Instant download Topology 2nd edition james munkres pdf all chapter

Page 1


https://ebookmass.com/product/topology-2nd-edition-jamesmunkres/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Topology, 2/E James Munkres

https://ebookmass.com/product/topology-2-e-james-munkres/

ebookmass.com

Point-Set Topology with Topics: Basic General Topology for Graduate Studies Robert Andre

https://ebookmass.com/product/point-set-topology-with-topics-basicgeneral-topology-for-graduate-studies-robert-andre/

ebookmass.com

Multiscale Structural Topology Optimization 1st Edition Liang Xia

https://ebookmass.com/product/multiscale-structural-topologyoptimization-1st-edition-liang-xia/

ebookmass.com

The Summer of Broken Rules K. L. Walther

https://ebookmass.com/product/the-summer-of-broken-rules-k-lwalther-3/

ebookmass.com

World Civilizations: The Global Experience, Volume 1 7th Edition, (Ebook PDF)

https://ebookmass.com/product/world-civilizations-the-globalexperience-volume-1-7th-edition-ebook-pdf/

ebookmass.com

Writing Analytically 8th ed. Edition David Rosenwasser

https://ebookmass.com/product/writing-analytically-8th-ed-editiondavid-rosenwasser/

ebookmass.com

A

Dangerous Universe 4 Andrew

https://ebookmass.com/product/a-dangerous-universe-4-andrew/

ebookmass.com

Lyric's Enforcer: Unfortunate Souls MC Book 5 Debbie Mitchell

https://ebookmass.com/product/lyrics-enforcer-unfortunate-souls-mcbook-5-debbie-mitchell/

ebookmass.com

Understanding Youth Participation Across Europe: From Survey to Ethnography 1st Edition Hilary Pilkington

https://ebookmass.com/product/understanding-youth-participationacross-europe-from-survey-to-ethnography-1st-edition-hilarypilkington/

ebookmass.com

https://ebookmass.com/product/etextbook-978-0205859078-thepsychologist-as-detective-an-introduction-to-conducting-research-inpsychology/

ebookmass.com

Topology

JamesMunkres

SecondEdition

Pearson Education Limited

Edinburgh Gate

Harlow

Essex CM20 2JE

England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-02362-7

ISBN 13: 978-1-292-02362-5

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Printed in the United States of America

Table o f Content s

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter1

SetTheoryandLogic

Weadopt,asmostmathematiciansdo,thenaivepointofviewregardingsettheory. Weshallassumethatwhatismeantbya set ofobjectsisintuitivelyclear,andweshall proceedonthatbasiswithoutanalyzingtheconceptfurther.Suchananalysisproperly belongstothefoundationsofmathematicsandtomathematicallogic,anditisnotour purposetoinitiatethestudyofthosefields.

Logicianshaveanalyzedsettheoryingreatdetail,andtheyhaveformulatedaxiomsforthesubject.Eachoftheiraxiomsexpressesapropertyofsetsthatmathematicianscommonlyaccept,andcollectivelytheaxiomsprovideafoundationbroad enoughandstrongenoughthattherestofmathematicscanbebuiltonthem.

Itisunfortunatelytruethatcarelessuseofsettheory,relyingonintuitionalone, canleadtocontradictions.Indeed,oneofthereasonsfortheaxiomatizationofset theorywastoformulaterulesfordealingwithsetsthatwouldavoidthesecontradictions.Althoughweshallnotdealwiththeaxiomsexplicitly,theruleswefollowin dealingwithsetsderivefromthem.Inthisbook,youwilllearnhowtodealwithsets inan“apprentice”fashion,byobservinghowwehandlethemandbyworkingwith themyourself.Atsomepointofyourstudies,youmaywishtostudysettheorymore carefullyandingreaterdetail;thenacourseinlogicorfoundationswillbeinorder.

§1FundamentalConcepts

Hereweintroducetheideasofsettheory,andestablishthebasicterminologyand notation.Wealsodiscusssomepointsofelementarylogicthat,inourexperience,are apttocauseconfusion.

BasicNotation

Commonlyweshallusecapitalletters A , B , ... todenotesets,andlowercaseletters a , b , todenotethe objects or elements belongingtothesesets.Ifanobject a belongstoaset A ,weexpressthisfactbythenotation

a ∈ A .

If a doesnotbelongto A ,weexpressthisfactbywriting

a / ∈ A .

Theequalitysymbol = isusedthroughoutthisbooktomean logicalidentity.Thus, whenwewrite a = b ,wemeanthat“a ”and“b ”aresymbolsforthesameobject.This iswhatonemeansinarithmetic,forexample,whenonewrites 2 4 = 1 2 .Similarly,the equation A = B statesthat“ A ”and“ B ”aresymbolsforthesameset;thatis, A and B consistofpreciselythesameobjects.

If a and b aredifferentobjects,wewrite a = b ;andif A and B aredifferentsets, wewrite A = B .Forexample,if A isthesetofallnonnegativerealnumbers,and B isthesetofallpositiverealnumbers,then A = B ,becausethenumber0belongsto A andnotto B

Wesaythat A isa subset of B ifeveryelementof A isalsoanelementof B ;and weexpressthisfactbywriting

A ⊂ B .

Nothinginthisdefinitionrequires A tobedifferentfrom B ;infact,if A = B ,itistrue thatboth A ⊂ B and B ⊂ A .If A ⊂ B and A isdifferentfrom B ,wesaythat A isa propersubset of B ,andwewrite

A B

Therelations ⊂ and arecalled inclusion and properinclusion,respectively.If A ⊂ B ,wealsowrite B ⊃ A ,whichisread“ B contains A .” Howdoesonegoaboutspecifyingaset?Ifthesethasonlyafewelements,one cansimplylisttheobjectsintheset,writing“ A isthesetconsistingoftheelements a , b ,and c .”Insymbols,thisstatementbecomes

A ={a , b , c }, wherebracesareusedtoenclosethelistofelements.

Theusualwaytospecifyaset,however,istotakesomeset A ofobjectsandsome property thatelementsof A mayormaynotpossess,andtoformthesetconsisting ofallelementsof A havingthatproperty.Forinstance,onemighttakethesetof realnumbersandformthesubset B consistingofallevenintegers.Insymbols,this statementbecomes

B ={ x | x isaneveninteger}.

Herethebracesstandforthewords“thesetof,”andtheverticalbarstandsforthe words“suchthat.”Theequationisread“ B isthesetofall x suchthat x isaneven integer.”

TheUnionofSetsandtheMeaningof“or”

Giventwosets A and B ,onecanformasetfromthemthatconsistsofalltheelements of A togetherwithalltheelementsof B .Thissetiscalledthe union of A and B and isdenotedby A ∪ B .Formally,wedefine

A ∪ B ={ x | x ∈ A or x ∈ B }.

