmaydecidefor themselveswhichofthesetopicstocover.
Preface viii
1 PreviewandReview 1 j 1.1 PrecalculusSkillsDiagnosticTest 1
j 1.2 Preliminaries 4
1.2.1TheRealNumbers4
1.2.2LinesinthePlane7
1.2.3EquationoftheCircle9
1.2.4Trigonometry9
1.2.5ExponentialsandLogarithms11
1.2.6ComplexNumbersandQuadraticEquations13
j 1.3 ElementaryFunctions 18
1.3.1WhatIsaFunction?18
1.3.2PolynomialFunctions21
1.3.3RationalFunctions23
1.3.4PowerFunctions24
1.3.5ExponentialFunctions25
1.3.6InverseFunctions28
1.3.7LogarithmicFunctions30
1.3.8TrigonometricFunctions33
j 1.4 Graphing 40
1.4.1GraphingandBasicTransformations ofFunctions40
1.4.2TheLogarithmicScale42
1.4.3TransformationsintoLinearFunctions44
1.4.4*FromaVerbalDescription toaGraph49
KeyTerms 58 ReviewProblems 58
2 Discrete-TimeModels, Sequences,andDifference Equations 62 j 2.1 ExponentialGrowthandDecay 62
2.1.1ModelingPopulationGrowthinDiscreteTime62
2.1.2RecurrenceEquations64
2.1.3VisualizingRecurrenceEquations65
j 2.2 Sequences 68
2.2.1WhatAreSequences?68
2.2.2*UsingSpreadsheetstoCalculateaRecursive Sequence71
2.2.3Limits71
2.2.4RecurrenceEquations75
2.2.5Using NotationtoRepresentSums ofSequences78
j 2.3 ModelingwithRecurrenceEquations 81
2.3.1Density-DependentPopulationGrowth81
2.3.2Density-DependentPopulationGrowth:The Beverton–HoltModel84
2.3.3TheDiscreteLogisticEquation85
2.3.4*ModelingDrugAbsorption88
KeyTerms 98 ReviewProblems 98
3 LimitsandContinuity 101 j 3.1 Limits 101
3.1.1ANon-RigorousDiscussion ofLimits102
3.1.2PitfallsofFindingLimits106
3.1.3LimitLaws108
j 3.2 Continuity 112
3.2.1WhatIsContinuity?112
3.2.2CombinationsofContinuousFunctions115
j 3.3 LimitsatInfinity 120
j 3.4 TrigonometricLimitsandtheSandwich Theorem 124
3.4.1GeometricArgumentfor TrigonometricLimits124
3.4.2*TheSandwichTheorem126
j 3.5 PropertiesofContinuousFunctions 129
3.5.1TheIntermediate-ValueTheoremandThe BisectionMethod129
3.5.2*UsingaSpreadsheettoImplementthe BisectionMethod132
3.5.3AFinalRemarkonContinuousFunctions134
j 3.6 *AFormalDefinitionofLimits 134
KeyTerms 139 ReviewProblems 139
4 Differentiation 142 j 4.1 FormalDefinitionoftheDerivative 143
j 4.2 PropertiesoftheDerivative 148
4.2.1InterpretingtheDerivative148
4.2.2DifferentiabilityandContinuity150
j 4.3 ThePowerRule,theBasicRulesof Differentiation,andtheDerivativesof Polynomials 154
j 4.4 TheProductandQuotientRules,andthe DerivativesofRationalandPower Functions 160
4.4.1TheProductRule160
4.4.2TheQuotientRule162
j 4.5 TheChainRule 168
4.5.1TheChainRule168
4.5.2ProofoftheChainRule172
j 4.6 ImplicitFunctionsandImplicit Differentiation 174
4.6.1ImplicitDifferentiation174
4.6.2RelatedRates177
j 4.7 HigherDerivatives 180
j 4.8 DerivativesofTrigonometric Functions 184
j 4.9 DerivativesofExponentialFunctions 188
j 4.10 DerivativesofInverseFunctions, LogarithmicFunctions,andtheInverse TangentFunction 194
4.10.1DerivativesofInverseFunctions194
4.10.2TheDerivativeoftheLogarithmic Function199
4.10.3*LogarithmicDifferentiation201
j 4.11 LinearApproximationandError Propagation 204 KeyTerms 211 ReviewProblems 211
5 ApplicationsofDifferentiation 213 j 5.1 ExtremaandtheMean-Value Theorem 213
5.1.1TheExtreme-ValueTheorem213
5.1.2LocalExtrema215
5.1.3TheMean-ValueTheorem219
j 5.2 MonotonicityandConcavity 225
5.2.1Monotonicity226
5.2.2Concavity228
j 5.3 ExtremaandInflectionPoints 234
5.3.1Extrema234
5.3.2InflectionPoints240
j 5.4 Optimization 242
j 5.5 L’Hˆopital’sRule 253
j 5.6 GraphingandAsymptotes 260
j 5.7 *RecurrenceEquations:Stability 271
5.7.1ExponentialGrowth271
5.7.2Stability:GeneralCase272
5.7.3PopulationGrowthModels275
j 5.8 *NumericalMethods:The Newton–RaphsonMethod 279
j 5.9 *ModelingBiologicalSystemsUsing DifferentialEquations 285
5.9.1ModelingPopulationGrowth285
5.9.2InterpretingtheMathematicalModel287
5.9.3PassageofDrugsThroughthe HumanBody289
j 5.10 Antiderivatives 294 KeyTerms 301 ReviewProblems 302
6 Integration 306 j 6.1 TheDefiniteIntegral 306
6.1.1TheAreaProblem306
6.1.2TheGeneralTheoryofRiemannIntegrals308
6.1.3PropertiesoftheRiemannIntegral314
6.1.4*OrderPropertiesoftheRiemannIntegral316
j 6.2 TheFundamentalTheoremof Calculus 322
6.2.1TheFundamentalTheoremofCalculus (PartI)322
6.2.2*Leibniz’sRuleandaRigorousProof oftheFundamentalTheoremof Calculus323
6.2.3AntiderivativesandIndefiniteIntegrals326
6.2.4TheFundamentalTheoremofCalculus (PartII)329
j 6.3 ApplicationsofIntegration 334
6.3.1CumulativeChange334
6.3.2AverageValues336
6.3.3*TheMeanValueTheorem338
6.3.4*Areas340
6.3.5*TheVolumeofaSolid343
6.3.6*RectificationofCurves346
KeyTerms 352 ReviewProblems 352
7 j 8.2 EquilibriaandTheirStability 441
8.2.1EquilibriumPoints442
8.2.2GraphicalApproachtoFinding Equilibria442
8.2.3StabilityofEquilibriumPoints443
8.2.4SketchingSolutionsUsingtheVector FieldPlot448
8.2.5BehaviorNearanEquilibrium450
355
IntegrationTechniquesand ComputationalMethods j 7.1 TheSubstitutionRule 355
7.1.1IndefiniteIntegrals355
7.1.2DefiniteIntegrals360
j 7.2 IntegrationbyPartsandPracticing Integration 365
7.2.1IntegrationbyParts365
7.2.2PracticingIntegration370
j 7.3 RationalFunctionsandPartial Fractions 374
7.3.1ProperRationalFunctions374
7.3.2Partial-FractionDecomposition375
7.3.3RepeatedLinearFactors379
7.3.4*IrreducibleQuadraticFactors380
7.3.5Summary385
j 7.4 *ImproperIntegrals 388
7.4.1Type1:UnboundedIntervals388
7.4.2Type2:UnboundedIntegrand392
7.4.3AComparisonResultforImproper Integrals395
j 7.5 NumericalIntegration 398
7.5.1TheMidpointRule398
7.5.2TheTrapezoidalRule401
7.5.3UsingaSpreadsheetforNumerical Integration402
7.5.4*EstimatingErrorinaNumericalIntegration406
j 7.6 *TheTaylorApproximation 409
7.6.1TaylorPolynomials409
7.6.2TheTaylorPolynomialabout x = a 414
7.6.3HowAccurateIstheApproximation?415
j 7.7 *TablesofIntegrals 420
KeyTerms 424
ReviewProblems 424
8 DifferentialEquations 427 j 8.1 SolvingSeparableDifferential Equations 428
8.1.1Pure-TimeDifferentialEquations429
8.1.2AutonomousDifferentialEquations430
8.1.3GeneralSeparableEquations436
