Full download Introduction to linear algebra for science and engineering, 3rd edition daniel norman

Page 1


IntroductiontoLinearAlgebraforScienceand Engineering,3rdEditionDanielNorman

https://ebookmass.com/product/introduction-to-linearalgebra-for-science-and-engineering-3rd-edition-danielnorman/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction

to Linear Algebra for Science and Engineering 2nd Edition (Student Edition) Edition Daniel Norman

https://ebookmass.com/product/introduction-to-linear-algebra-forscience-and-engineering-2nd-edition-student-edition-edition-danielnorman/

ebookmass.com

Introduction to Environmental Engineering and Science 3rd Edition Gilbert M. Masters

https://ebookmass.com/product/introduction-to-environmentalengineering-and-science-3rd-edition-gilbert-m-masters/

ebookmass.com

Linear Algebra: A Modern Introduction 4th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-a-modernintroduction-4th-edition-ebook-pdf/

ebookmass.com

A First Look at Communication Theory - 11th Edition Em Griffin

https://ebookmass.com/product/a-first-look-at-communicationtheory-11th-edition-em-griffin/

ebookmass.com

Strengthening of Concrete Structures Using Fiber

Reinforced Polymers (FRP): Design, Construction and Practical Applications Hwai-Chung Wu

https://ebookmass.com/product/strengthening-of-concrete-structuresusing-fiber-reinforced-polymers-frp-design-construction-and-practicalapplications-hwai-chung-wu/

ebookmass.com

Additive Friction Stir Deposition Hang Z. Yu

https://ebookmass.com/product/additive-friction-stir-deposition-hangz-yu/

ebookmass.com

The Violent Season Sara Walters

https://ebookmass.com/product/the-violent-season-sara-walters-3/

ebookmass.com

Governing Security After War Louis-Alexandre Berg

https://ebookmass.com/product/governing-security-after-war-louisalexandre-berg/

ebookmass.com

The Contestation of Expertise in the European Union 1st Edition Vigjilenca Abazi

https://ebookmass.com/product/the-contestation-of-expertise-in-theeuropean-union-1st-edition-vigjilenca-abazi/

ebookmass.com

https://ebookmass.com/product/master-b-0113-garden-of-the-gods-a-adark/

ebookmass.com

AN INTRODUCTION TO LINEAR ALGEBRA FOR

SCIENCE AND ENGINEERING

DANIEL NORMAN • DAN WOLCZUK

THIRD EDITION

An Introduction to Linear Algebra for Science and Engineering

PearsonCanadaInc.,26PrinceAndrewPlace,NorthYork,OntarioM3C2H4.

Copyright c 2020,2012,2005PearsonCanadaInc.Allrightsreserved.

PrintedintheUnitedStatesofAmerica.Thispublicationis protectedbycopyright,andpermissionshouldbeobtainedfrom thepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise.Forinformationregardingpermissions,requestforms,andthe appropriatecontacts,pleasecontactPearsonCanada’sRightsandPermissionsDepartmentbyvisiting www.pearson.com/ca/en/contact-us/permissions.html.

Usedbypermission.Allrightsreserved.ThiseditionisauthorizedforsaleonlyinCanada.

Attributionsofthird-partycontentappearontheappropriatepagewithinthetext.

Coverimage: c TamasNovak/EyeEm/GettyImages.

PEARSONisanexclusivetrademarkownedbyPearsonCanadaInc.oritsaffiliatesinCanadaand/orothercountries.

Unlessotherwiseindicatedherein,anythirdpartytrademarksthatmayappearinthisworkarethepropertyoftheirrespective ownersandanyreferencestothirdpartytrademarks,logos, orothertradedressarefordemonstrativeordescriptivepurposes only.Suchreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonCanada productsbytheownersofsuchmarks,oranyrelationshipbetweentheownerandPearsonCanadaoritsaffiliates,authors, licensees,ordistributors.

IfyoupurchasedthisbookoutsidetheUnitedStatesorCanada,youshouldbeawarethatithasbeenimportedwithoutthe approvalofthepublisherortheauthor.

9780134682631

120

LibraryandArchivesCanadaCataloguinginPublication

Norman,Daniel,1938-,author Introductiontolinearalgebraforscienceandengineering / Daniel Norman,DanWolczuk,UniversityofWaterloo.–Thirdedition.

ISBN978-0-13-468263-1(softcover)

1.Algebras,Linear–Textbooks.2.Textbooks.I.Wolczuk,Dan, 1972-,authorII.Title.

QA184.2.N672018 512’.5 C2018-906600-8

2.3

CHAPTER3

CHAPTER4

4.1

4.5 GeneralLinearMappings..................................................................273

4.7 IsomorphismsofVectorSpaces.........................

CHAPTER5 Determinants.......................................

5.1 DeterminantsinTermsofCofactors........................................................307

5.2 PropertiesoftheDeterminant..............................................................317

5.3 InversebyCofactors,Cramer’sRule....................

5.4 Area,Volume,andtheDeterminant.........................................................337

CHAPTER6 EigenvectorsandDiagonalization.....................

6.1 EigenvaluesandEigenvectors.........................

6.2 Diagonalization....................................

6.3

CHAPTER7 InnerProductsandProjections.......................383

7.1 OrthogonalBasesin

7.2 ProjectionsandtheGram-SchmidtProcedure.............

7.3 MethodofLeastSquares...............................

7.4 InnerProductSpaces......................................................................410 7.5 FourierSeries......................................

