Voip feature parameter description

Page 1

eRAN

VoIP Feature Parameter Description Issue

03

Date

2013-10-30

HUAWEI TECHNOLOGIES CO., LTD.


Copyright Š Huawei Technologies Co., Ltd. 2014. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd. Address:

Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China

Website:

http://www.huawei.com

Email:

support@huawei.com

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

i


eRAN VoIP Feature Parameter Description

Contents

Contents 1 About This Document..................................................................................................................1 1.1 Scope..............................................................................................................................................................................1 1.2 Intended Audience..........................................................................................................................................................1 1.3 Change History...............................................................................................................................................................2

2 Overview.........................................................................................................................................5 2.1 Introduction....................................................................................................................................................................5 2.2 Benefits...........................................................................................................................................................................5 2.3 Architecture....................................................................................................................................................................5

3 VoIP Services..................................................................................................................................7 3.1 VoIP Traffic Model........................................................................................................................................................7 3.2 VoIP Procedures.............................................................................................................................................................8 3.3 VoIP Evaluation.............................................................................................................................................................9 3.3.1 QoS Evaluation............................................................................................................................................................9 3.3.2 Voice Quality Evaluation..........................................................................................................................................10 3.3.3 VQM..........................................................................................................................................................................10

4 Key Technologies........................................................................................................................12 4.1 Overview......................................................................................................................................................................12 4.2 Admission and Congestion Control..............................................................................................................................13 4.2.1 Overview...................................................................................................................................................................14 4.2.2 Load Monitoring........................................................................................................................................................14 4.2.3 Admission Control.....................................................................................................................................................14 4.2.4 Congestion Control....................................................................................................................................................15 4.3 Service-based Inter-RAT or Inter-Frequency Handover..............................................................................................15 4.3.1 Overview...................................................................................................................................................................15 4.3.2 Inter-Frequency Handover.........................................................................................................................................15 4.3.3 Inter-RAT Handover..................................................................................................................................................15 4.4 ROHC...........................................................................................................................................................................16 4.5 Scheduling....................................................................................................................................................................16 4.5.1 Overview...................................................................................................................................................................16 4.5.2 Dynamic Scheduling..................................................................................................................................................16 4.5.3 Semi-Persistent Scheduling.......................................................................................................................................18 Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

ii


eRAN VoIP Feature Parameter Description

Contents

4.6 Power Control...............................................................................................................................................................19 4.6.1 Overview...................................................................................................................................................................19 4.6.2 Power Control in Dynamic Scheduling.....................................................................................................................19 4.6.3 Power Control in Semi-Persistent Scheduling...........................................................................................................19 4.7 DRX..............................................................................................................................................................................20 4.8 TTI Bundling................................................................................................................................................................20

5 Related Features...........................................................................................................................22 5.1 Features Related to Admission and Congestion Control..............................................................................................23 5.1.1 LBFD-002023 Admission Control............................................................................................................................23 5.1.2 LBFD-002024 Congestion Control...........................................................................................................................23 5.2 Features Related to Service-based Handovers..............................................................................................................23 5.2.1 LBFD-00201805 Service Based Inter-frequency Handover.....................................................................................23 5.2.2 LOFD-001043 Service based inter-RAT handover to UTRAN................................................................................23 5.2.3 LOFD-001046 Service based inter-RAT handover to GERAN................................................................................23 5.3 Features Related to LOFD-001017 RObust Header Compression (ROHC)................................................................23 5.4 Features to Related Scheduling....................................................................................................................................23 5.4.1 LOFD-00101502 Dynamic Scheduling.....................................................................................................................24 5.4.2 LOFD-001109 DL Non-GBR Packet Bundling........................................................................................................24 5.4.3 LOFD-001016 VoIP Semi-persistent Scheduling.....................................................................................................24 5.5 Features Related to Power Control...............................................................................................................................25 5.5.1 LBFD-002016 Dynamic Downlink Power Allocation..............................................................................................25 5.5.2 LBFD-002026 Uplink Power Control.......................................................................................................................25 5.6 Features Related to LBFD-002017 DRX.....................................................................................................................26 5.7 Features Related to LOFD-001048 TTI Bundling.......................................................................................................27