j 8.3 DifferentialEquationModels 455
8.3.1CompartmentModels455
8.3.2AnEcologicalModel456
8.3.3ModelingaChemicalReaction457
8.3.4TheEvolutionofCooperation459
8.3.5EpidemicModel463
j 8.4 IntegratingFactorsandTwo-Compartment Models 471
8.4.1IntegratingFactors471
8.4.2Two-CompartmentModels475 KeyTerms 484 ReviewProblems 484
9 LinearAlgebraandAnalytic Geometry 487 j 9.1 LinearSystems 487
9.1.1GraphicalSolution488
9.1.2SolvingEquationsUsingElimination491
9.1.3SolvingSystemsofLinearEquations492
9.1.4RepresentingSystemsofEquations UsingMatrices496
j 9.2 Matrices 501
9.2.1MatrixOperations501
9.2.2MatrixMultiplication503
9.2.3InverseMatrices506
9.2.4*ComputingInverseMatrices513
j 9.3 LinearMaps,Eigenvectors,and Eigenvalues 518
9.3.1GraphicalRepresentation519
9.3.2EigenvaluesandEigenvectors523
9.3.3*IteratedMaps531
j 9.4 *DemographicModeling 535
9.4.1ModelingwithLeslieMatrices535
9.4.2StableAgeDistributionsin DemographicModels540
j 9.5 AnalyticGeometry 547
9.5.1PointsandVectorsinHigher Dimensions547
9.5.2TheDotProduct551
9.5.3ParametricEquationsofLines555
KeyTerms 558 ReviewProblems 559
10 MultivariableCalculus 561 j 10.1 FunctionsofTwoorMoreIndependent Variables 563
10.1.1DefiningaFunctionofTwoor MoreVariables563
10.1.2TheGraphofaFunctionofTwoIndependent Variables–SurfacePlot565
10.1.3HeatMaps566
10.1.4ContourPlots568
j 10.2 *LimitsandContinuity 575
10.2.1InformalDefinitionofLimits575
10.2.2Continuity578
10.2.3FormalDefinitionofLimits579
j 10.3 PartialDerivatives 582
10.3.1FunctionsofTwoVariables582
10.3.2FunctionsofMoreThan TwoVariables586
10.3.3Higher-OrderPartialDerivatives586
j 10.4 TangentPlanes,Differentiability, andLinearization 589
10.4.1FunctionsofTwoVariables589
10.4.2Vector-ValuedFunctions594
j 10.5 *TheChainRuleandImplicit Differentiation 599
10.5.1TheChainRuleforFunctionsof TwoVariables599
10.5.2ImplicitDifferentiation601
j 10.6 *DirectionalDerivativesandGradient Vectors 604
10.6.1DerivingtheDirectional Derivative604
10.6.2PropertiesoftheGradientVector608
j 10.7 *MaximizationandMinimization ofFunctions 610
10.7.1LocalMaximaandMinima610
10.7.2GlobalExtrema617
10.7.3ExtremawithConstraints621
10.7.4Least-SquaresDataFitting626
j 10.8 *Diffusion 635
j 10.9 *SystemsofRecurrenceEquations 640
10.9.1ABiologicalExample640
10.9.2EquilibriaandStabilityinSystemsofLinear RecurrenceEquations641
10.9.3EquilibriaandStabilityofNonlinearSystems ofRecurrenceEquations643 KeyTerms 650 ReviewProblems 650
11 SystemsofDifferential Equations 653 j 11.1 LinearSystems:Theory 655
11.1.1TheVectorField655
11.1.2SolvingLinearSystems657
11.1.3EquilibriaandStability664
11.1.4SystemswithComplexConjugate Eigenvalues666
11.1.5SummaryoftheTheoryofLinearSystems671
j 11.2 LinearSystems:Applications 677
11.2.1Two-CompartmentModels677
11.2.2AMathematicalModelforLove682
11.2.3*TheHarmonicOscillator684
j 11.3 NonlinearAutonomousSystems: Theory 688
11.3.1AnalyticalApproach688
11.3.2GraphicalApproachfor2×2Systems694
j 11.4 NonlinearSystems:Lotka–Volterra ModelforInterspecificInteractions 698
11.4.1Competition698
11.4.2APredator–PreyModel704
j 11.5 *MoreMathematicalModels 708
11.5.1TheCommunityMatrix709
11.5.2NeuronActivity711
11.5.3EnzymaticReactions713
11.5.4MicrobialGrowthinaChemostat716
11.5.5AModelforEpidemics718
KeyTerms 730 ReviewProblems 730
12 ProbabilityandStatistics j 12.1 Counting 734
12.1.1TheMultiplicationPrinciple734
12.1.2Permutations735
12.1.3Combinations737
734
12.1.4CombiningtheCountingPrinciples738
j 12.2 WhatIsProbability? 742
12.2.1BasicDefinitions742
12.2.2EquallyLikelyOutcomes746
j 12.3 ConditionalProbabilityand Independence 752
12.3.1ConditionalProbability753
12.3.2TheLawofTotalProbability754
12.3.3Independence755
12.3.4TheBayesFormula758
j 12.4 DiscreteRandomVariablesandDiscrete Distributions 763
12.4.1DiscreteDistributions763
12.4.2MeanandVariance766
12.4.3TheBinomialDistribution774
12.4.4TheMultinomialDistribution778
12.4.5GeometricDistribution779
12.4.6ThePoissonDistribution783
j 12.5 ContinuousDistributions 793
12.5.1DensityFunctions793
12.5.2TheNormalDistribution799
12.5.3TheUniformDistribution805
12.5.4TheExponentialDistribution807
12.5.5ThePoissonProcess811
12.5.6Aging812
j 12.6 LimitTheorems 819
12.6.1TheLawofLargeNumbers819
12.6.2TheCentralLimitTheorem823
j 12.7 StatisticalTools 828
12.7.1DescribingUnivariateData828
12.7.2EstimatingParameters833
12.7.3LinearRegression842
KeyTerms 848
ReviewProblems 849
AppendixA FrequentlyUsedSymbols 851
AppendixB TableoftheStandardNormalDistribution 852
AnswerstoOdd-NumberedProblems A1
References R1
Index I1
Preface Thegoalof CalculusforBiologyandMedicine hasremainedconstantfromitsinception:
Toshowstudentshowcalculusisusedtoanalyzephenomenainnaturewithoutcompromisingtherigorofthepresentationofcalculusprinciples.
Theresultofthisgoalisacalculustextthathasplentifullifeandhealthsciencesapplicationsandthatprovidesstudentswiththeknowledgeandskillsnecessarytoanalyzeandinterpretmathematicalmodelsofadiversearrayofphenomenaintheliving world.Sincethistextiswrittenforcollegefreshmen,theexampleswerechosensothat noformaltraininginbiologyisneeded.
Therigorofthetextpreparesstudentswellformoreadvancedcoursesinmathematicsandstatistics.Ourhopeisthatstudentswillfindcalculusconceptseasierto understandandmoreinterestingiftheyarerelatedtotheirmajorandcareeraspirations.Whilethetableofcontentsresemblesthatofatraditionalcalculustext,the contentdoesnot:Abstractcalculusconceptsareintroducedinabiologicalcontext, andstudentslearnhowtotransferandapplytheseconceptstobiologicalsituations.
NewtoThisEdition Modeling –The4thEditionplacesmuchmoreemphasisonmodelingbiological situations.Studentsareinstructedintheprocessesofmodelingreal-worldsituations andgivenmanyopportunitiestopracticethesetechniquesinproblems.
Applications –Theapplicationsinthetexthavebeengreatlyexpandedinnumber. Newapplicationsincludepopulationgenetics,pharmacology,andtheevolutionof microbialcooperation.Manyoftheseapplicationsareadaptedfrompublishedstudiesandothercurrentsources.
