Instant ebooks textbook Instructor's solutions manual to quantum chemistry 7th edition ira n. levine

Page 1


https://ebookmass.com/product/instructors-solutions-manual-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Student Solutions Manual to Accompany Atkins' Physical Chemistry 11th Edition Peter Bolgar

https://ebookmass.com/product/student-solutions-manual-to-accompanyatkins-physical-chemistry-11th-edition-peter-bolgar/

ebookmass.com

Microalgae in Health and Disease Prevention Ira Levine

https://ebookmass.com/product/microalgae-in-health-and-diseaseprevention-ira-levine/

ebookmass.com

Cardiology Secrets, 6th Edition Glenn N. Levine

https://ebookmass.com/product/cardiology-secrets-6th-edition-glenn-nlevine/

ebookmass.com

Who Decides? : States as Laboratories of Constitutional Experimentation Jeffrey S. Sutton

https://ebookmass.com/product/who-decides-states-as-laboratories-ofconstitutional-experimentation-jeffrey-s-sutton/

ebookmass.com

Strategic Staffing, Global Edition [Print Replica] (Ebook PDF)

https://ebookmass.com/product/strategic-staffing-global-edition-printreplica-ebook-pdf/

ebookmass.com

The Language of Feminine Beauty in Russian and Japanese Societies 1st ed. Edition Natalia Konstantinovskaia

https://ebookmass.com/product/the-language-of-feminine-beauty-inrussian-and-japanese-societies-1st-ed-edition-nataliakonstantinovskaia/

ebookmass.com

2017 Financial Risk Manager (FRM) Exam Part I Financial Markets and Products Garp

https://ebookmass.com/product/2017-financial-risk-manager-frm-exampart-i-financial-markets-and-products-garp/

ebookmass.com

Blame It on the Mistletoe Beth Garrod

https://ebookmass.com/product/blame-it-on-the-mistletoe-beth-garrod-2/

ebookmass.com

Quantum International Relations: A Human Science for World Politics James Der Derian

https://ebookmass.com/product/quantum-international-relations-a-humanscience-for-world-politics-james-der-derian/

ebookmass.com

3rd Edition Maguire

https://ebookmass.com/product/the-price-of-football-understandingfootball-club-finance-3rd-edition-maguire/

ebookmass.com

Chapter 1

The Schrödinger Equation

1.1 (a) F; (b) T; (c) T.

1.2 (a) photon/ Ehhc ν λ === (6.626×10–34Js)(2.998×108m/s)/(1064 × 10–9m)= 1.867×10–19J.

(b) E =(5×106J/s)(2×10–8s)=0.1J= n(1.867×10–19J)and n =5×1017

1.3 Useofphoton/ Ehc λ = gives 23348 9 (6.02210)(6.62610Js)(2.99810m/s)399kJ 30010m E ××× == ×

1.4 (a) max Thν =−Φ= (6.626×10–34Js)(2.998×108m/s)/(200×10–9m)–(2.75eV)(1.602×10–19J/eV)= 5.53×10–19J=3.45eV.

(b) Theminimumphotonenergyneededtoproducethephotoelectriceffectis (2.75eV)(1.602×10–19J/eV)= hν =hc/λ =(6.626×10–34Js)(2.998×108m/s)/λ and λ =4.51×10–7m=451nm.

(c) Sincetheimpuremetalhasasmallerworkfunction,therewillbemoreenergyleft overaftertheelectronescapesandthemaximum T islargerforimpureNa.

1.5 (a) Athighfrequencies,wehave/1 bT e ν >> andthe1inthedenominatorofPlanck’s formulacanbeneglectedtogiveWien’sformula.

(b) TheTaylorseriesfortheexponentialfunctionis21/2!. x exx=+++ For1, x << wecanneglect2 x andhigherpowerstogive1. x ex ≈ Taking/xhkT ν ≡ ,wehavefor Planck’sformulaatlowfrequencies

3332 /2/22 222 1(1)(/)bThkT ahhkT ecechkTc

1.6 / hm λ = v 137/hmc == 137(6.626×10–34Js)/(9.109×10–31kg)(2.998×108m/s)= 3.32×10–10m=0.332nm.

1-1

Copyright©2014PearsonEducation,Inc.

1.7 Integrationgives2 1 2002 ().xgtgttc =−+++ v Ifweknowthattheparticlehadposition 0x attime0, t then2 1 000002 2() xgtgttc =−+++ v and2 1 20000 2.cxgtt =−− v Substitution oftheexpressionfor2 c intotheequationfor x gives2 1 0000 2()().xxgtttt =−−+− v

1.8 222 (/)(/)(/2)(/)itmxV −∂Ψ∂=−∂Ψ∂+Ψ .For 2/ , ibtbmx aee Ψ= wefind / tib ∂Ψ∂=−Ψ , 1 /2, xbmx ∂Ψ∂=−Ψ and2211/22(/) xbmbmxx ∂ Ψ∂=−Ψ−∂Ψ∂ = 1111222222(2)24 bmbmxbmxbmbmx −Ψ−−Ψ=−Ψ+Ψ .Substitutingintothe time-dependentSchrödingerequationandthendividingby Ψ,weget 212222 (/)()(/2)(24) iibmbmbmxV −−Ψ=−−+Ψ+Ψ and22 2 Vbmx =

1.9 (a) F; (b) F.(Thesestatementsarevalidonlyforstationarystates.)

1.10 ψ satisfiesthetime-independentSchrödinger(1.19). 2 / xbecx ψ ∂∂= 222 bcxecx ; 222 /2xbcxecx ψ ∂∂=−− 224423cxcxbcxebcxe + = 226423cxcxbcxebcxe−+ .Equation (1.19)becomes 22223 (/2)(64) cxcxmbcxebcxe−−+ + 22222(2/) cxcxcxmbxeEbxe = . The x3termscanceland23/ Ecm== 3(6.626×10–34Js)22.00(10–9m)–2/4π 2(1.00×10–30kg)=6.67×10–20J.

1.11 Onlythetime-dependentequation.

1.12 (a) 2322||/||(2/) xb dxbxedx Ψ== 2(3.093922(0.90nm)/(3.0nm)9 10m)(0.9010m)(0.000110m) e ××× =3.29×10–6 .

(b) For0, x ≥ wehave||xx = andtheprobabilityisgivenby(1.23)and(A.7)as 2nm2nm2322/32/2232nm 000 ||(2/)(2/)(/2/2/4)| xbxb dxbxedxbebxxbb ∫∫Ψ==−−− = 2/222nm 0(//1/2)| xb exbxb −++ = 4/3(4/92/31/2)1/2 e −+++ =0.0753.

(c) Ψ iszeroat x =0,andthisistheminimumpossibleprobabilitydensity.

(d) 0 2322/322/ 0 ||(2/)(2/). xbxb dxbxedxbxedx ∞∞ −∞−∞ Ψ=+ ∫∫∫ Let w =–x inthefirst integralontheright.Thisintegralbecomes 022/22/ 0 (),wbwb wedwwedw ∞ ∞ −= ∫∫ which equalsthesecondintegralontheright[seeEq.(4.10)].Hence 2322/33 0 ||(4/)(4/)[2!/(/2)] xb dxbxedxbb ∞∞ −∞ ∫∫Ψ== =1,where(A.8)inthe Appendixwasused.

1-2

Copyright©2014PearsonEducation,Inc.

1.13 Theintervalissmallenoughtobeconsideredinfinitesimal(since Ψ changesnegligibly withinthisinterval).At t =0,wehave 22261/222/||(32/) xc dxcxedx π Ψ == [32/π(2.00Å)6]1/2(2.00Å)2 e –2(0.001Å)=0.000216.

1.14 1.5001nm1.5001nm212/2/ 1.50001.5000nm nm ||/2| bxaxa a dxaedxe ∫∫Ψ==−= (–e–3.0002+ e –3.0000)/2= 4.978×10–6 .

1.15 (a) Thisfunctionisnotrealandcannotbeaprobabilitydensity.

(b) Thisfunctionisnegativewhen x <0andcannotbeaprobabilitydensity.

(c) Thisfunctionisnotnormalized(unless) b π = andcan’tbeaprobabilitydensity.