6 Network Impact...........................................................................................................................28 6.1 Admission and Congestion Control..............................................................................................................................29 6.1.1 LBFD-002023 Admission Control............................................................................................................................29 6.1.2 LBFD-002024 Congestion Control...........................................................................................................................29 6.2 Service-based Handover...............................................................................................................................................29 6.2.1 LBFD-00201805 Service Based Inter-frequency Handover.....................................................................................29 6.2.2 LOFD-001043 Service based inter-RAT handover to UTRAN................................................................................29 6.2.3 LOFD-001046 Service based inter-RAT handover to GERAN................................................................................30 6.3 LOFD-001017 RObust Header Compression (ROHC)................................................................................................30 6.4 Scheduling....................................................................................................................................................................30 6.4.1 LOFD-00101502 Dynamic Scheduling.....................................................................................................................30 6.4.2 LOFD-001109 DL Non-GBR Packet Bundling........................................................................................................31 6.4.3 LOFD-001016 VoIP Semi-persistent Scheduling.....................................................................................................31 6.5 Power Control...............................................................................................................................................................31 6.5.1 LBFD-002016 Dynamic Downlink Power Allocation..............................................................................................31 6.5.2 LBFD-002026 Uplink Power Control.......................................................................................................................32 6.6 LBFD-002017 DRX.....................................................................................................................................................32 Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

iii


eRAN VoIP Feature Parameter Description

Contents

6.7 LOFD-001048 TTI Bundling.......................................................................................................................................32

7 Engineering Guidelines.............................................................................................................33 7.1 When to Use VoIP........................................................................................................................................................34 7.1.1 Admission and Congestion Control...........................................................................................................................34 7.1.2 ROHC........................................................................................................................................................................34 7.1.3 Dynamic Scheduling..................................................................................................................................................34 7.1.4 When to Use Semi-Persistent Scheduling.................................................................................................................34 7.1.5 When to Use Power Control......................................................................................................................................35 7.1.6 When to Use Dynamic DRX.....................................................................................................................................35 7.1.7 When to Use TTI Bundling.......................................................................................................................................36 7.2 Required Information...................................................................................................................................................36 7.2.1 Admission and Congestion Control...........................................................................................................................36 7.2.2 ROHC........................................................................................................................................................................36 7.2.3 Dynamic Scheduling..................................................................................................................................................36 7.2.4 Semi-Persistent Scheduling.......................................................................................................................................36 7.2.5 Power Control............................................................................................................................................................36 7.2.6 DRX...........................................................................................................................................................................36 7.2.7 TTI Bundling.............................................................................................................................................................37 7.3 Planning........................................................................................................................................................................37 7.4 Configuration of Basic Parameters...............................................................................................................................37 7.4.1 Requirements.............................................................................................................................................................38 7.4.2 Data Preparation........................................................................................................................................................38 7.4.3 Precautions.................................................................................................................................................................39 7.4.4 Hardware Adjustment................................................................................................................................................39 7.4.5 Initial Configuration..................................................................................................................................................39 7.4.6 Activation Observation..............................................................................................................................................41 7.4.7 Reconfiguration.........................................................................................................................................................43 7.5 Deployment of Admission Control...............................................................................................................................43 7.6 Deployment of Congestion Control..............................................................................................................................43 7.7 Deployment of ROHC..................................................................................................................................................43 7.8 Deployment of DL Dynamic Scheduling.....................................................................................................................44 7.9 Deployment of UL Dynamic Scheduling.....................................................................................................................45 7.10 Deployment of Semi-Persistent Scheduling...............................................................................................................47 7.10.1 Requirements...........................................................................................................................................................47 7.10.2 Data Preparation......................................................................................................................................................48 7.10.3 Precautions...............................................................................................................................................................50 7.10.4 Hardware Adjustment..............................................................................................................................................50 7.10.5 Activation................................................................................................................................................................50 7.10.6 Activation Observation............................................................................................................................................52 7.10.7 Reconfiguration.......................................................................................................................................................56 7.10.8 Deactivation.............................................................................................................................................................56 Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