CHAPTER8 SymmetricMatricesandQuadraticForms............425

8.1 DiagonalizationofSymmetricMatrices.....................................................425

8.2 QuadraticForms..........................................................................431

8.3 GraphsofQuadraticForms................................................................439

8.4 ApplicationsofQuadraticForms.......................

8.5 SingularValueDecomposition.........................

CHAPTER9 ComplexVectorSpaces...............................465

9.1 ComplexNumbers.....................................

9.2 SystemswithComplexNumbers..........................

9.3 ComplexVectorSpaces................................

9.4 ComplexDiagonalization.............................

9.5 UnitaryDiagonalization...................................................................500

This page intentionally left blank

ANotetoStudents

LinearAlgebra–WhatIsIt?

Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Linearalgebraisessentiallythestudyofvectors,matrices,andlinearmappings,andisnowanextremelyimportanttopic inmathematics.Itsapplicationandusefulnessinavariety ofdifferentareasisundeniable.Itencompasses technologicalinnovation,economicdecisionmaking,industrydevelopment,andscientificresearch.Weare literallysurroundedbyapplicationsoflinearalgebra.

Mostpeoplewhohavelearnedlinearalgebraandcalculusbelievethattheideasofelementarycalculus (suchaslimitsandintegrals)aremoredifficultthanthoseofintroductorylinearalgebra,andthatmostproblemsencounteredincalculuscoursesareharderthanthosefoundinlinearalgebracourses.So,atleastbythis comparison,linearalgebraisnothard.Still,somestudentsfindlearninglinearalgebrachallenging.Wethink twofactorscontributetothedifficultysomestudentshave.

First,studentsdonotalwaysseewhatlinearalgebraisgood for.Thisiswhyitisimportanttoreadthe applicationsinthetext–evenifyoudonotunderstandthemcompletely.Theywillgiveyousomesenseof wherelinearalgebrafitsintothebroaderpicture.

Second,mathematicsisoftenmistakenlyseenasacollectio nofrecipesforsolvingstandardproblems. Studentsareoftenuncomfortablewiththefactthatlinearalgebrais“abstract”andincludesalotof“theory.” However,studentsneedtorealizethattherewillbenolong-termpayoff insimplymemorizingtherecipes–computerscarrythemoutfarfasterandmoreaccuratelythan anyhuman.Thatbeingsaid,practicingthe proceduresonspecificexamplesisoftenanimportantsteptowardsamuchmoreimportantgoal:understandingthe concepts usedinlinearalgebratoformulateandsolveproblems,andlearningtointerprettheresultsof calculations.Suchunderstandingrequiresustocometotermswithsometheory.Inthistext,whenworking throughtheexamplesandexercises–whichareoftensmall–keepinmindthatwhenyoudoapplythese ideaslater,youmayverywellhaveamillionvariablesandamillionequations,butthetheoryandmethods remainconstant.Forexample,Google’sPageRanksystemusesamatrixthathasthirtybillioncolumnsand thirtybillionrows–youdonotwanttodothatbyhand! Whenyouaresolvingcomputationalproblems, alwaystrytoobservehowyourworkrelatestothetheoryyouhavelearned.

Mathematicsisusefulinsomanyareasbecauseitis abstract :thesamegoodideacanunlocktheproblemsofcontrolengineers,civilengineers,physicists,socialscientists,andmathematiciansbecausetheidea hasbeenabstractedfromaparticularsetting.Onetechniquesolvesmanyproblemsbecausesomeonehas establisheda theory ofhowtodealwiththesekindsofproblems. Definitions arethewaywetrytocapture importantideas,and theorems arehowwesummarizeusefulgeneralfactsaboutthekindofproblemsweare studying. Proofs notonlyshowusthatastatementistrue;theycanhelpusunderstandthestatement,giveus practiceusingimportantideas,andmakeiteasiertolearna givensubject.Inparticular,proofsshowushow ideasaretiedtogether,sowedonothavetomemorizetoomany disconnectedfacts.

Manyoftheconceptsintroducedinlinearalgebraarenaturalandeasy,butsomemayseemunnaturaland “technical”tobeginners.Donotavoidtheseseeminglymore difficultideas;useexamplesandtheoremstosee howtheseideasareanessentialpartofthestoryoflinearalgebra.Bylearningthe“vocabulary”and“grammar”oflinearalgebra,youwillbeequippingyourselfwithconceptsandtechniquesthatmathematicians, engineers,andscientistsfindinvaluablefortacklinganextraordinarilyrichvarietyofproblems.

LinearAlgebra–WhoNeedsIt?

Mathematicians

Linearalgebraanditsapplicationsareasubjectofcontinuingresearch.Linearalgebraisvitaltomathematics becauseitprovidesessentialideasandtoolsinareasasdiverseasabstractalgebra,differentialequations, calculusoffunctionsofseveralvariables,differentialgeometry,functionalanalysis,andnumericalanalysis.

Engineers

Supposeyoubecomeacontrolengineerandhavetodesignorupgradeanautomaticcontrolsystem.The systemmaybecontrollingamanufacturingprocess,orperhapsanairplanelandingsystem.Youwillprobably startwithalinearmodelofthesystem,requiringlinearalgebraforitssolution.Toincludefeedbackcontrol, yoursystemmusttakeaccountofmanymeasurements(fortheexampleoftheairplane,position,velocity, pitch,etc.),anditwillhavetoassessthisinformationveryrapidlyinordertodeterminethecorrectcontrol responses.AstandardpartofsuchacontrolsystemisaKalman-Bucyfilter,whichisnotsomuchapiece ofhardwareasapieceofmathematicalmachineryfordoingtherequiredcalculations.Linearalgebraisan essentialpartoftheKalman-Bucyfilter.

Ifyoubecomeastructuralengineeroramechanicalengineer,youmaybeconcernedwiththeproblem ofvibrationsinstructuresormachinery.Tounderstandthe problem,youwillhavetoknowabouteigenvalues andeigenvectorsandhowtheydeterminethenormalmodesofoscillation.Eigenvaluesandeigenvectorsare someofthecentraltopicsinlinearalgebra.

