IntroductiontoLinearAlgebraforScienceand Engineering,3rdEditionDanielNorman
https://ebookmass.com/product/introduction-to-linearalgebra-for-science-and-engineering-3rd-edition-danielnorman/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Introduction to Linear Algebra for Science and Engineering 2nd Edition (Student Edition) Edition Daniel Norman
https://ebookmass.com/product/introduction-to-linear-algebra-forscience-and-engineering-2nd-edition-student-edition-edition-danielnorman/
ebookmass.com
Introduction to Environmental Engineering and Science 3rd Edition Gilbert M. Masters
https://ebookmass.com/product/introduction-to-environmentalengineering-and-science-3rd-edition-gilbert-m-masters/
ebookmass.com
Linear Algebra: A Modern Introduction 4th Edition, (Ebook PDF)
https://ebookmass.com/product/linear-algebra-a-modernintroduction-4th-edition-ebook-pdf/
ebookmass.com
A First Look at Communication Theory - 11th Edition Em Griffin
https://ebookmass.com/product/a-first-look-at-communicationtheory-11th-edition-em-griffin/
ebookmass.com
Strengthening of Concrete Structures Using Fiber
Reinforced Polymers (FRP): Design, Construction and Practical Applications Hwai-Chung Wu
https://ebookmass.com/product/strengthening-of-concrete-structuresusing-fiber-reinforced-polymers-frp-design-construction-and-practicalapplications-hwai-chung-wu/
ebookmass.com
Additive Friction Stir Deposition Hang Z. Yu
https://ebookmass.com/product/additive-friction-stir-deposition-hangz-yu/
ebookmass.com
The Violent Season Sara Walters
https://ebookmass.com/product/the-violent-season-sara-walters-3/
ebookmass.com
Governing Security After War Louis-Alexandre Berg
https://ebookmass.com/product/governing-security-after-war-louisalexandre-berg/
ebookmass.com
The Contestation of Expertise in the European Union 1st Edition Vigjilenca Abazi
https://ebookmass.com/product/the-contestation-of-expertise-in-theeuropean-union-1st-edition-vigjilenca-abazi/
ebookmass.com
https://ebookmass.com/product/master-b-0113-garden-of-the-gods-a-adark/
ebookmass.com
AN INTRODUCTION TO LINEAR ALGEBRA FOR SCIENCE AND ENGINEERING DANIEL NORMAN • DAN WOLCZUK THIRD EDITION
An Introduction to Linear Algebra for Science and Engineering Daniel Norman Dan Wolczuk
Third Edition University of Waterloo
PearsonCanadaInc.,26PrinceAndrewPlace,NorthYork,OntarioM3C2H4.
Copyright c 2020,2012,2005PearsonCanadaInc.Allrightsreserved.
PrintedintheUnitedStatesofAmerica.Thispublicationis protectedbycopyright,andpermissionshouldbeobtainedfrom thepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise.Forinformationregardingpermissions,requestforms,andthe appropriatecontacts,pleasecontactPearsonCanada’sRightsandPermissionsDepartmentbyvisiting www.pearson.com/ca/en/contact-us/permissions.html.
Usedbypermission.Allrightsreserved.ThiseditionisauthorizedforsaleonlyinCanada.
Attributionsofthird-partycontentappearontheappropriatepagewithinthetext.
Coverimage: c TamasNovak/EyeEm/GettyImages.
PEARSONisanexclusivetrademarkownedbyPearsonCanadaInc.oritsaffiliatesinCanadaand/orothercountries.
Unlessotherwiseindicatedherein,anythirdpartytrademarksthatmayappearinthisworkarethepropertyoftheirrespective ownersandanyreferencestothirdpartytrademarks,logos, orothertradedressarefordemonstrativeordescriptivepurposes only.Suchreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonCanada productsbytheownersofsuchmarks,oranyrelationshipbetweentheownerandPearsonCanadaoritsaffiliates,authors, licensees,ordistributors.
IfyoupurchasedthisbookoutsidetheUnitedStatesorCanada,youshouldbeawarethatithasbeenimportedwithoutthe approvalofthepublisherortheauthor.
9780134682631
120
LibraryandArchivesCanadaCataloguinginPublication
Norman,Daniel,1938-,author Introductiontolinearalgebraforscienceandengineering / Daniel Norman,DanWolczuk,UniversityofWaterloo.–Thirdedition.
ISBN978-0-13-468263-1(softcover)
1.Algebras,Linear–Textbooks.2.Textbooks.I.Wolczuk,Dan, 1972-,authorII.Title.
QA184.2.N672018 512’.5 C2018-906600-8
2.3
CHAPTER3
CHAPTER4
4.1
4.5 GeneralLinearMappings..................................................................273
4.7 IsomorphismsofVectorSpaces.........................
CHAPTER5 Determinants....................................... 5.1 DeterminantsinTermsofCofactors........................................................307
5.2 PropertiesoftheDeterminant..............................................................317
5.3 InversebyCofactors,Cramer’sRule....................
5.4 Area,Volume,andtheDeterminant.........................................................337
CHAPTER6 EigenvectorsandDiagonalization.....................
6.1 EigenvaluesandEigenvectors.........................
6.2 Diagonalization....................................
6.3
CHAPTER7 InnerProductsandProjections.......................383 7.1 OrthogonalBasesin
7.2 ProjectionsandtheGram-SchmidtProcedure.............
7.3 MethodofLeastSquares...............................
7.4 InnerProductSpaces......................................................................410 7.5 FourierSeries......................................
CHAPTER8 SymmetricMatricesandQuadraticForms............425 8.1 DiagonalizationofSymmetricMatrices.....................................................425
8.2 QuadraticForms..........................................................................431
8.3 GraphsofQuadraticForms................................................................439
8.4 ApplicationsofQuadraticForms.......................
8.5 SingularValueDecomposition.........................
CHAPTER9 ComplexVectorSpaces...............................465 9.1 ComplexNumbers.....................................