1.16 (a) Therearefourequallyprobablecasesfortwochildren:BB,BG,GB,GG,wherethe firstlettergivesthegenderoftheolderchild.TheBBpossibilityiseliminatedbythe giveninformation.OftheremainingthreepossibilitiesBG,GB,GG,onlyonehastwo girls,sotheprobabilitythattheyhavetwogirlsis1/3.

(b) ThefactthattheolderchildisagirleliminatestheBBandBGcases,leavingGBand GG,sotheprobabilityis1/2thattheyoungerchildisagirl.

1.17 The138peakarisesfromthecase12C12CF6,whoseprobabilityis(0.9889)2=0.9779. The139peakarisesfromthecases12C13CF6and13C12CF6,whoseprobabilityis (0.9889)(0.0111)+(0.0111)(0.9889)=0.02195.The140peakarisesfrom13C13CF6, whoseprobabilityis(0.0111)2=0.000123.(Asacheck,theseaddto1.)The139peak heightis(0.02195/0.9779)100=2.24.The140peakheightis(0.000123/0.9779)100= 0.0126.

1.18 Thereare26cards,2spadesand24nonspades,tobedistributedbetweenBandD. Imaginethat13cards,pickedatrandomfromthe26,aredealttoB.Theprobabilitythat everycarddealttoBisanonspadeis13(12)231362422211412 2625242316151426(25)25 == Likewise,the probabilitythatDgets13nonspadesis625IfBdoesnotgetallnonspadesandDdoesnot getallnonspades,theneachmustgetoneofthetwospadesandtheprobabilitythateach getsonespadeis66 2525 113/25 −−= .(Acommonlygivenansweris:Therearefour possibleoutcomes,namely,bothspadestoB,bothspadestoD,spade1toBandspade2 toD,spade2toBandspade1toD,sotheprobabilitythateachgetsonespadeis2/4= 1/2.Thisansweriswrong,becausethefouroutcomesarenotallequallylikely.)

1-3 Copyright©2014PearsonEducation,Inc.

1.19 (a) TheMaxwelldistributionofmolecularspeeds; (b) thenormal(orGaussian) distribution.

1.20 (a) Real; (b) imaginary; (c) real; (d) imaginary; (e) imaginary; (f) real; (g) real; (h) real; (i) real.

1.21 (a) Apointonthe x axisthreeunitstotherightoftheorigin.

(b) Apointonthe y axisoneunitbelowtheorigin.

(c)Apointinthesecondquadrantwith x coordinate–2and y coordinate+3.

1.22 2 11 1 iii i iiii ====−

1.23 (a) 21. i =− (b) 32(1). iiiii ==−=− (c) 4222()(1)1.ii = =−= (d) *()1. iiii=−=

(e) 2 (15)(23)210315177. iiiiii +−=+−−=+

(f) 1313424146214 0.10.7. 4242421688420 iiiii i iiiii ====−− ++−+−+

1.24 (a) –4 (b) 2i; (c) 6–3i; (d) /5 2. i e π

1.25 (a) 1,90°; (b) 2, π/3; (c) /3/3 22(1). ii zee ππ =−=− Since–1hasabsolutevalue1andphase π,wehave /3(4/3) 22, iiii zeeere π ππθ === sotheabsolutevalueis2andthephaseis4π/3radians.

(d) 221/2221/21/2 ||()[1(2)]5; zxy=+=+−= tan/2/12 yx θ = =−=− and θ =–63.4°=296.6°=5.176radians.

1.26 Onacircleofradius5.Onalinestartingfromtheoriginandmakinganangleof45°with thepositive x axis.

1.27 (a) /2 1; iie π = (b) 11; i e π −=

(c) UsingtheanswerstoProb.1.25(d),wehave1/25.1765; i e (d) 221/21/2 [(1)(1)]2;180452253.927 r θ =−+−==°+°=°= rad;1/23.9272. i e

1.28 (a) UsingEq.(1.36)with n =3,wehave01, i e ⋅ = (2/3)cos(2/3)sin(2/3)0.53/2, i eii π ππ =+=−+ and(4/3)0.53/2. i ei π =−−

1-4

Copyright©2014PearsonEducation,Inc.

1.29

(b) Weseethat ω in(1.36)satisfies0*1, e ωω = = sothe nthrootsof1allhaveabsolute value1.When k in(1.36)increasesby1,thephaseincreasesby2π/n.

cossin[cos()sin()]cossin(cossin) 222

ii eeiiii iii θθ θ −+−−+−+−−θθθθθθθ == =sin θ, where(2.14)wasused.

ii eeiiii θθ θ +++−+−++−θθθθθθθ == =cos θ.

cossin[cos()sin()]cossincossin 222

1.30 (a) From, fma = 1N=1kgm/s2 . (b) 1J=1kgm2/s2 .

1.31 F = 1919 12 21222132 0 2(1.60210C)79(1.60210C) 448.85410C/N-m)(3.0010m) QQ r πεπ ×× = (×× =0.405N, where2and79aretheatomicnumbersofHeandAu.

1.32 (a) 4234454 4sin(3)2(12)cos(3)4sin(3)24cos(3). xxxxxxxxx +=+ (b) 32 1 ()|(82)(11)8. xx+=+−+=

1.33 (a) T; (b) F; (c) F; (d) T; (e) F; (f) T.

Copyright©2014PearsonEducation,Inc.

Chapter 2

The Particle in a Box

2.1 (a) Theauxiliaryequationis260 ss + −= and[1124]/22 s = −±+= and–3.So

23 12 xx ycece =+

(b) Setting x =0and y =0,weget12 0 cc = + (Eq.1).Differentiationof y gives 23 12 23. xx ycece ′ =− Setting x =0and1, y ′ = wehave12 123cc = (Eq.2).Subtracting twiceEq.1fromEq.2,weget2 15c = and20.2. c = Equation1thengives10.2. c =

2.2 For0, ypyqy ′′′++= theauxiliaryequationis212 0()(),spsqssss ++==−− where1 s and2 s aretheroots.ComparisonwithEq.(2.8)showsthat12si = + and22, si =− so theauxiliaryequationis20(2)(2)45. sisiss =−−−+=−+ Therefore4 p =− and 5. q = Thedifferentialequationis450. yyy ′′′ +=

2.3 (a) Thequadraticformulagivesthesolutionsoftheauxiliaryequation20 spsq++= [Eq.(2.7)]as2(4)/2.sppq =−±− Tohaveequalrootsoftheauxiliaryequation requiresthat240 pq−= .Setting2/4 qp = inthedifferentialequation(2.6),wehave

2 (/4)0ypypy ′′′++= (Eq.1).Theauxiliary-equationsolutionis/2. sp =− Thuswe mustshowthat/2 2 px yxe = isthesecondsolution.Differentiationgives /2/2 2/2 pxpxyepxe ′ =− and/22/22/4. pxpxypepxe ′′ =−+ SubstitutioninEq.(1)gives theleftsideofEq.(1)as/22/2/22/22/2 /4/2/4pxpxpxpxpx pepxepepxepxe −++−+ , whichequalszeroandcompletestheproof. (b) Theauxiliaryequation2221(1)0sss+=−= hasroots s =1and s =1.Frompart (a),thesolutionis12xx ycecxe =+

2.4 IncomparingEqs.(1.8)and(2.2), y in(2.2)isreplacedby x,and x in(2.2)isreplacedby t. Therefore x anditsderivativesin(1.8)mustoccurtothefirstpowertohavealinear differentialequation. (a) Linear; (b) linear; (c) nonlinear; (d) nonlinear; (e) linear.

2.5 (a) F; (b) F; (c) T; (d) F(onlysolutionsthatmeetcertainconditionssuchasbeing continuousareallowedasstationary-statewavefunctions); (e) T.

2.6 (a) Maximumat x = l/2.Minimumat x =0and x = l,wheretheendsoftheboxareat x = 0and l.

(b) Maximumat l/4and3l/4.Minimumat0, l/2,and l.

(c) Minimumat0, l/3,2l/3,and l.Maximumat l/6, l/2,5l/6.