Butwemustpauseatthispointandmakesureexactlywhatwemeanbythestatement “ x ∈ A or x ∈ B .”

InordinaryeverydayEnglish,theword“or”isambiguous.Sometimesthestatement“ P or Q ”means“ P or Q ,orboth”andsometimesitmeans“ P or Q ,butnot both.”Usuallyonedecidesfromthecontextwhichmeaningisintended.Forexample, supposeIspoketotwostudentsasfollows:

“MissSmith,everystudentregisteredforthiscoursehastakeneitheracoursein linearalgebraoracourseinanalysis.”

“Mr.Jones,eitheryougetagradeofatleast70onthefinalexamoryouwillflunk thiscourse.”

Inthecontext,MissSmithknowsperfectlywellthatImean“everyonehashadlinear algebraoranalysis,orboth,”andMr.JonesknowsImean“eitherhegetsatleast70 orheflunks,butnotboth.”Indeed,Mr.Joneswouldbeexceedinglyunhappyifboth statementsturnedouttobetrue!

Inmathematics,onecannottoleratesuchambiguity.Onehastopickjustone meaningandstickwithit,orconfusionwillreign.Accordingly,mathematicianshave agreedthattheywillusetheword“or”inthefirstsense,sothatthestatement“ P or Q ” alwaysmeans“ P or Q ,orboth.”Ifonemeans“ P or Q ,butnotboth,”thenonehasto includethephrase“butnotboth”explicitly.

Withthisunderstanding,theequationdefining A ∪ B isunambiguous;itstatesthat A ∪ B isthesetconsistingofallelements x thatbelongto A orto B ortoboth.

TheIntersectionofSets,theEmptySet,andtheMeaningof“If ... Then”

Givensets A and B ,anotherwayonecanformasetistotakethecommonpartof A and B .Thissetiscalledthe intersection of A and B andisdenotedby A ∩ B .Formally, wedefine

Butjustaswiththedefinitionof A ∪ B ,thereisadifficulty.Thedifficultyisnotinthe meaningoftheword“and”;itisofadifferentsort.Itariseswhenthesets A and B happentohavenoelementsincommon.Whatmeaningdoesthesymbol A ∩ B have insuchacase?

Totakecareofthiseventuality,wemakeaspecialconvention.Weintroducea specialsetthatwecallthe emptyset,denotedby ∅,whichwethinkofas“theset havingnoelements.”

Usingthisconvention,weexpressthestatementthat A and B havenoelementsin commonbytheequation

A ∩ B = ∅.

Wealsoexpressthisfactbysayingthat A and B are disjoint.

Nowsomestudentsarebotheredbythenotionofan“emptyset.”“How,”theysay, “canyouhaveasetwithnothinginit?”Theproblemissimilartothatwhicharose manyyearsagowhenthenumber0wasfirstintroduced.

Theemptysetisonlyaconvention,andmathematicscouldverywellgetalong withoutit.Butitisaveryconvenientconvention,foritsavesusagooddealof awkwardnessinstatingtheoremsandinprovingthem.Withoutthisconvention,for instance,onewouldhavetoprovethatthetwosets A and B dohaveelementsin commonbeforeonecouldusethenotation A ∩ B .Similarly,thenotation

C ={ x | x ∈ A and x hasacertainproperty}

couldnotbeusedifithappenedthatnoelement x of A hadthegivenproperty.Itis muchmoreconvenienttoagreethat A ∩ B and C equaltheemptysetinsuchcases.

Sincetheemptyset ∅ ismerelyaconvention,wemustmakeconventionsrelating ittotheconceptsalreadyintroduced.Because ∅ isthoughtofas“thesetwithno elements,”itisclearweshouldmaketheconventionthatforeachobject x ,therelation x ∈ ∅ doesnothold.Similarly,thedefinitionsofunionandintersectionshowthatfor everyset A weshouldhavetheequations

A ∪ ∅ = A and A ∩ ∅ = ∅.

Theinclusionrelationisabitmoretricky.Givenaset A ,shouldweagreethat ∅ ⊂ A ?Oncemore,wemustbecarefulaboutthewaymathematiciansusetheEnglish language.Theexpression ∅ ⊂ A isashorthandwayofwritingthesentence,“Every elementthatbelongstotheemptysetalsobelongstotheset A .”Ortoputitmore

formally,“Foreveryobject x ,if x belongstotheemptyset,then x alsobelongstothe set A .”

Isthisstatementtrueornot?Somemightsay“yes”andotherssay“no.”You willneversettlethequestionbyargument,onlybyagreement.Thisisastatementof theform“If P ,then Q ,”andineverydayEnglishthemeaningofthe“if then” constructionisambiguous.Italwaysmeansthatif P istrue,then Q istruealso. Sometimesthatisallitmeans;othertimesitmeanssomethingmore:thatif P isfalse, Q mustbefalse.Usuallyonedecidesfromthecontextwhichinterpretationiscorrect.

Thesituationissimilartotheambiguityintheuseoftheword“or.”OnecanreformulatetheexamplesinvolvingMissSmithandMr.Jonestoillustratetheambiguity. SupposeIsaidthefollowing:

“MissSmith,ifanystudentregisteredforthiscoursehasnottakenacoursein linearalgebra,thenhehastakenacourseinanalysis.”

“Mr.Jones,ifyougetagradebelow70onthefinal,youaregoingtoflunkthis course.”

Inthecontext,MissSmithunderstandsthatifastudentinthecoursehasnothadlinear algebra,thenhehastakenanalysis,butifhehashadlinearalgebra,hemayormaynot havetakenanalysisaswell.AndMr.Jonesknowsthatifhegetsagradebelow70,he willflunkthecourse,butifhegetsagradeofatleast70,hewillpass.

Again,mathematicscannottolerateambiguity,soachoiceofmeaningsmustbe made.Mathematicianshaveagreedalwaystouse“if ... then”inthefirstsense,so thatastatementoftheform“If P ,then Q ”meansthatif P istrue, Q istruealso,but if P isfalse, Q maybeeithertrueorfalse.

Asanexample,considerthefollowingstatementaboutrealnumbers:

Ifx > 0,thenx 3 = 0.

Itisastatementoftheform,“If P ,then Q ,”where P isthephrase“ x > 0”(called the hypothesis ofthestatement)and Q isthephrase“ x 3 = 0”(calledthe conclusion ofthestatement).Thisisatruestatement,forineverycaseforwhichthehypothesis x > 0holds,theconclusion x 3 = 0holdsaswell.

Anothertruestatementaboutrealnumbersisthefollowing:

Ifx 2 < 0,thenx = 23;

ineverycaseforwhichthehypothesisholds,theconclusionholdsaswell.Ofcourse, ithappensinthisexamplethattherearenocasesforwhichthehypothesisholds.A statementofthissortissometimessaidtobe vacuouslytrue.