9.2 SystemswithComplexNumbers..........................
9.3 ComplexVectorSpaces................................
9.4 ComplexDiagonalization.............................
9.5 UnitaryDiagonalization...................................................................500
This page intentionally left blank
ANotetoStudents LinearAlgebra–WhatIsIt? Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Linearalgebraisessentiallythestudyofvectors,matrices,andlinearmappings,andisnowanextremelyimportanttopic inmathematics.Itsapplicationandusefulnessinavariety ofdifferentareasisundeniable.Itencompasses technologicalinnovation,economicdecisionmaking,industrydevelopment,andscientificresearch.Weare literallysurroundedbyapplicationsoflinearalgebra.
Mostpeoplewhohavelearnedlinearalgebraandcalculusbelievethattheideasofelementarycalculus (suchaslimitsandintegrals)aremoredifficultthanthoseofintroductorylinearalgebra,andthatmostproblemsencounteredincalculuscoursesareharderthanthosefoundinlinearalgebracourses.So,atleastbythis comparison,linearalgebraisnothard.Still,somestudentsfindlearninglinearalgebrachallenging.Wethink twofactorscontributetothedifficultysomestudentshave.
First,studentsdonotalwaysseewhatlinearalgebraisgood for.Thisiswhyitisimportanttoreadthe applicationsinthetext–evenifyoudonotunderstandthemcompletely.Theywillgiveyousomesenseof wherelinearalgebrafitsintothebroaderpicture.
Second,mathematicsisoftenmistakenlyseenasacollectio nofrecipesforsolvingstandardproblems. Studentsareoftenuncomfortablewiththefactthatlinearalgebrais“abstract”andincludesalotof“theory.” However,studentsneedtorealizethattherewillbenolong-termpayoff insimplymemorizingtherecipes–computerscarrythemoutfarfasterandmoreaccuratelythan anyhuman.Thatbeingsaid,practicingthe proceduresonspecificexamplesisoftenanimportantsteptowardsamuchmoreimportantgoal:understandingthe concepts usedinlinearalgebratoformulateandsolveproblems,andlearningtointerprettheresultsof calculations.Suchunderstandingrequiresustocometotermswithsometheory.Inthistext,whenworking throughtheexamplesandexercises–whichareoftensmall–keepinmindthatwhenyoudoapplythese ideaslater,youmayverywellhaveamillionvariablesandamillionequations,butthetheoryandmethods remainconstant.Forexample,Google’sPageRanksystemusesamatrixthathasthirtybillioncolumnsand thirtybillionrows–youdonotwanttodothatbyhand! Whenyouaresolvingcomputationalproblems, alwaystrytoobservehowyourworkrelatestothetheoryyouhavelearned.
Mathematicsisusefulinsomanyareasbecauseitis abstract :thesamegoodideacanunlocktheproblemsofcontrolengineers,civilengineers,physicists,socialscientists,andmathematiciansbecausetheidea hasbeenabstractedfromaparticularsetting.Onetechniquesolvesmanyproblemsbecausesomeonehas establisheda theory ofhowtodealwiththesekindsofproblems. Definitions arethewaywetrytocapture importantideas,and theorems arehowwesummarizeusefulgeneralfactsaboutthekindofproblemsweare studying. Proofs notonlyshowusthatastatementistrue;theycanhelpusunderstandthestatement,giveus practiceusingimportantideas,andmakeiteasiertolearna givensubject.Inparticular,proofsshowushow ideasaretiedtogether,sowedonothavetomemorizetoomany disconnectedfacts.
Manyoftheconceptsintroducedinlinearalgebraarenaturalandeasy,butsomemayseemunnaturaland “technical”tobeginners.Donotavoidtheseseeminglymore difficultideas;useexamplesandtheoremstosee howtheseideasareanessentialpartofthestoryoflinearalgebra.Bylearningthe“vocabulary”and“grammar”oflinearalgebra,youwillbeequippingyourselfwithconceptsandtechniquesthatmathematicians, engineers,andscientistsfindinvaluablefortacklinganextraordinarilyrichvarietyofproblems.
LinearAlgebra–WhoNeedsIt? Mathematicians Linearalgebraanditsapplicationsareasubjectofcontinuingresearch.Linearalgebraisvitaltomathematics becauseitprovidesessentialideasandtoolsinareasasdiverseasabstractalgebra,differentialequations, calculusoffunctionsofseveralvariables,differentialgeometry,functionalanalysis,andnumericalanalysis.
Engineers
Supposeyoubecomeacontrolengineerandhavetodesignorupgradeanautomaticcontrolsystem.The systemmaybecontrollingamanufacturingprocess,orperhapsanairplanelandingsystem.Youwillprobably startwithalinearmodelofthesystem,requiringlinearalgebraforitssolution.Toincludefeedbackcontrol, yoursystemmusttakeaccountofmanymeasurements(fortheexampleoftheairplane,position,velocity, pitch,etc.),anditwillhavetoassessthisinformationveryrapidlyinordertodeterminethecorrectcontrol responses.AstandardpartofsuchacontrolsystemisaKalman-Bucyfilter,whichisnotsomuchapiece ofhardwareasapieceofmathematicalmachineryfordoingtherequiredcalculations.Linearalgebraisan essentialpartoftheKalman-Bucyfilter.
Ifyoubecomeastructuralengineeroramechanicalengineer,youmaybeconcernedwiththeproblem ofvibrationsinstructuresormachinery.Tounderstandthe problem,youwillhavetoknowabouteigenvalues andeigenvectorsandhowtheydeterminethenormalmodesofoscillation.Eigenvaluesandeigenvectorsare someofthecentraltopicsinlinearalgebra.