Technology –The4thEditionnowincludesclearstudentinstructionsonusing spreadsheetstonumericallysolveequations,visualizedata,andmodelbiological processes.Thismaterialisclearlylabeledsothatinstructorswhoprefernottouseit caneasilyomitit,orassigntechnologysectionsasoptionalreadingstotheirstudents.
Approach –Thelevelofrigorofthetexthasbeenmaintained,butwehavemade adjustmentstohowsometopicsareintroducedtomakethepresentationaccessible tostudents,betterbridgingthegapbetweenwhatstudentsalreadyknowandwhat theyareattemptingtolearn.Wehavealsostreamlinedormadeoptionalmaterial thatisnotusefulforlifesciencesstudents(formaldiscussionoflimits,continuityin multivariatefunctions,etc.).Thismaterialismaintainedsothatinstructorsmaycontinuetoteachit,andstudentswhomaytransferoutoflifesciencescalculuscourses intophysicalsciencesandengineeringcalculuswillstillfindthematerialthatiscoveredinphysicalcalculus;butthemaincurrentofthebookisthroughtopicsthatare directlyneededforlifesciences.
Writing –Everyattempthasbeenmadeintheneweditiontouselanguagethat willenablestudentstobetterusethetextasanindependentlearningresource.In somesectionsthisrequiredlengtheningexplanationsthatwereoverlyterseinorder tomakethemmoreaccessible;inothers,topicsareintroducedinformallyusingexamplesdirectlytakenfromlifesciencestomotivatethemoreformalmathematical materialthatwasthestrengthofthepreviouseditions.
Prerequisites –WeaddedaPrecalculusSkillsDiagnosticTestatthebeginningofthe texttohelpstudentsgaugewhetherreviewofprecalculustopicsisneeded.Answers tothequizareprovidedinthebackofthebookalongwithtipsonwhattoreview inChapter1ifrefreshersareneeded.
Design –Thebookhasbeenredesignedinfullcolortohelpstudentsbetteruseit andtohelpmotivatestudentsastheyputinthehardworktolearnthemathematics.
Figures –Manyfigureswererevisedtotakeadvantageofthenewfull-colordesign. Mostnotably,the3-dimensionalfigureswerere-renderedusingthelatestsoftware. Seethefigureattheleftforanexample.
BiologyNotes –New“BioInfo”notesprovideoptionalbackgroundinformationto supportthenarrativeandexercises.
“HelpText”withinExamples –Weaddedtext(inbluetype)withinexamplesto explainthemathematicalprinciple(s)appliedinthestepsofthesolution.Thistext helpsstudentsunderstandthesolutionandemphasizesthateachstepinamathematicalargumentiscarefullyjustified.
Figure6.45 Thesolidofrotationfor Example14canbemadeupof washer-likeelements.
TopicCoverage –Basedonfeedbackfromreviewers,somenewtopicshavebeen addedtothetext.Themostsignificantamongthesearethefollowing:
Manynewmathematicalmodels,includingmodelsformicrobialcooperation,evolution,andepidemiology,andmulticompartmentmodelsinpharmacology.
Expandedapplicationsforoptimizationmethods.
Toolsforfittingmodelstorealdata.
Expandeddiscussionofmethodsforvisualizingmultivariatefunctions.
MyLabTM MathOnlineHomework –Last,butnotleast,thetextnowhasonline homeworkwithinMyLabMath.TheMyLabMathcoursecontainshundredsof algorithmicallygeneratedexercisesthatprovidestudentswithinstantfeedback,optionallearningaidsformanyexercises,andthecompleteeBook.SeebelowforadditionalfeaturesofMyLabMathforthistext.
FeaturesoftheText Adistinguishingfeatureofthistextisthebiologicalexamplesandexercises,which arenotably real (manyfrompublishedstudiesorothercurrentsources), relevant,and varied.TheReferencessectionatthebackofthistextcontainsanexhaustivelistof thesourcesweused.
ExamplesandExplanations Eachtopicisinspiredbybiologicalexamples.These motivatingintroductionsarefollowedbyathoroughdiscussionoutsidethelifesciencecontexttoenablestudentstobecomefamiliarwithboththemeaningandthe mechanicsofthemathematicaltopic.Finally,biologicalexamplesarepresentedto teachstudentshowtoapplythematerialinalifesciencecontext.Examplesinthe textarecompletelyworkedout,andthestepsinthesolutionsareexplainedinblue texttotherightofeachstep.
Exercises Calculuscannotbelearnedbywatchingsomeonedoit.Becauseofthis, CalculusforBiologyandMedicine providesstudentswithskill-basedexercisesaswell aswordproblems.Wordproblemsareanintegralpartofteachingcalculusinalifesciencecontext.Thewordproblemscontainedinthetextareup-to-dateandareadapted fromeitherstandardbiologytextsororiginalresearch.Theexercisesandwordproblemsareattheendofeachsectionandareorganizedbysubsectiontohelpstudents refertospecificsubsectionsofcontentwhilecompletinghomework.Thisalsoaids instructorsinassigninghomeworkproblems.
Technology CalculusforBiologyandMedicine assumestheavailabilityofgraphing calculators.Thisallowsstudentstodevelopamuchbettervisualunderstandingofthe conceptsincalculus.Beyondthis,nospecialsoftwareisrequired.
ReflectionsandOutlook Likemanyschoolsnow,bothUCLAandUniversityofMinnesotaofferlifescience studentstheirowncalculustrack.Otheruniversitiesareincreasinglyadoptingseparatecalculustrackstodealwiththedifferentneedsoflifesciencesmajorsandphysicalscience/engineeringmajors.Therearemanywaystodesigncurriculaforthese courses,andfacultyventuringintotherecommendationsofferedbyreportsonnew
needsforlifescienceseducation(suchas Bio2010:TransformingUndergraduateEducationforFutureResearchBiologists fromtheNationalResearchCouncilandthe NationalAcademies,or ScientificFoundationsforFuturePhysicians fromtheAssociationoftheAmericanMedicalCollegesandtheHowardHughesMedicalInstitute) maybeoverwhelmedbytheamountofquantitativetrainingthatisnowexpectedfor lifesciencestudentsandbyhowitgoesfarbeyondwhatstudentscanbeprepared forwithasingleyearofcalculus.Inthisfourtheditionofthetextbookwehavefocusedonretainingthestrengthsofthethirdedition,includinggivingstudentsaccess totherigorousfoundationsofmathematicalideasthatwillenablethemtotakefurtherclassesinmaththatareincreasinglynecessaryforquantitativemindedbiologists. However,wehaverewrittenmuchofthematerialwithaneyetoeliminatingbarrierstostudy(e.g.,byavoidingusingexpressionswithmultipleunknownconstants inthem).
Wearealsoverymindfulofthefutureneedsofstudentstohandlethelargedata streamscreatedbynewinnovationsinomics,personalmedicine,andremotesensing. Muchofthemathunderlyingthesenewareasisoutsidewhatcanbecoveredinthis book,butChapters9and12layfoundationsforstudentswhowillgoontostudybioinformatics.Additionally,wehavebroughtdata(anddatafitting)increasinglyintothe book,especiallyinsupportofthenewmathematicalmodelingtopicswehaveintroduced.Studyofalgorithmsissupportedbyexplicitdirectionsonusingspreadsheetsto implementthealgorithms.Anyspreadsheetsoftwarecanbeused,butwehavefound GoogleSheetstobeespeciallyeffectiveintheclassroom,sinceitallowsspreadsheets tobesimultaneouslysharedandeditedacrossdozensofcomputers.