Toreturnnowtotheemptysetandinclusion,weseethattheinclusion ∅ ⊂ A doesholdforeveryset A .Writing ∅ ⊂ A isthesameassaying,“If x ∈ ∅,then x ∈ A ,”andthisstatementisvacuouslytrue.

ContrapositiveandConverse

Ourdiscussionofthe“if ... then”constructionleadsustoconsideranotherpointof elementarylogicthatsometimescausesdifficulty.Itconcernstherelationbetweena statement,its contrapositive,andits converse

Givenastatementoftheform“If P ,then Q ,”its contrapositive isdefinedtobe thestatement“If Q isnottrue,then P isnottrue.”Forexample,thecontrapositiveof thestatement

Ifx > 0,thenx 3 = 0, isthestatement

Ifx 3 = 0,thenitisnottruethatx > 0.

Notethatboththestatementanditscontrapositivearetrue.Similarly,thestatement

Ifx 2 < 0,thenx = 23, hasasitscontrapositivethestatement

Ifx = 23,thenitisnottruethatx 2 < 0.

Again,botharetruestatementsaboutrealnumbers.

Theseexamplesmaymakeyoususpectthatthereissomerelationbetweenastatementanditscontrapositive.Andindeedthereis;theyaretwowaysofsayingprecisely thesamething.Eachistrueifandonlyiftheotheristrue;theyare logicallyequivalent.

Thisfactisnothardtodemonstrate.Letusintroducesomenotationfirst.Asa shorthandforthestatement“If P ,then Q ,”wewrite

P ⇒ Q ,

whichisread“ P implies Q .”Thecontrapositivecanthenbeexpressedintheform (not Q ) ⇒ (not P ), where“not Q ”standsforthephrase“ Q isnottrue.”

Nowtheonlywayinwhichthestatement“ P ⇒ Q ”canfailtobecorrectisifthe hypothesis P istrueandtheconclusion Q isfalse.Otherwiseitiscorrect.Similarly, theonlywayinwhichthestatement(not Q ) ⇒ (not P )canfailtobecorrectisif thehypothesis“not Q ”istrueandtheconclusion“not P ”isfalse.Thisisthesame assayingthat Q isfalseand P istrue.Andthis,inturn,ispreciselythesituationin which P ⇒ Q failstobecorrect.Thus,weseethatthetwostatementsareeitherboth correctorbothincorrect;theyarelogicallyequivalent.Therefore,weshallaccepta proofofthestatement“not Q ⇒ not P ”asaproofofthestatement“ P ⇒ Q .”

Thereisanotherstatementthatcanbeformedfromthestatement P ⇒ Q .Itis thestatement

Q ⇒ P ,

whichiscalledthe converse of P ⇒ Q .Onemustbecarefultodistinguishbetweena statement’sconverseanditscontrapositive.Whereasastatementanditscontrapositive arelogicallyequivalent,thetruthofastatementsaysnothingatallaboutthetruthor falsityofitsconverse.Forexample,thetruestatement

Ifx > 0,thenx 3 = 0,

hasasitsconversethestatement

Ifx 3 = 0,thenx > 0, whichisfalse.Similarly,thetruestatement

Ifx 2 < 0,thenx = 23, hasasitsconversethestatement

Ifx = 23,thenx 2 < 0, whichisfalse.

Ifitshouldhappenthatboththestatement P ⇒ Q anditsconverse Q ⇒ P are true,weexpressthisfactbythenotation

P

⇐⇒ Q , whichisread“ P holdsifandonlyif Q holds.”

Negation

Ifonewishestoformthecontrapositiveofthestatement P ⇒ Q ,onehastoknow howtoformthestatement“not P ,”whichiscalledthe negation of P .Inmanycases, thiscausesnodifficulty;butsometimesconfusionoccurswithstatementsinvolvingthe phrases“forevery”and“foratleastone.”Thesephrasesarecalled logicalquantifiers. Toillustrate,supposethat X isaset, A isasubsetof X ,and P isastatementabout thegeneralelementof X .Considerthefollowingstatement:

Foreveryx ∈ A,statementPholds. (∗)

Howdoesoneformthenegationofthisstatement?Letustranslatetheprobleminto thelanguageofsets.Supposethatwelet B denotethesetofallthoseelements x of X forwhich P holds.Thenstatement (∗) isjustthestatementthat A isasubset of B .Whatisitsnegation?Obviously,thestatementthat A is not asubsetof B ;that is,thestatementthatthereexistsatleastoneelementof A thatdoesnotbelongto B Translatingbackintoordinarylanguage,thisbecomes

Foratleastonex ∈ A,statementPdoesnothold.

Therefore,toformthenegationofstatement(∗),onereplacesthequantifier“forevery” bythequantifier“foratleastone,”andonereplacesstatement P by its negation.

Theprocessworksinreversejustaswell;thenegationofthestatement

Foratleastonex ∈ A,statementQholds, isthestatement

Foreveryx ∈ A,statementQdoesnothold.

TheDifferenceofTwoSets

Wereturnnowtoourdiscussionofsets.Thereisoneotheroperationonsetsthatis occasionallyuseful.Itisthe difference oftwosets,denotedby A B ,anddefinedas thesetconsistingofthoseelementsof A thatarenotin B .Formally,

B ={ x | x ∈ A and x / ∈ B }.

Itissometimescalledthe complement of B relativeto A ,orthecomplementof BinA . OurthreesetoperationsarerepresentedschematicallyinFigure1.1.

RulesofSetTheory

Givenseveralsets,onemayformnewsetsbyapplyingtheset-theoreticoperationsto them.Asinalgebra,oneusesparenthesestoindicateinwhatordertheoperationsare tobeperformed.Forexample, A ∪ ( B ∩ C ) denotestheunionofthetwosets A and B ∩ C ,while ( A ∪ B ) ∩ C denotestheintersectionofthetwosets A ∪ B and C .The setsthusformedarequitedifferent,asFigure1.2shows.

Figure1.2

Figure1.1

Sometimesdifferentcombinationsofoperationsleadtothesameset;whenthat happens,onehasaruleofsettheory.Forinstance,itistruethatforanysets A , B , and C theequation

holds.TheequationisillustratedinFigure1.3;theshadedregionrepresentsthesetin question,asyoucancheckmentally.Thisequationcanbethoughtofasa“distributive law”fortheoperations ∩ and ∪.