Anelectricalengineerwillneedlinearalgebratoanalyzecircuitsandsystems;acivilengineerwillneed linearalgebratodetermineinternalforcesinstaticstructuresandtounderstandprincipalaxesofstrain.

Inadditiontothesefairlyspecificuses,engineerswillalsofindthattheyneedtoknowlinearalgebrato understandsystemsofdifferentialequationsandsomeaspectsofthecalculusoffunctionsoftwoormore variables.Moreover,theideasandtechniquesoflinearalg ebraarecentraltonumericaltechniquesforsolving problemsofheatandfluidflow,whicharemajorconcernsinmechanicalengineering.Also,theideasoflinear algebraunderlieadvancedtechniquessuchasLaplacetransformsandFourieranalysis.

Physicists

Linearalgebraisimportantinphysics,partlyforthereasonsdescribedabove.Inaddition,itisvitalinapplicationssuchastheinertiatensoringeneralrotatingmotion.Linearalgebraisanabsolutelyessentialtoolin quantumphysics(where,forexample,energylevelsmaybedeterminedaseigenvaluesoflinearoperators) andrelativity(whereunderstandingchangeofcoordinates isoneofthecentralissues).

LifeandSocialScientists

Input-outputmodels,describedbymatrices,areoftenused ineconomicsandothersocialsciences.Similar ideascanbeusedinmodelingpopulationswhereoneneedstokeeptrackofsub-populations(generations,for example,orgenotypes).Inallsciences,statisticalanaly sisofdataisofagreatimportance,andmuchofthis analysisuseslinearalgebra.Forexample,themethodofleastsquares(forregression)canbeunderstoodin termsofprojectionsinlinearalgebra.

ManagersandOtherProfessionals

Allmanagersneedtomakedecisionsaboutthebestallocatio nofresources.Enormousamountsofcomputer timearoundtheworldaredevotedtolinearprogrammingalgorithmsthatsolvesuchallocationproblems.In industry,thesamesortsoftechniquesareusedinproduction,networking,andmanyotherareas.

Whoneedslinearalgebra?Almosteverymathematician,engineer,scientist,economist,manager,orprofessionalwillfindlinearalgebraanimportantanduseful.So,whoneedslinearalgebra?Youdo!

Willtheseapplicationsbeexplainedinthisbook?

Unfortunately,mostoftheseapplicationsrequiretoomuch specializedbackgroundtobeincludedinafirstyearlinearalgebrabook.Togiveyouanideaofhowsomeoftheseconceptsareapplied,awidevarietyof applicationsarementionedthroughoutthetext.Youwillgettoseemanymoreapplicationsoflinearalgebra inyourfuturecourses.

HowToMaketheMostofThisBook:SQ3R

TheSQ3RreadingtechniquewasdevelopedbyFrancisRobinsontohelpstudentsreadtextbooksmoreeffectively.Hereisabriefsummaryofthispowerfulmethodforlearning.Itiseasytolearnmoreaboutthisand othersimilarstrategiesonline.

Survey:

Quicklyskimoverthesection.Makenoteofanyheadingorboldfacewords.Readoverthedefinitions,thestatementoftheorems,andthestatementofexamplesorexercises(donotreadproofsorsolutions atthistime).Also,brieflyexaminethefigures.

Question:

Makeapurposeforyourreadingbywritingdowngeneralquestionsabouttheheadings,boldfacewords,definitions,ortheoremsthatyousurveyed.Forexample,acoupleofquestionsforSection1.1 couldbe:

Howdoweusevectorsin R2 and R3 ?

HowdoesthismaterialrelatetowhatIhavepreviouslylearned?

Whatistherelationshipbetweenvectorsin R2 anddirectedlinesegments? Whatarethesimilaritiesanddifferencesbetweenvectorsandlinesin R2 andin R3 ?

Read:

Readthematerialinchunksofaboutonetotwopages.Readcarefullyandlookfortheanswersto yourquestionsaswellaskeyconceptsandsupportingdetails. Takethetimetosolvethemid-sectionexercises beforereadingpastthem.Also,trytosolveexamplesbefore readingthesolutions,andtrytofigureoutthe proofsbeforeyoureadthem.Ifyouarenotabletosolvethem,lookcarefullythroughthe providedsolution tofigureoutthestepwhereyougotstuck.

Recall:

Asyoufinisheachchunk,putthebookasideandsummarizetheimportantdetailsofwhatyou havejustread.Writedowntheanswerstoanyquestionsthatyoumadeandwritedownanyfurtherquestions thatyouhave.Thinkcriticallyabouthowwellyouhaveunderstoodtheconcepts,andifnecessary,goback andrereadapartordosomerelevantendofsectionproblems.

Review:

Thisisanongoingprocess.Onceyoucompleteanentiresection,gobackandreviewyournotes andquestionsfromtheentiresection.Testyourunderstandingbytryingtosolvetheend-of-sectionproblems withoutreferringtothebookoryournotes.Repeatthisagainwhenyoufinishanentirechapterandthenagain inthefutureasnecessary.

Yes,youaregoingtofindthatthismakesthereadinggomuchslowerforthefirstcoupleofchapters.However, studentswhousethistechniqueconsistentlyreportthattheyfeelthattheyendupspendingalotlesstime studyingforthecourseastheylearnthematerialsomuchbetteratthebeginning,whichmakesfutureconcepts mucheasiertolearn.

ANotetoInstructors

Welcometothethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering!Thanksto thefeedbackIhavereceivedfromstudentsandinstructorsaswellasmyownresearchintothescienceof teachingandlearning,Iamveryexcitedtopresenttoyouthisnewandimprovedversionofthetext.Overall, IbelievethemodificationsIhavemadecomplementmyoverall approachtoteaching.Ibelieveinintroducing thestudentsslowlytodifficultconceptsandhelpingstudentslearntheseconceptsmoredeeplybyexposing themtothesameconceptsmultipletimesoverspacedinterva ls.