ChapterSummary Chapter1 Thischapterreviewsprecalculustools,includingfunctionsandmethods forgraphingdata.Manystudentswillhavestudiedthismaterialintheirprecalculus classes,sosummariesarekeptbrief.Section1.1includesadiagnostictestthatstudents cantake(eitherbyitself,orinconjunctionwithMyLabMath)toreviewtheirknowledgeofthesetopics.Thebasictoolsfromalgebraandtrigonometryaresummarizedin Section1.2.Section1.3thendescribesthefunctionsthatstudentsneedtobefamiliar withforthisbook,includingexponentialandlogarithmicfunctions.Section1.4focuses ongraphing,includinglog-logandsemi-logplotsandtranslatingverbaldescriptions ofbiologicalphenomenaintographs.
Chapter2 Thischaptercoversrecurrenceequations(ordiscretetimemodels)and sequences.Importantly,weusethischaptertointroduce -notationforsummingseries.Thisnotationisusedthroughoutthetext.Wealsousethischaptertointroduce mathematicalmodeling,includingtheassumptionsthatarebuiltintomodels,parsingverbaldescriptions,andcomparingmodelsagainstdata.Ourexampleshereare drawnfrompopulationgrowthandphysiologicalmodelingofhowdrugspassthrough apatient’sbody.
Chapter3 Limitsandcontinuityarekeyconceptsforunderstandingtheconceptualpartsofcalculus.Visualintuitionisemphasizedbeforethetheoryisdiscussed. Weshowhowthebisectionmethodcanbeusedasapracticaltoolforsolvingequations.Theformaldefinitionoflimitsisgivenattheendofthechapterinanoptional section.
Chapter4 Westartwithanintuitiveandvisualdescriptionofthederivativebeforegivingaformaldefinition.Then,beforewegointothemechanicsofdifferentiation,wedescribeinterpretationsofthederivativeindifferentcontexts(including chemicalreactions),buildingstudents’intuitionfurther.Differentiationrulesarediscussedandbrokenintoreadilydigestiblechunkstogivestudentstimetoacquaint themselveswiththem.Errorpropagationanddifferentialequationsarethemain applications.
Chapter5 Thischapterpresentsbiologicalandmoretraditionalapplicationsofdifferentiation.Wemaintainthe3rdEdition’sapproachthatderivesresultsonfunctional extremarigorouslyfromtheMeanValueTheorem.Butwealsoexplaintoskeptical studentswhycalculus-basedtoolsforanalyzingfunctionsanddrawingtheirgraphsare stillrelevantwhencomputersallowfunctionstobesoreadilyplotted.Wehavealsoenlargedthenumberofapplicationsforoptimization,includingmodelsfromphysiology andpopulationgenetics.Wealsoaddedanewsectionondifferentialequation-based models(againfocusingonpopulationgrowthandthepassageofdrugsthroughthe body),sothatstudentsencounterthesevitalapplicationsbeforetheymeetintegration.Finally,weintroduceantiderivatives,inanticipationofstudyingintegrationin Chapter6.Analysisofrecurrenceequationsiscoveredinanoptionalsection.
Chapter6 Integrationismotivatedgeometrically.Wealsodescribethedefinition oftheintegralviaRiemannsumsinawaythathasbeengreatlysimplifiedfromthe 3rdEdition.Inparticular,studentscanstudythismaterialwithoutneedingtoknow -notationandwithoutthefullformalismofpartitions.Inourexperience,thismakes thisdifficulttopicmucheasierforstudentswithoutanoverallcompromiseonthelevel ofrigorintheirunderstanding.Thefundamentaltheoremofcalculusanditsconsequencesarediscussedindepth.Wediscussapplicationsforintegration,buthavereducedtheamountofrequiredmaterialinthischaptertofocusonlyonapplications thataredirectlyrelevanttolifesciences,suchascalculatingthemeanofafunction anditscumulativechange.
Chapter7 Thischaptercontainsintegrationtechniques,focusingonthetechniques thatareimmediatelynecessaryforsolvingdifferentialequations,includingintegration byparts,bysubstitution,andatailoredintroductiontothemethodofpartialfractions.MaterialonTaylorpolynomialsandonusingtablesofintegrals(atechnique nowlargelymaderedundantbycomputeralgebrapackages)iscoveredinoptional sectionsattheendofthechapter.
Chapter8 Thischapterprovidesanintroductiontodifferentialequations,covering separableequationsandlinearfirstorderequations.Thetreatmentisnotcomplete, butitwillequipstudentswithbothanalyticalandgraphicalskillstoanalyzedifferentialequations.Thechaptershowcasesandinterpretsmathematicalmodelsfrommany areasofbiology,includingmicrobialcooperation,ecology,andepidemiology.Additionofintegratingfactorsallowsustodiscusstwo-compartmentmodels,whichare widelyusedforstudyingthemovementofdrugsthroughthebody.
Chapter9 Linearmodels,andthematrixmethodsneededtosolvethem,arecentral tomodernmethodsinbioinformatics.Thematerialinthischapterintroducesstudents tothebasicconceptsneededtostudymultivariatefunctionsinChapters10and11. However,althoughthetreatmentofeigenvaluesandeigenvectorsemphasizestheir importancetomodelsofchange(bothrecurrenceequationsandsystemsofdifferentialequations),matrixmathisintroducedinawaydesignedtoprovidestudentswith afirmplatformforfurtherstudyinlinearalgebraforbioinformaticsapplications.
Chapter10 Thisisanintroductiontomultidimensionalcalculus.Sincestudentsoftenstrugglewiththetransitionfromunivariatefunctionstomultivariatefunctions, wehaveexpandedtheintroductorymaterialtobuildupstudentintuitionmoregradually,withmoreexamples(includingpracticalexampleslikeheatindex)andlarger discussionofhowfunctionscanbevisualized.Themainmathematicaltopicsarepartialderivativesandlinearizationofvector-valuedfunctions.Wecoveratlengthfinding extremaoffunctions(includingunderconstraints).Althoughthistopicisnotneeded forChapter11,optimizationhasmanyuses(andwehighlightitsapplicationtoleast squaresestimationoffittingparameters),andwefindthissectionworthyofclasstime. Thefinalsectionsprovideoptionalmaterialonsystemsofrecurrenceequationsand onpartialdifferentialequationmodels.
Chapter11 Bothgraphicalandanalyticaltoolsaredevelopedtoenablestudents toanalyzesystemsofdifferentialequations.Thematerialisdividedintolinearand
nonlinearsystems.Understandingthestabilityoflinearsystemsintermsofvectorfields,eigenvectors,andeigenvalueshelpsstudentstomasterthemoredifficult analysisofnonlinearsystems.Theoryisexplainedbeforeapplicationsaregiven.Extensiveexamples(withaccompanyingproblems)showcaseapplicationsofthesetools inecology,epidemiology,andphysiology.
Chapter12 Thischapterintroducessomefundamentalprobabilisticandstatisticaltools,takingstudentsfromcounting(i.e.,combinatorial)approachestoprobability,throughimportantdistributionsthatarisewhenmodelingstochasticprocesses. Throughoutstudentsareintroducedtofundamentalideasforworkingwithdata:estimatingprobabilitydistributionsfromhistograms,fittinglinearmodels,andcalculating andinterpretingsummarystatistics.
HowtoUseThisBook Bydesignthisbookcontainsmorematerialthancanbecoveredinoneyear.Theintent istoallowforschoolsandinstructorstohavemoreflexibilityinthechoiceofmaterial covered.Topicslabeledwithanasterisk(*)intheTableofContentsmaybeomitted attheinstructor’sdiscretion.Theyincludesectionsgoingmorerigorouslyintothe definitionsoflimitsandcontinuityaswellasmanyofthemodelingandapplications sections.
Thebook’scontentcanbearrangedtosupportanylengthofcourse,fromone quartertothreesemesters.Chapter1isprecalculusmaterial.Studentsshouldhave beenexposedtothismaterialbeforestartingtheirfirstcourseincalculus.Thissaid, wefindithighlyusefulforstudentstoself-studythismaterialbeforestartingthe class,whichtheycandomoreeasilyusingthenewPrecalculusSkillsDiagnosticTest. Additionally,weoftencoverinclassthematerialinSection1.4(inparticularon howtographdatausinglogarithmicandsemi-logarithmicaxes).Sections2.1and2.2 givestudentsaminimalintroductiontosequences,series,and -notation.However, westronglyrecommendSection2.3asanintroductiontoderiving,solving,andinterpretingmathematicalmodels,beforestudentsmeetmodelsagaininthecalculus context.