2.7 (a) /42/42/4 000 ||(2/)sin(/)(2/)[/2(/4)sin(2/)]| lll dxlnxldxlxlnnxl ψπππ ∫=∫=− = 1/4(1/2)sin(/2), nn π π where(A.2)intheAppendixwasused.

(b) The(1/2) nπ factorintheprobabilitymakestheprobabilitysmalleras n increases, andthemaximumprobabilitywilloccurforthesmallestvalueof n forwhichthesine factorisnegative.Thisvalueis n =3.

(c) 0.25.

(d) Thecorrespondenceprinciple,sinceinclassicalmechanicstheprobabilityisuniform throughoutthebox.

2.8 (a) Theprobabilityis222||(2/)sin(/)(1/Å)sin(0.600/2)(0.001Å) dxlxldx ψππ==⋅⋅ =6.55×10–4.Thenumberoftimestheelectronisfoundinthisintervalisabout 106(6.55×10–4)=655.

(b) Theprobabilityratioforthetwointervalsis 22 sin[(1.00/2.00)]sin[(0.700/2.00)] ππ =1.260andabout1.260(126)=159 measurementswillbeinthespecifiedinterval.

2.9 (a) Thenumberofinteriornodesisonelessthan n.

(b) 22(2/)sin(4/) lxl ψ π = and2()/(4/)(4/)sin(4/)cos(4/). ddxllxlxl ψπππ =

At x = l/2,2()/(4/)(4/)sin(2)cos(2)0. ddxll ψπππ ==

2.10 (a) 2222upperlower(21)/8 EEhml−=−=

3(6.626×10–34Js)2/8(9.109×10–31kg)(1.0×10–10m)2=1.81×10–17J. (b) ||/ Ehhc ν λ Δ== and/|| hcE λ = Δ= (6.626×10–34Js)(2.998 × 108m/s)/(1.81×10–17J)=1.10×10–8m=110Å. (c) Ultraviolet.

2.11 222 /8 Enhml = and1/2(8)/ nmElh = .Wehave2/2 Em = v =½(0.001kg)(0.01m/s)2 = 5×10–8J,so n =[8(0.001kg)(5×10–8J)]1/2(0.01m)/(6.626×10–34Js)=3×1026 .

2.12 upperlower EEhν −== (52–22)22 /8 hml and1/2 (21/8)lhmν = = [21(6.626×10–34Js)/8(9.1×10–31kg)(6.0×1014 s –1)]1/2=1.78×10–9m=1.78nm.

2.13 2222 upperlower(1)/8, EEhnhml ν −==− so 222 18/8/ nmlhmlch νλ ===

8(9.109×10–31kg)(2.00×10–10m)2(2.998×108m/s)/[(8.79×10–9m)(6.626×10–34Js)] =15.So216 n = and n =4

2.14 2222 ()/8, ba hnnhml ν =− so ν isproportionalto22 bann For n =1to2,22 bann is3and for n =2to3,22 bann is5.Henceforthe2to3transition, ν =(5/3)(6.0×1012 s –1)= 10×1012 s –1 .

2.15 2222 ()/8, ba hnnhml ν =− so 2228/ ba nnmlh ν ==

8(9.109×10–31kg)(0.300×10–9m)2(5.05×1015 s –1)/(6.626×10–34Js)=5.00. Thesquaresofthefirstfewpositiveintegersare1,4,9,16,25,…,andtheonlytwo integerswhosesquaresdifferby5are2and3. n =5 n (=5 l/2)ψ (2 l/2)1/2

2.16 1122222 upperlower ()(/8)()(/8), u hEEhhmlnnhmlk ν =−=−= where k isaninteger.

For1 u nn−= and1,2,3,, n = … wegetthefollowing k values: 222222 213;325;437;9,11,13,15,etc. kkkk =−==−==−==

For3 u nn−= and1,2,3,, n = weget 2222 4115;5221;kk=−==−= 22 6327;33,39,etc.kk=−==

For5 u nn−= and1,2,3,, n = … weget35,45,55,etc. k = Thesmallest k thatcorrespondstotwodifferenttransitionsis15 k = forthe1to4 transitionandthe7to8transition.

2.17 Eachdoublebondconsistsofonesigmaandonepibond,sothetwodoublebondshave4 pielectrons.Withtwopielectronsineachparticle-in-a-boxlevel,the4pielectrons occupythelowesttwolevels, n =1and n =2.Thehighest-occupiedtolowest-vacant transitionisfrom n =2to n =3,so2222 ||/(32)/8 Ehhchml νλ Δ===− and 2311028 34 88(9.10910kg)(7.010m)(2.99810m/s) 55(6.62610Js) mlc h λ ××× == × = 3.2107m × = 320nm

2.18 Outsidethebox,0. ψ = Insidethebox, ψ isgivenby(2.15)as

11/211/2 cos[(2)]sin[(2)]. amExbmEx ψ =+

Continuityrequiresthat ψ =0at/2 xl = andat/2, xl = theleftandrightendsofthebox.Using(2.14),wethushave

11/211/2 0cos[(2)/2]sin[(2)/2] amElbmEl =− [Eq.(1)] 11/211/2 0cos[(2)/2]sin[(2)/2] amElbmEl =+ [Eq.(2)].

AddingEqs.(1)and(2)anddividingby2,weget11/20cos[(2)/2], amEl = so

either a =0or11/2cos[(2)/2]0 mEl = [Eq.(3)].

SubtractingEq.(1)from(2)anddividingby2,weget11/20sin[(2)/2], bmEl = so either b =0or11/2sin[(2)/2]0 mEl = [Eq.(4)].

If a =0,then b cannotbe0(becausethiswouldmake ψ =0),soif a =0,then 11/2 sin[(2)/2]0 mEl = [Eq.(5)]and11/2sin[(2)]. bmEx ψ = TosatisfyEq.(5),we musthave11/2[(2)/2], mElkπ = where k isaninteger.Thewavefunctionsandenergies when a =0are sin[2/] bkxl ψ π = and222 (2)/8 Ekhml = ,where k =1,2,3,….[Eq.(6)]

(ForreasonsdiscussedinChapter2, k =0isnotallowedandnegativevaluesof k donot giveadifferent ψ.)

If b =0,then a cannotbe0(becausethiswouldmake ψ =0),soif b =0,then 11/2 cos[(2)/2]0 mEl = [Eq.(7)]and11/2cos[(2)]. amEx ψ = TosatisfyEq.(7),we musthave11/2[(2)/2](21)/2, mElj π =+ where j isaninteger.Thewavefunctionsand energieswhen b =0are cos[(21)/] ajxl ψ π =+ and222 (21)/8 Ejhml =+ ,where j =0,1,2,3,…[Eq.(8)] (AsdiscussedinChapter2,negativevaluesof j donotgiveadifferent ψ.)

InEq.(8),2j +1takesonthevalues1,3,5,…;inEq.(6),2k takesonthevalues 2,4,6,….Therefore222/8,Enhml = where n =1,2,3,…,aswefoundwiththeoriginat theleftendofthebox.Also,thewavefunctionsinEqs.(6)and(8)arethesameaswith theoriginattheleftend,ascanbeverifiedbysketchingafewofthem.

2.19 UsingsquarebracketstodenotethedimensionsofaquantityandM,L,Ttodenotethe dimensionsmass,length,andtime,wehave[E]=ML2 T –2=[h]a[

L

= (ML2 T –2)aTaM b Lc =M a+b L2a+cT –a .Inordertohavethesamedimensionsoneachsideof theequation,thepowersofM,L,andTmustmatch.So1= a + b,2=2a + c,–2=–a Weget a =2, b =1– a =–1,and c =2–2a =–2.

2.20 FromEqs.(1.20)and(2.30),

1/21/2 /(2)/(2)/ 12 () iEtimEximEx ececeΨ=+ .

2.21 (a) Let21/21/2 0 (2/)() rmVE ≡− and21/21/2 (2/) smE ≡ .ThenI rx Ce ψ = and IIcossin. AsxBsx ψ =+ WehaveI rx Cre ψ ′ = andIIsincos. sAsxsBsx ψ ′ = −+ The conditionIII(0)(0) ψ ψ ′′ = gives CrsB = ,so 1/21/2 0 //()/ BCrsArsAVEE ===− ,since C = A,asnotedafewlinesbeforeEq.(2.33).