Anelectricalengineerwillneedlinearalgebratoanalyzecircuitsandsystems;acivilengineerwillneed linearalgebratodetermineinternalforcesinstaticstructuresandtounderstandprincipalaxesofstrain.
Inadditiontothesefairlyspecificuses,engineerswillalsofindthattheyneedtoknowlinearalgebrato understandsystemsofdifferentialequationsandsomeaspectsofthecalculusoffunctionsoftwoormore variables.Moreover,theideasandtechniquesoflinearalg ebraarecentraltonumericaltechniquesforsolving problemsofheatandfluidflow,whicharemajorconcernsinmechanicalengineering.Also,theideasoflinear algebraunderlieadvancedtechniquessuchasLaplacetransformsandFourieranalysis.
Physicists Linearalgebraisimportantinphysics,partlyforthereasonsdescribedabove.Inaddition,itisvitalinapplicationssuchastheinertiatensoringeneralrotatingmotion.Linearalgebraisanabsolutelyessentialtoolin quantumphysics(where,forexample,energylevelsmaybedeterminedaseigenvaluesoflinearoperators) andrelativity(whereunderstandingchangeofcoordinates isoneofthecentralissues).
LifeandSocialScientists Input-outputmodels,describedbymatrices,areoftenused ineconomicsandothersocialsciences.Similar ideascanbeusedinmodelingpopulationswhereoneneedstokeeptrackofsub-populations(generations,for example,orgenotypes).Inallsciences,statisticalanaly sisofdataisofagreatimportance,andmuchofthis analysisuseslinearalgebra.Forexample,themethodofleastsquares(forregression)canbeunderstoodin termsofprojectionsinlinearalgebra.
ManagersandOtherProfessionals Allmanagersneedtomakedecisionsaboutthebestallocatio nofresources.Enormousamountsofcomputer timearoundtheworldaredevotedtolinearprogrammingalgorithmsthatsolvesuchallocationproblems.In industry,thesamesortsoftechniquesareusedinproduction,networking,andmanyotherareas.
Whoneedslinearalgebra?Almosteverymathematician,engineer,scientist,economist,manager,orprofessionalwillfindlinearalgebraanimportantanduseful.So,whoneedslinearalgebra?Youdo!
Willtheseapplicationsbeexplainedinthisbook?
Unfortunately,mostoftheseapplicationsrequiretoomuch specializedbackgroundtobeincludedinafirstyearlinearalgebrabook.Togiveyouanideaofhowsomeoftheseconceptsareapplied,awidevarietyof applicationsarementionedthroughoutthetext.Youwillgettoseemanymoreapplicationsoflinearalgebra inyourfuturecourses.
HowToMaketheMostofThisBook:SQ3R TheSQ3RreadingtechniquewasdevelopedbyFrancisRobinsontohelpstudentsreadtextbooksmoreeffectively.Hereisabriefsummaryofthispowerfulmethodforlearning.Itiseasytolearnmoreaboutthisand othersimilarstrategiesonline.
Survey: Quicklyskimoverthesection.Makenoteofanyheadingorboldfacewords.Readoverthedefinitions,thestatementoftheorems,andthestatementofexamplesorexercises(donotreadproofsorsolutions atthistime).Also,brieflyexaminethefigures.
Question: Makeapurposeforyourreadingbywritingdowngeneralquestionsabouttheheadings,boldfacewords,definitions,ortheoremsthatyousurveyed.Forexample,acoupleofquestionsforSection1.1 couldbe:
Howdoweusevectorsin R2 and R3 ?
HowdoesthismaterialrelatetowhatIhavepreviouslylearned?
Whatistherelationshipbetweenvectorsin R2 anddirectedlinesegments? Whatarethesimilaritiesanddifferencesbetweenvectorsandlinesin R2 andin R3 ?
Read:
Readthematerialinchunksofaboutonetotwopages.Readcarefullyandlookfortheanswersto yourquestionsaswellaskeyconceptsandsupportingdetails. Takethetimetosolvethemid-sectionexercises beforereadingpastthem.Also,trytosolveexamplesbefore readingthesolutions,andtrytofigureoutthe proofsbeforeyoureadthem.Ifyouarenotabletosolvethem,lookcarefullythroughthe providedsolution tofigureoutthestepwhereyougotstuck.
Recall:
Asyoufinisheachchunk,putthebookasideandsummarizetheimportantdetailsofwhatyou havejustread.Writedowntheanswerstoanyquestionsthatyoumadeandwritedownanyfurtherquestions thatyouhave.Thinkcriticallyabouthowwellyouhaveunderstoodtheconcepts,andifnecessary,goback andrereadapartordosomerelevantendofsectionproblems.
Review: Thisisanongoingprocess.Onceyoucompleteanentiresection,gobackandreviewyournotes andquestionsfromtheentiresection.Testyourunderstandingbytryingtosolvetheend-of-sectionproblems withoutreferringtothebookoryournotes.Repeatthisagainwhenyoufinishanentirechapterandthenagain inthefutureasnecessary.
Yes,youaregoingtofindthatthismakesthereadinggomuchslowerforthefirstcoupleofchapters.However, studentswhousethistechniqueconsistentlyreportthattheyfeelthattheyendupspendingalotlesstime studyingforthecourseastheylearnthematerialsomuchbetteratthebeginning,whichmakesfutureconcepts mucheasiertolearn.
ANotetoInstructors Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Thanksto thefeedbackIhavereceivedfromstudentsandinstructorsaswellasmyownresearchintothescienceof teachingandlearning,Iamveryexcitedtopresenttoyouthisnewandimprovedversionofthetext.Overall, IbelievethemodificationsIhavemadecomplementmyoverall approachtoteaching.Ibelieveinintroducing thestudentsslowlytodifficultconceptsandhelpingstudentslearntheseconceptsmoredeeplybyexposing themtothesameconceptsmultipletimesoverspacedinterva ls.