Chapters3and4mustbecoveredinthatorderbeforeanyoftheothersections arecovered.InadditiontoChapters3–4,thefollowingsectionscanbechosen:
Onesemester—integrationemphasis 5.1–5.6,5.10,6.1–6.3(without6.3.4and6.3.5)
Onesemester—differentialequationemphasis 5.1–5.6,5.9–5.10,6.1,6.2,8.2,8.3(withoutsolvinganyofthedifferentialequations)
Onesemester—probabilityemphasis Chapter3(except3.6),Chapter4(without 4.11),5.1–5.4,5.10,6.1,6.2,7.1,7.2.1,12.1–12.5(without12.5.5),12.6(iftimepermits)
Twoquarters 5.1–5.6,5.8,5.10,6.1–6.2,6.3.1and6.3.2,Chapter7,Chapter8
Twosemestersorthreequarters 5.1–5.6,5.10,6.1–6.2,6.3.1and6.3.2,Chapters7,8, and9(without9.2.4or9.4),10.1,10.3,10.4,11.1–11.4
Fourquartersorthreesemesters Allsectionsthatarenotlabeledoptional(with*); optionalsectionsshouldbechosenastimepermits
MyLabMathOnlineCourse (accesscoderequired) Usedbyover3millionstudentsayear,MyLabMathistheworld’sleadingonline programforteachingandlearningmathematics.MyLabMathdeliversassessment, tutorials,andmultimediaresourcesthatprovideengagingandpersonalizedexperiencesforeachstudent,solearningcanhappeninanyenvironment.Forthefirsttime, instructorsteachingwith CalculusforBiologyandMedicine canassigntext-specific onlinehomeworkandotherresourcestostudentsoutsideoftheclassroom.
TolearnmoreabouthowMyLabMathcombinesprovenlearningapplications withpowerfulassessment,visit pearson.com/mylab/math orcontactyourPearson representative.
Preparedness Oneofthebiggestchallengesincalculuscoursesismakingsurestudentsareadequatelypreparedwiththeprerequisiteskillsneededtosuccessfullycompletetheir coursework.MyLabMathsupportsstudentswithprecalculuscontentandjust-intimeremediation.Instructorscancreatequizzestoassessnecessaryprerequisiteskills, thenautomaticallyassignpersonalizedremediationforanygapsinskillsthatare identified.
BuildingUnderstanding MyLabMath’sonlinehomeworkoffersstudentsimmediatefeedbackandtutorial assistancethathelpsthembuildunderstandingofkeyconcepts.
Exerciseswithimmediatefeedback—theassignableexercisesforthistextregeneratealgorithmicallytogivestudentsunlimitedopportunityforpracticeandmastery. MyLabMathprovideshelpfulfeedbackwhenstudentsenterincorrectanswersand includesoptionallearningaidsincludingHelpMeSolveThis,ViewanExample,and aneText.
SetupandSolveExercises askstudentstofirstdescribehowtheywillsetupand approachtheproblem.Thisreinforcesstudents’conceptualunderstandingofthe processtheyareapplyingandpromoteslong-termretentionoftheskill.
AdditionalConceptualQuestions focusondeeper,theoreticalunderstandingof thekeyconceptsincalculus.ThesequestionswerewrittenbyfacultyatCornell UniversityunderaNationalScienceFoundationgrantandarealsoassignable throughLearningCatalytics.
InteractiveFigures havebeenaddedtosupportteachingandlearning.Thefigures aredesignedtobeusedinlectureaswellasbystudentsindependently.Theyare editableusingthefreelyavailableGeoGebrasoftware.
LearningCatalyticsTM isastudentresponsetoolthatusesstudents’smartphones, tablets,orlaptopstoengagetheminmoreinteractivetasksandthinkingduring lecture.LearningCatalyticsfostersstudentengagementandpeer-to-peerlearningwithreal-timeanalytics.LearningCatalyticsisavailabletoallMyLabMath users.
CompleteeText isavailabletostudentsthroughtheirMyLabMathcoursesforthe lifetimeoftheedition,givingstudentsunlimitedaccesstotheeTextwithinany courseusingthateditionofthetextbook.
Mathematica manualandprojects, Maple manualandprojects,and TIGraphing Calculator manualutilizethemostcurrentversionsofMapleandMathematica,as wellastheTI-84PlusandTI-89.Eachprovidesdetailedguidanceforintegratingthe softwarepackageorgraphingcalculatorthroughoutthecourse,includingsyntaxand commands.
Accessibility andachievementgohandinhand.MyLabMathiscompatiblewith theJAWSscreenreader,andenablesmultiple-choiceandfree-responseproblemtypestobereadandinteractedwithviakeyboardcontrolsandmathnotationinput.MyLabMathalsoworkswithscreenenlargers,includingZoomText, MAGic,andSuperNova.Moreinformationisavailableat www.pearson.com/mylab/ math/accessibility.
InstructorSupport Comprehensivegradebook withenhancedreportingfunctionalityallowsyouto efficientlymanageyourcourse.ThegradebookmeetsallFERPArequirements. ReportingDashboardprovidesinsighttoview,analyze,andreportlearningoutcomes.Studentperformancedataispresentedattheclass,section,andprogram levelsinanaccessible,visualmannersoyou’llhavetheinformationyouneedto keepyourstudentsontrack.
ItemAnalysistracksclass-wideunderstandingofparticularexercisessoyoucan refineyourclasslecturesoradjustthecourse/departmentsyllabus.Just-in-time teachinghasneverbeeneasier!
TrainingandSupport –MyLabMathcomesfromanexperiencedpartnerwith educationalexpertiseandaneyeonthefuture.Whetheryouarejustgetting startedwithMyLabMath,orhaveaquestionalongtheway,we’rehereto helpyoulearnaboutourtechnologiesandhowtoincorporatethemintoyour course.TolearnmoreabouthowMyLabMathhelpsstudentssucceed,visit www.pearson.com/mylab/math/support orcontactyourPearsonrepresentative.
Supplements Instructor’sSolutionsManual(downloadonly) Providesfullyworked-outsolutions toeverytextbookexercise,includingtheChapterReviewproblems.Availablefor downloadonlinewithinMyLabMath.
Student’sSolutionsManual Providesfullyworked-outsolutionstotheoddnumberedexercisesinthesectionsandChapterReviews.Availableinprint(ISBN-13: 978-013-412269-4)ordownloadablewithinMyLabMath.
Acknowledgments Thisbookwouldnothavebeenpossiblewithoutthehelpofnumerouspeople.The facultymembersbelowcontributedtheirexpertisetothisproject.Wearemostgratefultothem.
NandiniBhattacharya, UniversityofCaliforniaSantaCruz* AdenaCalden, UniversityofMassachusettsAmherst*
Youn-ShaChan, UniversityofHoustonDowntown
AlbertoCorso, UniversityofKentucky*
HaoGao, UniversityofCaliforniaLosAngeles*
GuillermoGoldsztein, GeorgiaInstituteofTechnology*
YvetteHester, TexasA&MUniversity*
PeterHoward, TexasA&MUniversity
YangKuang, ArizonaStateUniversity*
GlennLahodny,Jr., TexasA&MUniversity*
GlennLedder, UniversityofNebraskaLincoln*
PetrLisonek, SimonFraserUniversity
LawrenceMarx, UniversityofCaliforniaDavis
EdwardMigliore, UniversityofCaliforniaSantaCruz*
DouglasNorton, VillanovaUniversity*
HeatherRamsey, TexasA&MUniversity*
PatrickShipman, ColoradoStateUniversity*
Jeong-MiYoon, UniversityofHoustonDowntown
*Reviewerswhocontributedtothepreparationofthisedition
ThankstostudentswehavetaughtattheUniversityofMinnesota,theUniversityof CaliforniaLosAngeles,andtheUniversityofCaliforniaDavisfortheirconstructive criticismandenthusiasm.WeoweaspecialthankstoGeorgeLobell,formermathematicseditoratPrenticeHall,whomadethisbookpossibleinthefirstplace,and tothosewhohelpedshepherdthis4thEdition:JeffWeidenaar,PattyBergin,Jenn Snyder,MarielleGuiney,KristinaEvans,EmilyOckay,andotherstaffatPearson; KellyRicciatAptara;RonWeickartatNetworkGraphics;RogerLipsett(answers andsolutions);PaulAnagnostopoulos(typist);andPaulLorczakandAlbertoCorso (accuracychecking).