OneaspectofteachinglinearalgebrathatIfindfascinating isthatsomanydifferentapproachescanbe usedeffectively.Typically,thebiggestdifferencebetweenmostcalculustextbooksiswhethertheyhave early orlatetranscendentals.However,linearalgebratextbooksandcoursescanbedoneinawidevarietyoforders. Forexample,inChinaitisnotuncommontobeginanintroductorylinearalgebracoursewithdeterminants andnotcoversolvingsystemsoflinearequationsuntilaftermatricesandgeneralvectorspaces.Examination oftheadvantagesanddisadvantagesofavarietyofthesemethodshasledmetomycurrentapproach.

Itiswellknownthatstudentsoflinearalgebratypicallyfindthecomputationalproblemseasybuthave greatdifficultyinunderstandingorapplyingtheabstractconceptsandthetheory.However,withmyapproach, Ifindnotonlythatveryfewstudentshavetroublewithconceptslikegeneralvectorspacesbutthattheyalso retaintheirmasteryofthelinearalgebracontentintheirupperyearcourses.

AlthoughIhavefoundmyapproachtobeverysuccessfulwithmystudents,Iseethevalueinamultitude ofotherwaysoforganizinganintroductorylinearalgebracourse.Therefore,Ihavetriedtowritethisbook toaccommodateavarietyoforders.SeeUsingThisTextToTeachLinearAlgebrabelow.

ChangestotheThirdEdition

• Someofthecontenthasbeenreorderedtomakeevenbetteruse ofthespacingeffect.Thespacing effectisawellknownandextensivelystudiedeffectfrompsychology,whichstatesthatstudentslearn conceptsbetteriftheyareexposedtothesameconceptmultipletimesoverspacedintervalsasopposed tolearningitallatonce.See:

Dempster,F.N.(1988). Thespacingeffect:Acasestudyinthefailuretoapplytheresultsof psychologicalresearch. AmericanPsychologist,43(8),627–634.

Fain,R.J.,Hieb,J.L.,Ralston,P.A.,Lyle,K.B.(2015,June), CantheSpacing EffectImprovetheEffectivenessofaMathInterventionCourseforEngineeringStudents? Paperpresentedat2015ASEEAnnualConference&Exposition,Seattle,Washington.

• Thenumberandtypeofapplicationshasbeengreatlyincreasedandareusedeithertomotivatethe needforcertainconceptsordefinitionsinlinearalgebra,ortodemonstratehowsomelinearalgebra conceptsareusedinapplications.

• Agreateremphasishasbeenplacedonthegeometryofmanyconcepts.Inparticular,Chapter1has beenreorganizedtofocusonthegeometryoflinearalgebrain R2 and R3 beforeexploring Rn

• Numeroussmallchangeshavebeenmadetoimprovestudentcomprehension.

ApproachandOrganization

Studentsoflinearalgebratypicallyhavelittletroublewithcomputationalquestions,buttheyoftenstruggle withabstractconceptsandproofs.Thisisproblematicbecausecomputersperformthecomputationsinthe vastmajorityofrealworldapplicationsoflinearalgebra. Humanusers,meanwhile,mustapplythetheory totransformagivenproblemintoalinearalgebracontext,inputthedataproperly,andinterprettheresult correctly.

Theapproachofthisbookisbothtousethespacingeffectandtomixtheoryandcomputationsthroughout thecourse.Additionally,itusesrealworldapplicationstobothmotivateandexplaintheusefulnessofsome oftheseeminglyabstractconcepts,anditusesthegeometry oflinearalgebrain R2 and R3 tohelpstudents visualizemanyoftheconcepts.Thebenefitsofthisapproach areasfollows:

• Itpreventsstudentsfrommistakinglinearalgebraasveryeasyandverycomputationalearlyinthe course,andthengettingoverwhelmedbyabstractconceptsandtheorieslater.

• Itallowsimportantlinearalgebraconceptstobedeveloped andextendedmoreslowly.

• Itencouragesstudentstousecomputationalproblemstohelpthemunderstandthetheoryoflinear algebraratherthanblindlymemorizealgorithms.

• Ithelpsstudentsunderstandtheconceptsandwhytheyareuseful.

Oneexampleofthisapproachisourtreatmentoftheconcepts ofspanningandlinearindependence.They arebothintroducedinSection1.2in R2 and R3 ,wheretheyaremotivatedinageometricalcontext.Theyare expandedtovectorsin Rn inSection1.4,andusedagainformatricesinSection3.1and polynomialsin Section4.1,beforetheyarefinallyextendedtogeneralvectorspacesinSection4.2.

Otherfeaturesofthetext’sorganizationinclude

• Theideaoflinearmappingsisintroducedearlyinageometricalcontext,andisusedtoexplainaspects ofmatrixmultiplication,matrixinversion,featuresofsystemsoflinearequations,andthegeometryof eigenvaluesandeigenvectors.Geometricaltransformatio nsprovideintuitivelysatisfyingillustrations ofimportantconcepts.

• Topicsareorderedtogivestudentsachancetoworkwithconceptsinasimplersettingbeforeusing theminamuchmoreinvolvedorabstractsetting.Forexample,beforereachingthedefinitionofa vectorspaceinSection4.2,studentswillhaveseenthetenvectorspaceaxiomsandtheconceptsof linearindependenceandspanningforthreedifferentvectorsspaces,andwillhavehadsomeexperience inworkingwithbasesanddimensions.Thus,insteadofbeing bombardedwithnewconceptsatthe introductionofgeneralvectorspaces,studentswilljustbegeneralizingconceptswithwhichtheyare alreadyfamiliar.