OneaspectofteachinglinearalgebrathatIfindfascinating isthatsomanydifferentapproachescanbe usedeffectively.Typically,thebiggestdifferencebetweenmostcalculustextbooksiswhethertheyhave early orlatetranscendentals.However,linearalgebratextbooksandcoursescanbedoneinawidevarietyoforders. Forexample,inChinaitisnotuncommontobeginanintroductorylinearalgebracoursewithdeterminants andnotcoversolvingsystemsoflinearequationsuntilaftermatricesandgeneralvectorspaces.Examination oftheadvantagesanddisadvantagesofavarietyofthesemethodshasledmetomycurrentapproach.
Itiswellknownthatstudentsoflinearalgebratypicallyfindthecomputationalproblemseasybuthave greatdifficultyinunderstandingorapplyingtheabstractconceptsandthetheory.However,withmyapproach, Ifindnotonlythatveryfewstudentshavetroublewithconceptslikegeneralvectorspacesbutthattheyalso retaintheirmasteryofthelinearalgebracontentintheirupperyearcourses.
AlthoughIhavefoundmyapproachtobeverysuccessfulwithmystudents,Iseethevalueinamultitude ofotherwaysoforganizinganintroductorylinearalgebracourse.Therefore,Ihavetriedtowritethisbook toaccommodateavarietyoforders.SeeUsingThisTextToTeachLinearAlgebrabelow.
ChangestotheThirdEdition • Someofthecontenthasbeenreorderedtomakeevenbetteruse ofthespacingeffect.Thespacing effectisawellknownandextensivelystudiedeffectfrompsychology,whichstatesthatstudentslearn conceptsbetteriftheyareexposedtothesameconceptmultipletimesoverspacedintervalsasopposed tolearningitallatonce.See:
Dempster,F.N.(1988). Thespacingeffect:Acasestudyinthefailuretoapplytheresultsof psychologicalresearch. AmericanPsychologist,43(8),627–634.
Fain,R.J.,Hieb,J.L.,Ralston,P.A.,Lyle,K.B.(2015,June), CantheSpacing EffectImprovetheEffectivenessofaMathInterventionCourseforEngineeringStudents? Paperpresentedat2015ASEEAnnualConference&Exposition,Seattle,Washington.
• Thenumberandtypeofapplicationshasbeengreatlyincreasedandareusedeithertomotivatethe needforcertainconceptsordefinitionsinlinearalgebra,ortodemonstratehowsomelinearalgebra conceptsareusedinapplications.
• Agreateremphasishasbeenplacedonthegeometryofmanyconcepts.Inparticular,Chapter1has beenreorganizedtofocusonthegeometryoflinearalgebrain R2 and R3 beforeexploring Rn
• Numeroussmallchangeshavebeenmadetoimprovestudentcomprehension.
ApproachandOrganization Studentsoflinearalgebratypicallyhavelittletroublewithcomputationalquestions,buttheyoftenstruggle withabstractconceptsandproofs.Thisisproblematicbecausecomputersperformthecomputationsinthe vastmajorityofrealworldapplicationsoflinearalgebra. Humanusers,meanwhile,mustapplythetheory totransformagivenproblemintoalinearalgebracontext,inputthedataproperly,andinterprettheresult correctly.
Theapproachofthisbookisbothtousethespacingeffectandtomixtheoryandcomputationsthroughout thecourse.Additionally,itusesrealworldapplicationstobothmotivateandexplaintheusefulnessofsome oftheseeminglyabstractconcepts,anditusesthegeometry oflinearalgebrain R2 and R3 tohelpstudents visualizemanyoftheconcepts.Thebenefitsofthisapproach areasfollows:
• Itpreventsstudentsfrommistakinglinearalgebraasveryeasyandverycomputationalearlyinthe course,andthengettingoverwhelmedbyabstractconceptsandtheorieslater.
• Itallowsimportantlinearalgebraconceptstobedeveloped andextendedmoreslowly.
• Itencouragesstudentstousecomputationalproblemstohelpthemunderstandthetheoryoflinear algebraratherthanblindlymemorizealgorithms.
• Ithelpsstudentsunderstandtheconceptsandwhytheyareuseful.
Oneexampleofthisapproachisourtreatmentoftheconcepts ofspanningandlinearindependence.They arebothintroducedinSection1.2in R2 and R3 ,wheretheyaremotivatedinageometricalcontext.Theyare expandedtovectorsin Rn inSection1.4,andusedagainformatricesinSection3.1and polynomialsin Section4.1,beforetheyarefinallyextendedtogeneralvectorspacesinSection4.2.
Otherfeaturesofthetext’sorganizationinclude
• Theideaoflinearmappingsisintroducedearlyinageometricalcontext,andisusedtoexplainaspects ofmatrixmultiplication,matrixinversion,featuresofsystemsoflinearequations,andthegeometryof eigenvaluesandeigenvectors.Geometricaltransformatio nsprovideintuitivelysatisfyingillustrations ofimportantconcepts.
• Topicsareorderedtogivestudentsachancetoworkwithconceptsinasimplersettingbeforeusing theminamuchmoreinvolvedorabstractsetting.Forexample,beforereachingthedefinitionofa vectorspaceinSection4.2,studentswillhaveseenthetenvectorspaceaxiomsandtheconceptsof linearindependenceandspanningforthreedifferentvectorsspaces,andwillhavehadsomeexperience inworkingwithbasesanddimensions.Thus,insteadofbeing bombardedwithnewconceptsatthe introductionofgeneralvectorspaces,studentswilljustbegeneralizingconceptswithwhichtheyare alreadyfamiliar.
