Electrónica

Page 1

qwertyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopasdf Electr贸nica ghjklzxcvbnmqwertyuiopasdfghjklzxc vbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopasdfghjkl zxcvbnmrtyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdfgh 30/03/2014

Emerson Fernando Avila


Electrónica

Detalle de un circuito integrado SMD.

Circuito electrónico sobre una placa para prototipos o protoboard

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo de los electrones u otras partículas cargadas eléctricamente. Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales. La electrónica también estudia los dispositivos vinculados con los electrones, como tubos, diodos, válvulas, transistores y chips. Es una de las ciencias que ha tenido más auge en los últimos tiempos, debido a que ha podido resolver problemas que antes parecían imposibles de superar, como la amplificación de señales, la transmisión de información y la memoria, entre otros.

Circuito

HISTORIA


La historia de la Electrónica, como la de muchas otras ciencias, está marcada por pequeños y grandes descubrimientos. Algunos de ellos fortuitos y otros, fruto de mentes visionarias de investigadores y científicos. La introducción de los tubos de vacío a comienzos del siglo XX propició el rápido crecimiento de la electrónica moderna. Con estos dispositivos se hizo posible la manipulación de señales, algo que no podía realizarse en los antiguos circuitos telegráficos y telefónicos, ni con los primeros transmisores que utilizaban chispas de alta tensión para generar ondas de radio. Por ejemplo, con los tubos de vacío pudieron amplificarse las señales de radio y de sonido débiles, y además podían superponerse señales de sonido a las ondas de radio. El desarrollo de una amplia variedad de tubos, diseñados para funciones especializadas, posibilitó el rápido avance de la tecnología de comunicación radial antes de la II Guerra Mundial, y el desarrollo de las primeras computadoras, durante la guerra y poco después de ella. Hoy día, el transistor, inventado en 1948, ha reemplazado casi completamente al tubo de vacío en la mayoría de sus aplicaciones. Al incorporar un conjunto de materiales semiconductores y contactos eléctricos, el transistor permite las mismas funciones que el tubo de vacío, pero con un coste, peso y potencia más bajos, y una mayor fiabilidad. Los progresos subsiguientes en la tecnología de semiconductores, atribuible en parte a la intensidad de las investigaciones asociadas con la iniciativa de exploración del espacio, llevó al desarrollo, en la década de 1970, del circuito integrado. Estos dispositivos pueden contener centenares de miles de transistores en un pequeño trozo de material, permitiendo la construcción de circuitos electrónicos complejos, como los de los microordenadores o microcomputadoras, equipos de sonido y vídeo, y satélites de comunicaciones.

Descubrimientos, inventos y personajes relevantes en la historia de la electrónica 1800 - Alessandro Volta, físico italiano, anuncia en la Royal Society de Londres el resultado de sus experimentos (desde 1786) generando electricidad mediante metales diferentes separados por un conductor húmedo. Volta apila 30 discos metálicos separados cada uno por un paño humedecido en agua salada, obteniendo electricidad. A tal dispositivo se le llamó "pila voltaica", de allí se origina el nombre de las "Pilas". En honor de Alessandro Volta, la unidad de medida del potencial eléctrico se denomina Voltio. 1820 - El físico y químico danés, Hans C. Oersted descubre que alrededor de un conductor por el que circulaba una corriente eléctrica se forma un campo magnético. 1820 - Poco después del descubrimiento de Oersted, el científico francés André Marie Ampere logró formular y demostrar experimentalmente, la ley que explica en términos matemáticos la interacción entre magnetismo y electricidad. En su memoria fue nombrada la unidad de intensidad de corriente eléctrica: el Amperio 1821 - Michael Faraday, físico y químico británico, basado en los descubrimientos de Oersted, construye los primeros aparatos para producir lo que el llamó "Rotación Electromagnética", nacía así el motor eléctrico 1825 - El inventor británico William Sturgeon crea un dispositivo que iba a contribuir significativamente a la fundación de las comunicaciones electrónicas: el electroimán. 1827 - El profesor alemán Georg Simon Ohm publica el resultado de sus experimentos que demuestran la relación entre Voltaje, Corriente y Resistencia. Conocida hoy como Ley de Ohm. Su trascendencia fue menospreciada por sus colegas de la época y solo reconocida dos décadas después. 1827 - El físico alemán Gustav Kirchoff expone dos reglas, con respecto a la distribución de corriente en un circuito eléctrico con derivaciones, llamadas Leyes de Kirchoff. 1831 - Michael Faraday, diez años después de su "motor eléctrico", descubre un efecto inverso al descubierto por Oersted. Un campo magnético en movimiento sobre un conductor induce en este una corriente eléctrica. Crea la Ley de Inducción Magnética y base de los generadores eléctricos. También descubre que en electricidad estática, la carga eléctrica se acumula en la superficie exterior del conductor eléctrico cargado. Este efecto se emplea en el dispositivo denominado jaula de Faraday y en los capacitores. En reconocimiento a sus importantes descubrimientos, la unidad de capacidad eléctrica se denomina Faradio. 1837 - Después de varios años desarrollando la idea, Samuel M. Morce patenta un dispositivo que permite trasmitir mensajes a grandes distancias a través de dos cables, usando un código de puntos y rayas (el famoso alfabeto Morse). Nacía el Telégrafo.


