Probability & statistics for engineers & scientists, 9th edition ronald e. walpole 2024 Scribd Downl

Page 1


Probability&StatisticsforEngineers& Scientists,9thEditionRonaldE.Walpole

https://ebookmass.com/product/probability-statistics-forengineers-scientists-9th-edition-ronald-e-walpole/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Statistics for Engineers and Scientists 5th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-5th-edition-william-navidi-2/

ebookmass.com

Statistics for Engineers and Scientists, 6th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-6th-edition-william-navidi-2/

ebookmass.com

Statistics For Engineers and Scientists 6th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-6th-edition-william-navidi/

ebookmass.com

Hitting The Goal Line: A Hockey Romance (Chicago Dark Knights Series Book 3) Jocelyne Soto

https://ebookmass.com/product/hitting-the-goal-line-a-hockey-romancechicago-dark-knights-series-book-3-jocelyne-soto/

ebookmass.com

The Sociology of Health, Illness, and Health Care: A Critical Approach 8th Edition Weitz

https://ebookmass.com/product/the-sociology-of-health-illness-andhealth-care-a-critical-approach-8th-edition-weitz/

ebookmass.com

Statistical Methods in the Atmospheric Sciences 4th Edition Daniel S. Wilks

https://ebookmass.com/product/statistical-methods-in-the-atmosphericsciences-4th-edition-daniel-s-wilks/

ebookmass.com

Experiencing Intercultural Communication: An Introduction 6th Edition, (Ebook PDF)

https://ebookmass.com/product/experiencing-interculturalcommunication-an-introduction-6th-edition-ebook-pdf/

ebookmass.com

The Post-Pandemic Business Playbook: Customer-Centric Solutions to Help Your Firm Grow Ofer Mintz

https://ebookmass.com/product/the-post-pandemic-business-playbookcustomer-centric-solutions-to-help-your-firm-grow-ofer-mintz/

ebookmass.com

(eBook PDF) Social Psychology: The Science of Everyday Life 2nd Edition

https://ebookmass.com/product/ebook-pdf-social-psychology-the-scienceof-everyday-life-2nd-edition/

ebookmass.com

The Practical Origins of Ideas. Genealogy as Conceptual Reverse-Engineering Matthieu Queloz

https://ebookmass.com/product/the-practical-origins-of-ideasgenealogy-as-conceptual-reverse-engineering-matthieu-queloz/

ebookmass.com

This page intentionally left blank

EditorinChief: DeirdreLynch

AcquisitionsEditor: ChristopherCummings

ExecutiveContentEditor: ChristineO’Brien

AssociateEditor: ChristinaLepre

SeniorManagingEditor: KarenWernholm

SeniorProductionProjectManager: TracyPatruno

DesignManager: AndreaNix

CoverDesigner: HeatherScott

DigitalAssetsManager: MarianneGroth

AssociateMediaProducer: VickiDreyfus

MarketingManager: AlexGay

MarketingAssistant: KathleenDeChavez

SeniorAuthorSupport/TechnologySpecialist: JoeVetere

RightsandPermissionsAdvisor: MichaelJoyce

SeniorManufacturingBuyer: CarolMelville

ProductionCoordination: Liflandetal.Bookmakers

Composition: KeyingYe

Coverphoto: MarjoryDressler/DresslerPhoto-Graphics

Manyofthedesignationsusedbymanufacturersandsellerstodistinguishtheirproductsareclaimedas trademarks.Wherethosedesignationsappearinthisbook,andPearsonwasawareofatrademarkclaim,the designationshavebeenprintedininitialcapsorallcaps.

LibraryofCongressCataloging-in-PublicationData

Probability&statisticsforengineers&scientists/RonaldE.Walpole ... [etal.]—9thed. p.cm.

ISBN978-0-321-62911-1

1.Engineering—Statisticalmethods.2.Probabilities.I.Walpole,RonaldE. TA340.P7382011

519.02’462–dc22

2010004857

Copyright c 2012,2007,2002PearsonEducation,Inc.Allrightsreserved.Nopartofthispublicationmaybe reproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying,recording,orotherwise,withoutthepriorwrittenpermissionofthepublisher.Printedinthe UnitedStatesofAmerica.Forinformationonobtainingpermissionforuseofmaterialinthiswork,pleasesubmit awrittenrequesttoPearsonEducation,Inc.,RightsandContractsDepartment,501BoylstonStreet,Suite900, Boston,MA02116,faxyourrequestto617-671-3447,ore-mailathttp://www.pearsoned.com/legal/permissions.htm.

12345678910—EB—1413121110

ISBN10:0-321-62911-6

ISBN13:978-0-321-62911-1

Thisbookisdedicatedto

BillyandJulie R.H.M.andS.L.M.
Limin,CarolynandEmily K.Y.

This page intentionally left blank

1.4MeasuresofVariability..

1.7GeneralTypesofStatisticalStudies:DesignedExperiment, ObservationalStudy,andRetrospectiveStudy..

2.8PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters ...............................................79

3RandomVariablesandProbabilityDistributions ......

3.1ConceptofaRandomVariable..................................81

3.2DiscreteProbabilityDistributions..

3.3ContinuousProbabilityDistributions

3.4JointProbabilityDistributions.

3.5PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters

4MathematicalExpectation ................................

4.1MeanofaRandomVariable.....................................111

4.2VarianceandCovarianceofRandomVariables...................119

4.3MeansandVariancesofLinearCombinationsofRandomVariables128

4.4Chebyshev’sTheorem...........................................135

4.5PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters ...............................................142

5SomeDiscreteProbabilityDistributions ................