iv


eRAN VoIP Feature Parameter Description

Contents

7.11 Deployment of Power Control in Dynamic Scheduling.............................................................................................56 7.12 Deployment of Power Control in Semi-Persistent Scheduling..................................................................................57 7.12.1 Requirements...........................................................................................................................................................57 7.12.2 Data Preparation......................................................................................................................................................57 7.12.3 Precautions...............................................................................................................................................................59 7.12.4 Hardware Adjustment..............................................................................................................................................59 7.12.5 Activation................................................................................................................................................................59 7.12.6 Activation Observation............................................................................................................................................62 7.12.7 Reconfiguration.......................................................................................................................................................65 7.12.8 Deactivation.............................................................................................................................................................65 7.13 Deployment of DRX...................................................................................................................................................66 7.14 Deployment of TTI Bundling.....................................................................................................................................66 7.14.1 Requirements...........................................................................................................................................................67 7.14.2 Data Preparation......................................................................................................................................................67 7.14.3 Precautions...............................................................................................................................................................68 7.14.4 Hardware Adjustment..............................................................................................................................................68 7.14.5 Activation................................................................................................................................................................68 7.14.6 Activation Observation............................................................................................................................................70 7.14.7 Reconfiguration.......................................................................................................................................................72 7.14.8 Deactivation.............................................................................................................................................................72 7.15 Performance Monitoring.............................................................................................................................................73 7.15.1 Basic VoIP KPIs......................................................................................................................................................73 7.15.2 Admission Control...................................................................................................................................................77 7.15.3 Congestion Control..................................................................................................................................................77 7.15.4 ROHC......................................................................................................................................................................77 7.15.5 Dynamic Scheduling................................................................................................................................................77 7.15.6 Semi-Persistent Scheduling.....................................................................................................................................77 7.15.7 Power Control..........................................................................................................................................................78 7.15.8 Power Control in Semi-Persistent Scheduling.........................................................................................................78 7.15.9 DRX.........................................................................................................................................................................78 7.15.10 TTI Bundling.........................................................................................................................................................78 7.16 Parameter Optimization..............................................................................................................................................78 7.17 Troubleshooting..........................................................................................................................................................79

8 Parameters.....................................................................................................................................81 9 Counters......................................................................................................................................152 10 Glossary.....................................................................................................................................153 11 Reference Documents.............................................................................................................154

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

v


eRAN VoIP Feature Parameter Description

1 About This Document

1

About This Document

1.1 Scope This document describes IMS-based VoIP within a VoIP-capable LTE network, including its technical principles, related features, network impact, and engineering guidelines. NOTE

IMS is short for IP multimedia subsystem, and VoIP is short for voice over IP.

This document applies to the following types of eNodeBs. eNodeB Type

Model

Macro

3900 series eNodeB

Micro

BTS3202E and BTS3203E

LampSite

DBS3900

Any managed objects (MOs), parameters, alarms, or counters described herein correspond to the software release delivered with this document. Any future updates will be described in the product documentation delivered with future software releases. This document applies only to LTE FDD. Any "LTE" in this document refers to LTE FDD, and "eNodeB" refers to LTE FDD eNodeB.

1.2 Intended Audience This document is intended for personnel who: l

Need to understand the features described herein

l

Work with Huawei products

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

1


eRAN VoIP Feature Parameter Description

1 About This Document

1.3 Change History This section provides information about the changes in different document versions. There are two types of changes, which are defined as follows: l

Feature change Changes in features of a specific product version

l

Editorial change Changes in wording or addition of information that was not described in the earlier version

eRAN6.0 03 (2013-10-30) This issue includes the following changes. Change Type

Change Description

Parameter Change

Feature change

None

None

Editorial change

Modified the impact of VoIP on LOFD-001016 VoIP Semi-persistent Scheduling and LAOFD-001001 Carrier Aggregation for Downlink 2CC in 20MHz. For details, see 5.4.3 LOFD-001016 VoIP Semi-persistent Scheduling.

None

Added the descriptions of LOFD-001048 TTI Bundling and LOFD-001097 Carrier Aggregation Introduction Package. For details, see 5.7 Features Related to LOFD-001048 TTI Bundling.

None

eRAN6.0 02 (2013-08-30) This issue includes the following changes. Change Type

Change Description

Parameter Change

Feature change

None

None

Editorial change

Modified the description of TTI bundling.

None

For details, see 4.8 TTI Bundling. Modified the organizations of 7.16 Parameter Optimization and 7.17 Troubleshooting.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

None

2


eRAN VoIP Feature Parameter Description

1 About This Document

eRAN6.0 01 (2013-04-28) This issue includes the following changes. Change Type

Change Description

Parameter Change

Feature change

None

None

Editorial change

Deleted details on deployment of the following VoIP-related features:

None

l Admission control l Congestion control l Robust header compression (ROHC) l Power control l DRX For details regarding deployment of these features, see the corresponding feature parameter descriptions. Added the description of using counters to check the status of semi-persistent scheduling. For details, see 7.10.6 Activation Observation.

None

Added the description of using a counter to check the average number of UEs for which TTI bundling is enabled in a cell. For details, see 7.14.6 Activation Observation.

None

eRAN6.0 Draft A (2013-01-30) Compared with Issue 03 (2012-12-29) of eRAN3.0, Draft A (2013-01-30) of eRAN6.0 includes the following changes.

Issue 03 (2013-10-30)

Change Type

Change Description

Parameter Change

Feature change

Added the voice quality monitoring (VQM) function. For details, see 3.3.3 VQM.