ThanksalsototheNationalScienceFoundation,whichhassupportednew approachestoteachingcalculusforlifesciencesatUCLAundergrantnumber DMS-1351860.
Marcuswouldliketoexpresshisloveandgratitudetohiswife,Dr.MechelHenry, MD,forhersupportduringthisbook-writingjourney,andtohischildren,Eliotand Charlotte.Youhavegivenmesomanywonderfulreasonsformissingdeadlineson thisbook!
ClaudiaNeuhauser neuha001@umn.edu UniversityofMinnesota
MarcusRoper mroper@math.ucla.edu UniversityofCaliforniaLosAngeles
1 PreviewandReview Thechapterbeginswithadiagnostictestonprecalculusskills.Sections1.2and1.3serveasa reviewofalgebra,trigonometry,andprecalculus,materialneededtomasterthetopicscovered inthisbook.Section1.4reviewsgraphingfunctionsandintroducestheimportantconceptof plottingdataorfunctionsontransformedaxestodeterminehowtwovariablesarerelated.Section1.4alsoincludesasubsectiononvisualizingverbaldescriptionsofbiologicalphenomena.
ABriefOverviewofCalculus Calculushastwomainingredients:differentiationandintegration.Differentiationallowsustocalculatehowquicklyafunctionischanging(forexample,therateatwhich apopulationoforganismsisgrowing).Integrationallowsustocalculatetheareaundercurves.Althoughknowingtheareaunderacurvemaynotseemveryimportant, wewilllearninChapter6thatintegrationistheoppositeofdifferentiation(thatis,integratingtherateofchangeofafunctiongetsusbacktotheoriginalfunction).Often thefirststeptofindingafunctionistofindanequationforitsderivative;manyphenomenainbiologycanbemodeledusing differentialequations,equationsthatgovern thederivativeorrateofchangeofafunction.Forexample,inChapter5wewilllearn howtofindtherateofchangeofthenumberofcellsgrowinginaflask.Integration enablestosolvethesedifferentialequationsandfindafunctiontocalculatethenumberoforganismsintheflaskatanygiventime.Inadditiontodevelopingthetheoryof differentialandintegralcalculus,youwillbeintroducedtomanyexamplesofdifferentialequationstodescribebiologicalphenomenaincludingpopulationgrowth,the speedofchemicalreactions,thefiringofneurons,andthespreadofinvasivespecies intonewhabitats.
Theuseofquantitativereasoningisbecomingincreasinglymoreimportantin biology—forinstance,inmodelinginteractionsamongspeciesinacommunity,describingtheactivitiesofneurons,explaininggeneticdiversityinpopulations,andpredictingtheimpactofglobalwarmingonvegetation.Today,calculus(Chapters2–11) andprobabilityandstatistics(Chapter12)areamongthemostimportantquantitative toolsofabiologist.
Section1.1PrecalculusSkillsDiagnosticTest Inthischapterwereviewthefollowingimportantprecalculustopics:
1. Algebra
2. Trigonometry
3. Visualizingfunctionsanddata
4. Translatingworddescriptionsofbiologicalphenomenainto sketches.
Werecommendthatifyouareself-studyingthischapteryou startbytakingadiagnostictest,whichwillshowyouwhich
areasyoumayneedtoreviewbeforemovingontothecalculus material.Theanswerstothesequestionsareinthebackofthis book;theanswerkeyalsotellsyouwhichsubsectiontoreview ifyouareunabletoansweraquestion.
1. Writetheequationofastraightline
(a) withslope1and y-interceptat y = 5.
(b) withslope2andpassingthroughthepoint(x, y) = (2, 3).
(c) passingthroughthepoints(x, y) = (2, 1)and(x, y) = (4, 7).
2. Toconvertbetweenthetemperaturemeasuredindegrees Fahrenheit(◦ F)anddegreesCelsius(◦ C)weusethefollowing formula:
y = 5 9 (x 32),
where x isthetemperaturegivenindegreesFahrenheitand y is thetemperaturegivenindegreesCelsius.
(a) IfthetemperatureinLosAngelesinFebruaryis80◦ F,what isthetemperatureindegreesCelsius?
(b) IfthetemperatureinRochesterinFebruaryis 10◦ C,what isthetemperatureindegreesFahrenheit?
(c) Isthereanytemperaturethatreadsthesameinbothdegrees FahrenheitanddegreesCelsius?
3. Describeinwordsthesetofpoints(x, y)satisfyingtheequation:
(x + 1)2 + (y 5)2 = 9.
4.(a) Converttheangle θ = π 7 fromradianstodegrees.
(b) Findallsolutionsoftheequationsin x =− √3 2 .
(c) Showthat1 + tan2 θ = sec2 θ.
(d) Findallsolutionsfor x ∈ [0,π ]oftheequationcos3x = 1 √2
5.(a) Simplifythefollowingexpressions:
(i) 23
2 2 3 (ii) 2 2 3 × 4
(b) If4x = 1 2 ,find x
(c) Evaluatelog10 10000.
(d) Simplifylog10 3x + log10 5x.
(e) Solvefor x:ln(x2 ) + ln x = 2
(f) Ifln x = 3,calculatelog10 x
6.(a) Findthe(complex)rootsofthequadraticequation x2 + x + 1 = 0,simplifyingyouranswerasmuchaspossible.
(b) Evaluate(1 + i) × (2 i)andsimplifyyouranswer.
(c) Showthatif z = a + ib for a, b ∈ R then z + z isreal.
7.(a) Determinetherangesofthefollowingfunctions:
(i) f (x) = x2 , x ∈ [ 1, 1]. (ii) f (x) = x2 , x ∈ R
(b) If f (x) = √x and g(x) = (x + 1)2 find:
(i) f (3). (ii) ( f ◦ g)(x). (iii) (g ◦ f )(4).
(c) If f (x) = |x| showthat( f ◦ f )(x) = f (x).
8.(a) Forlargevaluesof x,whichofthefollowingpolynomials willreturnthelargestvalue?
(i) p1 (x) = x (ii) p2 (x) = 1 2 x2 (iii) p3 (x) = 1 3 x3
(b) Thesteadyflowoffluidinapipewithcircularcross-section obeys Poiseuille’sequation.Thefastestflowoccursatthecenter ofthepipeandthereisnoflowwherethefluidtouchesthewalls. If r isthedistancefromthecenterofthepipeand a istheradius ofthepipe,thenthevelocity u varieswith r accordingto
u(r) = u0 1 r2 a2 , where u0 isthemaximumvelocityinthepipe(seeFigure1.1).
(i) Whatisthedegreeof u(r)asapolynomialin r?
(ii) Whatisthedomainofthisfunction?
(iii) Whatistherangeofthisfunction?
(iv) u(r)decreaseswithdistancefromthecenterline.Atwhat distancedoes u(r)decreaseto 1 2 ofitsmaximumvalue?
r 5 a
Figure1.1 DiagramofthegeometryofacircularpipeforQuestion 8.Atdistance r fromthecenterof thepipetheflowis u(r).
9. Metabolismofaparticulardruginthebodyisdescribedby Michaelis-Menten kinetics.Iftheconcentrationis c,therateof metabolization(r,ortheamountremovedfromthebloodinone hour)isgivenbytheformula
r(c) = c c + 10
(a) Forwhichofthefollowingconcentrationsistherateofmetabolizationlargest?