5.1IntroductionandMotivation....................................143

5.2BinomialandMultinomialDistributions..

5.3HypergeometricDistribution...

5.4NegativeBinomialandGeometricDistributions...

5.5PoissonDistributionandthePoissonProcess.

5.6PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters ...............................................169

6SomeContinuousProbabilityDistributions

6.1ContinuousUniformDistribution

6.2NormalDistribution...

6.3AreasundertheNormalCurve..

6.4ApplicationsoftheNormalDistribution...

6.5NormalApproximationtotheBinomial...

6.6GammaandExponentialDistributions.

6.7Chi-SquaredDistribution

6.8BetaDistribution

6.9LognormalDistribution

6.10WeibullDistribution(Optional).

6.11PotentialMisconceptionsandHazards;RelationshiptoMaterial

7FunctionsofRandomVariables(Optional) ..............

7.1Introduction....................................................211

7.2TransformationsofVariables....................................211

7.3MomentsandMoment-GeneratingFunctions

8FundamentalSamplingDistributionsand DataDescriptions

8.1RandomSampling..

8.2SomeImportantStatistics.......................................227

8.3SamplingDistributions.

8.4SamplingDistributionofMeansandtheCentralLimitTheorem.233

8.5SamplingDistributionof

8.6

8.7 F

8.8QuantileandProbabilityPlots...

8.9PotentialMisconceptionsandHazards;RelationshiptoMaterial

9One-andTwo-SampleEstimationProblems

9.1Introduction....................................................265

9.2StatisticalInference.............................................265

9.3ClassicalMethodsofEstimation... ..............................266

9.4SingleSample:EstimatingtheMean ............................269

9.5StandardErrorofaPointEstimate .............................276

9.6PredictionIntervals.............................................277

9.7ToleranceLimits................................................280

9.8TwoSamples:EstimatingtheDifferencebetweenTwoMeans...285

9.9PairedObservations.............................................291

9.10SingleSample:EstimatingaProportion. ........................296

9.11TwoSamples:EstimatingtheDifferencebetweenTwoProportions300 Exercises...................................................302

9.12SingleSample:EstimatingtheVariance. ........................303

9.13TwoSamples:EstimatingtheRatioofTwoVariances..

9.14MaximumLikelihoodEstimation(Optional).

9.15PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters ...............................................316

10One-andTwo-SampleTestsofHypotheses

10.1StatisticalHypotheses:GeneralConcepts..

10.3TheUseof P -ValuesforDecisionMakinginTestingHypotheses.331 Exercises...................................................334

10.4SingleSample:TestsConcerningaSingleMean...

10.5TwoSamples:TestsonTwoMeans.............................342

10.6ChoiceofSampleSizeforTestingMeans

10.7GraphicalMethodsforComparingMeans.

10.8OneSample:TestonaSingleProportion..

10.9TwoSamples:TestsonTwoProportions...

10.10One-andTwo-SampleTestsConcerningVariances.

10.11Goodness-of-FitTest...

10.12TestforIndependence(CategoricalData).......................373

10.13TestforHomogeneity

11.1IntroductiontoLinearRegression...

11.7ChoiceofaRegressionModel.

11.8Analysis-of-VarianceApproach.

11.9TestforLinearityofRegression:DatawithRepeatedObservations416

11.10DataPlotsandTransformations.................................424

12.2EstimatingtheCoefficients..

12.4PropertiesoftheLeastSquaresEstimators

12.6ChoiceofaFittedModelthroughHypothesisTesting.

12.7SpecialCaseofOrthogonality(Optional)

12.8CategoricalorIndicatorVariables...............................472

12.9SequentialMethodsforModelSelection.........................476

12.10StudyofResidualsandViolationofAssumptions(ModelChecking).............................................................482

12.11CrossValidation, Cp ,andOtherCriteriaforModelSelection ....487

12.12SpecialNonlinearModelsforNonidealConditions...

12.13PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters

13One-FactorExperiments:General

13.1Analysis-of-VarianceTechnique..

13.2TheStrategyofExperimentalDesign ............................508

13.3One-WayAnalysisofVariance:CompletelyRandomizedDesign (One-WayANOVA).............................................509

13.4TestsfortheEqualityofSeveralVariances.

13.5Single-Degree-of-FreedomComparisons..

13.6MultipleComparisons

13.7ComparingaSetofTreatmentsinBlocks

13.8RandomizedCompleteBlockDesigns............................533

13.9GraphicalMethodsandModelChecking... .....................540

13.10DataTransformationsinAnalysisofVariance...................543

13.11RandomEffectsModels...

13.12CaseStudy... ..................................................551

13.13PotentialMisconceptionsandHazards;RelationshiptoMaterial inOtherChapters

14FactorialExperiments(TwoorMoreFactors) ..........

14.1Introduction....................................................561

14.2InteractionintheTwo-FactorExperiment.......................562

14.3Two-FactorAnalysisofVariance................................565

14.4Three-FactorExperiments

14.5FactorialExperimentsforRandomEffectsandMixedModels

14.6PotentialMisconceptionsandHazards;RelationshiptoMaterial

15.1Introduction....................................................597

15.2The2k Factorial:CalculationofEffectsandAnalysisofVariance598

15.3Nonreplicated2k FactorialExperiment..........................604

15.4FactorialExperimentsinaRegressionSetting

15.6FractionalFactorialExperiments................................626

15.7AnalysisofFractionalFactorialExperiments....................632

15.8HigherFractionsandScreeningDesigns

15.9ConstructionofResolutionIIIandIVDesignswith8,16,and32 DesignPoints...................................................637

15.10OtherTwo-LevelResolutionIIIDesigns;ThePlackett-Burman

15.11IntroductiontoResponseSurfaceMethodology ..................639

15.12RobustParameterDesign.. .....................................643 Exercises...................................................652

15.13PotentialMisconceptionsandHazards;RelationshiptoMaterial

16.1NonparametricTests

16.3WilcoxonRank-SumTest..