1846 - El Ing. Alemán Ernst Werner M. von Siemens, desarrolla el telégrafo de aguja y presión y un sistema de aislamiento de cables eléctricos a base de látex, lo que permitió, la fabricación y tendido de cables submarinos, fundando la compañía Siemens AG. Por estas y otras contribuciones tecnológicas en 1888 fue ascendido a la nobleza. 1861 - El físico ingles James Clerk Maxwell desarrolla el concepto de onda electromagnética, que permite una descripción matemática adecuada de la interacción entre electricidad y magnetismo. Predijo que era posible propagar ondas por el espacio libre utilizando descargas eléctricas. 1875 - William Crookes, físico y químico británico, investigando el comportamiento de las cargas eléctricas, usando un tubo de vidrio con electrodos y alto voltaje descubre la existencia de los rayos catódicos. Su dispositivo que se llamó "Tubo de Crookes" y sería el precursor de los tubos de rayos catódicos o cinescopios de hoy en día. 1876 - Graham Bell y su asistente Thomas A. Watson, realizaron la primer transmisión de la voz humana a través de cables. Nacía así, el teléfono. 1877 - Thomas Alva Edison inventa el primer aparato que permitía grabar en un cilindro de cera, voz y sonidos para luego reproducirlos, lo llamó: Fonógrafo. 1878 - Thomas Alva Edison construyó la primera lámpara incandescente con filamentos de bambú carbonizado 1882 - El inventor francés, Lucien H. Gaulard patenta un dispositivo que llamó generador secundario y que sería una versión primitiva de lo que hoy llamamos transformador. 1882 - Nikola Tesla investigador estadounidense de origen croata, experimentando con alto voltaje y corriente alterna polifásica, inventa el alternador y el primer motor eléctrico de inducción. 1883 - Thomas Alva Edison, tratando de mejorar su lámpara incandescente descubre que al calentar un metal este emite cargas eléctricas. Lo llamó "efecto Edison", posteriormente conocido como emisión termoiónica. Creó un dispositivo en el cual, dentro de un tubo de vidrio al vacío, la carga eléctrica emitida por una superficie metálica caliente (llamada cátodo) es recogida por otra superficie fría (llamada ánodo). 1884 - Paul Nipkow patenta un artefacto explorador de imágenes, que llamó "Disco de Nipkow" y que permitiría luego convertir imágenes en señales eléctricas. 1887 - El estadounidense de origen alemán Emile Berliner, inventa un sistema de grabación que podía sacar muchas copias de la grabación original. Berliner sustituyó el cilíndrico del fonógrafo de Edison, por un disco plano y patentó entonces su "gramófono", fundando su propia compañía para fabricarlo masivamente. 1887 - Heinrich Hertz, físico alemán, corrobora la predicción de James Clerk Maxwell creando el primer transmisor de radio, generando radiofrecuencias. Desarrolló también un sistema para medir la velocidad (frecuencia) de las ondas de radio. En su honor la unidad de medida de frecuencia se denomino Hertz (o Hertzio). 1888 - El ingeniero inglés Oberlin Smith ideó y publicó, los principios básicos para grabar sonido en un soporte magnético. 1897 - El físico inglés J. J. Thomson descubre la existencia de una partícula eléctricamente cargada, el electrón. En el año de 1906 Thomson recibió el Premio Nóbel de Física por su descubrimiento. 1897 - Ferdinand Braun, científico Alemán, perfecciona el TRC o Tubo de Rayos Catódicos agregando al Tubo de Crookes una superficie de fósforo que se iluminaba al recibir los rayos catódicos. Desarrolla el primer osciloscopio. 1897 - Guillermo Marconi ingeniero eléctrico italiano, introduce en el Reino Unido la primer patente de la Radio.