(i) c = 1 (ii) c = 2 (iii) or c = 3
(b) Suppose c = 5initially,thenthepatienttakesapillandmore drugisabsorbed;theconcentrationof c doublesto10.Doesthe rateofmetabolization
(i) double? (ii) morethandouble? (iii) lessthandouble?
(c) If c = 5initially,howmuchwouldtheconcentrationhaveto increasetogettherateofmetabolizationtodouble?
(d) If c = 10initially,isthereanyconcentrationincreasethat wouldgettherateofmetabolizationtodouble?
10. Species-areacurvesareusedtopredicthowtheamountof diversity(numberofspecies)inaparticularhabitatdecreasesif thehabitatshrinks.Atypicalspecies-arearelationshipbetween N ,thenumberofspecies,and A,theareaofthehabitat,is:
N = kAz
where k and z arepositiveconstants.Assume z = 1 5 toanswer thefollowingquestions.
(a) Iftheinitialareais A 0 ,calculatehowmuchthehabitatarea mustshrinkforthenumberofspeciestobehalved.
(b) Howmuchmustitshrinktoreducethenumberofspeciesto one-thirdofitsstartingvalue?
(c) Conversely,howmuchextrahabitatneedstobeaddedto increasethenumberofspeciestotwiceitsstartingvalue?
11. Thesize N ofapopulationofcellscanbemodeledbyan exponentiallaw:
N = N0 ert
where t isthetimeelapsedsincethepopulationgrowthbegan and N0 and r arepositiveconstants.
(a) Calculate N0 and r giventhefollowingpopulation-sizedata. Therewereinitially1000cellsinthepopulation(i.e., N (0) = 1000).At t = 2thereare1000morecellsinthepopulation(i.e., N (2) = 2000).
(b) Usingtheformulaandtheparametersfrompart(a),calculatehowmuchtimemustelapsebefore1000morecellsare addedtothepopulation(i.e.,forwhat t does N (t ) = 3000)?
(c) Howmuchtimemustelapsebeforethepopulationdoubles fromitssizeat t = 2(i.e.,forwhat t does N (t ) = 4000)?
12. Calculatetheinversesofthefollowingfunctions(i.e.,find f 1 (x)suchthat( f 1 ◦ f )(x) = x).
(a) f (x) = x2 + 1for x ≥ 0.
(b) f (x) = 2ln(x + 1)for x > 1. (c) f (x) = x5
13.(a) Combinethetermsinthefollowingexpressionsintoa singlelogarithm:
(i) ln(x) + ln(x2 + 1) (ii) log(x1/3 ) log((x + 1)1/3 )
(iii) 2 + log2 (x)
(b) Usethechangeofbaseformulatoturnthelogarithmsbelow intonaturallogs:
(i) log2 7 (ii) log6 (iii) logx 2
14.(a) Givetheperiodandamplitudeofthefollowingtrigonometricfunctions:
(i) f (x) =−2sin x (ii) f (x) = 2cos3x (iii) f (x) = 3cos π x 2
(b) Findtherangeandmaximumdomainof:
(i) f (x) = tan x (ii) f (x) = cos x
(c) Explainhowthecurve y = 3cos2x isrelatedtothecurve y = cos x
15. Thefunction f (x)isdrawninFigure1.2.Sketchthegraphsof:
(a) f (x + 2) (b) f (x) + 1 (c) f (x) (d) f ( x) (e) f ( x 2 )
2. anexponentialdependence y = kax forsomeconstants k and a.Inthiscase,givethevalueof a
(a) Dependenceofnumberoflanguagesspoken(D)onthearea (A)oftheglobethatissampled.
(b) FrequencyofearthquakesinSouthernCalifornia(N )with shakingmagnitudelargerthan m
(c) Sizeofabacterialpopulationgrowinginamicrofluidicchamber(N )asafunctionoftime(t ).
(d) NumberofHIVvirusesin1mlofblood(N )againsttime(t ) forapatientreceivingHIVtreatment.
Figure1.4 Question 17(a).Numberof languagesspoken, D asafunctionofarea, A.Adaptedfrom Gomesetal.(1999)
Figure1.2 Plotofthefunction f (x) forQuestion15.
16. Thetypicalweights(inkilograms)offivepopulardogbreeds areshownonthelogarithmicnumberlineshowninFigure1.3.
(a) Whatisthetypicalmassofthefollowingbreeds:
(i) Chihuahua (ii) Labradorretriever (iii) St.Bernard
(b) HowmuchheavierisanadultDalmatianthanapuppy?
(c) Atypicalhousecatweighs5kg.Copythenumberlineaxes anddrawapointonthenumberlinetorepresentthehousecat.
Dalmatian (puppy) Jack Russell Terrier
Retriever
(adult)
Bernard
Figure1.3 Weightsofpopulardogbreedsin kilograms,plottedonalogarithmicnumber lineforQuestion16.
17. EachofthegraphsinFigures1.4through1.7showshowone quantity(plottedonthe y-axis)varieswithasecondquantity (plottedonthe x-axis).Ineachcasestatewhetherthegraph shows
1. apowerlawdependence y = kxa forsomeconstants k and a. Inthiscase,givethevalueof a. or
Figure1.5 Question 17(b).Numberof earthquakes(N )with magnitudelargerthan m,inoneyearasa functionof m.Graph adaptedfrom Rundle etal.(2003)
Figure1.6 Question 17(c).Bacterial populationsize(N )as afunctionoftime(t ). Dataadaptedfrom Balabanetal.(2004).
Figure1.7 Question 17(d).NumberofHIV viruses(N )asa functionoftime(t ). Dataadaptedfrom Ho etal.(2004)
Figure1.8 Question18.Concentrationof anADHDdrug(c)inapatient’sblood, asafunctionoftime(t ).
18. YouarestudyinghowmedicationthatisusedtotreatAttentionDeficitHyperactivityDisorder(ADHD)ismetabolized.Ahealthypatient(patient1)takesadoseofthedrug at8a.m.andyoumeasuretheconcentrationintheirblood plasmaathourlyintervals.Youobtainthedatashownin Figure1.8.
Threeotherpatientsalsoreceivethedrug,butfollowslightly differentdoseregimens.Yourtaskistoidentifywhichcurvein
1.2Preliminaries Figure1.9 Question18.Identifythe curvecorrespondingtoeachpatient.
Figure1.9describeswhichpatientbasedontheworddescriptions below.
(a) PatientAreceivesthesamedoseaspatient1butat10:00 ratherthan8:00a.m.
(b) PatientBreceivesanextendedreleaseformofthedrug at8:00a.m.,whichtakeslongertoenterthebloodstream.
(c) At10:00a.m.PatientCreceiveshalfthedosethatisgivento patientA.
Thissectionreviewssomeoftheconceptsandtechniquesfromalgebraandtrigonometrythatarefrequentlyusedincalculus.Theproblemsattheendofthesectionwill helpyoureacquaintyourselfwiththismaterial.
1.2.1TheRealNumbers The realnumbers canmosteasilybevisualizedonthe real-numberline (seeFig4321 0 1 2 3 4 x ab
Figure1.10 Thereal-numberline. ure1.10),onwhichnumbersareorderedsothatif a < b,then a istotheleftof b. Sets(collections)ofrealnumbersaretypicallydenotedbythecapitalletters A, B, C , etc.Todescribetheset A,wewrite
A ={x :condition}
where“condition”tellsuswhichnumbersareintheset A.Themostimportantsetsin calculusare intervals.Weusethefollowingnotations:If a < b,then the open interval(a, b) ={x : a < x < b} and the closed interval[a, b] ={x : a ≤ x ≤ b}
Wealsouse half-open intervals:
[a, b) ={x : a ≤ x < b} and(a, b] ={x : a < x ≤ b}
Unbounded intervalsaresetsoftheform {x : x > a}.Herearethepossiblecases:
[a, ∞) ={x : x ≥ a} (−∞, a] ={x : x ≤ a} (a, ∞) ={x : x > a} (−∞, a) ={x : x < a}
Thesymbols“∞”and“−∞”mean“plusinfinity”and“minusinfinity,”respectively. Thesesymbolsare not realnumbers,butareusedmerelyfornotationalconvenience. Thereal-numberline,denotedby R,doesnothaveendpoints,andwecanwrite R inthefollowingequivalentforms: R ={x : −∞ < x < ∞}= (−∞, ∞)
EXAMPLE1
Thelocationofthenumber0onthereal-numberlineiscalledthe origin,andwe canmeasurethedistanceofthenumber x totheorigin.Forinstance, 5is5unitsto theleftoftheorigin.Aconvenientnotationformeasuringdistancesfromtheorigin onthereal-numberlineistheabsolutevalueofarealnumber.