PedagogicalFeatures

Sincemathematicsisbestlearnedbydoing,thefollowingpedagogicalelementsareincludedinthetext:

• Aselectionofroutinemid-sectionexercisesareprovided, withanswersincludedinthebackofthe book.Theseallowstudentstouseandtesttheirunderstandingofoneconceptbeforemovingonto otherconceptsinthesection.

• Practiceproblemsareprovidedforstudentsattheendofeachsection.See“ANoteontheExercises andProblems”below.

Applications

Oftentheapplicationsoflinearalgebraarenotastransparent,concise,orapproachableasthoseofelementarycalculus.Mostconvincingapplicationsoflinearalge brarequireafairlylengthybuildupofbackground, whichwouldbeinappropriateinalinearalgebratext.However,withoutsomeoftheseapplications,many studentswouldfinditdifficulttoremainmotivatedtolearnlinearalgebra.Anadditio naldifficultlyisthatthe applicationsoflinearalgebraaresovariedthatthereisverylittleagreementonwhichapplicationsshouldbe covered.

Inthistextwebrieflydiscussafewapplicationstogivestudentssomeexposuretohowlinearalgebrais applied.

ListofApplications

• Forcevectorsinphysics(Sections1.1,1.3)

• Bravaislattice(Section1.2)

• Graphingquadraticforms(Sections1.2,6.2,8.3)

• Accelerationduetoforces(Section1.3)

• Areaandvolume(Sections1.3,1.5,5.4)

• Minimumdistancefromapointtoaplane(Section1.5)

• Bestapproximation(Section1.5)

• Forcesandmoments(Section2.1)

• Flowthroughanetwork(Sections2.1,2.4,3.1)

• Spring-masssystems(Sections2.4,3.1,3.5,6.1)

• Electricalcircuits(Sections2.4,9.2)

• Partialfractiondecompositions(Section2.4)

• Balancingchemicalequations(Section2.4)

• Planartrusses(Section2.4)

• Linearprogramming(Section2.4)

• Magicsquares(Chapter4Review)

• SystemsofLinearDifferenceEquations(Section6.2)

• Markovprocesses(Section6.3)

• Differentialequations(Section6.3)

• Curveofbestfit(Section7.3)

• Overdeterminedsystems(Section7.3)

• Fourierseries(Section7.5)

• Smalldeformations(Sections6.2,8.4)

• Inertiatensor(Section8.4)

• Effectiverank(Section8.5)

• Imagecompression(Section8.5)

Awidevarietyofadditionalapplicationsarementionedthroughoutthetext.

ANoteontheExercisesandProblems

Mostsectionscontainmid-sectionexercises.Thepurposeoftheseexercisesistogivestudentsawayof checkingtheirunderstandingofsomeconceptsbeforeproceedingtofurtherconceptsinthesection.Thus, whenreadingthroughachapter,astudentshouldalwayscompleteeachexercisebeforecontinuingtoread therestofthechapter.

Attheendofeachsection,problemsaredividedintoA,B,and CProblems.

TheAProblemsarepracticeproblemsandareintendedtoprovideasufficientvarietyandnumberof standardcomputationalproblemsandtheoddtheoreticalproblemforstudentstomasterthetechniquesof thecourse;answersareprovidedatthebackofthetext.Full solutionsareavailableintheStudentSolutions Manual.

TheBProblemsarehomeworkproblems.TheyaregenerallyidenticaltotheAProblems,withnoanswers provided,andcanbeusedbybyinstructorsforhomework.Ina fewcases,theBProblemsarenotexactly paralleltotheAProblems.

TheCProblemsusuallyrequirestudentstoworkwithgeneral cases,towritesimplearguments,orto inventexamples.Theseareimportantaspectsofmasteringmathematicalideas,andallstudentsshouldattempt atleastsomeofthese–andnotgetdiscouragediftheymakeslowprogress.Witheffortmoststudentswill beabletosolvemanyoftheseproblemsandwillbenefitgreatlyintheunderstandingoftheconceptsand connectionsindoingso.

Inadditiontothemid-sectionexercisesandend-of-sectionproblems,thereisasampleChapterQuizin theChapterReviewattheendofeachchapter.Studentsshouldbeawarethattheirinstructorsmayhavea differentideaofwhatconstitutesanappropriatetestonthismaterial.

Attheendofeachchapter,therearesomeFurtherProblems;thesearesimilartotheCProblemsand provideanextendedinvestigationofcertainideasorapplicationsoflinearalgebra.FurtherProblemsare intendedforadvancedstudentswhowishtochallengethemselvesandexploreadditionalconcepts.

UsingThisTextToTeachLinearAlgebra

Therearemanydifferentapproachestoteachinglinearalgebra.Althoughwesuggestcoveringthechapters inorder,thetexthasbeenwrittentotrytoaccommodateavarietyofapproaches.

EarlyVectorSpaces Webelievethatitisverybeneficialtointroducegeneralvectorspacesimmediatelyafterstudentshavegainedsomeexperienceinworking withafewspecificexamplesofvectorspaces. Studentsfinditeasiertogeneralizetheconceptsofspanning,linearindependence,bases,dimension,and linearmappingswhiletheearlierspecificcasesarestillfreshintheirminds.Additionally,wefeelthatitcan beunhelpfultostudentstohavedeterminantsavailabletoo soon.Somestudentsarefartooeagertolatch ontomindlessalgorithmsinvolvingdeterminants(forexample,tochecklinearindependenceofthreevectors inthree-dimensionalspace),ratherthanactuallycometotermswiththedefiningideas.Lastly,thisallows eigenvalues,eigenvectors,anddiagonalizationtobefocu sedonlaterinthecourse.Ipersonallyfindthatif diagonalizationistaughttoosoon,studentswillfocusmainlyonbeingabletodiagonalizesmallmatricesby hand,whichcausestheimportanceofdiagonalizationtobelost.