(b) III Gerx ψ = andIII. rGerx ψ ′ =− From(a),IIsin(/)cos. sAsxsArssx ψ ′ = −+ The relationsIIIII()() ll ψ ψ ′′′ = andIIIII()() ll ψ ψ = givesincossAslrAslrGerl −+=− and cos(/)sin. AslArsslGerl += Dividingthefirstequationbythesecond,weget 1 sincos cossin sslrsl r slrssl −+ =− + and222cos()sin. rsslsrsl =− Substitutionfor r and s gives 221/21/221/2 00 2(2/)()cos[(2)/](2/)(2)sin[(2)/] mVEEmElmEVmEl −=− ,whichis (2.33).

2.22 (a) As0, V →∞ 2E ontheleftsideof(2.33)canbeneglectedcomparedwith V0,and E2 ontherightsidecanbeneglectedtogive1/21/200tan[(2)/]2()/ mElVEV = −= 1/2 0 2(/). EV Therightsideofthisequationgoesto0as0, V →∞ so 1/2 tan[(2)/]0. mEl = Thisequationissatisfiedwhen1/2(2)/, mElnπ = where n isan

integer.Solvingfor E,weget2228.Enhml = (Zeroandnegativevaluesof n are excludedforthereasonsdiscussedinSec.2.2.)

(b) ψIand ψIIIaregivenbytheequationspreceding(2.32).In ψI,x isnegative,andin ψIII, x ispositive.As0, V →∞ ψIand ψIIIgoto0.Tohave ψ becontinuous, ψ in(2.32)must bezeroat x =0andat x = l,andweget(2.23)asthewavefunctioninsidethebox.

2.23 V0=(15.0eV)(1.602×10–19J/eV)=2.40×10–18J.1/2 0 (2)/ bmVl = = [2(9.109×10–31kg)(2.40×10–18J)]1/22π(2.00×10–10m)/(6.626×10–34Js)=3.97and b/π =1.26.Then N –1<1.26 ≤ N,so N =2.

2.24 With b =3.97,useofaspreadsheettocalculatetheleftsideof(2.35)forincrementsof 0.005in ε showsthatitchangessignbetweenthe ε values0.265and0.270andbetween 0.900and0.905.Linearinterpolationgives ε ≡ E/V0=0.268and0.903,and E = 0.268(15.0eV)=4.02eVand13.5eV.

2.25

2.26 (a) Thedefinition(2.34)showsthat b >0;hence b/π >0.Ifthenumber N ofboundstates were0,thenwewouldhavetheimpossibleresultthat b/π ≤ 0.Hence N cannotbe0and thereisalwaysatleastoneboundstate. (b) TheSchrödingerequationis2(2/)(). mEV ψ ψ

Since V isdiscontinuousat x =0,theSchrödingerequationshowsthat ψ ′′ mustbediscontinuousat x =0.

2.27 /0EV ε == (3.00eV)/(20.0eV)=0.150.Equation(2.35)becomes 0.700tan(0.387)0.7140, b −−= sotan(0.387)1.02. b = Fromthedefinition(2.34), b cannotbenegative,so0.3870.7952.35 b π = −+= and b =6.07.(Additionofintegral multiplesof π to2.35gives0.387b valuesthatalsosatisfyEq.(2.35),buttheselarger b valuescorrespondtowellswithlarger l valuesandlargervaluesof N,thenumberof boundlevels;seeEq.(2.36).Inthesewiderwells,the3.00eVlevelisnotthelowest level.)Equation(2.34)gives1/2 0 (2)lbmV = = 34 31191/2 6.07(6.62610Js) 2[2(9.10910kg)(20.0eV)(1.60210J/eV)] π × ×× =2.65×10–10m=0.265nm.

2.28 Equation(2.36)gives2π <1/2 0 (2)/ mVl ≤ 3π, so 1/2 0 2(2)lmV π > = (6.626×10–34Js)/[2(9.109×10–31kg)(2.00×10–18J)]1/2=3.47×10–10m=3.47 Ǻ. Also,(3/2) l π π ≤ (3.47 Ǻ)=5.20 Ǻ.

2.29 (a) FromEq.(2.36),anincreasein V0increases b/π,whichincreasesthenumber N of boundstates.

(b) Anincreasein l increases b/π,whichincreasesthenumber N ofboundstates.

2.30 (a) FromIII(0)(0) ψ ψ = ,IIIII()() ll ψ ψ = ,and0, E = weget C = b (Eq.1)and 21/21/2(2/)0 albGemVl += (Eq.2).TheconditionsIII(0)(0) ψ ψ ′ ′ = andIIIII()() ll ψ ψ ′′ = give 21/21/2(2/)0 CmVa = (Eq.3)and

21/21/221/21/2(2/)0(2/)0 amVGemVl =− (Eq.4).

(b) If C >0,thenEqs.1and3give b >0and a >0.Equation4thengives G <0andEq. 2gives G >0,whichisacontradiction.If C <0,thenEqs.1and3give b <0and a <0. Equation4thengives G >0andEq.2gives G <0,whichisacontradiction.Hence C =0. (c) With C =0,Eqs.1and3give b =0and a =0.HenceII0. ψ =

2.31 Althoughessentiallynomoleculeshaveenoughkineticenergytoovercomethe electrostatic-repulsionbarrieraccordingtoclassicalmechanics,quantummechanics allowsnucleitotunnelthroughthebarrier,andthereisasignificantprobabilityfornuclei tocomecloseenoughtoundergofusion.

2.32 (a) F; (b) F; (c) T(Fig.2.3shows ψ ′ isdiscontinuousattheendsofthebox.); (d) F; (e) T; (f) F(SeeFig.2.4.); (g) T; (h) F; (i) T.

Operators

3.1 (a) ˆ22(/)cos(1)2sin(1);gAfddxxxx ==+=−+

(b) ˆˆ 5sin5sin; Afxx ==

(c) ˆ2sin;Afx = (d) ln exp(ln); x xex ==

(e) 222 (/)ln3(/)3[1(3)]1/; ddxxddxxx ==−

(f) 2233 (/3/)(4)2436; ddxxddxxxx +=+

(g) 22 (/)[sin()]2cos(). yxyxyxy∂∂=

3.2 (a) Operator; (b) function; (c) function; (d) operator; (e) operator; (f) function.

3.3 ˆ232(/). Axxddx =⋅+

3.4 ˆ22 1,(/),(/). ddxddx

3.5 (a) Somepossibilitiesare(4/x) × and d/dx.

(b) (x/2) ×,(1/4)()2

(c) (1/x 2) ×,(4x)–1 d/dx,(1/12) d2/dx2

3.6 Toprovethattwooperatorsareequal,wemustshowthattheygivethesameresultwhen theyoperateonanarbitraryfunction.Inthiscase,wemustshowthat ˆˆ ()ABf + equals

(). BAf + Usingthedefinition(3.2)ofadditionofoperators,wehave ˆˆˆˆ ()ABfAfBf +=+ and

(), BAfBfAfAfBf +=+=+ whichcompletestheproof.

3.7 Wehave ˆˆ ˆ ()ABfCf += forallfunctions f,so

ACB =−

AfBfCf += and ˆˆˆ AfCfBf =− Hence

3.8 (a) 222343 (/)(/)520; ddxxxddxxx == (b) 222323 (/)(6)6; xddxxxxx == (c) 22222 (/)[()](/)(2)24; ddxxfxddxxfxffxfxf ′ =+=++′′′

(d) 2222 (/).xddxfxf ′′ =

3.9 ˆ33 ˆ (/) ABfxddxfxf ′ == ,so ˆ3 ˆ /. ABxddx = Also323 ˆˆ (/)()3, BAfddxxfxfxf ′ ==+ so ˆˆ233/ BAxxddx =⋅+

3.10 ˆˆˆˆˆˆ

[()]()()[()], ABCfABCfABCf == where(3.3)wasusedtwice;firstwith ˆ A and ˆ B in (3.3)replacedby ˆˆ AB and ˆ C ,respectively,andthenwith f in(3.3)replacedwiththe function ˆ . Cf Also,

[()][()][()] ABCfABCfABCf == ,whichequals ˆˆ ˆ [()]ABCf .