PedagogicalFeatures Sincemathematicsisbestlearnedbydoing,thefollowingpedagogicalelementsareincludedinthetext:
• Aselectionofroutinemid-sectionexercisesareprovided, withanswersincludedinthebackofthe book.Theseallowstudentstouseandtesttheirunderstandingofoneconceptbeforemovingonto otherconceptsinthesection.
• Practiceproblemsareprovidedforstudentsattheendofeachsection.See“ANoteontheExercises andProblems”below.
Applications Oftentheapplicationsoflinearalgebraarenotastransparent,concise,orapproachableasthoseofelementarycalculus.Mostconvincingapplicationsoflinearalge brarequireafairlylengthybuildupofbackground, whichwouldbeinappropriateinalinearalgebratext.However,withoutsomeoftheseapplications,many studentswouldfinditdifficulttoremainmotivatedtolearnlinearalgebra.Anadditio naldifficultlyisthatthe applicationsoflinearalgebraaresovariedthatthereisverylittleagreementonwhichapplicationsshouldbe covered.
Inthistextwebrieflydiscussafewapplicationstogivestudentssomeexposuretohowlinearalgebrais applied.
ListofApplications • Forcevectorsinphysics(Sections1.1,1.3)
• Bravaislattice(Section1.2)
• Graphingquadraticforms(Sections1.2,6.2,8.3)
• Accelerationduetoforces(Section1.3)
• Areaandvolume(Sections1.3,1.5,5.4)
• Minimumdistancefromapointtoaplane(Section1.5)
• Bestapproximation(Section1.5)
• Forcesandmoments(Section2.1)
• Flowthroughanetwork(Sections2.1,2.4,3.1)
• Spring-masssystems(Sections2.4,3.1,3.5,6.1)
• Electricalcircuits(Sections2.4,9.2)
• Partialfractiondecompositions(Section2.4)
• Balancingchemicalequations(Section2.4)
• Planartrusses(Section2.4)
• Linearprogramming(Section2.4)
• Magicsquares(Chapter4Review)
• SystemsofLinearDifferenceEquations(Section6.2)
• Markovprocesses(Section6.3)
• Differentialequations(Section6.3)
• Curveofbestfit(Section7.3)
• Overdeterminedsystems(Section7.3)
• Fourierseries(Section7.5)
• Smalldeformations(Sections6.2,8.4)
• Inertiatensor(Section8.4)
• Effectiverank(Section8.5)
• Imagecompression(Section8.5)
Awidevarietyofadditionalapplicationsarementionedthroughoutthetext.
ANoteontheExercisesandProblems Mostsectionscontainmid-sectionexercises.Thepurposeoftheseexercisesistogivestudentsawayof checkingtheirunderstandingofsomeconceptsbeforeproceedingtofurtherconceptsinthesection.Thus, whenreadingthroughachapter,astudentshouldalwayscompleteeachexercisebeforecontinuingtoread therestofthechapter.
Attheendofeachsection,problemsaredividedintoA,B,and CProblems.
TheAProblemsarepracticeproblemsandareintendedtoprovideasufficientvarietyandnumberof standardcomputationalproblemsandtheoddtheoreticalproblemforstudentstomasterthetechniquesof thecourse;answersareprovidedatthebackofthetext.Full solutionsareavailableintheStudentSolutions Manual.
TheBProblemsarehomeworkproblems.TheyaregenerallyidenticaltotheAProblems,withnoanswers provided,andcanbeusedbybyinstructorsforhomework.Ina fewcases,theBProblemsarenotexactly paralleltotheAProblems.
TheCProblemsusuallyrequirestudentstoworkwithgeneral cases,towritesimplearguments,orto inventexamples.Theseareimportantaspectsofmasteringmathematicalideas,andallstudentsshouldattempt atleastsomeofthese–andnotgetdiscouragediftheymakeslowprogress.Witheffortmoststudentswill beabletosolvemanyoftheseproblemsandwillbenefitgreatlyintheunderstandingoftheconceptsand connectionsindoingso.
Inadditiontothemid-sectionexercisesandend-of-sectionproblems,thereisasampleChapterQuizin theChapterReviewattheendofeachchapter.Studentsshouldbeawarethattheirinstructorsmayhavea differentideaofwhatconstitutesanappropriatetestonthismaterial.
Attheendofeachchapter,therearesomeFurtherProblems;thesearesimilartotheCProblemsand provideanextendedinvestigationofcertainideasorapplicationsoflinearalgebra.FurtherProblemsare intendedforadvancedstudentswhowishtochallengethemselvesandexploreadditionalconcepts.
UsingThisTextToTeachLinearAlgebra Therearemanydifferentapproachestoteachinglinearalgebra.Althoughwesuggestcoveringthechapters inorder,thetexthasbeenwrittentotrytoaccommodateavarietyofapproaches.
EarlyVectorSpaces Webelievethatitisverybeneficialtointroducegeneralvectorspacesimmediatelyafterstudentshavegainedsomeexperienceinworking withafewspecificexamplesofvectorspaces. Studentsfinditeasiertogeneralizetheconceptsofspanning,linearindependence,bases,dimension,and linearmappingswhiletheearlierspecificcasesarestillfreshintheirminds.Additionally,wefeelthatitcan beunhelpfultostudentstohavedeterminantsavailabletoo soon.Somestudentsarefartooeagertolatch ontomindlessalgorithmsinvolvingdeterminants(forexample,tochecklinearindependenceofthreevectors inthree-dimensionalspace),ratherthanactuallycometotermswiththedefiningideas.Lastly,thisallows eigenvalues,eigenvectors,anddiagonalizationtobefocu sedonlaterinthecourse.Ipersonallyfindthatif diagonalizationistaughttoosoon,studentswillfocusmainlyonbeingabletodiagonalizesmallmatricesby hand,whichcausestheimportanceofdiagonalizationtobelost.