EarlySystemsofLinearEquations

Forcoursesthatbeginwithsolvingsystemsoflinearquestions,thefirsttwosectionsofChapter2maybecoveredprior tocoveringChapter1content.

EarlyDeterminantsandDiagonalization

Somereviewershavecommentedthattheywantto beabletocoverdeterminantsanddiagonalizationbeforeab stractvectorsspacesandthatinsomeintroductorycoursesabstractvectorspacesmaybeomittedentirely.Thus,thistexthasbeenwrittensothatChapter5, Chapter6,mostofChapter7,andChapter8maybetaughtprior toChapter4(notethatallrequiredinformationaboutsubspaces,bases,anddimensionfordiagonalizationofmatricesover R iscoveredinChapters1, 2,and3).Moreover,wehavemadesurethatthereisaverynaturalflowfrommatrixinversesandelementary matricesattheendofChapter3todeterminantsinChapter5.

EarlyComplexNumbers Someintroductorylinearalgebracoursesincludetheuseof complexnumbersfromthebeginning.WehavewrittenChapter9sothatthe sectionsofChapter9maybecoveredimmediatelyaftercoveringtherelevantmaterialover R

AMatrix-OrientedCourse Forbothoptionsabove,thetextisorganizedsothatsectionsorsubsectionsinvolvinglinearmappingsmaybeomittedwithoutloss ofcontinuity.

MyLabMath

MyLabMathandMathXLareonlinelearningresourcesavailabletoinstructorsandstudentsusing AnIntroductiontoLinearAlgebraforScienceandEngineering.

MyLabMathprovidesengagingexperiencesthatpersonalize,stimulate,andmeasurelearningforeach student.MyLab’scomprehensive onlinegradebook automaticallytracksyourstudents’resultsontests, quizzes,homework,andinthestudyplan.ThehomeworkandpracticeexercisesinMyLabMatharecorrelatedtotheexercisesinthetextbook,andMyLabprovides immediate,helpfulfeedback whenstudents enterincorrectanswers.The studyplan canbeassignedorusedforindividualpracticeandispersonalized toeachstudent,trackingareasforimprovementasstudents navigateproblems.Withover100questions(all algorithmic)addedtothethirdedition,MyLabMathfor AnIntroductiontoLinearAlgebraforScienceand Engineering isawell-equippedresourcethatcanhelpimproveindividualstudents’performance.

TolearnmoreabouthowMyLabcombinesprovenlearningapplicationswithpowerfulassessment,visit www.pearson.com/mylaborcontactyourPearsonrepresentative.

APersonalNote

Thethirdeditionof AnIntroductiontoLinearAlgebraforScienceandEngineering ismeanttoengage studentsandpiquetheircuriosity,aswellasprovideatemplateforinstructors.Iamconstantlyfascinated bythecountlesspotentialapplicationsoflinearalgebraineverydaylife,andIintendforthistextbookto beapproachabletoall.Iwillnotpretendthatmathematical prerequisitesandpreviousknowledgearenot required.However,theapproachtakeninthistextbookencouragesthereadertoexploreavarietyofconcepts andprovidesexposuretoanextensiveamountofmathematicalknowledge.Linearalgebraisanexciting discipline.Myhopeisthatthosereadingthisbookwillshareinmyenthusiasm.

Acknowledgments

Thanksareexpressedto:

AgnieszkaWolczukforhersupportandencouragement.

MikeLaCroixforalloftheamazingfiguresinthetext,andfor hisassistanceinediting,formatting,and LaTeX’ing.

PeiyaoZeng,DanielYu,AdamRadekMartinez,BrunoVerdugoParedes,andAlexLiaoforproof-reading andtheirmanyvaluablecommentsandsuggestions.

StephenNew,PaulMcGrath,KenMcCay,PaulKates,andmanyotherofmycolleagueswhohavehelped mebecomeabetterinstructor.

Toallofthereviewerswhosecomments,corrections,andrecommendationshaveresultedinmanypositiveimprovements.

CharlotteMorrison-Reedforallofherhardworkinmakingthethirdeditionofthistextpossibleandfor hersuggestionsandediting.

AveryspecialthankyoutoDanielNormanandallthosewhocontributedtothefirstandsecondeditions.

UniversityofWaterloo

CHAPTER1

EuclideanVectorSpaces

CHAPTEROUTLINE

1.1Vectorsin R2 and R3

1.2SpanningandLinearIndependencein R2 and R3

1.3LengthandAnglesin R2 and R3

1.4Vectorsin Rn

1.5DotProductsandProjectionsin Rn

Someofthematerialinthischapterwillbefamiliartomanystudents,butsomeideas thatareintroducedherewillbenewtomost.Inthischapterwewilllookatoperations onandimportantconceptsrelatedtovectors.Wewillalsolookatsomeapplications ofvectorsinthefamiliarsettingofEuclideanspace.Mostoftheseconceptswilllater beextendedtomoregeneralsettings.A rmunderstandingofthematerialfromthis chapterwillhelpgreatlyinunderstandingthetopicsintherestofthisbook.

1.1Vectorsin R2 and R3

Webeginbyconsideringthetwo-dimensionalplaneinCartesiancoordinates.Choose anorigin O andtwomutuallyperpendicularaxes,calledthe x1 -axisandthe x2 -axis, asshowninFigure1.1.1.Anypoint P intheplanecanbeuniquelyidentiedbythe 2-tuple( p1 , p2 ),calledthe coordinates of P.Inparticular, p1 isthedistancefrom P to the x2 -axis,with p1 positiveif P istotherightofthisaxisandnegativeif P istothe left,and p2 isthedistancefrom P tothe x1 -axis,with p2 positiveif P isabovethisaxis andnegativeif P isbelow.Youhavealreadylearnedhowtoplotgraphsofequations inthisplane. x1 x2

O P(p1, p2) p1 p2

Figure1.1.1 Coordinatesintheplane.

