Samuelson - Managerial Economics 7e

Page 174

Forecasting

future economic developments. (The stock market is one of the best-known leading indicators of the course of the economy.)

Time-Series Models Time-series models seek to predict outcomes simply by extrapolating past behavior into the future. Time-series patterns can be broken down into the following four categories. 1. 2. 3. 4.

Trends Business cycles Seasonal variations Random fluctuations

A trend is a steady movement in an economic variable over time. For example, the total production of goods and services in the United States (and most other countries) has moved steadily upward over the years. Conversely, the number of farmers in the United States has steadily declined. On top of such trends are periodic business cycles. Economies experience periods of expansion marked by rapid growth in gross domestic product (GDP), investment, and employment. Then economic growth may slow and even fall. A sustained fall in (real) GDP and employment is called a recession. For the United States’ economy, recessions have become less frequent and less severe since 1945. Nonetheless, the business cycle—with periods of growth followed by recessions, followed in turn by expansions—remains an economic (and political) fact of life. Seasonal variations are shorter demand cycles that depend on the time of year. Seasonal factors affect tourism and air travel, tax preparation services, clothing, and other products and services. Finally, one should not ignore the role of random fluctuations. In any short period of time, an economic variable may show irregular movements due to essentially random (or unpredictable) factors. For instance, a car dealership may see 50 more customers walk into its showroom one week than the previous week and, therefore, may sell eight more automobiles. Management is grateful for the extra sales even though it can identify absolutely no difference in economic circumstances between the two weeks. Random fluctuations and unexpected occurrences are inherent in almost all time series. No model, no matter how sophisticated, can perfectly explain the data. Figure 4.3 illustrates how a time series (a company’s sales, let’s say) can be decomposed into its component parts. Part (a) depicts a smooth upward trend. Part (b) adds the effect of business cycles to the trend. Part (c) shows the regular seasonal fluctuations in sales over the course of the year added to the trend and

151


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Bargaining

1min
page 439

Market Entry

4min
pages 437-438

Equilibrium Strategies

18min
pages 428-436

Strategic Commitments

4min
pages 399-400

Price Rigidity and Kinked Demand

3min
pages 389-390

Price Wars and the Prisoner’s Dilemma

17min
pages 391-398

Competition among Symmetric Firms

5min
pages 386-388

Concentration and Prices

6min
pages 381-383

Industry Concentration

8min
pages 376-380

Natural Monopolies

32min
pages 355-371

Five-Forces Framework

3min
pages 374-375

Barriers to Entry

14min
pages 345-351

Cartels

6min
pages 352-354

Tariffs and Quotas

22min
pages 329-341

Private Markets: Benefits and Costs

21min
pages 319-328

Decisions of the Competitive Firm

4min
pages 312-314

Multiple Products

37min
pages 282-303

Shifts in Demand and Supply

2min
pages 310-311

Market Equilibrium

8min
pages 315-318

Economies of Scope

6min
pages 275-277

Returns to Scale

8min
pages 270-274

A Single Product

3min
pages 278-279

The Shut-Down Rule

3min
pages 280-281

Short-Run Costs

8min
pages 260-264

Long-Run Costs

10min
pages 265-269

Profit Maximization with Limited Capacity: Ordering a Best Seller

6min
pages 257-259

Fixed and Sunk Costs

7min
pages 254-256

Opportunity Costs and Economic Profits

8min
pages 250-253

Multiple Plants

1min
page 234

Returns to Scale

4min
pages 221-222

Estimating Production Functions

1min
page 233

Forecasting Performance

5min
pages 186-188

Optimal Use of an Input

4min
pages 219-220

Barometric Models

2min
page 185

Fitting a Simple Trend

14min
pages 176-184

Interpreting Regression Statistics

10min
pages 164-168

Potential Problems in Regression

8min
pages 169-173

Time-Series Models

2min
pages 174-175

Uncontrolled Market Data

2min
page 155

Price Discrimination

9min
pages 122-125

Consumer Surveys

4min
pages 152-153

Optimal Markup Pricing

8min
pages 118-121

Controlled Market Studies

2min
page 154

Other Elasticities

4min
pages 111-112

Maximizing Revenue

1min
page 117

General Determinants of Demand

2min
page 105

The Demand Function

4min
pages 101-102

Step 6: Perform Sensitivity Analysis

9min
pages 35-38

The Aim of This Book

10min
pages 43-47

Public Decisions

8min
pages 39-42

Step 2: Determine the Objective

4min
pages 30-31

Step 3: Explore the Alternatives

2min
page 32

Step 4: Predict the Consequences

2min
page 33

Marginal Revenue

1min
page 67

Step 5: Make a Choice

2min
page 34
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.