16.5RunsTest.......................................................671

16.6ToleranceLimits................................................674

16.7RankCorrelationCoefficient

Preface

GeneralApproachandMathematicalLevel

Ouremphasisincreatingthenintheditionislessonaddingnewmaterialandmore onprovidingclarityanddeeperunderstanding.Thisobjectivewasaccomplishedin partbyincludingnewend-of-chaptermaterialthataddsconnectivetissuebetween chapters.Weaffectionatelycallthesecommentsattheendofthechapter“Pot Holes.”Theyareveryusefultoremindstudentsofthebigpictureandhoweach chapterfitsintothatpicture,andtheyaidthestudentinlearningaboutlimitations andpitfallsthatmayresultifproceduresaremisused.Adeeperunderstanding ofreal-worlduseofstatisticsismadeavailablethroughclassprojects,whichwere addedinseveralchapters.Theseprojectsprovidetheopportunityforstudents alone,oringroups,togathertheirownexperimentaldataanddrawinferences.In somecases,theworkinvolvesaproblemwhosesolutionwillillustratethemeaning ofaconceptorprovideanempiricalunderstandingofanimportantstatistical result.Someexistingexampleswereexpandedandnewoneswereintroducedto create“casestudies,”inwhichcommentaryisprovidedtogivethestudentaclear understandingofastatisticalconceptinthecontextofapracticalsituation.

Inthisedition,wecontinuetoemphasizeabalancebetweentheoryandapplications.Calculusandothertypesofmathematicalsupport(e.g.,linearalgebra) areusedataboutthesamelevelasinpreviouseditions.Thecoverageofanalyticaltoolsinstatisticsisenhancedwiththeuseofcalculuswhendiscussion centersonrulesandconceptsinprobability.ProbabilitydistributionsandstatisticalinferencearehighlightedinChapters2through10.Linearalgebraand matricesareverylightlyappliedinChapters11through15,wherelinearregressionandanalysisofvariancearecovered.Studentsusingthistextshouldhave hadtheequivalentofonesemesterofdifferentialandintegralcalculus.Linear algebraishelpfulbutnotnecessarysolongasthesectioninChapter12onmultiplelinearregressionusingmatrixalgebraisnotcoveredbytheinstructor.As inpreviouseditions,alargenumberofexercisesthatdealwithreal-lifescientific andengineeringapplicationsareavailabletochallengethestudent.Themany datasetsassociatedwiththeexercisesareavailablefordownloadfromthewebsite http://www.pearsonhighered.com/datasets.

• Classprojectswereaddedinseveralchapterstoprovideadeeperunderstandingofthereal-worlduseofstatistics.Studentsareaskedtoproduceorgather theirownexperimentaldataanddrawinferencesfromthesedata.

• Morecasestudieswereaddedandothersexpandedtohelpstudentsunderstandthestatisticalmethodsbeingpresentedinthecontextofareal-lifesituation.Forexample,theinterpretationofconfidencelimits,predictionlimits, andtolerancelimitsisgivenusingareal-lifesituation.

• “PotHoles”wereaddedattheendofsomechaptersandexpandedinothers. Thesecommentsareintendedtopresenteachchapterinthecontextofthe bigpictureanddiscusshowthechaptersrelatetooneanother.Theyalso providecautionsaboutthepossiblemisuseofstatisticaltechniquespresented inthechapter.

• Chapter1hasbeenenhancedtoincludemoreonsingle-numberstatisticsas wellasgraphicaltechniques.Newfundamentalmaterialonsamplingand experimentaldesignispresented.

• ExamplesaddedtoChapter8onsamplingdistributionsareintendedtomotivate P -valuesandhypothesistesting.Thispreparesthestudentforthemore challengingmaterialonthesetopicsthatwillbepresentedinChapter10.

• Chapter12containsadditionaldevelopmentregardingtheeffectofasingle regressionvariableinamodelinwhichcollinearitywithothervariablesis severe.

• Chapter15nowintroducesmaterialontheimportanttopicofresponsesurface methodology(RSM).TheuseofnoisevariablesinRSMallowstheillustration ofmeanandvariance(dualresponsesurface)modeling.

• Thecentralcompositedesign(CCD)isintroducedinChapter15.

• MoreexamplesaregiveninChapter18,andthediscussionofusingBayesian methodsforstatisticaldecisionmakinghasbeenenhanced.

ContentandCoursePlanning

Thistextisdesignedforeitheraone-oratwo-semestercourse.Areasonable planforaone-semestercoursemightincludeChapters1through10.Thiswould resultinacurriculumthatconcludedwiththefundamentalsofbothestimation andhypothesistesting.Instructorswhodesirethatstudentsbeexposedtosimple linearregressionmaywishtoincludeaportionofChapter11.Forinstructors whodesiretohaveanalysisofvarianceincludedratherthanregression,theonesemestercoursemayincludeChapter13ratherthanChapters11and12.Chapter 13featuresone-factoranalysisofvariance.Anotheroptionistoeliminateportions ofChapters5and/or6aswellasChapter7.Withthisoption,oneormoreof thediscreteorcontinuousdistributionsinChapters5and6maybeeliminated. Thesedistributionsincludethenegativebinomial,geometric,gamma,Weibull, beta,andlognormaldistributions.Otherfeaturesthatonemightconsiderremovingfromaone-semestercurriculumincludemaximumlikelihoodestimation,

prediction,and/ortolerancelimitsinChapter9.Aone-semestercurriculumhas built-inflexibility,dependingontherelativeinterestoftheinstructorinregression, analysisofvariance,experimentaldesign,andresponsesurfacemethods(Chapter 15).Thereareseveraldiscreteandcontinuousdistributions(Chapters5and6) thathaveapplicationsinavarietyofengineeringandscientificareas.