Otherexamplesofset-theoreticrulesincludethesecond“distributivelaw,”

and DeMorgan’slaws,

Weleaveittoyoutochecktheserules.Onecanstateotherrulesofsettheory,but thesearethemostimportantones.DeMorgan’slawsareeasiertorememberifyou verbalizethemasfollows:

Thecomplementoftheunionequalstheintersectionofthecomplements. Thecomplementoftheintersectionequalstheunionofthecomplements.

CollectionsofSets

Theobjectsbelongingtoasetmaybeofanysort.Onecanconsiderthesetofalleven integers,andthesetofallblue-eyedpeopleinNebraska,andthesetofalldecksof playingcardsintheworld.Someoftheseareoflimitedmathematicalinterest,we admit!Butthethirdexampleillustratesapointwehavenotyetmentioned:namely, thattheobjectsbelongingtoasetmay themselves besets.Foradeckofcardsisitself aset,oneconsistingofpiecesofpasteboardwithcertainstandarddesignsprintedon them.Thesetofalldecksofcardsintheworldisthusasetwhoseelementsare themselvessets(ofpiecesofpasteboard).

Figure1.3

Wenowhaveanotherwaytoformnewsetsfromoldones.Givenaset A ,wecan considersetswhoseelementsaresubsetsof A .Inparticular,wecanconsidertheset ofallsubsetsof A .Thissetissometimesdenotedbythesymbol P ( A ) andiscalled the powerset of A (forreasonstobeexplainedlater).

Whenwehaveasetwhoseelementsaresets,weshalloftenrefertoitasa collection ofsetsanddenoteitbyascriptlettersuchas A or B .Thisdevicewillhelpus inkeepingthingsstraightinargumentswherewehavetoconsiderobjects,andsetsof objects,andcollectionsofsetsofobjects,allatthesametime.Forexample,wemight use A todenotethecollectionofalldecksofcardsintheworld,lettinganordinary capitalletter A denoteadeckofcardsandalowercaseletter a denoteasingleplaying card.

Acertainamountofcarewithnotationisneededatthispoint.Wemakeadistinctionbetweentheobject a ,whichisan element ofaset A ,andtheone-elementset {a }, whichisa subset of A .Toillustrate,if A istheset {a , b , c },thenthestatements

a ∈ A , {a }⊂ A , and {a }∈ P ( A ) areallcorrect,butthestatements {a }∈ A and a ⊂ A arenot.

ArbitraryUnionsandIntersections

Wehavealreadydefinedwhatwemeanbytheunionandtheintersectionoftwosets. Thereisnoreasontolimitourselvestojusttwosets,forwecanjustaswellformthe unionandintersectionofarbitrarilymanysets.

Givenacollection A ofsets,the union oftheelementsof A isdefinedbythe equation

={ x | x ∈ A foratleastone A ∈ A}.

∈A

The intersection oftheelementsof A isdefinedbytheequation

Thereisnoproblemwiththesedefinitionsifoneoftheelementsof A happenstobe theemptyset.Butitisabittrickytodecidewhat(ifanything)thesedefinitionsmean ifweallow A tobetheemptycollection.Applyingthedefinitionsliterally,weseethat noelement x satisfiesthedefiningpropertyfortheunionoftheelementsof A.Soitis reasonabletosaythat

if A isempty.Ontheotherhand,every x satisfies(vacuously)thedefiningpropertyfor theintersectionoftheelementsof A.Thequestionis,every x inwhatset?Ifonehasa givenlargeset X thatisspecifiedattheoutsetofthediscussiontobeone’s“universeof discourse,”andoneconsidersonlysubsetsof X throughout,itisreasonabletolet

when A isempty.Notallmathematiciansfollowthisconvention,however.Toavoid difficulty, weshallnotdefinetheintersectionwhen A isempty

CartesianProducts

Thereisyetanotherwayofformingnewsetsfromoldones;itinvolvesthenotionofan “orderedpair”ofobjects.Whenyoustudiedanalyticgeometry,thefirstthingyoudid wastoconvinceyourselfthatafteronehaschosenan x -axisanda y -axisintheplane, everypointintheplanecanbemadetocorrespondtoauniqueorderedpair ( x , y ) of realnumbers.(Inamoresophisticatedtreatmentofgeometry,theplaneismorelikely tobe defined asthesetofallorderedpairsofrealnumbers!)

Thenotionoforderedpaircarriesovertogeneralsets.Givensets A and B ,we definetheircartesianproduct A × B tobethesetofallorderedpairs (a , b ) forwhich a isanelementof A and b isanelementof B .Formally,

× B ={(a , b ) | a ∈ A and b ∈ B }.

Thisdefinitionassumesthattheconceptof“orderedpair”isalreadygiven.Itcanbe takenasaprimitiveconcept,aswasthenotionof“set”;oritcanbegivenadefinitionin termsofthesetoperationsalreadyintroduced.Onedefinitionintermsofsetoperationsis expressedbytheequation

(a , b ) ={{a }, {a , b }};

itdefinestheorderedpair (a , b ) asacollectionofsets.If a = b ,thisdefinitionsaysthat (a , b ) isacollectioncontainingtwosets,oneofwhichisaone-elementsetandtheother atwo-elementset.The firstcoordinate oftheorderedpairisdefinedtobetheelement belongingtobothsets,andthe secondcoordinate istheelementbelongingtoonlyoneof thesets.If a = b ,then (a , b ) isacollectioncontainingonlyoneset {a },since {a , b }= {a , a }={a } inthiscase.Itsfirstcoordinateandsecondcoordinatebothequaltheelement inthissingleset.

Ithinkitisfairtosaythatmostmathematiciansthinkofanorderedpairasaprimitive conceptratherthanthinkingofitasacollectionofsets!

Letusmakeacommentonnotation.Itisanunfortunatefactthatthenotation (a , b ) isfirmlyestablishedinmathematicswithtwoentirelydifferentmeanings.Onemeaning,asanorderedpairofobjects,wehavejustdiscussed.Theothermeaningisthe oneyouarefamiliarwithfromanalysis;if a and b arerealnumbers,thesymbol (a , b ) isusedtodenotetheintervalconsistingofallnumbers x suchthat a < x < b .Mostof thetime,thisconflictinnotationwillcausenodifficultybecausethemeaningwillbe clearfromthecontext.Wheneverasituationoccurswhereconfusionispossible,we shalladoptadifferentnotationfortheorderedpair (a , b ),denotingitbythesymbol

instead.

A

Exercises

1. Checkthedistributivelawsfor ∪ and ∩ andDeMorgan’slaws.

2. Determinewhichofthefollowingstatementsaretrueforallsets A , B , C ,and D . Ifadoubleimplicationfails,determinewhetheroneortheotherofthepossible implicationsholds.Ifanequalityfails,determinewhetherthestatementbecomestrueifthe“equals”symbolisreplacedbyoneortheotheroftheinclusion symbols ⊂ or ⊃.