3.11 (a) 2

()()()()()()() ABfABABfABAfBfAAfBfBAfBf +=++=++=+++ (Eq.1),wherethedefinitionsoftheproductandthesumofoperatorswereused.Ifwe interchange ˆ A and ˆ B inthisresult,weget2 ˆˆ ()BAf + = ˆˆˆˆˆˆ ()(). BBfAfABfAf +++ Since ˆˆ ˆˆ , AfBfBfAf +=+ weseethat22 ˆˆ

()(). ABfBAf +=+ (b) If ˆ A and ˆ B arelinear,Eq.1becomes2 ˆˆ ()ABf + = 22 ˆˆˆˆˆˆ AfABfBAfBf +++ .If ˆˆ ˆˆ ,ABBA = then222 ˆˆˆˆˆˆ ()2 ABfAfABfBf +=++

3.12

ˆˆˆˆˆ [,]() ABfABBAfABfBAf =−=− and ˆˆˆˆˆ

[,]() BAfBAABfBAfABf = −=−=

[,]. ABf

3.13 (a) [sin,/]()(sin)(/)()(/)[(sin)()] zddzfzzddzfzddzzfz =−= (sin)(cos)(sin) zfzfzf ′′ (cos), zf = so[sin,/]cos zddzz = . (b) 222222222 [/,](/)[()]()(/) ddxaxbxcfddxaxbxcfaxbxcddxf ++=++−++ 22 (/)[(2)()]() ddxaxbfaxbxcfaxbxcf ′ ′′ =++++−++ 22 22(2)()()2(42) afaxbfaxbxcfaxbxcfafaxbf =+++++−++=++′′′′′′ , so 222 [/,]2(42)(/). ddxaxbxcaaxbddx ++=++ (c) 222222 [/,/](/)(/)(/)(/)0 ddxddxfddxddxfddxddxffff ′′′′′′ =−=−=⋅ so 22 [/,/]0. ddxddx =

3.14 (a) Linear; (b) nonlinear; (c) linear; (d) nonlinear; (e) linear.

3.15 ()()(1)(1) 110 [()/()/()/()]()() nnnn nn AxddxAxddxAxddxAxyxgx ++++=

3.16 Given: ˆˆˆˆˆˆˆˆˆˆ (),(),(),()(). AfgAfAgAcfcAfBfgBfBgBcfcBf +=+=+=+=

Prove:

ˆˆˆˆˆ (),(). ABfgABfABgABcfcABf +=+=

Useofthegivenequationsgives

ˆˆˆˆˆ ()()()() ABfgABfBgABfABg + =+=+= ˆˆˆˆ , ABfABg + since ˆ Bf and ˆ Bg arefunctions;also,

ˆˆˆˆ ()()(). ABcfAcBfcABfcABf ===

3.17 Wehave

()()(defn.ofsumofops.and)

()()(linearityof)

ˆ (defn.ofop.prod.)

ˆ ()(defn.ofsumofops.and) ABCfABfCfBC ABfACfA ABfACf ABACfABAC +=+ =+ =+ =+ Hence

ˆˆ (). ABCABAC +=+

3.18 (a) Usingfirst(3.9)andthen(3.10),wehave ˆˆˆˆˆ ()()(). AbfcgAbfAcgbAfcAg +=+=+ (b) Setting b =1and c =1in(3.94),weget(3.9).Setting c =0in(3.94),weget(3.10).

3.19 (a) Complexconjugation,since()*** fgfg + =+ but()****. cfcfcf = ≠ (b) ()–1(d/dx)()–1,since()–1(d/dx)()–1cf =()–1(d/dx)c –1f –1 = ()–112[()] cff ′ = 2/ cff ′ and c()–1(d/dx)()–1f = c()–1(d/dx)f –1 = 12 ()() cff ′ = 2/ cff ′ ,but ()–1(d/dx)()–1( f + g)=()–1(d/dx)( f + g)–1=–()–1[( f + g)–2() fg′′ + ]= –( f + g)21 () fg′′ + ≠ ()–1(d/dx)()–1f +()–1(d/dx)()–1 g = 22// ffgg ′′ .

3.20 (a) Thisisalwaystruesinceitisthedefinitionofthesumofoperators.

(b) Onlytrueif ˆ A islinear.

(c) Notgenerallytrue;forexample,itisfalsefordifferentiationandintegration.Itistrue if ˆ A ismultiplicationbyafunction.

(d) Notgenerallytrue.Onlytrueiftheoperatorscommute.

(e) Notgenerallytrue.

(f) Notgenerallytrue.

(g) True,since. fggf =

(h) True,since ˆ Bg isafunction.

3.21 (a) ˆˆˆ [()()]()()()(). hhh TfxgxfxhgxhTfxTgx +=+++=+ Also, ˆˆ [()]()(). hh TcfxcfxhcTfx =+= So ˆ hT islinear.

(b) 2222 111 ˆˆˆ (32)(2)3(1)221. TTTxxxxx −+=+−++=−+

3.22 ˆ ˆˆ23 ()(1/2!/3!)()()()()/2!()/3!. D efxDDDfxfxfxfxfx ′′′′′′ =++++=++++ 1 ˆ ()(1).Tfxfx=+ TheTaylorseries(4.85)inProb.4.1with x changedto z gives 2 ()()()()/1!()()/2!. fzfafazafaza ′′′ =+−+−+ Letting, hza ≡ theTaylorseries becomes2()()()/1!()/2!. fahfafahfah ′′′ +=+++ Changing a to x andletting 1, h = weget(1)()()/1!()/2!, fxfxfxfx ′ ′′ +=+++ whichshowsthat ˆ 1 ˆ . D efTf =

3.23 (a) 22 (/) xxddxee = andtheeigenvalueis1.

(b) 222 (/)2 ddxx = and2 x isnotaneigenfunctionof22 / ddx .

(c) 22 (/)sin(/)cossin ddxxddxxx ==− andtheeigenvalueis–1.

(d) 22 (/)3cos3cos ddxxx =− andtheeigenvalueis–1.

(e) 22 (/)(sincos)(sincos) ddxxxxx +=−+ sotheeigenvalueis–1.

3.24 (a) 222223232323 (//)()4913. xxyxyxyxy yeeeeeeee∂∂+∂∂=+= Theeigenvalueis13. (b) 22223333 (//)()66. xyxyxyxy∂∂+∂∂=+ Notaneigenfunction.

(c)

2222 (//)(sin2cos4)4sin2cos416sin2cos420sin2cos4. xyxyxyxyxy ∂∂+∂∂=−−=− Theeigenvalueis20.

(d) 2222 (//)(sin2cos3)4sin29cos3. xyxyxy ∂∂+∂∂+=−− Notaneigenfunction,

3.25 222 (/2)(/)()() mddxgxkgx−= and2()(2/)()0.gxmkgx ′′ + = Thisisalinear homogenousdifferentialequationwithconstantcoefficients.Theauxiliaryequationis 22(2/)0smk+= and1/2(2)/.simk =± Thegeneralsolutionis 1/21/2 (2)/(2)/ 12. imkximkx gcece =+ Iftheeigenvalue k wereanegativenumber,then1/2 k wouldbeapureimaginarynumber;thatis,1/2, kib = where b isrealandpositive.This wouldmake1/2 ik arealnegativenumberandthefirstexponentialin g wouldgoto ∞ as x →−∞ andthesecondexponentialwouldgoto ∞ as. x →∞ Likewise,if k werean imaginarynumber(, ikabire θ =+= where a and b arerealand b isnonzero),then1/2 k wouldhavetheform, cid + and1/2 ik wouldhavetheform, dic + where c and d are real.Thiswouldmaketheexponentialsgotoinfinityas x goestoplusorminusinfinity. Hencetokeep g finiteas, x →±∞ theeigenvalue k mustberealandnonnegative,andthe allowedeigenvaluesareallnonnegativenumbers.

Copyright©2014PearsonEducation,Inc.