Chapters11through18containsubstantialmaterialthatcanbeaddedforthe secondsemesterofatwo-semestercourse.Thematerialonsimpleandmultiple linearregressionisinChapters11and12,respectively.Chapter12aloneoffersa substantialamountofflexibility.Multiplelinearregressionincludessuch“special topics”ascategoricalorindicatorvariables,sequentialmethodsofmodelselection suchasstepwiseregression,thestudyofresidualsforthedetectionofviolations ofassumptions,crossvalidationandtheuseofthePRESSstatisticaswellas Cp ,andlogisticregression.Theuseoforthogonalregressors,aprecursortothe experimentaldesigninChapter15,ishighlighted.Chapters13and14offera relativelylargeamountofmaterialonanalysisofvariance(ANOVA)withfixed, random,andmixedmodels.Chapter15highlightstheapplicationoftwo-level designsinthecontextoffullandfractionalfactorialexperiments(2k ).Special screeningdesignsareillustrated.Chapter15alsofeaturesanewsectiononresponse surfacemethodology(RSM)toillustratetheuseofexperimentaldesignforfinding optimalprocessconditions.Thefittingofasecondordermodelthroughtheuseof acentralcompositedesignisdiscussed.RSMisexpandedtocovertheanalysisof robustparameterdesigntypeproblems.Noisevariablesareusedtoaccommodate dualresponsesurfacemodels.Chapters16,17,and18containamoderateamount ofmaterialonnonparametricstatistics,qualitycontrol,andBayesianinference. Chapter1isanoverviewofstatisticalinferencepresentedonamathematically simplelevel.Ithasbeenexpandedfromtheeightheditiontomorethoroughly coversingle-numberstatisticsandgraphicaltechniques.Itisdesignedtogive studentsapreliminarypresentationofelementaryconceptsthatwillallowthemto understandmoreinvolveddetailsthatfollow.Elementaryconceptsinsampling, datacollection,andexperimentaldesignarepresented,andrudimentaryaspects ofgraphicaltoolsareintroduced,aswellasasenseofwhatisgarneredfroma dataset.Stem-and-leafplotsandbox-and-whiskerplotshavebeenadded.Graphs arebetterorganizedandlabeled.Thediscussionofuncertaintyandvariationin asystemisthoroughandwellillustrated.Thereareexamplesofhowtosort outtheimportantcharacteristicsofascientificprocessorsystem,andtheseideas areillustratedinpracticalsettingssuchasmanufacturingprocesses,biomedical studies,andstudiesofbiologicalandotherscientificsystems.Acontrastismade betweentheuseofdiscreteandcontinuousdata.Emphasisisplacedontheuse ofmodelsandtheinformationconcerningstatisticalmodelsthatcanbeobtained fromgraphicaltools.

Chapters2,3,and4dealwithbasicprobabilityaswellasdiscreteandcontinuousrandomvariables.Chapters5and6focusonspecificdiscreteandcontinuous distributionsaswellasrelationshipsamongthem.Thesechaptersalsohighlight examplesofapplicationsofthedistributionsinreal-lifescientificandengineering studies.Examples,casestudies,andalargenumberofexercisesedifythestudent concerningtheuseofthesedistributions.Projectsbringthepracticaluseofthese distributionstolifethroughgroupwork.Chapter7isthemosttheoreticalchapter

inthetext.Itdealswithtransformationofrandomvariablesandwilllikelynotbe usedunlesstheinstructorwishestoteacharelativelytheoreticalcourse.Chapter 8containsgraphicalmaterial,expandingonthemoreelementarysetofgraphicaltoolspresentedandillustratedinChapter1.Probabilityplottingisdiscussed andillustratedwithexamples.Theveryimportantconceptofsamplingdistributionsispresentedthoroughly,andillustrationsaregiventhatinvolvethecentral limittheoremandthedistributionofasamplevarianceundernormal,independent (i.i.d.)sampling.The t and F distributionsareintroducedtomotivatetheiruse inchapterstofollow.NewmaterialinChapter8helpsthestudenttovisualizethe importanceofhypothesistesting,motivatingtheconceptofa P -value.