(a) A ⊂ B and A ⊂ C ⇔ A ⊂ ( B ∪ C ).

(b) A ⊂ B or A ⊂ C ⇔ A ⊂ ( B ∪ C )

(c) A ⊂ B and A ⊂ C ⇔ A ⊂ ( B ∩ C ).

(d) A ⊂ B or A ⊂ C ⇔ A ⊂ ( B ∩ C ).

(e) A ( A B ) = B .

(f) A ( B A ) = A B

(g) A ∩ ( B C ) = ( A ∩ B ) ( A ∩ C ).

(h) A ∪ ( B C ) = ( A ∪ B ) ( A ∪ C ).

(i) ( A ∩ B ) ∪ ( A B ) = A .

(j) A ⊂ C and B ⊂ D ⇒ ( A × B ) ⊂ (C × D ).

(k)Theconverseof(j).

(l)Theconverseof(j),assumingthat A and B arenonempty.

(m) ( A × B ) ∪ (C × D ) = ( A ∪ C ) × ( B ∪ D ).

(n) ( A × B ) ∩ (C × D ) = ( A ∩ C ) × ( B ∩ D ).

(o) A × ( B C ) = ( A × B ) ( A × C ).

(p) ( A B ) × (C D ) = ( A × C B × C ) A × D

(q) ( A × B ) (C × D ) = ( A C ) × ( B D ).

3. (a)Writethecontrapositiveandconverseofthefollowingstatement:“If x < 0, then x 2 x > 0,”anddeterminewhich(ifany)ofthethreestatementsare true.

(b)Dothesameforthestatement“If x > 0,then x 2 x > 0.”

4. Let A and B besetsofrealnumbers.Writethenegationofeachofthefollowing statements:

(a)Forevery a ∈ A ,itistruethat a 2 ∈ B

(b)Foratleastone a ∈ A ,itistruethat a 2 ∈ B .

(c)Forevery a ∈ A ,itistruethat a 2 / ∈ B .

(d)Foratleastone a / ∈ A ,itistruethat a 2 ∈ B .

5. Let A beanonemptycollectionofsets.Determinethetruthofeachofthe followingstatementsandoftheirconverses:

(a) x ∈ A ∈A A ⇒ x ∈ A foratleastone A ∈ A. (b) x ∈ A ∈A A ⇒ x ∈ A forevery A ∈ A.

(c) x ∈ A ∈A A ⇒ x ∈ A foratleastone A ∈ A.

(d) x ∈ A ∈A A ⇒ x ∈ A forevery A ∈ A

6. WritethecontrapositiveofeachofthestatementsofExercise5.

7. Givensets A , B ,and C ,expresseachofthefollowingsetsintermsof A , B , and C ,usingthesymbols ∪, ∩,and

D ={ x | x ∈ A and( x ∈ B or x ∈ C )},

E ={ x | ( x ∈ A and x ∈ B )or x ∈ C },

F ={ x | x ∈ A and( x ∈ B ⇒ x ∈ C )}

8. Ifaset A hastwoelements,showthat P ( A ) hasfourelements.Howmany elementsdoes P ( A ) haveif A hasoneelement?Threeelements?Noelements? Whyis P ( A ) calledthepowersetof A ?

9. FormulateandproveDeMorgan’slawsforarbitraryunionsandintersections.

10. Let R denotethesetofrealnumbers.Foreachofthefollowingsubsetsof R × R, determinewhetheritisequaltothecartesianproductoftwosubsetsof R.

(a) {( x , y ) | x isaninteger}.

(b) {( x , y ) | 0 < y ≤ 1}

(c) {( x , y ) | y > x }.

(d) {( x , y ) | x isnotanintegerand y isaninteger}.

(e) {( x , y ) | x 2 + y 2 < 1}.

§2Functions

Theconceptof function isoneyouhaveseenmanytimesalready,soitishardlynecessarytoremindyouhowcentralitistoallmathematics.Inthissection,wegivethe precisemathematicaldefinition,andweexploresomeoftheassociatedconcepts.

Afunctionisusuallythoughtofasa rule thatassignstoeachelementofaset A , anelementofaset B .Incalculus,afunctionisoftengivenbyasimpleformulasuch as f ( x ) = 3 x 2 + 2orperhapsbyamorecomplicatedformulasuchas f ( x ) =

k =1 x k .

Oneoftendoesnotevenmentionthesets A and B explicitly,agreeingtotake A tobe thesetofallrealnumbersforwhichtherulemakessenseand B tobethesetofallreal numbers.

Asonegoesfurtherinmathematics,however,oneneedstobemorepreciseabout whatafunctionis.Mathematicians think offunctionsinthewaywejustdescribed, butthedefinitiontheyuseismoreexact.First,wedefinethefollowing:

Definition. A ruleofassignment isasubset r ofthecartesianproduct C × D oftwo sets,havingthepropertythateachelementof C appearsasthefirstcoordinateof at mostone orderedpairbelongingto r .

Thus,asubset r of C × D isaruleofassignmentif [(c , d ) ∈ r and (c , d ) ∈ r ] ⇒[d = d ]

Wethinkof r asawayofassigning,totheelement c of C ,theelement d of D for which (c , d ) ∈ r .

Givenaruleofassignment r ,the domain ofrisdefinedtobethesubsetof C consistingofallfirstcoordinatesofelementsof r ,andthe imageset of r isdefinedas thesubsetof D consistingofallsecondcoordinatesofelementsof r .Formally,

domain r ={c | thereexists d ∈ D suchthat (c , d ) ∈ r },

image r ={d | thereexists c ∈ C suchthat (c , d ) ∈ r }.

Notethatgivenaruleofassignment r ,itsdomainandimageareentirelydetermined. Nowwecansaywhatafunctionis.

Definition. A function f isaruleofassignment r ,togetherwithaset B thatcontains theimagesetof r .Thedomain A oftherule r isalsocalledthe domain ofthe function f ;theimagesetof r isalsocalledthe imageset of f ;andtheset B iscalled the range of f †

If f isafunctionhavingdomain A andrange B ,weexpressthisfactbywriting f : A −→ B , whichisread“ f isafunctionfrom A to B ,”or“ f isamappingfrom A into B ,”or simply“ f maps A into B .”Onesometimesvisualizes f asageometrictransformation physicallycarryingthepointsof A topointsof B .

If f : A → B andif a isanelementof A ,wedenoteby f (a ) theuniqueelement of B thattheruledetermining f assignsto a ;itiscalledthe value of f at a ,or sometimesthe image of a under f .Formally,if r istheruleofthefunction f ,then f (a ) denotestheuniqueelementof B suchthat (a , f (a )) ∈ r Usingthisnotation,onecangobacktodefiningfunctionsalmostasonedidbefore, withnolackofrigor.Forinstance,onecanwrite(letting R denotetherealnumbers)

“Let f bethefunctionwhoseruleis {( x , x 3 + 1) | x ∈ R} andwhose rangeis R,” oronecanequallywellwrite

“Let f : R → R bethefunctionsuchthat f ( x ) = x 3 + 1.”