Definition The absolutevalue ofarealnumber a,denotedby |a|,is
|a|= a if a ≥ 0 a if a < 0
Forexample, |− 7|=−( 7) = 7.Wecanuseabsolutevaluestofindthedistance betweenanytwonumbers x1 and x2 asfollows:
distancebetween x1 and x2 =|x1 x2 |
Notethat |x1 x2 |=|x2 x1 |.Sothedistancebetween x1 and x2 is,asyouwould expect,thesameasthedistancebetween x2 and x1 .Tofindthedistancebetween 2 and4,wecompute |− 2 4|=|− 6|= 6,or |4 ( 2)|=|4 + 2|= 6.
Wewillfrequentlyneedtosolveequationscontainingabsolutevalues,forwhich thefollowingpropertyisuseful:
PropertyofAbsoluteValueEquations Let b ≥ 0.Then |a|= b isequivalentto a =±b.
Solve |x 4|= 2.
Solution ApplyingthePropertyofAbsoluteValueEquations,weobtain: x 4 =±2,(i.e., x = 4 ± 2).Soeither x = 4 2 = 2or x = 4 + 2 = 6.Thesolutions,illustrated graphicallyinFigure1.11,aretherefore x = 6and x = 2.Thepointsofintersectionof y =|x 4| and y = 2areat x = 6and x = 2.Solving |x 4|= 2canalsobeinterpreted asfindingthetwonumbersthathavedistance2from4.
Figure1.11 Thegraphof y =|x 4| and y = 2.Thepointsofintersection areat x = 6and x = 2.
Whenthereareabsolutevaluesignsonbothsidesoftheequationtherecanbe ± onbothsidesoftheequationasillustratedinthenextexample.
EXAMPLE2 Solve | 3 2 x 1|=| 1 2 x + 1|
Solution ApplyingthePropertyofAbsoluteValueEquationsruletobothsidesoftheequation wecanreplacetheabsolutevaluesignsby ± onbothsides: ± 3 2 x 1 =± 1 2 x + 1
Nowthe ± signsareindependentofeachother.Wecanchoose + ontheleftsideand ontherightside.Soitseemsthattherearefourpossibilitiestoconsider:(+, +),
Figure1.12 Thegraphsof y =| 3 2 x 1| and y =| 1 2 x + 1|.The pointsofintersectionareat x = 0 and x = 2.
(+, ),( , +),( , ),where(+, )denoteschoosing + signontherightsideand signontheleftside.However,someofthepossibilitiesgiveequivalentanswers;for example:
+, +)gives:
Ifwemultiplybothsidesbytheterm 1wecanturn(1.2)into(1.1),sothetwoequationsareequivalent.
Withthisinmindweneedonlyconsideronlythechoicesofsign:(+, +)and (+, ):
Taking(+, +)gives
2 x 1 = 1 2 x + 1 ( , )givesthesameequation. x = 2. Subtract 1 2 x frombothsides,add1tobothsides. Taking(+, )gives
2x = 0 Add 1 2 x tobothsides,add1tobothsides. x = 0
AgraphicalsolutionofthisexampleisshowninFigure1.12.
ReturningtoExample1,wherewefoundthetwopointswhosedistancefrom4 wasequalto2,wecanalsotrytofindthosepointswhosedistancefrom4islessthan (orgreaterthan)2.Thisamountstosolvinginequalitieswithabsolutevalues.Looking backatFigure1.11,weseethatthesetof x-valueswhosedistancefrom4islessthan 2(i.e., |x 4| < 2)istheinterval(2, 6).Similarly,thesetof x-valueswhosedistance from4isgreaterthan2(i.e., |x 4| > 2)istheunionofthetwointervals(−∞, 2)and (6, ∞),or(−∞, 2) ∪ (6, ∞).
Tosolveabsolute-valueinequalities,thefollowingtwopropertiesareuseful:
UsingtheAbsoluteValueinInequalities Let b > 0.Then
1. |a| < b isequivalentto
Solution (a) Werewrite |2x 5| < 3as 3 < 2x 5 < 3 2 < 2x < 8
Add5toallthreeparts 1 < x < 4
Divideallthreepartsby2
Thesolutionisthereforetheset {x :1 < x < 4}.Inintervalnotation,thesolutioncan bewrittenastheopeninterval(1, 4).
(b) Tosolve |4 3x| ≥ 2,wegothroughthefollowingsteps:
Either: 4 3x ≥ 2or4 3x ≤−2 3x ≥−2 3x ≤−6 x ≤ 2 3 x ≥ 2
Whenbothsidesof inequalityaredividedor multipliedbyanegative number,theinequality mustbereversed.
Thesolutionistheset {x : x ≤ 2 3 or x ≥ 2},or,inintervalnotation,(−∞, 2 3 ] ∪ [2, ∞).
EXAMPLE3
m 1 y x
b Figure1.14 Theslope x-intercept formoftheequationforastraight linerequirestheslope, m,and y-intercept, b.Thetriangleshows thatforeveryunitthelinetravelsin the x-directionitgoesup m unitsin the y-direction.
1.2.2LinesinthePlane
Wewillfrequentlyencountersituationsinwhichtherelationshipbetweenquantities canbedescribedbya linearequation.Forexample,themaximumbitestrengthof spottedhyenasincreaseswithageofthehyena.Specifically,if x istheageofthehyena inmonthsand y isthemaximumbiteforce(innewtons)thatthehyenaiscapableof exerting,thenasshownby BinderandVanValkenburgh(2000):
y = 166.0 + 12.7x (1.3)
Equation(1.3)isanexampleofa linearequation,andwesaythat x and y satisfya linearequation.
Thegraphofalinearequationisastraightline.Theequationofthestraightline canbewrittenusinganyofthreedifferentforms:
1. The standard formofalinearequationisgivenby
Ax + By + C = 0
where A, B,and C areconstants, A and B arenotbothequalto0,and x and y arethetwovariables.
2. Ifthetwopoints(x1 , y1 )and(x2 , y2 )lieonastraightline,thenthe slope ofthe lineis
m = y2 y1 x2 x1
(SeeFigure1.13.)Twopoints(oronepointandtheslope)aresufficienttodeterminetheequationofastraightline.
Ifyouaregivenonepointandtheslope,provided m isfiniteyoucanusethe point–slope formofastraightlinetowriteitsequation,givenby
y y0 = m(x x0 )
where m istheslopeand(x0 , y0 )isapointontheline.Ifyouaregiventwopoints, firstcomputetheslopeandthenuseoneofthepointsandtheslopetofindthe equationofthestraightlineinpoint–slopeform.
3. Lastly,the slope–intercept formis:
y = mx + b
where m istheslopeand b isthe y-intercept,whichisthepointofintersectionof thelinewiththe y-axis;the y-intercepthascoordinates(0, b).(SeeFigure1.14.)
Definition FormsofLinearEquations
Ax + By + C = 0(StandardForm)
y y0 = m(x x0 )(Point–SlopeForm)
y = mx + b (Slope–InterceptForm)
EXAMPLE4 Determine,inslope–interceptform,theequationofthelinepassingthrough( 2, 1) and(3, 1 2 ).
Solution Theslopeofthelineis
Usingthepoint–slopeform:
y 1 =− 3 10 (x
or,inslope–interceptform,
Wecouldhaveusedtheotherpoint,(3, 1 2 ),andobtainedthesameresult.
Figure1.13 Theslopeofastraight line.