Chapter9containsmaterialonone-andtwo-samplepointandintervalestimation.Athoroughdiscussionwithexamplespointsoutthecontrastbetweenthe differenttypesofintervals—confidenceintervals,predictionintervals,andtoleranceintervals.Acasestudyillustratesthethreetypesofstatisticalintervalsinthe contextofamanufacturingsituation.Thiscasestudyhighlightsthedifferences amongtheintervals,theirsources,andtheassumptionsmadeintheirdevelopment,aswellaswhattypeofscientificstudyorquestionrequirestheuseofeach one.Anewapproximationmethodhasbeenaddedfortheinferenceconcerninga proportion.Chapter10beginswithabasicpresentationonthepragmaticmeaningofhypothesistesting,withemphasisonsuchfundamentalconceptsasnulland alternativehypotheses,theroleofprobabilityandthe P -value,andthepowerof atest.Followingthis,illustrationsaregivenoftestsconcerningoneandtwosamplesunderstandardconditions.Thetwo-sample t-testwithpairedobservations isalsodescribed.Acasestudyhelpsthestudenttodevelopaclearpictureof whatinteractionamongfactorsreallymeansaswellasthedangersthatcanarise wheninteractionbetweentreatmentsandexperimentalunitsexists.Attheendof Chapter10isaveryimportantsectionthatrelatesChapters9and10(estimation andhypothesistesting)toChapters11through16,wherestatisticalmodelingis prominent.Itisimportantthatthestudentbeawareofthestrongconnection. Chapters11and12containmaterialonsimpleandmultiplelinearregression, respectively.Considerablymoreattentionisgiveninthiseditiontotheeffectthat collinearityamongtheregressionvariablesplays.Asituationispresentedthat showshowtheroleofasingleregressionvariablecandependinlargepartonwhat regressorsareinthemodelwithit.Thesequentialmodelselectionprocedures(forward,backward,stepwise,etc.)arethenrevisitedinregardtothisconcept,and therationaleforusingcertain P -valueswiththeseproceduresisprovided.Chapter12offersmaterialonnonlinearmodelingwithaspecialpresentationoflogistic regression,whichhasapplicationsinengineeringandthebiologicalsciences.The materialonmultipleregressionisquiteextensiveandthusprovidesconsiderable flexibilityfortheinstructor,asindicatedearlier.AttheendofChapter12iscommentaryrelatingthatchaptertoChapters14and15.Severalfeatureswereadded thatprovideabetterunderstandingofthematerialingeneral.Forexample,the end-of-chaptermaterialdealswithcautionsanddifficultiesonemightencounter. Itispointedoutthattherearetypesofresponsesthatoccurnaturallyinpractice (e.g.proportionresponses,countresponses,andseveralothers)withwhichstandardleastsquaresregressionshouldnotbeusedbecausestandardassumptionsdo notholdandviolationofassumptionsmayinduceseriouserrors.Thesuggestionis

madethatdatatransformationontheresponsemayalleviatetheprobleminsome cases.FlexibilityisagainavailableinChapters13and14,onthetopicofanalysis ofvariance.Chapter13coversone-factorANOVAinthecontextofacompletely randomizeddesign.Complementarytopicsincludetestsonvariancesandmultiple comparisons.Comparisonsoftreatmentsinblocksarehighlighted,alongwiththe topicofrandomizedcompleteblocks.GraphicalmethodsareextendedtoANOVA toaidthestudentinsupplementingtheformalinferencewithapictorialtypeofinferencethatcanaidscientistsandengineersinpresentingmaterial.Anewproject isgiveninwhichstudentsincorporatetheappropriaterandomizationintoeach planandusegraphicaltechniquesand P -valuesinreportingtheresults.Chapter 14extendsthematerialinChapter13toaccommodatetwoormorefactorsthat areinafactorialstructure.TheANOVApresentationinChapter14includeswork inbothrandomandfixedeffectsmodels.Chapter15offersmaterialassociated with2k factorialdesigns;examplesandcasestudiespresenttheuseofscreening designsandspecialhigherfractionsofthe2k .Twonewandspecialfeaturesare thepresentationsofresponsesurfacemethodology(RSM)androbustparameter design.Thesetopicsarelinkedinacasestudythatdescribesandillustratesa dualresponsesurfacedesignandanalysisfeaturingtheuseofprocessmeanand varianceresponsesurfaces.

ComputerSoftware

Casestudies,beginninginChapter8,featurecomputerprintoutandgraphical materialgeneratedusingbothSASandMINITAB.Theinclusionofthecomputer reflectsourbeliefthatstudentsshouldhavetheexperienceofreadingandinterpretingcomputerprintoutandgraphics,evenifthesoftwareinthetextisnotthat whichisusedbytheinstructor.Exposuretomorethanonetypeofsoftwarecan broadentheexperiencebaseforthestudent.Thereisnoreasontobelievethat thesoftwareusedinthecoursewillbethatwhichthestudentwillbecalledupon touseinpracticefollowinggraduation.Examplesandcasestudiesinthetextare supplemented,whereappropriate,byvarioustypesofresidualplots,quantileplots, normalprobabilityplots,andotherplots.Suchplotsareparticularlyprevalentin Chapters11through15.

Supplements

Instructor’sSolutionsManual.Thisresourcecontainsworked-outsolutionstoall textexercisesandisavailablefordownloadfromPearsonEducation’sInstructor ResourceCenter.

StudentSolutionsManual ISBN-10:0-321-64013-6;ISBN-13:978-0-321-64013-0. Featuringcompletesolutionstoselectedexercises,thisisagreattoolforstudents astheystudyandworkthroughtheproblemmaterial.

PowerPoint R LectureSlides ISBN-10:0-321-73731-8;ISBN-13:978-0-321-737311.Theseslidesincludemostofthefiguresandtablesfromthetext.Slidesare availabletodownloadfromPearsonEducation’sInstructorResourceCenter.

StatCruncheText.Thisinteractive,onlinetextbookincludesStatCrunch,apowerful,web-basedstatisticalsoftware.EmbeddedStatCrunchbuttonsallowusers toopenalldatasetsandtablesfromthebookwiththeclickofabuttonand immediatelyperformananalysisusingStatCrunch.

StatCrunch TM .StatCrunchisweb-basedstatisticalsoftwarethatallowsusersto performcomplexanalyses,sharedatasets,andgeneratecompellingreportsof theirdata.UserscanuploadtheirowndatatoStatCrunchorsearchthelibrary ofovertwelvethousandpubliclyshareddatasets,coveringalmostanytopicof interest.Interactivegraphicaloutputshelpusersunderstandstatisticalconcepts andareavailableforexporttoenrichreportswithvisualrepresentationsofdata. Additionalfeaturesinclude

• Afullrangeofnumericalandgraphicalmethodsthatallowuserstoanalyze andgaininsightsfromanydataset.