EarlySystemsofLinearEquations Forcoursesthatbeginwithsolvingsystemsoflinearquestions,thefirsttwosectionsofChapter2maybecoveredprior tocoveringChapter1content.
EarlyDeterminantsandDiagonalization Somereviewershavecommentedthattheywantto beabletocoverdeterminantsanddiagonalizationbeforeab stractvectorsspacesandthatinsomeintroductorycoursesabstractvectorspacesmaybeomittedentirely.Thus,thistexthasbeenwrittensothatChapter5, Chapter6,mostofChapter7,andChapter8maybetaughtprior toChapter4(notethatallrequiredinformationaboutsubspaces,bases,anddimensionfordiagonalizationofmatricesover R iscoveredinChapters1, 2,and3).Moreover,wehavemadesurethatthereisaverynaturalflowfrommatrixinversesandelementary matricesattheendofChapter3todeterminantsinChapter5.
EarlyComplexNumbers Someintroductorylinearalgebracoursesincludetheuseof complexnumbersfromthebeginning.WehavewrittenChapter9sothatthe sectionsofChapter9maybecoveredimmediatelyaftercoveringtherelevantmaterialover R
AMatrix-OrientedCourse Forbothoptionsabove,thetextisorganizedsothatsectionsorsubsectionsinvolvinglinearmappingsmaybeomittedwithoutloss ofcontinuity.
MyLabMath MyLabMathandMathXLareonlinelearningresourcesavailabletoinstructorsandstudentsusing AnIntroductiontoLinearAlgebraforScienceandEngineering.
MyLabMathprovidesengagingexperiencesthatpersonalize,stimulate,andmeasurelearningforeach student.MyLab’scomprehensive onlinegradebook automaticallytracksyourstudents’resultsontests, quizzes,homework,andinthestudyplan.ThehomeworkandpracticeexercisesinMyLabMatharecorrelatedtotheexercisesinthetextbook,andMyLabprovides immediate,helpfulfeedback whenstudents enterincorrectanswers.The studyplan canbeassignedorusedforindividualpracticeandispersonalized toeachstudent,trackingareasforimprovementasstudents navigateproblems.Withover100questions(all algorithmic)addedtothethirdedition,MyLabMathfor AnIntroductiontoLinearAlgebraforScienceand Engineering isawell-equippedresourcethatcanhelpimproveindividualstudents’performance.
TolearnmoreabouthowMyLabcombinesprovenlearningapplicationswithpowerfulassessment,visit www.pearson.com/mylaborcontactyourPearsonrepresentative.
APersonalNote Thethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering ismeanttoengage studentsandpiquetheircuriosity,aswellasprovideatemplateforinstructors.Iamconstantlyfascinated bythecountlesspotentialapplicationsoflinearalgebraineverydaylife,andIintendforthistextbookto beapproachabletoall.Iwillnotpretendthatmathematical prerequisitesandpreviousknowledgearenot required.However,theapproachtakeninthistextbookencouragesthereadertoexploreavarietyofconcepts andprovidesexposuretoanextensiveamountofmathematicalknowledge.Linearalgebraisanexciting discipline.Myhopeisthatthosereadingthisbookwillshareinmyenthusiasm.
Acknowledgments Thanksareexpressedto:
AgnieszkaWolczukforhersupportandencouragement.
MikeLaCroixforalloftheamazingfiguresinthetext,andfor hisassistanceinediting,formatting,and LaTeX’ing.
PeiyaoZeng,DanielYu,AdamRadekMartinez,BrunoVerdugoParedes,andAlexLiaoforproof-reading andtheirmanyvaluablecommentsandsuggestions.
StephenNew,PaulMcGrath,KenMcCay,PaulKates,andmanyotherofmycolleagueswhohavehelped mebecomeabetterinstructor.
Toallofthereviewerswhosecomments,corrections,andrecommendationshaveresultedinmanypositiveimprovements.
CharlotteMorrison-Reedforallofherhardworkinmakingthethirdeditionofthistextpossibleandfor hersuggestionsandediting.
AveryspecialthankyoutoDanielNormanandallthosewhocontributedtothefirstandsecondeditions.
DanWolczuk
UniversityofWaterloo
CHAPTER1 EuclideanVectorSpaces CHAPTEROUTLINE 1.1Vectorsin R2 and R3
1.2SpanningandLinearIndependencein R2 and R3
1.3LengthandAnglesin R2 and R3
1.4Vectorsin Rn
1.5DotProductsandProjectionsin Rn
Someofthematerialinthischapterwillbefamiliartomanystudents,butsomeideas thatareintroducedherewillbenewtomost.Inthischapterwewilllookatoperations onandimportantconceptsrelatedtovectors.Wewillalsolookatsomeapplications ofvectorsinthefamiliarsettingofEuclideanspace.Mostoftheseconceptswilllater beextendedtomoregeneralsettings.A rmunderstandingofthematerialfromthis chapterwillhelpgreatlyinunderstandingthetopicsintherestofthisbook.
1.1Vectorsin R2 and R3 Webeginbyconsideringthetwo-dimensionalplaneinCartesiancoordinates.Choose anorigin O andtwomutuallyperpendicularaxes,calledthe x1 -axisandthe x2 -axis, asshowninFigure1.1.1.Anypoint P intheplanecanbeuniquelyidentiedbythe 2-tuple( p1 , p2 ),calledthe coordinates of P.Inparticular, p1 isthedistancefrom P to the x2 -axis,with p1 positiveif P istotherightofthisaxisandnegativeif P istothe left,and p2 isthedistancefrom P tothe x1 -axis,with p2 positiveif P isabovethisaxis andnegativeif P isbelow.Youhavealreadylearnedhowtoplotgraphsofequations inthisplane. x1 x2
O P(p1, p2) p1 p2
Figure1.1.1 Coordinatesintheplane.