3.26 (). dxffdxkf ∫∫== Differentiationofbothsidesofthisequationgives (/). ddxfdxfkf ′ == ∫ So1 / dfdxkf = and1(1/). fdfkdx = Integrationgives ln1fkxc =+ and//, fcxkxk eeAe== where A isaconstantand k istheeigenvalue.To preventtheeigenfunctionsfrombecominginfiniteas, x →±∞ k mustbeapure imaginarynumber.(Strictlyspeaking,/Axk e isaneigenfunctionof dx ∫ onlyifweomit thearbitraryconstantofintegration.)

3.27 22/2/ dfdxdfdxkf += and20. ffkf ′′′ + −= Theauxiliaryequationis220 ssk+−= and1/2 1(1).sk =−±+ So 1/21/2 [1(1)][1(1)] , kxkxfAeBe =+−++−−+ where A and B arearbitrary constants.Topreventtheeigenfunctionsfrombecominginfiniteas, x →±∞ thefactors multiplying x mustbepureimaginarynumbers:1/21(1), kci±+= where c isanarbitrary realnumber.So1/2(1)1kci±+=+ and2 1(1) kci + =+= 122 icc + and2 2.kicc =−

3.28 (a) ˆ333333 (/)(/)/ y piyiy =∂∂=∂∂ ; (b) ˆˆˆˆ(/)/(/)/; xyxpypxiyyix −=∂∂−∂∂ (c) 22 [(/)/](,)(/)(/) xiyfxyxyxfy ∂∂=−∂∂∂∂= 2222 (/). xfy−∂∂ Hence22222 ˆˆ ()(/). xypxy =−∂∂

3.29 (/)(/)idgdxkg = and/(/). dggikdx = Integrationgivesln(/)gikxC = + and // , ikxCikxgeeAe == where C and A areconstants.If k wereimaginary(, kabi =+ where a and b arerealand b isnonzero),then, ikiab = andthe/ bx e factorin g makes g gotoinfinityas x goestominusinfinityif b ispositiveoras x goestoinfinityif b is negative.Hence b mustbezeroand, ka = where a isarealnumber.

3.30 (a)

ˆˆ [,](/)[/(/)](/)[/(/)()] x xpfixxxxfixfxxxf =∂∂−∂∂=∂∂−∂∂= (/)[//](/), ixfxfxfxif ∂∂−−∂∂=− so ˆˆ [,](/). xxpi = (b) ˆˆ22222222222 [,](/)[/(/)][/(/)()] x xpfixxxxfxfxxxf =∂∂−∂∂=−∂∂−∂∂= 222222 [//2/]2/. xfxxfxfxfx −∂∂−∂∂−∂∂=∂∂ Hence22 ˆˆ [,]2/. xxpx = ∂∂

(c) ˆˆ [,](/)[/(/)](/)[/(/)]0 y xpfixyyxfixfyxfy =∂∂−∂∂=∂∂−∂∂= ,so ˆˆ [,]0 y xp = (d) ˆ ˆ [,(,,)]()0. xVxyzfxVVxf=−=

(e) Let2/2. Am ≡− Then ˆ ˆ [,]xHf = { } 222222222222 [(///)][(///)] xAxyzVAxyzVxf ∂∂+∂∂+∂∂+−∂∂+∂∂+∂∂+=

222222222222 [////2///] Axfxxfyxfzxfxfxxfyxfz ∂∂+∂∂+∂∂−∂∂−∂∂−∂∂−∂∂+ 2 2/(/)/, xAVfAVxfAfxmfx −=−∂∂=∂∂ so ˆˆ2 [,](/)/. xHmx = ∂∂

(f) ˆˆˆ2 ˆ [,] xxyzpf = 2222222222 [/(/)()][//2/] xyzfxxxyzfxyzfxxyzfxyzfx −∂∂−∂∂=−∂∂−∂∂−∂∂= 2 2/, yzfx ∂∂ so ˆˆˆ22 ˆ [,]2/. xxyzpyzx =∂∂

3.31 22222222 222222 12111222 ˆ 22 T mmxyzxyz ⎛⎞⎛⎞ ∂∂∂∂∂∂ =−++−++⎜⎟⎜⎟

3.32 ˆ22222 (/2)(), Hmcxyz =−∇+++ where2222222 ///. xyz ∇ =∂∂+∂∂+∂∂

3.33 (a) 22 0|(,)|xtdx ∫Ψ ; (b) 22 0|(,,,)|xyztdxdydz

; (c) 22 0111222111222 |(,,,,,,)|xyzxyztdxdydzdxdydz

3.34 (a) 2|| dx ψ isaprobabilityandprobabilitieshavenounits.Since dx hasSIunitsofm, theSIunitsof ψ arem –1/2 .

(b) Tomake2 || dxdydz ψ dimensionless,theSIunitsof ψ arem –3/2 .

(c) Tomake2111 || nnndxdydzdxdydz ψ dimensionless,theSIunitsof ψ arem –3n/2 .

3.35 Letthe x, y,and z directionscorrespondtotheorderusedintheproblemtostatetheedge lengths.Thegroundstatehas xyznnn quantumnumbersof111.Thefirstexcitedstate hasonequantumnumberequalto2.Thequantum-mechanicalenergydecreasesasthe lengthofasideoftheboxincreases.Henceinthefirstexcitedstate,thequantum-number value2isforthedirectionofthelongestedge,the z direction.Then 22222222 222222 112111 88 hh h mmabcabc ν

3.36 (a) UseofEqs.(3.74)and(A.2)gives3.00nm2.00nm0.40nm2 2.00nm1.50nm0|| dxdydz ψ = ∫∫∫ 0.40nm2 0(2/)sin(/)axadx π ∫ 2.00nm2 1.50nm(2/)sin(/)bybdy π ∫ 3.00nm2 2.00nm(2/)sin(/)czcdz π ∫ =

Copyright©2014PearsonEducation,Inc.

0.40nm2.00nm3.00nm 01.50nm2.00nm sin(2/)sin(2/)sin(2/) 222 xxayybzzc abc πππ πππ

⎢⎥⎢⎥⎢⎥ ⎣⎦⎣⎦⎣⎦ = 0.40sin(20.40/1.00)2.001.50sin(22.00/2.00)sin(21.50/2.00) 1.0022.002 πππ ππ

3.002.00sin(23.00/5.00)sin(22.00/5.00)

(0.3065)(0.09085)(0.3871)=0.0108.

(b) The y and z rangesoftheregionincludethefullrangeof y and z,andthe y and z factorsin ψ arenormalized.Hencethe y and z integralseachequal1.The x integralisthe sameasinpart(a),sotheprobabilityis0.3065.

(c) Thesameas(b),namely,0.3065.

3.37 ˆ/. x pix =−∂∂ (a) (sin)/cos, kxxkkx∂∂= so ψ isnotaneigenfunctionofˆ. x p

(b) 222222 (3.73)(3.73)(3.73) ˆ(/)(1)(/) xx pxna ψψπψ =−∂∂=−− ,where(3.73) ψ isgivenby Eq.(3.73).Theeigenvalueis222/4, x hna whichisthevalueobservedif2 x p ismeasured.

(c) 222222 (3.73)(3.73)(3.73) ˆ(/)(1)(/) zz pznc ψψπψ =−∂∂=−− andtheobservedvalueis 222/4. z hnc

(d) (3.73)(3.73)(3.73) ˆ(const.) xx ψ =≠ψψ , so ψ isnotaneigenfunctionofˆ x

3.38 Since2, y n = theplane/2 yb = isanodalplanewithinthebox;thisplaneisparallelto the xz planeandbisectsthebox.With3, zn = thefunctionsin(3/) zc π iszeroonthenodal planes/3 zc = and2/3; zc = theseplanesareparalleltothe xy plane.

3.39 (a) 2|| ψ isamaximumwhere|| ψ isamaximum.Wehave()()(). fxgyhz ψ = For 1, xn = 1/2 ()(2/)sin(/) fxaxa π = isamaximumat/2. xa = Also,() gy isamaximum at/2 yb = and() hz isamaximumat/2. zc = Therefore ψ isamaximumatthepoint (/2,/2,/2), abc whichisthecenterofthebox.