1898 - El danés Valdemar Poulsen desarrolló y patentó el telegráfono, una grabadora de sonido que emplea alambre de acero como soporte magnético. 1899 - J.J. Thomson establece que las cargas que se liberaban al calentar una superficie metálica son electrones. 1901 - Guillermo Marconi, logra la primer transmisión telegráfica inalámbrica a través del Atlántico 1903 - El físico británico John Ambrose Fleming encuentra una aplicación práctica de la válvula termoiónica de efecto Edison, que posteriormente de denominaría: "Diodo", al usarlo como detector de ondas electromagnéticas. John Ambrose Fleming es considerado "el padre de la electrónica" 1906 - El físico estadounidense Lee de Forest agrega un nuevo electrodo en forma de rejilla entre el cátodo y el ánodo del tubo al vacío. Este electrodo permite regular el paso de electrones. Nace así el Triodo, primer dispositivo amplificador electrónico. 1913 - El físico estadounidense Edwin Howard Armstrong desarrolla el primer circuito oscilador basado en un Triodo. 1920, 23 de Febrero - se trasmite el primer programa público de radio en Inglaterra. 1924 - El escocés John Logie Baird, usando el disco explorador de imagen de Nipkow, logra trasmitir imágenes por ondas de radio. Nacía la Televisión electromecánica 1928 - El ingeniero alemán Fritz Pfleumer patentó la primera cinta magnética, constituida por una delgada capa de hierro magnetizable sobre una cinta de papel. Años después, la patente fue revocada, pues el principio básico ya había sido patentado por el danés Valdemar Poulsen en 1898 1929 - Se realizan las primeras emisiones públicas de televisión, por la BBC en Inglaterra 1930 - Se perfeccionan los tubos electrónicos de vacío, nacen el Tetrodo y Pentodo con más elementos entre el cátodo y el ánodo. 1932 - La empresa alemana A.E.G. realiza los primeros ensayos para la construcción de grabadoras de cinta. La firma IG Fabenindustrie propone como soporte una cinta plástica: el acetato de celulosa. 1933 - Edwin Howard Armstrong inventa un nuevo tipo modulación de señal: la FM (frecuencia modulada). 1935 - El Magnetófono hizo su aparición pública en la Exposición Radiotécnica de Berlín. Y cinco años después H.J. von Braunmuhl y W. Weber introdujeron la premagnetización de alta frecuencia, que permitió una gran mejora en la grabación del sonido. 1936 - El ingeniero austriaco Paul Eisler mientras trabajaba en Inglaterra, creo el primer circuito impreso como parte de un receptor de radio. 1946 - Percy Spencer, ingeniero de la Raytheon Corporation, descubre los efectos de las microondas sobre los alimentos. Inventa el Horno de Microondas. 1947 - Un equipo de ingenieros y científicos encabezados por los doctores John W. Mauchly y J. Prester Eckert en la Universidad de Pennsylvania, Estados Unidos, crean: ENIAC (Electronic Numerical Integrator and Computer), primera computadora digital electrónica. Fue una máquina experimental. No era programable como las computadoras actuales. Era un enorme aparato que ocupa todo el sótano en la Universidad de Pennsylvania. Tenía 18,000 tubos electrónicos, consumía varios KW y pesaba algunas toneladas. Realizaba hasta cinco mil sumas por segundo. 1947, 16 de diciembre - Fue creado el primer transistor, por William Shockley, John Bardeen, y William Brattain en los laboratorios Bell 1950 - Salen al mercado los primeros magnetófonos comerciales, eran de cinta en carrete abierto.