Bothsentencesspecifypreciselythesamefunction.Butthesentence“Let f bethe function f ( x ) = x 3 + 1”isnolongeradequateforspecifyingafunctionbecauseit specifiesneitherthedomainnortherangeof f .

† Analystsareapttousetheword“range”todenotewhatwehavecalledthe“imageset”of f Theyavoidgivingtheset B aname.

Definition. If f : A → B andif A 0 isasubsetof A ,wedefinethe restriction of f to A 0 tobethefunctionmapping A 0 into B whoseruleis

{(a , f (a )) | a ∈ A 0 }.

Itisdenotedby f | A 0 ,whichisread“ f restrictedto A 0 .”

E XAMPLE 1.Let R denotetherealnumbersandlet R+ denotethenonnegativereals. Considerthefunctions

f : R −→ R definedby f ( x ) = x 2 , g : R+ −→ R definedby g ( x ) = x 2 , h : R −→ R+ definedby h ( x ) = x 2 , k : R+ −→ R+ definedby k ( x ) = x 2 .

Thefunction g isdifferentfromthefunction f becausetheirrulesaredifferentsubsetsof R × R;itistherestrictionof f totheset R+ .Thefunction h isalsodifferentfrom f ,even thoughtheirrulesarethesameset,becausetherangespecifiedfor h isdifferentfromthe rangespecifiedfor f .Thefunction k isdifferentfromallofthese.Thesefunctionsare picturedinFigure2.1.

Restrictingthedomainofafunctionandchangingitsrangearetwowaysofforminganewfunctionfromanoldone.Anotherwayistoformthecompositeoftwo functions.

Definition. Givenfunctions f : A → B and g : B → C ,wedefinethe composite g ◦ f of f and g asthefunction g ◦ f : A → C definedbytheequation ( g ◦ f )(a ) = g ( f (a ))

Formally, g ◦ f : A → C isthefunctionwhoseruleis {(a , c ) | Forsome b ∈ B , f (a ) = b and g (b ) = c }

Weoftenpicturethecomposite g ◦ f asinvolvingaphysicalmovementofthepoint a tothepoint f (a ),andthentothepoint g ( f (a )),asillustratedinFigure2.2.

Notethat g ◦ f isdefinedonlywhentherangeof fequals thedomainof g .

Figure2.1

E XAMPLE 2.Thecompositeofthefunction f : R → R givenby f ( x ) = 3 x 2 + 2and thefunction g : R → R givenby g ( x ) = 5 x isthefunction g ◦ f : R → R givenby

Thecomposite f ◦ g canalsobeformedinthiscase;itisthequitedifferentfunction f ◦ g : R → R givenby

.

Definition. Afunction f : A → B issaidtobe injective (or one-to-one)ifforeach pairofdistinctpointsof A ,theirimagesunder f aredistinct.Itissaidtobe surjective (or f issaidtomap A onto B )ifeveryelementof B istheimageofsomeelement of A underthefunction f .If f isbothinjectiveandsurjective,itissaidtobe bijective (oriscalleda one-to-onecorrespondence).

Moreformally, f isinjectiveif

[ f (a ) = f (a )] ⇒[a = a ], and f issurjectiveif

[b ∈ B ] ⇒[b = f (a ) foratleastone a ∈ A ].

Injectivityof f dependsonlyontheruleof f ;surjectivitydependsontherange of f aswell.Youcancheckthatthecompositeoftwoinjectivefunctionsisinjective,andthecompositeoftwosurjectivefunctionsissurjective;itfollowsthatthe compositeoftwobijectivefunctionsisbijective.

If f isbijective,thereexistsafunctionfrom B to A calledthe inverse of f .Itis denotedby f 1 andisdefinedbyletting f 1 (b ) bethatuniqueelement a of A for which f (a ) = b .Given b ∈ B ,thefactthat f issurjectiveimpliesthatthere exists suchanelement a ∈ A ;thefactthat f isinjectiveimpliesthatthereis onlyone such element a .Itiseasytoseethatif f isbijective, f 1 isalsobijective.

E XAMPLE 3.Consideragainthefunctions f , g , h ,and k ofFigure2.1.Thefunction f : R → R givenby f ( x ) = x 2 isneitherinjectivenorsurjective.Itsrestriction g tothe nonnegativerealsisinjectivebutnotsurjective.Thefunction h : R → R+ obtainedfrom f

Figure2.2

bychangingtherangeissurjectivebutnotinjective.Thefunction k : R+ → R+ obtained from f byrestrictingthedomain and changingtherangeisbothinjectiveandsurjective, soithasaninverse.Itsinverseis,ofcourse,whatweusuallycallthe square-rootfunction. Ausefulcriterionforshowingthatagivenfunction f isbijectiveisthefollowing, whoseproofislefttotheexercises:

Lemma2.1. Let f : A → B .Iftherearefunctions g : B → A and h : B → A suchthat g ( f (a )) = a forevery a in A and f (h (b )) = b forevery b in B ,then f is bijectiveand g = h = f 1 .

Definition. Let f : A → B .If A 0 isasubsetof A ,wedenoteby f ( A 0 ) theset ofallimagesofpointsof A 0 underthefunction f ;thissetiscalledthe image of A 0 under f .Formally,

f ( A 0 ) ={b | b = f (a ) foratleastone a ∈ A 0 }

Ontheotherhand,if B0 isasubsetof B ,wedenoteby f 1 ( B0 ) thesetofallelements of A whoseimagesunder f liein B0 ;itiscalledthe preimage of B0 under f (orthe “counterimage,”orthe“inverseimage,”of B0 ).Formally, f 1 ( B0 ) ={a | f (a ) ∈ B0 }

Ofcourse,theremaybenopoints a of A whoseimagesliein B0 ;inthatcase, f 1 ( B0 ) isempty.

Notethatif f : A → B isbijectiveand B0 ⊂ B ,wehavetwomeaningsforthe notation f 1 ( B0 ).Itcanbetakentodenotethe preimage of B0 underthefunction f ortodenotethe image of B0 underthefunction f 1 : B → A .Thesetwomeanings givepreciselythesamesubsetof A ,however,sothereis,infact,noambiguity. Somecareisneededifoneistousethe f and f 1 notationcorrectly.Theoperation f 1 ,forinstance,whenappliedtosubsetsof B ,behavesverynicely;itpreserves inclusions,unions,intersections,anddifferencesofsets.Weshallusethisfactfrequently.Buttheoperation f ,whenappliedtosubsetsof A ,preservesonlyinclusions andunions.SeeExercises2and3.