(b) 1/2 ()(2/)sin(2/) fxaxa π = isamaximumat/4 xa = andat3/4. xa = ()gy isa maximumat/2 yb = and() hz isamaximumat/2. zc = Therefore ψ isamaximumat thepoints(/4,/2,/2) abc and(3/4,/2,/2), abc

3.40 Whenintegratingoveronevariable,wetreattheothertwovariablesasconstant;hence ()()()()()()()()() FxGyHzdxdydzFxGyHzdxdydzGyHzFxdxdydz ∫∫∫∫∫∫∫∫∫==⎡⎤⎡⎤ ⎣⎦⎣⎦

Copyright©2014PearsonEducation,Inc.

()()()()()() FxdxGyHzdydzFxdxHzGydydz ⎡⎤⎡⎤⎡⎤ ===

()()() FxdxGydyHzdz ∫∫∫ .

3.41 Iftheratiooftwoedgelengthsisexactlyaninteger,wehavedegeneracy.Forexample,if b = ka,where k isaninteger,then22222222 //(/)/ xyxy nanbnnka +=+ .The(,,) xyz nnn states(1,2,) zkn and(2,,) z kn havethesameenergy.

3.42 With V =0,wehave

.Assume (,,)()()(). xyzFxGyHz ψ = SubstitutionintotheSchrödingerequationfollowedby divisionby FGH,gives

Then,since F isafunctionof x only, x E isindependentof y and z.ButEq.1shows x E is equaltotherightsideofEq.1,whichisindependentof x,so x E isindependentof x Hence x E isaconstantand222(/2)(/). x mdFdxEF−= Thisisthesameastheonedimensionalfree-particleSchrödingerequation(2.29),so F(x)and x E aregivenby(2.30) and(2.31).Bysymmetry, G and H aregivenby(2.30)with x replacedby y andby z, respectively.

3.43 Foralinearcombinationofeigenfunctionsof ˆ H tobeaneigenfunctionof ˆ H ,the eigenfunctionsmusthavethesameeigenvalue.Inthiscase,theymusthavethesame valueof222. xyz nnn ++ Thefunctions(a)and(c)areeigenfunctionsof ˆ H and(b)isnot.

3.44 Inadditiontothe11statesshowninthetableafterEq.(3.75),thefollowing6stateshave 22 (8/)15:Emah <

xyznnn 123132213231312321 22 (8/)Emah 141414141414

These6statesandthe11listedinthetextbookgiveatotalof17states.These17states have6differentvaluesof22(8/)Emah ,andthereare6energylevels.

3.45 (a) FromthetableafterEq.(3.75),thereisonlyonestatewiththisvalue,sothedegreeof degeneracyis1,meaningthislevelisnondegenerate. (b) FromthetableintheProb.3.44solution,thedegreeofdegeneracyis6.

Copyright©2014PearsonEducation,Inc.

(c) Thefollowing xyznnn valueshave22(8/)Emah =27;115,151,511,333.Thedegree ofdegeneracyis4.

3.46 (a) Thesearelinearlyindependentsincenoneofthemcanbewrittenasalinear combinationoftheothers.

(b) Since221 8 313()(8), xx−=− thesearenotlinearlyindependent.

(c) Linearlyindependent.

(d) Linearlyindependent.

(e) Sincecossin, ix exix =+ thesearelinearlydependent.

(f) Since221sincos, xx=+ thesearelinearlydependent.

(g) Linearlyindependent.

3.47 SeethebeginningofSec.3.6fortheproof.

3.48 (a) 222 000|()||()||()| cba xxfxgyhzdxdydz 〈〉=∫∫∫= 222 000|()||()||()|,abc xfxdxgydyhzdz ∫∫∫ where f, g,and h aregivenprecedingEq. (3.72).Since g and h arenormalized,22 00|()|(2/)sin(/)aa xxxfxdxaxnxadx π 〈〉=∫=∫ = 22 22 0 2 sin(2/)cos(2/) 442 8 a xx xx xaxaa nxanxa ann ππ π π

,whereEq.(A.3)wasused.

3.49

(b) Bysymmetry,/2 yb〈〉= and/2. zc 〈 〉=

(c) ThederivationofEq.(3.92)forthegroundstateappliestoanystate,and0. x p 〈〉= (d) Since g and h arenormalized, 22222 00|()|(2/)sin(/)aa xxxfxdxaxnxadx π 〈〉=∫=∫= 3232 3322 0 2 64sin(2/)cos(2/) 84 a xx xxx xaxaax nxanxa annn ππ π ππ

⎛⎞ −−−= ⎢⎥ ⎜⎟

22 322 2 x aa n π , whereEq.(A.4)wasused.Wehave222/4.xax 〈 〉=≠〈〉 Also, 222 000|()||()||()| cba xyxyfxgyhzdxdydz〈〉=∫∫∫ = 222 000|()||()||()|abc xfxdxygydyhzdz ∫∫∫ =. xy 〈 〉〈〉

. AB 〈〉+〈〉 Also

3.50 (a) Notacceptable,sinceitisnotquadraticallyintegrable.Thisisobviousfromagraphor from22(1/2)|.axaxedxae ∞−−∞ −∞−∞ ∫=−=∞

(b) Thisisacceptable,sinceitissingle-valued,continuous,andquadraticallyintegrable whenmultipliedbyanormalizationconstant.SeeEqs.(4.49)and(A.9).

(c) Thisisacceptable,sinceitissingle-valued,continuous,andquadraticallyintegrable whenmultipliedbyanormalizationconstant.SeeEqs.(4.49)and(A.10)with n =1.

(d) Acceptableforthesamereasonsasin(b).

(e) Notacceptablesinceitisnotcontinuousat x =0.

3.51 Given:11 ˆ / itH∂Ψ∂=Ψ and22 ˆ / itH∂Ψ∂=Ψ .Provethat 11221122

()/()icctHcc ∂Ψ+Ψ∂=Ψ+Ψ .Wehave1122()/ icct ∂ Ψ+Ψ∂= 1122 [()/()/] ictct ∂Ψ∂+∂Ψ∂= 1122 // citcit ∂Ψ∂+∂Ψ∂= 1122 ˆˆ cHcH Ψ +Ψ= 1122 ˆ ()HccΨ+Ψ ,since ˆ H islinear.

3.52 (a) AninefficientC++programis

#include <iostream> using namespace std; int main() { int m, i, j, k, nx, ny, nz, L[400], N[400], R[400], S[400]; i=0; for (nx=1; nx<8; nx=nx+1) { for (ny=1; ny<8; ny=ny+1) { for (nz=1; nz<8; nz=nz+1) { m=nx*nx+ny*ny+nz*nz; if (m>60) continue; i=i+1; L[i]=m; N[i]=nx; R[i]=ny; S[i]=nz; } } } for (k=3; k<61; k=k+1) { for (j=1; j<=i; j=j+1) { if (L[j]==k) cout<<N[j]<< " "<<R[j]<< " "<<S[j]<< " "<<L[j]<<endl; } } return 0;

Afreeintegrateddevelopmentenvironment(IDE)todebugandrunC++programsis Code::Blocks,availableatwww.codeblocks.org.ForaWindowscomputer,downloading thefilewithmingw-setup.exeaspartofthenamewillincludetheMinGW(GCC)compiler forC++.FreeuserguidesandmanualsforCode::Blockscanbefoundbysearchingthe Internet.

Alternatively,youcanruntheprogramatideone.com.

(b) Onefinds12states.

3.53 (a) T. (b) F.SeetheparagraphprecedingtheexampleattheendofSec.3.3.

(c) F.Thisisonlytrueif f1and f2havethesameeigenvalue.

(d) F. (e) F.Thisisonlytrueifthetwosolutionshavethesameenergyeigenvalue.

(f) F.Thisisonlytrueforstationarystates.

(g) F. (h) F.(5)(const.)(5). xxx ≠

(i) T.///

(j) T. (k) T. (l) F.

(m) T.22 ˆˆˆˆˆ ()(), AfAAfAafaAfaf ==== provided ˆ A islinear.Notethatthe definitionofeigenfunctionandeigenvalueinSec.3.2specifiedthat ˆ A islinear.