Denition
Forapplicationsinmanyareasofmathematics,andinmanysubjectssuchas physics,chemistry,economics,andengineering,itisusefultoviewpointsmoreabstractly.Inparticular,wewillviewthemas vectors andproviderulesforaddingthem andmultiplyingthembyconstants.
Welet R2 denotethesetofallvectorsoftheform x1 x2 ,where x1 and x2 arereal numberscalledthe components ofthevector.Mathematically,wewrite
Wesaytwovectors
Althoughweareviewingtheelementsof R2 asvectors,wecanstillinterpretthese geometricallyaspoints.Thatis,thevector � p = p1 p2 canbeinterpretedasthepoint P( p1 , p2 ).Graphically,thisisoftenrepresentedbydrawinganarrowfrom(0, 0)to ( p1 , p2 ),asshowninFigure1.1.2.Note,thatthepoint(0, 0)andthepointsbetween (0, 0)and( p1 , p2 )shouldnotbethoughtofaspoints“onthevector.”Therepresentation ofavectorasanarrowisparticularlycommoninphysics;forceandaccelerationare vectorquantitiesthatcanconvenientlyberepresentedbyanarrowofsuitable magnitudeanddirection. x2 P(p1, p2) x1 O = (0, 0) p = p1 p2
Figure1.1.2 Graphicalrepresentationofavector.
EXAMPLE1.1.1
Anobjectonafrictionlesssurfaceisbeingpulledbytwostringswithforceand directionasgiveninthediagram.
(a)Representeachforceasavectorin R2
(b)Representthenetforcebeingappliedtotheobjectasavectorin R2
Solution: (a)Theforce F 1 has150 N ofhorizontalforceand0 N ofverticalforce. Thus,wecanrepresentthiswiththevector
� F 1 = 150 0
Theforce F 2 hashorizontalcomponent 100cos π 3 = 50Nandverticalcomponent 100sin π 3 = 50 √3N.Therefore,wecan representthiswiththevector
F 2 = 50 50 √3
N 3
(b)Weknowfromphysicsthattogetthenetforceweaddthehorizontalcomponents oftheforcestogetherandweaddtheverticalcomponentsoftheforcestogether.Thus, thenethorizontalcomponentis150 N + 50 N = 200 N .Thenetverticalforceis
0 N + 50 √3 N = 50 √3 N .Wecanrepresentthisasthevector
� F = 200 50 √3
Theexampleshowsthatinphysicsweaddvectorsbyaddingtheircorresponding components.Similarly,we ndthatinphysicswemultiplyavectorbyascalarby multiplyingeachcomponentofthevectorbythescalar.
Sincewewantourgeneralizedconceptofvectorstobeabletohelpussolve physicalproblemsliketheseandmore,wedeneadditionandscalarmultiplicationof vectorsin R2 tomatch.
Denition
AdditionandScalar
Multiplicationin R2
Wedene scalarmultiplication of � x byafactorof t ∈ R,calleda scalar,by
Remark
Itisimportanttonotethat � x � y istobeinterpretedas � x + ( 1)� y
Figure1.1.3 Additionofvectors � p and � q
TheadditionoftwovectorsisillustratedinFigure1.1.3:constructaparallelogram withvectors � p and � q asadjacentsides;then � p + � q isthevectorcorrespondingtothe vertexoftheparallelogramoppositetotheorigin.Observethatthecomponentsreally areaddedaccordingtothedenition.Thisisoftencalledthe parallelogramrulefor addition.
EXAMPLE1.1.2
ScalarmultiplicationisillustratedinFigure1.1.4.Observethatmultiplicationby anegativescalarreversesthedirectionofthevector.
(1.5)d (–1)d d
Figure1.1.4 Scalarmultiplicationofthevector � d
EXAMPLE1.1.3
EXERCISE1.1.1
Solution: Weget
Denition
.Calculateeachofthefollowingandillustrate withasketch. (a) � u + � w (b) � v (c)(� u + � w) � v
Wewillfrequentlylookatsumsofscalarmultiplesofvectors.So,wemakethe followingdenition.
LinearCombination Let � v 1 ,..., � v k ∈ R2 and c1 ,..., ck ∈ R.Wecallthesum c1 � v 1 + + ck � v k a linear combination ofthevectors � v 1 ,..., � v k .
Itisimportanttoobservethat R2 hasthepropertythatanylinearcombinationof vectorsin R2 isavectorin R2 (combiningpropertiesV1,V6inTheorem1.1.1below). Althoughthispropertyisclearfor R2 ,itdoesnotholdformostsubsetsof R2 .Aswe willseeinSection1.4,inlinearalgebra,wearemostlyinterestedinsetsthathavethis property.
Theorem1.1.1 Forall � w, � x , � y ∈ R2 and s, t ∈ R wehave
V1 � x + � y ∈ R2 (closedunderaddition)
V2 � x + � y = � y + � x (additioniscommutative)
V3( � x + � y ) + � w = � x + (� y + � w) (additionisassociative)
V4Thereexistsavector � 0 ∈ R2 suchthat � z + � 0 = � z forall � z ∈ R2 (zerovector)
V5Foreach � x ∈ R2 thereexistsavector � x ∈ R2 suchthat � x + ( � x ) = � 0 (additiveinverses)
V6 s � x ∈ R2 (closedunderscalarmultiplication)
V7 s(t � x ) = ( st ) � x (scalarmultiplicationisassociative)
V8( s + t ) � x = s � x + t � x (adistributivelaw)
V9 s( � x + � y ) = s � x + s � y (anotherdistributivelaw)
V101 � x = � x (scalarmultiplicativeidentity)
ObservethatthezerovectorfrompropertyV4isthevector � 0 = 0 0 , andthe additiveinverseof � x fromV5is � x = ( 1) � x .