1951 - Los doctores Mauchly y Eckert fundan la compañía Universal Computer (Univac), que produce la primera computadora comercial: UNIVAC I. 1955 - SONY lanza al mercado el primer receptor de radio totalmente transistorizado el TR-55 1958 - El ingeniero Jack Kilby de la compañía norteamericana Texas Instruments, creó el primer circuito completo integrado en una pastilla de silicio, lo llamó "circuito integrado". Casi simultáneamente el ing. Robert Noyce de Fairchil Semiconductor desarrolla un dispositivo similar al que llamó: "circuito unitario". A ambos se los reconoce como los creadores de los circuitos integrados. 1962, 10 de Julio - Fue lanzado el Telstar 1 primer satélite de comunicaciones de uso comercial. 1962 - Nick Holonyak, ingeniero de General Electric desarrolla el primer LED (Light Emitting Diode o Diodo Emisor de Luz) que emitía en el espectro visible. 1962 - Sony lanza al mercado mundial el primer televisor de 5 pulgadas, completamente transistorizado. 1963 - Philips presentara el popular “Compact Cassette”. Otros fabricantes habían desarrollado diversos tipos de cartuchos de cinta magnética, pero ninguno de ellos alcanzo la difusión mundial de este, por su bajo costo, tamaño y practicidad. 1965 - Gordon Moore, trabajando en Fairchild Semiconductor (tres años después fundaría Intel), predijo que la integración de circuitos crecería a un ritmo que duplicaría el número de transistores por chip cada dos años. Esta predicción se ha cumplido hasta la fecha y se le conoce como: "Ley de Moore" 1968 - Fairchild Semiconductor produce el primer circuito integrado regulador de voltaje lineal el uA723. Poco tiempo después lanza al mercado la serie 7800 que incluye los populares 7805 (de 5V), etc. 1971 - Ted Hoff, Federico Faggin de Intel y Masatoshi Shima de Busicom (ZiLOG) diseñan el primer microprocesador, el Intel 4004 1975 - JVC lanza al mercado el sistema de grabación de audio y video analógico para uso domestico: VHS (Video Home System) 1976 - Sony lanza al mercado el sistema de grabación de audio y video analógico: Betamax. 1979 - Philips y Grundig de Alemania desarrollan el Video 2000 (Video Cassette compacto, o VCC) para competir con VHS de JVC y Betamax de Sony. 1982, 17 de agosto - La empresa Philips fabrica el primer Compact Disc en Hannover (Alemania), desarrollado en forma conjunta por Philips y Sony. 1988 - Se integra el MPEG (Moving Picture Experts Group o Grupo de Expertos de Imágenes en Movimiento), para desarrollar estándares de codificación de audio y video (MPEG-1, MPEG-2, ... MP3, etc). 1995 - Un consorcio de empresas entre las que destacan Philips, Sony, Toshiba, Time-Warner, Matsushita Electric, Hitachi, IBM, Mitsubishi Electric, Pioneer, Thomson y JVC, lanzan la primer versión del estándar DVD.

Aplicaciones de la electrónica La aplicación de la Electrónica se está haciendo cada vez más extensa, pues está cubriendo toda posibilidad posible. Se puede decir que casi no queda lugar en el que no esté aplicada. Piense en su hogar; la TV, el Equipo de Sonido, el Reproductor de video, la Computadora, el horno micro-ondas, el Reloj, la Lavadora, la Alarma, el Teléfono, etc. Y si observas tu lugar de trabajo encontrarás muchas mas cosas, lo mismo cuando vas a un Hospital, a la Policía, a los Centros Comerciales; como ves todos esos son campos en los que una persona que conozca de Electrónica puede tener oportunidades de trabajo.