(n) F. (o) F.

The Harmonic Oscillator

4.1 Taking(/)ddxm of(4.84)gives()0()(1)(2)(1)() mnm nn fxcnnnnmxa ∞ = =−−−+− ∑

Thefactors n,(1),... n makethetermswith0, n = 1, n = …,1 nm = vanish,so ()()(1)(2)(1)() mnm nmn fxcnnnnmxa ∞ = =−−−+− ∑ (Eq.1).(Ifthisistooabstract foryou,writetheexpansionas2 ()012 k k fxccxcxcx = +++++ anddothe differentiation.)With xa = inEq.1,the() nm xa factormakesalltermsequaltozero exceptthetermwith, nm = whichisaconstant.Equation(1)with xa = gives ()()(1)(2)(1)! m fmm acmmmmmcm =−−−+= and()()/! m m cfam = .

4.2 (a) (iv) ()sin,()cos,()sin,()cos,()sin, fxxfxxfxxfxxfxx ′′′′′′ ===−=−= …; a =0and(iv)(0)sin00,(0)cos01,(0)0,(0)1,(0)0, fffff ′′′′′′ = =====−= ….The Taylorseriesis35 sin0/1!0/3!0/5! xxxx =++−+++= 21 0(1)/(21)! kk kxk ∞ + = −+ ∑ . (b) 24242 0 cos1/1!3/3!5/5!1/2!/4!(1)/(2)! kk xkxxxxxk ∞ = =−+−=−+−=− ∑ .

4.3 (a) Weuse(4.85)with0. a = Wehave()fx xe = and()(). fnx xe = ()0(0)1. n fe== So23 0 1/1!/2!/3!/! xn n exxxxn ∞ = =++++= ∑ . (b) 2345 1()/1!()/2!()/3!()/4!()/5! i eiiiii θ θθθθθ =++++++= 2435 1/2!/4!(/1!/3!/5!) i θθθθθ −+−+−+− cossin. i θ θ = +

4.4 From(4.22)and(4.28),/2cos(2) dxdtAtb πνπν = + and22222cos(2). TmAtb πνπν = + From(4.22)and(4.27),22222sin(2). VmAtb πνπν =+ Then222 2,TVmA πν += since 22 sincos1. θθ+=

4.5 (a) Let 0 n ynncx ∞ = = ∑ .Then1 0 n ynnncx ∞ = ′ = ∑ and2 0(1) n ynnnncx ∞ = ′′ =− ∑ .Since thefirsttwotermsinthe y ′′ sumarezero,wehave2 2(1). n nn ynncx ∞ = ′′ =− ∑ Let 2. jn≡− Then22 00 (2)(1)(2)(1)jn jnjn yjjcxnncx ∞∞ ==++ ′′ =++=++ ∑∑ .Substitution inthedifferentialequationgives

2 0000 (2)(1)(1)230 nnnn nnnn nnnn nncxnncxncxcx ∞∞∞∞ + ==== ∑∑∑∑++−−−+= . Wehave2 02 [(2)(1)(3)]0. n nnn nncnncx ∞ + = +++−−= ∑ Settingthecoefficientof n x equaltozero,wehave22(3)/[(2)(1)].nn cnncnn + =+−++ (b) Therecursionrelationof(a)with0 n = gives203/2cc = andwith2 n = gives 42200 3/12/4(3/2)/43/8. ccccc ===−=− With1 n = and3 n = intherecursion relation,weget31/6 cc =− and53119/209(/6)/203/40.cccc = =−=−

4.6 (a) Odd; (b) even;(c) odd; (d) neither; (e) even; (f) odd; (g) neither;(h) even.

4.7 Given:()(),()(),()(),()(). fxfxgxgxhxhxkxkx −=−=−=−−=− Let()()(). pxfxgx ≡ Wehave()()()()()(), pxfxgxfxgxpx =−−== sotheproduct oftwoevenfunctionsisanevenfunction.Let()()(). qxhxkx ≡ Then ()()()()[()]()()(), qxhxkxhxkxhxkxqx −=−−=−−== sotheproductoftwoodd functionsisanevenfunction.Let()()(). rxfxhx = Then ()()()()[()]()()() rxfxhxfxhxfxhxrx −≡−−=−=−=− .

4.8 (a) Given:()(). fxfx =− Differentiationofthisequationgives ()()/()[()/](), fxdfxdxfxdxdxfx ′′′ =−=−−=−− so f ′ isanoddfunction.

(b) Differentiationof()() fxfx =−− gives()(1)()(). fxfxfx ′ ′′ = −−−=−

(c) Differentiationof()() fxfx =− gives()(), fxfx ′ ′ = asin(a).Putting0 x = in thisequation,weget(0)(0), ff′′ =− so2(0)0 f ′ = and(0)0 f ′ = .

4.9

22 ˆ21/2/222/2 *(/2)(/)(/)xx TTdmeddxedx αα ψψταπ ∞ −∞ 〈〉==−∫ ∫ =

22 21/2/222/2 (/2)(/)()xx mexedx αα απαα ∞ −∞ −∫− = 21/2222 0 (/2)(/)2() x mxedx α απαα ∞ −∫−= 21/221/23/21/2 (/)(/)[(1/4)(/)(1/2)(/)] m απαπααπα −−= 2/4 m α = 2(2/)/4/4, mmh πνν = where(A.9)and(A.10)wereused. 22 ˆ1/2/2222/2 *(/)(2)xax VVdemxedx α ψψταππν ∞ −∞ 〈〉=== ∫∫

1/22222 0 (/)2(2) ax mxedx αππν ∞ = ∫

3/21/221/23/222 4(1/4)(/)/ mm π ανπαπνα = = 221/(2)/4. mmhT πνπνν==〈〉

4.10 From(4.54), 22 222221/23/2 1 11014 1||2||2||/ xx cxedxcxedxc αα π α ∞∞ −∞ === ∫∫ ,where (4.49)and(A.10)with n =1wereused.Weget1/23/41/4 1 ||2 c απ = .From(4.56),

4-2

Copyright©2014PearsonEducation,Inc.

211/21/23/221/25/2 0 2||[2(/)4(1/4)/4(3/8)/] c πααπααπα =−+= 21/2 0 2||(/) c πα where(A.9)and(A.10)wereused.Hence1/21/4 0 ||2(/). c απ =

4.11 From(4.47), 2 3/2 313(). ax cxcxe ψ =+ From(4.46),311[2(13)/6]2/3.ccc α α = −=− So 2 3/2 31[(2/3)] x cxxe α ψ α =− .Wehave 224262 10 1||2[(4/3)(4/9)] x cxxxedx α αα ∞ =−+= ∫

221/23/231/25/2241/27/2 1 2||[(1/2)/(4/3)(3/2)/(4/9)(15/2)/] c πααπααπα −+= 21/23/2 1 ||/3 c πα and1/23/41/4 1 ||3. c απ = Then 2 1/23/41/43/2 33[(2/3)]. x xxe α ψ =−απα

4.12 From(4.47), 224 4024(). x eccxcx α ψ =++ From(4.46)with4, = v

200 2(4)/24 ccc α α =−=− and 422 2(24)/(34)/3ccc α =−⋅=−α 0 (4)/3 c α α = 2 0 4/3. c α = Then 2224 40(144/3). x cexx α ψ =−+αα

4.13 Atthemaximaintheprobabilitydensity2 || ψ ,wehave2||/0. x ψ ∂ ∂= From(4.54), 222223 11 0(/)()(22), xx cxxecxxe αα α =∂∂=− so 32 0(1). xxxx =−=−αα Thesolutions are0 x = and1/2. x =±α FromFig.4.4b,0 x = isaminimuminprobabilitydensity,so themaximaareat1/2. x =±α

4.14 Thewavefunctionisanoddfunctionwithfivenodes,oneofwhichisattheorigin.

Alternatively,onecouldtake1timesthe ψ functiongraphedabove.

Copyright©2014PearsonEducation,Inc. 2222242224 000 1||(144)2||(144)xx cxxedxcxxedx αα αααα ∞∞ −∞ =−+=−+ ∫∫

4-3

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.