Denition

Forapplicationsinmanyareasofmathematics,andinmanysubjectssuchas physics,chemistry,economics,andengineering,itisusefultoviewpointsmoreabstractly.Inparticular,wewillviewthemas vectors andproviderulesforaddingthem andmultiplyingthembyconstants.

Welet R2 denotethesetofallvectorsoftheform x1 x2 ,where x1 and x2 arereal numberscalledthe components ofthevector.Mathematically,wewrite

Wesaytwovectors

Althoughweareviewingtheelementsof R2 asvectors,wecanstillinterpretthese geometricallyaspoints.Thatis,thevector � p = p1 p2 canbeinterpretedasthepoint P( p1 , p2 ).Graphically,thisisoftenrepresentedbydrawinganarrowfrom(0, 0)to ( p1 , p2 ),asshowninFigure1.1.2.Note,thatthepoint(0, 0)andthepointsbetween (0, 0)and( p1 , p2 )shouldnotbethoughtofaspoints“onthevector.”Therepresentation ofavectorasanarrowisparticularlycommoninphysics;forceandaccelerationare vectorquantitiesthatcanconvenientlyberepresentedbyanarrowofsuitable magnitudeanddirection. x2 P(p1, p2) x1 O = (0, 0) p = p1 p2

Figure1.1.2 Graphicalrepresentationofavector.

EXAMPLE1.1.1

Anobjectonafrictionlesssurfaceisbeingpulledbytwostringswithforceand directionasgiveninthediagram.

(a)Representeachforceasavectorin R2

(b)Representthenetforcebeingappliedtotheobjectasavectorin R2

Solution: (a)Theforce F 1 has150 N ofhorizontalforceand0 N ofverticalforce. Thus,wecanrepresentthiswiththevector

� F 1 = 150 0

Theforce F 2 hashorizontalcomponent 100cos π 3 = 50Nandverticalcomponent 100sin π 3 = 50 √3N.Therefore,wecan representthiswiththevector

F 2 = 50 50 √3

N 3

(b)Weknowfromphysicsthattogetthenetforceweaddthehorizontalcomponents oftheforcestogetherandweaddtheverticalcomponentsoftheforcestogether.Thus, thenethorizontalcomponentis150 N + 50 N = 200 N .Thenetverticalforceis

0 N + 50 √3 N = 50 √3 N .Wecanrepresentthisasthevector

� F = 200 50 √3

Theexampleshowsthatinphysicsweaddvectorsbyaddingtheircorresponding components.Similarly,we ndthatinphysicswemultiplyavectorbyascalarby multiplyingeachcomponentofthevectorbythescalar.

Sincewewantourgeneralizedconceptofvectorstobeabletohelpussolve physicalproblemsliketheseandmore,wedeneadditionandscalarmultiplicationof vectorsin R2 tomatch.

Denition

AdditionandScalar

Multiplicationin R2

Wedene scalarmultiplication of � x byafactorof t ∈ R,calleda scalar,by

Remark

Itisimportanttonotethat � x � y istobeinterpretedas � x + ( 1)� y

Figure1.1.3 Additionofvectors � p and � q

TheadditionoftwovectorsisillustratedinFigure1.1.3:constructaparallelogram withvectors � p and � q asadjacentsides;then � p + � q isthevectorcorrespondingtothe vertexoftheparallelogramoppositetotheorigin.Observethatthecomponentsreally areaddedaccordingtothedenition.Thisisoftencalledthe parallelogramrulefor addition.

EXAMPLE1.1.2

ScalarmultiplicationisillustratedinFigure1.1.4.Observethatmultiplicationby anegativescalarreversesthedirectionofthevector.

(1.5)d (–1)d d

Figure1.1.4 Scalarmultiplicationofthevector � d

EXAMPLE1.1.3

EXERCISE1.1.1

Solution: Weget

Denition

.Calculateeachofthefollowingandillustrate withasketch. (a) � u + � w (b) � v (c)(� u + � w) � v

Wewillfrequentlylookatsumsofscalarmultiplesofvectors.So,wemakethe followingdenition.

LinearCombination Let � v 1 ,..., � v k ∈ R2 and c1 ,..., ck ∈ R.Wecallthesum c1 � v 1 + + ck � v k a linear combination ofthevectors � v 1 ,..., � v k .

Itisimportanttoobservethat R2 hasthepropertythatanylinearcombinationof vectorsin R2 isavectorin R2 (combiningpropertiesV1,V6inTheorem1.1.1below). Althoughthispropertyisclearfor R2 ,itdoesnotholdformostsubsetsof R2 .Aswe willseeinSection1.4,inlinearalgebra,wearemostlyinterestedinsetsthathavethis property.

Theorem1.1.1 Forall � w, � x , � y ∈ R2 and s, t ∈ R wehave

V1 � x + � y ∈ R2 (closedunderaddition)

V2 � x + � y = � y + � x (additioniscommutative)

V3( � x + � y ) + � w = � x + (� y + � w) (additionisassociative)

V4Thereexistsavector � 0 ∈ R2 suchthat � z + � 0 = � z forall � z ∈ R2 (zerovector)

V5Foreach � x ∈ R2 thereexistsavector � x ∈ R2 suchthat � x + ( � x ) = � 0 (additiveinverses)

V6 s � x ∈ R2 (closedunderscalarmultiplication)

V7 s(t � x ) = ( st ) � x (scalarmultiplicationisassociative)

V8( s + t ) � x = s � x + t � x (adistributivelaw)

V9 s( � x + � y ) = s � x + s � y (anotherdistributivelaw)

V101 � x = � x (scalarmultiplicativeidentity)

ObservethatthezerovectorfrompropertyV4isthevector � 0 = 0 0 , andthe additiveinverseof � x fromV5is � x = ( 1) � x .