• Reportingoptionsthathelpuserscreateawidevarietyofvisuallyappealing representationsoftheirdata.

• Anonlinesurveytoolthatallowsuserstoquicklybuildandadministersurveys viaawebform.

StatCrunchisavailabletoqualifiedadopters.Formoreinformation,visitour websiteatwww.statcrunch.comorcontactyourPearsonrepresentative.

Acknowledgments

Weareindebtedtothosecolleagueswhoreviewedthepreviouseditionsofthisbook andprovidedmanyhelpfulsuggestionsforthisedition.TheyareDavidGroggel, MiamiUniversity;LanceHemlow, RaritanValleyCommunityCollege;YingJi, UniversityofTexasatSanAntonio ;ThomasKline, UniversityofNorthernIowa; SheilaLawrence, RutgersUniversity;LuisMoreno, BroomeCountyCommunity College;DonaldWaldman, UniversityofColorado—Boulder;andMarleneWill, SpaldingUniversity.WewouldalsoliketothankDelraySchulz, MillersvilleUniversity;RoxaneBurrows, HockingCollege;andFrankChmelyforensuringthe accuracyofthistext.

WewouldliketothanktheeditorialandproductionservicesprovidedbynumerouspeoplefromPearson/PrenticeHall,especiallytheeditorinchiefDeirdre Lynch,acquisitionseditorChristopherCummings,executivecontenteditorChristineO’Brien,productioneditorTracyPatruno,andcopyeditorSallyLifland.Many usefulcommentsandsuggestionsbyproofreaderGailMaginaregreatlyappreciated.WethanktheVirginiaTechStatisticalConsultingCenter,whichwasthe sourceofmanyreal-lifedatasets.

Chapter1 IntroductiontoStatistics andDataAnalysis

1.1 Overview:StatisticalInference,Samples,Populations,

andtheRoleofProbability

Beginninginthe1980sandcontinuingintothe21stcentury,aninordinateamount ofattentionhasbeenfocusedon improvementofquality inAmericanindustry. MuchhasbeensaidandwrittenabouttheJapanese“industrialmiracle,”which beganinthemiddleofthe20thcentury.TheJapanesewereabletosucceedwhere weandothercountrieshadfailed–namely,tocreateanatmospherethatallows theproductionofhigh-qualityproducts.MuchofthesuccessoftheJapanesehas beenattributedtotheuseof statisticalmethods andstatisticalthinkingamong managementpersonnel.

Theuseofstatisticalmethodsinmanufacturing,developmentoffoodproducts, computersoftware,energysources,pharmaceuticals,andmanyotherareasinvolves thegatheringofinformationor scientificdata.Ofcourse,thegatheringofdata isnothingnew.Ithasbeendoneforwelloverathousandyears.Datahave beencollected,summarized,reported,andstoredforperusal.However,thereisa profounddistinctionbetweencollectionofscientificinformationand inferential statistics.Itisthelatterthathasreceivedrightfulattentioninrecentdecades.

Theoffspringofinferentialstatisticshasbeenalarge“toolbox”ofstatistical methodsemployedbystatisticalpractitioners.Thesestatisticalmethodsaredesignedtocontributetotheprocessofmakingscientificjudgmentsinthefaceof uncertainty and variation.Theproductdensityofaparticularmaterialfroma manufacturingprocesswillnotalwaysbethesame.Indeed,iftheprocessinvolved isabatchprocessratherthancontinuous,therewillbenotonlyvariationinmaterialdensityamongthebatchesthatcomeofftheline(batch-to-batchvariation), butalsowithin-batchvariation.Statisticalmethodsareusedtoanalyzedatafrom aprocesssuchasthisoneinordertogainmoresenseofwhereintheprocess changesmaybemadetoimprovethe quality oftheprocess.Inthisprocess,qual-

itymaywellbedefinedinrelationtoclosenesstoatargetdensityvalueinharmony with whatportionofthetime thisclosenesscriterionismet.Anengineermaybe concernedwithaspecificinstrumentthatisusedtomeasuresulfurmonoxidein theairduringpollutionstudies.Iftheengineerhasdoubtsabouttheeffectiveness oftheinstrument,therearetwo sourcesofvariation thatmustbedealtwith. Thefirstisthevariationinsulfurmonoxidevaluesthatarefoundatthesame localeonthesameday.Thesecondisthevariationbetweenvaluesobservedand the true amountofsulfurmonoxidethatisintheairatthetime.Ifeitherofthese twosourcesofvariationisexceedinglylarge(accordingtosomestandardsetby theengineer),theinstrumentmayneedtobereplaced.Inabiomedicalstudyofa newdrugthatreduceshypertension,85%ofpatientsexperiencedrelief,whileitis generallyrecognizedthatthecurrentdrug,or“old”drug,bringsreliefto80%ofpatientsthathavechronichypertension.However,thenewdrugismoreexpensiveto makeandmayresultincertainsideeffects.Shouldthenewdrugbeadopted?This isaproblemthatisencountered(oftenwithmuchmorecomplexity)frequentlyby pharmaceuticalfirmsinconjunctionwiththeFDA(FederalDrugAdministration). Again,theconsiderationofvariationneedstobetakenintoaccount.The“85%” valueisbasedonacertainnumberofpatientschosenforthestudy.Perhapsifthe studywererepeatedwithnewpatientstheobservednumberof“successes”would be75%!Itisthenaturalvariationfromstudytostudythatmustbetakeninto accountinthedecisionprocess.Clearlythisvariationisimportant,sincevariation frompatienttopatientisendemictotheproblem.