None

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

3


eRAN VoIP Feature Parameter Description

Issue 03 (2013-10-30)

1 About This Document

Change Type

Change Description

Parameter Change

Editorial change

Revised the description in this document.

None

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

4


eRAN VoIP Feature Parameter Description

2 Overview

2

Overview

2.1 Introduction VoIP is a voice service over IP networks. Voice over LTE (VoLTE) is a voice service solution for LTE networks, including circuit switched fallback (CSFB), IMS-based VoIP, and single radio voice call continuity (SRVCC). If an LTE network does not support VoIP, CSFB can be used to provide voice services for LTE users. For details about CSFB, see CS Fallback Feature Parameter Description. To ensure voice call continuity when users move out of the range of a VoIP-capable LTE network, the LTE network must support single radio voice call continuity (SRVCC). For details about SRVCC, see SRVCC Feature Parameter Description. IMS-based VoIP is voice sessions set up over IP networks between the UE and the IMS. Unless otherwise specified, VoIP in this document refers to IMS-based VoIP. Voice services are packet switched (PS) services in the evolved UTRAN (E-UTRAN) but circuit switched (CS) services in the universal terrestrial radio access network (UTRAN) and GSM/ EDGE radio access network (GERAN). If a UE in the E-UTRAN needs to communicate with a UE in the UTRAN/GERAN, the IMS in the LTE network and the mobile switching center (MSC) in the GSM/UMTS network need to process the call from the PS domain to the CS domain.

2.2 Benefits VoIP provides UEs in the E-UTRAN with voice services, without the need of falling back to GERAN or UTRAN.

2.3 Architecture Figure 2-1 illustrates the LTE/SAE architecture in non-roaming scenarios. (SAE is short for System Architecture Evolution.) For details about the architectures in roaming and non-roaming scenarios, see section 4.2 Architecture reference model in 3GPP TS 23.401. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

5


eRAN VoIP Feature Parameter Description

2 Overview

Figure 2-1 LTE/SAE architecture in non-roaming scenarios

HSS: home subscriber server

PSS: packet-switched streaming service

MME: mobility management entity

SGSN: serving GPRS support node

PCRF: policy and charging rule function

UE: user equipment

The operator's IP services shown in Figure 2-1 are implemented using the IMS. The IMS performs session control and multimedia negotiation between the calling and called UEs in compliance with the Session Initiation Protocol (SIP) and Session Description Protocol (SDP). The codec standard used for VoIP is determined by the UE and IMS. For details about the VoIP traffic model under Adaptive Multirate (AMR), see 3.1 VoIP Traffic Model. For details about VoIP session setup between the calling and called UEs, see 3.2 VoIP Procedures. For details about VoIP evaluation, see 3.3 VoIP Evaluation. To provide VoIP services, eNodeBs must support basic/optional features and functions such as admission control, congestion control, and scheduling. For details about these features and functions, see 4 Key Technologies.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

6


eRAN VoIP Feature Parameter Description

3 VoIP Services

3

VoIP Services

3.1 VoIP Traffic Model 3GPP recommends the use of AMR for speech coding. AMR is classified into adaptive multirate wideband (AMR-WB) and adaptive multirate narrowband (AMR-NB). Currently, AMR is widely used in the GERAN and UTRAN as well as in the Huawei LTE VoIP solution. Figure 3-1 shows the VoIP traffic model under AMR. Figure 3-1 VoIP traffic model under AMR

There are two VoIP traffic states: l

Talk spurts Talk spurts occur when the user is in conversation. In this state, voice frames are transmitted at intervals of 20 ms, and the packet size is determined by the speech coding rate.

l

Silent period During silent periods, the user stops talking. A silence insertion descriptor (SID) frame is transmitted every 160 ms to improve user experience.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

7


eRAN VoIP Feature Parameter Description

3 VoIP Services

3.2 VoIP Procedures Figure 3-2 shows the procedures for setting up a VoIP session between the calling and called UEs. Figure 3-2 VoIP session setup procedures

The procedures are as follows: 1.

The calling UE sets up a radio resource control (RRC) connection.

2.

The calling UE sets up an E-UTRAN radio access bearer (E-RAB) for IMS signaling. The QoS class identifier (QCI) for the E-RAB is 5.

3.

The called UE is instructed to set up an RRC connection and an E-RAB for IMS signaling. The QCI for the E-RAB is also 5.

4.

The UEs negotiate session information through IMS signaling.

5.