EXAMPLE1.1.4
TheVectorEquationofaLinein R2 InFigure1.1.4,itisapparentthatthesetofallmultiplesofanon-zerovector � d creates alinethroughtheorigin.Wemakethisourdenitionofalinein R2 :a linethrough theoriginin R2 isasetoftheform {t � d | t ∈ R}
Oftenwedonotuseformalsetnotationbutsimplywritea vectorequation oftheline:
= t � d , t ∈ R
Thenon-zerovector � d iscalleda directionvector oftheline. Similarly,wedenea linethrough � p withdirectionvector � d � 0tobetheset { � p + t � d | t ∈ R}
whichhasvectorequation
R
Thislineisparalleltothelinewithequation � x = t � d , t ∈ R becauseoftheparallelogram ruleforaddition.AsshowninFigure1.1.5,eachpointonthelinethrough � p canbe obtainedfromacorrespondingpointontheline � x = t � d , t ∈ R byaddingthevector � p Wesaythatthelinehasbeen translated by � p .Moregenerally,twolinesareparallel ifthedirectionvectorofonelineisanon-zeroscalarmultipleofthedirectionvector oftheotherline.
Avectorequationofthelinethroughthepoint P(2, 3)withdirectionvector 4 5 is
Figure1.1.5 Thelinewithvectorequation
EXAMPLE1.1.5
Writeavectorequationofthelinethrough P(1, 2)paralleltothelinewithvector equation
Solution: Sincetheyareparallel,wecanchoosethesamedirectionvector.Hence,a vectorequationofthelineis
EXERCISE1.1.2
Writeavectorequationofalinethrough P(0, 0)paralleltotheline
EXAMPLE1.1.6
Sometimesthecomponentsofavectorequationarewrittenseparately.In particular,expandingavectorequation
weget
Comparingentries,weget parametricequations oftheline:
Thefamiliar scalarequation ofthelineisobtainedbyeliminatingtheparameter t Providedthat d1 0wesolvethe rstequationfor t toget x1 p1 d1 = t
Substitutingthisintothesecondequationgivesthescalarequation
Whatcanyousayaboutthelineif d1 = 0?
Writeavectorequation,ascalarequation,andparametricequationsofthelinepassing throughthepoint P(3, 4)withdirectionvector
Solution: Avectorequationis
So,parametricequationsare
Hence,ascalarequationis
DirectedLineSegments Fordealingwithcertaingeometricalproblems,itisusefultointroduce directedline segments.Wedenotethedirectedlinesegmentfrompoint P topoint Q by � PQ asin
Figure1.1.6.Wethinkofitasan“arrow”startingat P andpointingtowards Q.We shallidentifydirectedlinesegmentsfromtheoriginOwiththecorrespondingvectors; wewrite � OP = � p , � OQ = � q ,andsoon.Adirectedlinesegmentthatstartsattheorigin iscalledthe positionvector ofthepoint.
Figure1.1.6 Thedirectedlinesegment � PQ from P to Q
Formanyproblems,weareinterestedonlyinthedirectionandlengthofthedirectedlinesegment;wearenotinterestedinthepointwhereitislocated.Forexample, inFigure1.1.3onpage4,wemaywishtotreatthelinesegment � QR asifitwerethe sameas � OP.Takingourcuefromthisexample,forarbitrarypoints P, Q, R in R2 ,we dene � QR tobe equivalent to � OP if � r � q = � p .Inthiscase,wehaveusedonedirected linesegment � OP startingfromtheorigininourdenition.
Moregenerally,forarbitrarypoints Q, R, S ,and T in R2 ,wedene � QR tobe equivalentto � ST iftheyarebothequivalenttothesame � OP forsome P.Thatis,if � r � q = � p and � t � s = � p forthesame � p
Wecanabbreviatethisbysimplyrequiringthat
EXAMPLE1.1.7 Forpoints Q(1, 3), R(6, 1), S ( 2, 4),and T (3, 0),wehavethat � QR isequivalentto � ST because � r � q = 6 1 1 3 = 5 4 = 3
(–2, 4)
(1, 3)
4 = � t � s Ox1 x2
(3, 0) R(6, –1)
EXERCISE1.1.3
Insomeproblems,whereitisnotnecessarytodistinguishbetweenequivalent directedlinesegments,we“identify”them(thatis,wetreatthemasthesameobject) andwrite � PQ = � RS .Indeed,weidentifythemwiththecorrespondinglinesegment startingattheorigin,soinExample1.1.7wewrite � QR = � ST = 5 4
Remark Writing � QR = � ST isabitsloppy—anabuseofnotation—because � QR isnotreally thesameobjectas � ST .However,introducingthepreciselanguageof“equivalence classes”andmorecarefulnotationwithdirectedlinesegmentsisnothelpfulatthis stage.Byintroducingdirectedlinesegments,weareencouragedtothinkaboutvectors thatarelocatedatarbitrarypointsinspace.Thisishelpfulinsolvingsomegeometrical problems,asweshallseebelow.
Findavectorequationofthelinethrough P(1, 2)and Q(3, 1).
Solution: Adirectionvectorofthelineis
2)
Hence,avectorequationofthelinewithdirection � PQ thatpassesthrough P(1, 2)is
Observeintheexampleabovethatwewouldhavethesamelineifwestartedatthe secondpointand“moved”towardthe rstpoint—orevenifwetookadirectionvector intheoppositedirection.Thus,thesamelineisdescribedbythevectorequations
Infact,thereareinnitelymanydescriptionsofaline:wemaychooseanypointon theline,andwemayuseanynon-zeroscalarmultipleofthedirectionvector.
Findavectorequationofthelinethrough P(1, 1)and Q( 2, 2).
EXAMPLE1.1.8