Asanothersituationwherecareisneeded,wenotethatitisnotingeneraltruethat f 1 ( f ( A 0 )) = A 0 and f ( f 1 ( B0 )) = B0 .(Seethefollowingexample.)Therelevant rules,whichweleavetoyoutocheck,arethefollowing:If f : A → B andif A 0 ⊂ A and B0 ⊂ B ,then

A 0 ⊂ f 1 ( f ( A 0 )) and f ( f 1 ( B0 )) ⊂ B0 .

Thefirstinclusionisanequalityif f isinjective,andthesecondinclusionisanequality if f issurjective.

E XAMPLE 4.Considerthefunction f : R → R givenby f ( x ) = 3 x 2 + 2(Figure2.3).

Let [a , b ] denotetheclosedinterval a ≤ x ≤ b .Then f 1 ( f ([0, 1])) = f 1 ([2, 5]) =[−1, 1], and f ( f 1 ([0, 5])) = f ([−1, 1]) =[2, 5].

Exercises

1. Let f : A → B .Let A 0 ⊂ A and B0 ⊂ B .

(a)Showthat A 0 ⊂ f 1 ( f ( A 0 )) andthatequalityholdsif f isinjective.

(b)Showthat f ( f 1 ( B0 )) ⊂ B0 andthatequalityholdsif f issurjective.

2. Let f : A → B andlet A i ⊂ A and Bi ⊂ B for i = 0and i = 1.Showthat f 1 preservesinclusions,unions,intersections,anddifferencesofsets:

(a) B0 ⊂ B1 ⇒ f 1 ( B0 ) ⊂ f 1 ( B1 ).

(b) f 1 ( B0 ∪ B1 ) = f 1 ( B0 ) ∪ f 1 ( B1 )

(c) f 1 ( B0 ∩ B1 ) = f 1 ( B0 ) ∩ f 1 ( B1 ).

(d) f 1 ( B0 B1 ) = f 1 ( B0 ) f 1 ( B1 ).

Showthat f preservesinclusionsandunionsonly:

(e) A 0 ⊂ A 1 ⇒ f ( A 0 ) ⊂ f ( A 1 ).

Figure2.3

(f) f ( A 0 ∪ A 1 ) = f ( A 0 ) ∪ ( A 1 ).

(g) f ( A 0 ∩ A 1 ) ⊂ f ( A 0 ) ∩ f ( A 1 );showthatequalityholdsif f isinjective.

(h) f ( A 0 A 1 ) ⊃ f ( A 0 ) f ( A 1 );showthatequalityholdsif f isinjective.

3. Showthat(b),(c),(f),and(g)ofExercise2holdforarbitraryunionsandintersections.

4. Let f : A → B and g : B → C .

(a)If C 0 ⊂ C ,showthat ( g ◦ f ) 1 (C 0 ) = f 1 ( g 1 (C 0 ))

(b)If f and g areinjective,showthat g ◦ f isinjective.

(c)If g ◦ f isinjective,whatcanyousayaboutinjectivityof f and g ?

(d)If f and g aresurjective,showthat g ◦ f issurjective.

(e)If g ◦ f issurjective,whatcanyousayaboutsurjectivityof f and g ?

(f)Summarizeyouranswersto(b)–(e)intheformofatheorem.

5. Ingeneral,letusdenotethe identityfunction foraset C by i C .Thatis,define i C : C → C tobethefunctiongivenbytherule i C ( x ) = x forall x ∈ C .

Given f : A → B ,wesaythatafunction g : B → A isa leftinverse for f if g ◦ f = i A ;andwesaythat h : B → A isa rightinverse for f if f ◦ h = i B .

(a)Showthatif f hasaleftinverse, f isinjective;andif f hasarightinverse, f issurjective.

(b)Giveanexampleofafunctionthathasaleftinversebutnorightinverse.

(c)Giveanexampleofafunctionthathasarightinversebutnoleftinverse.

(d)Canafunctionhavemorethanoneleftinverse?Morethanonerightinverse?

(e)Showthatif f hasbothaleftinverse g andarightinverse h ,then f is bijectiveand g = h = f 1 .

6. Let f : R → R bethefunction f ( x ) = x 3 x .Byrestrictingthedomainand rangeof f appropriately,obtainfrom f abijectivefunction g .Drawthegraphs of g and g 1 .(Thereareseveralpossiblechoicesfor g .)

§3Relations

Aconceptthatis,insomeways,moregeneralthanthatoffunctionistheconceptof a relation.Inthissection,wedefinewhatmathematiciansmeanbyarelation,and weconsidertwotypesofrelationsthatoccurwithgreatfrequencyinmathematics: equivalencerelations and orderrelations.Orderrelationswillbeusedthroughoutthe book;equivalencerelationswillnotbeuseduntil§22.

Definition. A relation onaset A isasubset C ofthecartesianproduct A × A .

If C isarelationon A ,weusethenotation xCy tomeanthesamethingas ( x , y ) ∈ C .Wereadit“ x isintherelation C to y .”

Aruleofassignment r forafunction f : A → A isalsoasubsetof A × A .Butit isasubsetofaveryspecialkind:namely,onesuchthateachelementof A appearsas thefirstcoordinateofanelementof r exactlyonce. Any subsetof A × A isarelation on A .

E XAMPLE 1.Let P denotethesetofallpeopleintheworld,anddefine D ⊂ P × P by theequation

D ={( x , y ) | x isadescendantof y }

Then D isarelationontheset P .Thestatements“ x isintherelation D to y ”and“ x is adescendantof y ”meanpreciselythesamething,namely,that ( x , y ) ∈ D .Twoother relationson P arethefollowing:

B ={( x , y ) | x hasanancestorwhoisalsoanancestorof y }, S ={( x , y ) | theparentsof x aretheparentsof y }

Wecancall B the“bloodrelation”(punintended),andwecancall S the“siblingrelation.” Thesethreerelationshavequitedifferentproperties.Thebloodrelationshipissymmetric, forinstance(if x isabloodrelativeof y ,then y isabloodrelativeof x ),whereasthe descendantrelationisnot.Weshallconsidertheserelationsagainshortly.

EquivalenceRelationsandPartitions

An equivalencerelation onaset A isarelation C on A havingthefollowingthree properties:

(1)(Reflexivity) xCx forevery x in A .

(2)(Symmetry)If xCy ,then yCx .

(3)(Transitivity)If xCy and yCz ,then xCz .

E XAMPLE 2.AmongtherelationsdefinedinExample1,thedescendantrelation D is neitherreflexivenorsymmetric,whilethebloodrelation B isnottransitive(Iamnota bloodrelationtomywife,althoughmychildrenare!)Thesiblingrelation S is,however, anequivalencerelation,asyoumaycheck.