VariabilityinScientificData

Intheproblemsdiscussedabovethestatisticalmethodsusedinvolvedealingwith variability,andineachcasethevariabilitytobestudiedisthatencounteredin scientificdata.Iftheobservedproductdensityintheprocesswerealwaysthe sameandwerealwaysontarget,therewouldbenoneedforstatisticalmethods. Ifthedeviceformeasuringsulfurmonoxidealwaysgivesthesamevalueandthe valueisaccurate(i.e.,itiscorrect),nostatisticalanalysisisneeded.Ifthere werenopatient-to-patientvariabilityinherentintheresponsetothedrug(i.e., iteitheralwaysbringsreliefornot),lifewouldbesimpleforscientistsinthe pharmaceuticalfirmsandFDAandnostatisticianwouldbeneededinthedecision process.Statisticsresearchershaveproducedanenormousnumberofanalytical methodsthatallowforanalysisofdatafromsystemslikethosedescribedabove. Thisreflectsthetruenatureofthesciencethatwecallinferentialstatistics,namely, usingtechniquesthatallowustogobeyondmerelyreportingdatatodrawing conclusions(orinferences)aboutthescientificsystem.Statisticiansmakeuseof fundamentallawsofprobabilityandstatisticalinferencetodrawconclusionsabout scientificsystems.Informationisgatheredintheformof samples,orcollections of observations.TheprocessofsamplingisintroducedinChapter2,andthe discussioncontinuesthroughouttheentirebook.

Samplesarecollectedfrom populations,whicharecollectionsofallindividualsorindividualitemsofaparticulartype.Attimesapopulationsignifiesa scientificsystem.Forexample,amanufacturerofcomputerboardsmaywishto eliminatedefects.Asamplingprocessmayinvolvecollectinginformationon50 computerboardssampledrandomlyfromtheprocess.Here,thepopulationisall

computerboardsmanufacturedbythefirmoveraspecificperiodoftime.Ifan improvementismadeinthecomputerboardprocessandasecondsampleofboards iscollected,anyconclusionsdrawnregardingtheeffectivenessofthechangeinprocessshouldextendtotheentirepopulationofcomputerboardsproducedunder the“improvedprocess.”Inadrugexperiment,asampleofpatientsistakenand eachisgivenaspecificdrugtoreducebloodpressure.Theinterestisfocusedon drawingconclusionsaboutthepopulationofthosewhosufferfromhypertension. Often,itisveryimportanttocollectscientificdatainasystematicway,with planningbeinghighontheagenda.Attimestheplanningis,bynecessity,quite limited.Weoftenfocusonlyoncertainpropertiesorcharacteristicsoftheitemsor objectsinthepopulation.Eachcharacteristichasparticularengineeringor,say, biologicalimportancetothe“customer,”thescientistorengineerwhoseekstolearn aboutthepopulation.Forexample,inoneoftheillustrationsabovethequality oftheprocesshadtodowiththeproductdensityoftheoutputofaprocess.An engineermayneedtostudytheeffectofprocessconditions,temperature,humidity, amountofaparticularingredient,andsoon.Heorshecansystematicallymove these factors towhateverlevelsaresuggestedaccordingtowhateverprescription or experimentaldesign isdesired.However,aforestscientistwhoisinterested inastudyoffactorsthatinfluencewooddensityinacertainkindoftreecannot necessarilydesignanexperiment.Thiscasemayrequirean observationalstudy inwhichdataarecollectedinthefieldbut factorlevels cannotbepreselected. Bothofthesetypesofstudieslendthemselvestomethodsofstatisticalinference. Intheformer,thequalityoftheinferenceswilldependonproperplanningofthe experiment.Inthelatter,thescientistisatthemercyofwhatcanbegathered. Forexample,itissadifanagronomistisinterestedinstudyingtheeffectofrainfall onplantyieldandthedataaregatheredduringadrought.

Theimportanceofstatisticalthinkingbymanagersandtheuseofstatistical inferencebyscientificpersonneliswidelyacknowledged.Researchscientistsgain muchfromscientificdata.Dataprovideunderstandingofscientificphenomena. Productandprocessengineerslearnagreatdealintheiroff-lineeffortstoimprove theprocess.Theyalsogainvaluableinsightbygatheringproductiondata(onlinemonitoring)onaregularbasis.Thisallowsthemtodeterminenecessary modificationsinordertokeeptheprocessatadesiredlevelofquality.

Therearetimeswhenascientificpractitionerwishesonlytogainsomesortof summaryofasetofdatarepresentedinthesample.Inotherwords,inferential statisticsisnotrequired.Rather,asetofsingle-numberstatisticsor descriptive statistics ishelpful.Thesenumbersgiveasenseofcenterofthelocationof thedata,variabilityinthedata,andthegeneralnatureofthedistributionof observationsinthesample.Thoughnospecificstatisticalmethodsleadingto statisticalinference areincorporated,muchcanbelearned.Attimes,descriptive statisticsareaccompaniedbygraphics.Modernstatisticalsoftwarepackagesallow forcomputationof means, medians, standarddeviations,andothersinglenumberstatisticsaswellasproductionofgraphsthatshowa“footprint”ofthe natureofthesample.Definitionsandillustrationsofthesingle-numberstatistics andgraphs,includinghistograms,stem-and-leafplots,scatterplots,dotplots,and boxplots,willbegiveninsectionsthatfollow.