Terminada aquí esta breve reseña histórica, pasemos a lo que será el curso en si. Empezaremos estudiando el Átomo que es el punto de partida donde se origina la palabra Electrónica. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:   

Electrónica de control Telecomunicaciones Electrónica de potencia

Sistemas electrónicos Un sistema electrónico es un conjunto de circuitos que interactúan entre sí para obtener un resultado. Una forma de entender los sistemas electrónicos consiste en dividirlos en las siguientes partes: 1. Entradas o Inputs – Sensores (o transductores) electrónicos o mecánicos que toman las señales (en forma de temperatura, presión, etc.) del mundo físico y las convierten en señales de corriente o voltaje. Ejemplo: El termopar, la foto resistencia para medir la intensidad de la luz, etc. 2. Circuitos de procesamiento de señales – Consisten en artefactos electrónicos conectados juntos para manipular, interpretar y transformar las señales de voltaje y corriente provenientes de los transductores. 3. Salidas u Outputs – Actuadores u otros dispositivos (también transductores) que convierten las señales de corriente o voltaje en señales físicamente útiles. Por ejemplo: un display que nos registre la temperatura, un foco o sistema de luces que se encienda automáticamente cuando esté oscureciendo. Básicamente son tres etapas: La primera (transductor), la segunda (circuito procesador) y la tercera (circuito actuador).

Como ejemplo supongamos un televisor. Su entrada es una señal de difusión recibida por una antena o por un cable. Los circuitos de procesado de señales del interior del televisor extraen la información sobre el brillo, el color y el sonido de esta señal. Los dispositivos de salida son un tubo de rayos catódicos o monitor LCD que convierte las señales electrónicas en imágenes visibles en una pantalla y unos altavoces. Otro ejemplo puede ser el de un circuito que ponga de manifiesto la temperatura de un proceso, el transductor puede ser un termocouple, el circuito de procesamiento se encarga de convertir la señal de entrada en un nivel de voltaje (comparador de voltaje o de ventana) en un nivel apropiado y mandar la información decodificándola a un display donde nos dé la temperatura real y si esta excede un límite preprogramado activar un sistema de alarma (circuito actuador) para tomar las medida pertinentes.

Señales electrónicas 

Una señal eléctrica es un tipo de señal generada por algún fenómeno electromagnético.

Estas señales pueden ser analógicas, si varían de forma continua en el tiempo, o digitales si varían de forma discreta (con valores dados como 0 y 1). Entenderemos por señal eléctrica a una magnitud eléctrica cuyo valoro intensidad depende del tiempo. Las señales eléctricas son llamadas también señales análogas. Pueden tener cualquier lectura dentro del rango y sólo están limitadas por las características de los instrumentos registradores e indicadores. Transmiten al controlador en forma continua los valores.

 


Una señal eléctrica estándar es la señal de corriente de 4 a 20 mA. La señal de 4mA corresponde al nivel más bajo de la variable medida y la señal de 20 mA corresponde al nivel más alto de dicha variable. Existen diferentes tipos de medidores para señales electricas, uno de ellos y el mas practico es el Multimetro y el Osiloscopio.

También hay señales llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serían los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre sí y con sus estados anteriores.

Tensión Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico. También podemos decir que es la energía capaz de poner en movimiento los electrones libres de un conductor o semiconductor. La unidad de este parámetro es el voltio (V). Existen dos tipos de tensión: la continua y la alterna.  

Voltaje continuo (VDC)– Es aquel que tiene una polaridad definida, como la que proporcionan las pilas, baterías y fuentes de alimentación. Voltaje Alterno (VAC)– Es aquel cuya polaridad va cambiando o alternando con el transcurso del tiempo. Las fuentes de voltaje alterno más comunes son los generadores y las redes de energía doméstica.

Corriente eléctrica También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido. La unidad de medida de este parámetro es el amperio (A). Al igual que existen tensiones continuas o alternas, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.