Thereisnoreasononemustuseacapitalletter—orindeedaletterofanysort— todenotearelation,eventhoughit is aset.Anothersymbolwilldojustaswell. Onesymbolthatisfrequentlyusedtodenoteanequivalencerelationisthe“tilde” symbol ∼.Statedinthisnotation,thepropertiesofanequivalencerelationbecome (1) x ∼ x forevery x in A .

(2)If x ∼ y ,then y ∼ x

(3)If x ∼ y and y ∼ z ,then x ∼ z

Therearemanyothersymbolsthathavebeendevisedtostandforparticularequivalencerelations;weshallmeetsomeoftheminthepagesofthisbook.

Givenanequivalencerelation ∼ onaset A andanelement x of A ,wedefinea certainsubset E of A ,calledthe equivalenceclass determinedby x ,bytheequation

E ={ y | y ∼ x }.

Notethattheequivalenceclass E determinedby x contains x ,since x ∼ x .Equivalenceclasseshavethefollowingproperty:

Lemma3.1. Twoequivalenceclasses E and E areeitherdisjointorequal.

Proof. Let E betheequivalenceclassdeterminedby x ,andlet E betheequivalence classdeterminedby x .Supposethat E ∩ E isnotempty;letybeapointof E ∩ E . SeeFigure3.1.Weshowthat E = E .

Bydefinition,wehave y ∼ x and y ∼ x .Symmetryallowsustoconcludethat x ∼ y and y ∼ x ;fromtransitivityitfollowsthat x ∼ x .Ifnow w isanypointof E , wehave w ∼ x bydefinition;itfollowsfromanotherapplicationoftransitivitythat w ∼ x .Weconcludethat E ⊂ E .

Thesymmetryofthesituationallowsustoconcludethat E ⊂ E aswell,sothat E = E

Givenanequivalencerelationonaset A ,letusdenoteby E thecollectionofall theequivalenceclassesdeterminedbythisrelation.Theprecedinglemmashowsthat distinctelementsof E aredisjoint.Furthermore,theunionoftheelementsof E equals allof A becauseeveryelementof A belongstoanequivalenceclass.Thecollection E isaparticularexampleofwhatiscalledapartitionof A :

Definition. A partition ofaset A isacollectionofdisjointnonemptysubsetsof A whoseunionisallof A

Studyingequivalencerelationsonaset A andstudyingpartitionsof A arereally thesamething.Givenanypartition D of A ,thereisexactlyoneequivalencerelation on A fromwhichitisderived.

Theproofisnotdifficult.Toshowthatthepartition D comesfromsomeequivalencerelation,letusdefinearelation C on A bysetting xCy if x and y belongto thesameelementof D .Symmetryof C isobvious;reflexivityfollowsfromthefact thattheunionoftheelementsof D equalsallof A ;transitivityfollowsfromthefact thatdistinctelementsof D aredisjoint.Itissimpletocheckthatthecollectionof equivalenceclassesdeterminedby C ispreciselythecollection D .

Toshowthereisonlyonesuchequivalencerelation,supposethat C 1 and C 2 are twoequivalencerelationson A thatgiverisetothesamecollectionofequivalence classes D .Given x ∈ A ,weshowthat yC 1 x ifandonlyif yC 2 x ,fromwhichwe concludethat C 1 = C 2 .Let E 1 betheequivalenceclassdeterminedby x relativeto therelation C 1 ;let E 2 betheequivalenceclassdeterminedby x relativetotherelation C 2 .Then E 1 isanelementof D ,sothatitmustequaltheuniqueelement D of D that

Figure3.1

contains x .Similarly, E 2 mustequal D .Nowbydefinition. E 1 consistsofall y such that yC 1 x ;and E 2 consistsofall y suchthat yC 2 x .Since E 1 = D = E 2 ,ourresultis proved.

E XAMPLE 3.Definetwopointsintheplanetobeequivalentiftheylieatthesame distancefromtheorigin.Reflexivity,symmetry,andtransitivityholdtrivially.Thecollection E ofequivalenceclassesconsistsofallcirclescenteredattheorigin,alongwiththeset consistingoftheoriginalone.

E XAMPLE 4.Definetwopointsoftheplanetobeequivalentiftheyhavethesame y -coordinate.Thecollectionofequivalenceclassesisthecollectionofallstraightlinesin theplaneparalleltothe x -axis.

E XAMPLE 5.Let L bethecollectionofallstraightlinesintheplaneparalleltotheline y =− x .Then L isapartitionoftheplane,sinceeachpointliesonexactlyonesuchline. Thepartition L comesfromtheequivalencerelationontheplanethatdeclaresthepoints ( x 0 , y0 ) and ( x 1 , y1 ) tobeequivalentif x 0 + y0 = x 1 + y1 .

E XAMPLE 6.Let L bethecollectionof all straightlinesintheplane.Then L isnot apartitionoftheplane,fordistinctelementsof L arenotnecessarilydisjoint;twolines mayintersectwithoutbeingequal.

OrderRelations

Arelation C onaset A iscalledan orderrelation (ora simpleorder,ora linearorder) ifithasthefollowingproperties:

(1)(Comparability)Forevery x and y in A forwhich x = y ,either xCy or yCx

(2)(Nonreflexivity)Forno x in A doestherelation xCx hold.

(3)(Transitivity)If xCy and yCz ,then xCz Notethatproperty(1)doesnotbyitselfexcludethepossibilitythatforsomepairof elements x and y of A ,boththerelations xCy and yCx hold(since“or”means“one ortheother,orboth”).Butproperties(2)and(3)combineddoexcludethispossibility;forifboth xCy and yCx held,transitivitywouldimplythat xCx ,contradicting nonreflexivity.

E XAMPLE 7.Considertherelationonthereallineconsistingofallpairs ( x , y ) ofreal numberssuchthat x < y .Itisanorderrelation,calledthe“usualorderrelation,”onthe realline.Alessfamiliarorderrelationonthereallineisthefollowing:Define xCy if x 2 < y 2 ,orif x 2 = y 2 and x < y .Youcancheckthatthisisanorderrelation.

E XAMPLE 8.ConsideragaintherelationshipsamongpeoplegiveninExample1.The bloodrelation B satisfiesnoneofthepropertiesofanorderrelation,andthesiblingrelation S satisfiesonly(3).Thedescendantrelation D doessomewhatbetter,foritsatisfies both(2)and(3);however,comparabilitystillfails.Relationsthatsatisfy(2)and(3)occur oftenenoughinmathematicstobegivenaspecialname.Theyarecalled strictpartial order relations;weshallconsiderthemlater(see§11).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.