EXAMPLE1.1.4

TheVectorEquationofaLinein R2

InFigure1.1.4,itisapparentthatthesetofallmultiplesofanon-zerovector � d creates alinethroughtheorigin.Wemakethisourdenitionofalinein R2 :a linethrough theoriginin R2 isasetoftheform {t � d | t ∈ R}

Oftenwedonotuseformalsetnotationbutsimplywritea vectorequation oftheline:

= t � d , t ∈ R

Thenon-zerovector � d iscalleda directionvector oftheline. Similarly,wedenea linethrough � p withdirectionvector � d � 0tobetheset { � p + t � d | t ∈ R}

whichhasvectorequation

R

Thislineisparalleltothelinewithequation � x = t � d , t ∈ R becauseoftheparallelogram ruleforaddition.AsshowninFigure1.1.5,eachpointonthelinethrough � p canbe obtainedfromacorrespondingpointontheline � x = t � d , t ∈ R byaddingthevector � p Wesaythatthelinehasbeen translated by � p .Moregenerally,twolinesareparallel ifthedirectionvectorofonelineisanon-zeroscalarmultipleofthedirectionvector oftheotherline.

Avectorequationofthelinethroughthepoint P(2, 3)withdirectionvector 4 5 is

Figure1.1.5 Thelinewithvectorequation

EXAMPLE1.1.5

Writeavectorequationofthelinethrough P(1, 2)paralleltothelinewithvector equation

Solution: Sincetheyareparallel,wecanchoosethesamedirectionvector.Hence,a vectorequationofthelineis

EXERCISE1.1.2

Writeavectorequationofalinethrough P(0, 0)paralleltotheline

EXAMPLE1.1.6

Sometimesthecomponentsofavectorequationarewrittenseparately.In particular,expandingavectorequation

weget

Comparingentries,weget parametricequations oftheline:

Thefamiliar scalarequation ofthelineisobtainedbyeliminatingtheparameter t Providedthat d1 0wesolvethe rstequationfor t toget x1 p1 d1 = t

Substitutingthisintothesecondequationgivesthescalarequation

Whatcanyousayaboutthelineif d1 = 0?

Writeavectorequation,ascalarequation,andparametricequationsofthelinepassing throughthepoint P(3, 4)withdirectionvector

Solution: Avectorequationis

So,parametricequationsare

Hence,ascalarequationis

DirectedLineSegments

Fordealingwithcertaingeometricalproblems,itisusefultointroduce directedline segments.Wedenotethedirectedlinesegmentfrompoint P topoint Q by � PQ asin

Figure1.1.6.Wethinkofitasan“arrow”startingat P andpointingtowards Q.We shallidentifydirectedlinesegmentsfromtheoriginOwiththecorrespondingvectors; wewrite � OP = � p , � OQ = � q ,andsoon.Adirectedlinesegmentthatstartsattheorigin iscalledthe positionvector ofthepoint.

Figure1.1.6 Thedirectedlinesegment � PQ from P to Q

Formanyproblems,weareinterestedonlyinthedirectionandlengthofthedirectedlinesegment;wearenotinterestedinthepointwhereitislocated.Forexample, inFigure1.1.3onpage4,wemaywishtotreatthelinesegment � QR asifitwerethe sameas � OP.Takingourcuefromthisexample,forarbitrarypoints P, Q, R in R2 ,we dene � QR tobe equivalent to � OP if � r � q = � p .Inthiscase,wehaveusedonedirected linesegment � OP startingfromtheorigininourdenition.

Moregenerally,forarbitrarypoints Q, R, S ,and T in R2 ,wedene � QR tobe equivalentto � ST iftheyarebothequivalenttothesame � OP forsome P.Thatis,if � r � q = � p and � t � s = � p forthesame � p

Wecanabbreviatethisbysimplyrequiringthat

EXAMPLE1.1.7 Forpoints Q(1, 3), R(6, 1), S ( 2, 4),and T (3, 0),wehavethat � QR isequivalentto � ST because � r � q = 6 1 1 3 = 5 4 = 3

(–2, 4)

(1, 3)

4 = � t � s Ox1 x2

(3, 0) R(6, –1)

EXERCISE1.1.3

Insomeproblems,whereitisnotnecessarytodistinguishbetweenequivalent directedlinesegments,we“identify”them(thatis,wetreatthemasthesameobject) andwrite � PQ = � RS .Indeed,weidentifythemwiththecorrespondinglinesegment startingattheorigin,soinExample1.1.7wewrite � QR = � ST = 5 4

Remark

Writing � QR = � ST isabitsloppy—anabuseofnotation—because � QR isnotreally thesameobjectas � ST .However,introducingthepreciselanguageof“equivalence classes”andmorecarefulnotationwithdirectedlinesegmentsisnothelpfulatthis stage.Byintroducingdirectedlinesegments,weareencouragedtothinkaboutvectors thatarelocatedatarbitrarypointsinspace.Thisishelpfulinsolvingsomegeometrical problems,asweshallseebelow.

Findavectorequationofthelinethrough P(1, 2)and Q(3, 1).

Solution: Adirectionvectorofthelineis

2)

Hence,avectorequationofthelinewithdirection � PQ thatpassesthrough P(1, 2)is

Observeintheexampleabovethatwewouldhavethesamelineifwestartedatthe secondpointand“moved”towardthe rstpoint—orevenifwetookadirectionvector intheoppositedirection.Thus,thesamelineisdescribedbythevectorequations

Infact,thereareinnitelymanydescriptionsofaline:wemaychooseanypointon theline,andwemayuseanynon-zeroscalarmultipleofthedirectionvector.

Findavectorequationofthelinethrough P(1, 1)and Q( 2, 2).

EXAMPLE1.1.8

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.