Resistencia Es la propiedad física mediante la cual todos los materiales tienden a oponerse al flujo de la corriente. La unidad de este parámetro es el Ohmio (Ω). No debe confundirse con el componente resistor. La propiedad inversa es la conductancia eléctrica).

Circuitos electrónicos Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas. Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras: Por el tipo de información Por el tipo de régimen Por el tipo de señal Por su configuración Analógicos Digitales Mixtos

Periódico Transitorio Permanente

De corriente continua Serie De corriente alterna Paralelo Mixtos Mixtos

Componentes Para la síntesis de circuitos electrónicos se utilizan componentes electrónicos e instrumentos electrónicos. A continuación se presenta una lista de los componentes e instrumentos más importantes en la electrónica, seguidos de su uso más común:


    

Altavoz: es un transductor electro acústico utilizado para la reproducción de sonido. Uno o varios altavoces

pueden formar una pantalla acústica. La transducción sigue un doble procedimiento: eléctrico-mecánicoacústico. Cable: Se llama cable a un conductor (generalmente cobre) o conjunto de ellos generalmente recubierto de un material aislante o protector, Conmutador: reencaminar una entrada a una salida elegida entre dos o más. Interruptor: Un interruptor eléctrico es en su acepción más básica un dispositivo que permite desviar o interrumpir el curso de una corriente eléctrica. Pila: Una pila eléctrica o batería eléctrica es el formato industrializado y comercial de la celda galvánica o voltaica. (Generador) Transductor: Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía de entrada, en otra diferente a la salida. Visualizador: Se llama visualizador, display en inglés, a un dispositivo de ciertos aparatos electrónicos que permite mostrar información al usuario de manera visual.

Dispositivos analógicos (algunos ejemplos) 

  

 

Amplificador operacional: Se trata de un dispositivo electrónico (normalmente se presenta como circuito

integrado) que tiene dos entradas y una salida. La salida es la diferencia de las dos entradas multiplicada por un factor (G) (ganancia): Vout = G·(V+ − V−)el más conocido y comúnmente aplicado es el UA741 o LM741. condensador: dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Diodo: es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un solo sentido Diodo Zener: es un diodo de cromo que se ha construido para que funcione en las zonas de rupturas, recibe ese nombre por su inventor, el Dr. Clarence Melvin Zener. El diodo Zener es la parte esencial de los reguladores de tensión.

Inductor: es un componente pasivo de un circuito eléctrico que, debido al fenómeno de la autoinducción,

almacena energía en forma de campo magnético. Potenciómetro: es un resistor cuyo valor de resistencia es variable. De esta manera, indirectamente, se puede controlar la intensidad de corriente que fluye por un circuito si se conecta en paralelo, o la diferencia de potencial al conectarlo en serie.

--potenciómetro  

Relé: Dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el

que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Fue inventado por Joseph Henry en 1835. Resistor o Resistencia: división de intensidad o tensión, limitación de intensidad.


 

----Relé

Resistor: componente electrónico diseñado para introducir una resistencia eléctrica determinada entre dos puntos de un circuito eléctrico. En el propio argot eléctrico y electrónico, son conocidos simplemente como resistencias.

Dispositivos digitales 

Biestable: multivibrador capaz de permanecer en uno de dos estados posibles durante un tiempo 1

 

indefinido en ausencia de perturbaciones. Esta característica es ampliamente utilizada en electrónica digital para memorizar información. Memoria: Son dispositivos que retienen datos informáticos durante algún intervalo de tiempo. Las memorias de computadora proporcionan una de las principales funciones de la computación moderna, la retención o almacenamiento de información. Micro controlador: circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Puerta lógica: dispositivo electrónico con una función booleana. Suman, multiplican, niegan o afirman, incluyen o excluyen según sus propiedades lógicas. Se pueden aplicar a tecnología electrónica, eléctrica, mecánica, hidráulica y neumática. Son circuitos de conmutación integrados en un chip.