TheRoleofProbability

Inthisbook,Chapters2to6dealwithfundamentalnotionsofprobability.A thoroughgroundingintheseconceptsallowsthereadertohaveabetterunderstandingofstatisticalinference.Withoutsomeformalismofprobabilitytheory, thestudentcannotappreciatethetrueinterpretationfromdataanalysisthrough modernstatisticalmethods.Itisquitenaturaltostudyprobabilitypriortostudyingstatisticalinference.Elementsofprobabilityallowustoquantifythestrength or“confidence”inourconclusions.Inthissense,conceptsinprobabilityforma majorcomponentthatsupplementsstatisticalmethodsandhelpsusgaugethe strengthofthestatisticalinference.Thedisciplineofprobability,then,provides thetransitionbetweendescriptivestatisticsandinferentialmethods.Elementsof probabilityallowtheconclusiontobeputintothelanguagethatthescienceor engineeringpractitionersrequire.Anexamplefollowsthatwillenablethereader tounderstandthenotionofa P -value,whichoftenprovidesthe“bottomline”in theinterpretationofresultsfromtheuseofstatisticalmethods.

Example1.1: Supposethatanengineerencountersdatafromamanufacturingprocessinwhich 100itemsaresampledand10arefoundtobedefective.Itisexpectedandanticipatedthatoccasionallytherewillbedefectiveitems.Obviouslythese100items representthesample.However,ithasbeendeterminedthatinthelongrun,the companycanonlytolerate5%defectiveintheprocess.Now,theelementsofprobabilityallowtheengineertodeterminehowconclusivethesampleinformationis regardingthenatureoftheprocess.Inthiscase,the population conceptually representsallpossibleitemsfromtheprocess.Supposewelearnthat iftheprocess isacceptable,thatis,ifitdoesproduceitemsnomorethan5%ofwhicharedefective,thereisaprobabilityof0.0282ofobtaining10ormoredefectiveitemsin arandomsampleof100itemsfromtheprocess.Thissmallprobabilitysuggests thattheprocessdoes,indeed,havealong-runrateofdefectiveitemsthatexceeds 5%.Inotherwords,undertheconditionofanacceptableprocess,thesampleinformationobtainedwouldrarelyoccur.However,itdidoccur!Clearly,though,it wouldoccurwithamuchhigherprobabilityiftheprocessdefectiverateexceeded 5%byasignificantamount.

Fromthisexampleitbecomesclearthattheelementsofprobabilityaidinthe translationofsampleinformationintosomethingconclusiveorinconclusiveabout thescientificsystem.Infact,whatwaslearnedlikelyisalarminginformationto theengineerormanager.Statisticalmethods,whichwewillactuallydetailin Chapter10,produceda P -valueof0.0282.Theresultsuggeststhattheprocess verylikelyisnotacceptable.Theconceptofa P-value isdealtwithatlength insucceedingchapters.Theexamplethatfollowsprovidesasecondillustration.

Example1.2: Oftenthenatureofthescientificstudywilldictatetherolethatprobabilityand deductivereasoningplayinstatisticalinference.Exercise9.40onpage294provides dataassociatedwithastudyconductedattheVirginiaPolytechnicInstituteand StateUniversityonthedevelopmentofarelationshipbetweentherootsoftreesand theactionofafungus.Mineralsaretransferredfromthefungustothetreesand sugarsfromthetreestothefungus.Twosamplesof10northernredoakseedlings wereplantedinagreenhouse,onecontainingseedlingstreatedwithnitrogenand

theothercontainingseedlingswithnonitrogen.Allotherenvironmentalconditions wereheldconstant.Allseedlingscontainedthefungus Pisolithustinctorus.More detailsaresuppliedinChapter9.Thestemweightsingramswererecordedafter theendof140days.ThedataaregiveninTable1.1.

Table1.1:DataSetforExample1.2

Figure1.1:Adotplotofstemweightdata.

Inthisexampletherearetwosamplesfromtwo separatepopulations.The purposeoftheexperimentistodetermineiftheuseofnitrogenhasaninfluence onthegrowthoftheroots.Thestudyisacomparativestudy(i.e.,weseekto comparethetwopopulationswithregardtoacertainimportantcharacteristic).It isinstructivetoplotthedataasshowninthedotplotofFigure1.1.The ◦ values representthe“nitrogen”dataandthe × valuesrepresentthe“no-nitrogen”data. Noticethatthegeneralappearanceofthedatamightsuggesttothereader that,onaverage,theuseofnitrogenincreasesthestemweight.Fournitrogenobservationsareconsiderablylargerthananyoftheno-nitrogenobservations.Most oftheno-nitrogenobservationsappeartobebelowthecenterofthedata.The appearanceofthedatasetwouldseemtoindicatethatnitrogeniseffective.But howcanthisbequantified?Howcanalloftheapparentvisualevidencebesummarizedinsomesense?Asintheprecedingexample,thefundamentalsofprobability canbeused.Theconclusionsmaybesummarizedinaprobabilitystatementor P-value.Wewillnotshowherethestatisticalinferencethatproducesthesummary probability.AsinExample1.1,thesemethodswillbediscussedinChapter10. Theissuerevolvesaroundthe“probabilitythatdatalikethesecouldbeobserved” giventhatnitrogenhasnoeffect,inotherwords,giventhatbothsampleswere generatedfromthesamepopulation.Supposethatthisprobabilityissmall,say 0.03.Thatwouldcertainlybestrongevidencethattheuseofnitrogendoesindeed influence(apparentlyincreases)averagestemweightoftheredoakseedlings.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.