Dispositivos de potencia   

 

DIAC: conduce la corriente sólo tras haberse superado su tensión de disparo, y mientras la corriente circulante no sea inferior al valor característico para ese dispositivo. . Fusible: protección contra sobre-intensidades. Tiristor: dispositivo, constituido por un soporte adecuado, un filamento o lámina de un metal o aleación de

bajo punto de fusión que se intercala en un punto determinado de una instalación eléctrica para que se funda. Transformador: dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. Triac: dispositivo semiconductor, de la familia de los tiristores. La diferencia con un tiristor convencional es que éste es unidireccional y el TRIAC es bidireccional. De forma coloquial podría decirse que el TRIAC es un interruptor capaz de conmutar la corriente alterna. Varistor: protección contra sobre-tensiones.

Equipos de medición Los equipos de medición de electrónica se utilizan para crear estímulos y medir el comportamiento de los Dispositivos Bajo Prueba (DUT por sus siglas en inglés).La medición de magnitudes mecánicas, térmicas, eléctricas y químicas se realiza empleando dispositivos denominados sensores y transductores. El sensor es sensible a los cambios de la magnitud a medir, como una temperatura, una posición o una concentración química. El transductor convierte estas mediciones en señales eléctricas, que pueden alimentar a instrumentos de lectura, registro o control de las magnitudes medidas. Los sensores y transductores pueden funcionar en ubicaciones alejadas del observador, así como en entornos inadecuados o impracticables para los seres humanos. Algunos dispositivos actúan de forma simultánea como sensor y transductor. Un termopar consta de dos uniones de diferentes metales que generan una pequeña tensión que depende del diferencial término entre las uniones. El termistor es una resistencia especial, cuyo valor de resistencia varía según la temperatura. Un reóstato variable puede convertir el movimiento mecánico en señal eléctrica. Para medir distancias se emplean condensadores de diseño especial, y para detectar la luz se utilizan fotocélulas. Para medir velocidades, aceleración o flujos de líquidos se recurre a otro tipo de dispositivos. En la mayoría de los casos,


la señal eléctrica es débil y debe ser amplificada por un circuito electrónico. A continuación se presenta una lista de los equipos de medición más importantes:      

        

Galvanómetro: mide el cambio de una determinada magnitud, como la intensidad de corriente o tensión (o voltaje). Se utiliza en la construcción de Amperímetros y Voltímetros analógicos. Amperímetro y pinza amperimétrica: miden la intensidad de corriente eléctrica. Óhmetro o puente de Wheatstone: miden la resistencia eléctrica. Cuando la resistencia eléctrica es muy alta (sobre los 1 M-ohm) se utiliza un megóhmetro o medidor de aislamiento. Voltímetro: mide la tensión. Multímetro o polímetro: mide las tres magnitudes citadas arriba, además de continuidad eléctrica y el valor B de los transistores (tanto PNP como NPN). Vatímetro: mide la potencia eléctrica. Está compuesto de un amperímetro y un voltímetro. Dependiendo de la configuración de conexión puede entregar distintas mediciones de potencia eléctrica, como la potencia activa o la potencia reactiva. Osciloscopio: miden el cambio de la corriente y el voltaje respecto al tiempo. Analizador lógico: prueba circuitos digitales. Analizador de espectro: mide la energía espectral de las señales. Analizador vectorial de señales: como el analizador espectral pero con más funciones de demodulación digital. Electrómetro: mide la carga eléctrica. Frecuencímetro o contador de frecuencia: mide la frecuencia. Reflectómetro de dominio de tiempo (TDR): prueba la integridad de cables largos. Capacímetro: mide la capacidad eléctrica o capacitancia. Contador eléctrico: mide la energía eléctrica. Al igual que el vatímetro, puede configurarse para medir energía activa (consumida) o energía reactiva.

Tomado de Wikipedia http://kueyar.net/aprende-electronica/lecciones/introduccion-2/ http://www.comunidadelectronicos.com/articulos/historia.htm http://www.monografias.com/trabajos5/electro/electro.shtml http://telecomunicacionesabasolo.blogspot.com/p/senales-electricas.html


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.