After the negotiation, the calling UE and the called UE set up E-RABs with a QCI of 1 for conversational voice. At this time, the entire EPS bearer from the calling UE to the called UE is set up.

6.

The called UE sends a ringback tone to the calling UE through IMS signaling.

7.

The called UE answers the call and the VoIP conversation begins.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

8


eRAN VoIP Feature Parameter Description

3 VoIP Services

NOTE

Both the UE and the EPC must support the IMS to provide VoIP services.

According to 3GPP, the QCIs for conversational voice and IMS signaling are 1 and 5, respectively. The QCIs are set in StandardQci managed objects (MOs), and the Radio Link Control (RLC) modes for setting up conversational voice and IMS signaling E-RABs are specified by the RlcPdcpParaGroup.RlcMode parameter. Table 3-1 lists the values for RLC modes recommended in 3GPP. Table 3-1 Recommended values for RLC modes QCI

Service Type

RLC Mode

1

Conversational voice

Unacknowledged mode (UM)

5

IMS signaling

Acknowledged mode (AM)

For details about QCIs and RLC modes, see QoS Management Feature Parameter Description.

3.3 VoIP Evaluation 3.3.1 QoS Evaluation Section 6.1.7 "Standardized QoS characteristics" in 3GPP TS 23.203 (Release 10) lists the standardized QCI characteristics. The QCIs for conversational voice and IMS signaling are 1 and 5, respectively. Table 3-2 lists the standardized characteristics of QCIs 1 and 5. Table 3-2 Standardized characteristics of QCIs 1 and 5 QCI

Resource Type

Priority

Packet Delay Budget (ms)

Packet Error Loss Rate

Example Service

1

GBR

2

100

10-2

Conversatio nal voice

5

Non-GBR

1

100

10-6

IMS signaling

l

The packet delay budget (PDB) defines an upper bound for the time that a packet may be delayed between the UE and the P-GW. The delay from the UE to the P-GW is 100 ms with a confidence level of 98%.

l

The packet error loss rate (PELR) defines an upper bound for the rate of service data units (SDUs) that have been processed by the sender of the Automatic Repeat Request (ARQ)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

9


eRAN VoIP Feature Parameter Description

3 VoIP Services

protocol at the data link layer (for example, RLC layer in the E-UTRAN) but are not successfully delivered by the corresponding receiver to the upper layer (for example, PDCP layer in the E-UTRAN). Counters are used to monitor the statistics of delay, downlink air interface packet loss rate, and downlink PDCP packet loss rate for conversational voice (QCI 1).

3.3.2 Voice Quality Evaluation Voice quality is the key criterion for voice service. During a VoIP session, voice quality is affected by delay, delay variation, and packet loss. The mean opinion score (MOS) is primarily used for evaluating voice quality. The MOS is a common subjective evaluation standard. The MOS for voice services is categorized as five levels by ITU-T G.107 with respective definitions of speech transmission quality and user satisfaction, as detailed in Table 3-3. For the same delay, delay variation, and packet error loss rate, the MOS varies with the speech coding rate. Table 3-3 MOS for voice service MOS

Speech Transmission Quality Category

User Satisfaction

4.34

Best

Very satisfied

4.03

High

Satisfied

3.60

Medium

Some users dissatisfied

3.10

Low

Many users dissatisfied

2.58

Poor

Nearly all users dissatisfied

Counters are used to monitor the statistics of user satisfaction for conversational voice (QCI 1).

3.3.3 VQM Overview Voice quality monitoring (VQM) is mainly used for network monitoring, network optimization, VIP guarantee, and user complaint handling under AMR speech coding. VQM reduces the necessity of drive tests required for obtaining voice quality. VQM is controlled by the ENODEBALGOSWITCH.VQMAlgoSwitch parameter and is disabled by default. VQM is not recommended in scenarios where both AMR and non-AMR speech coding solutions are used. During VQM, the eNodeB monitors the packet error loss rate, delay, delay variation, and handover state. Then, the eNodeB inputs the DL and UL monitoring results to the E-model and voice quality indicator (VQI) model, respectively, to obtain the UL and DL voice quality data on the air interface. The voice quality is saved in call history records (CHRs) and is used to collect the statistics of cell-level voice quality counters and monitor user-level performance. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

10


eRAN VoIP Feature Parameter Description

3 VoIP Services

NOTE

VQM results, including statistics of cell-level voice quality counters, user-level performance counters, and CHRs do not contain any user privacy information.

Table 3-4 lists the mapping between MOS and user experience. Table 3-4 Mapping between MOS and user experience User Experience

Bad

Poor

Accept

Good

Excellent

MOS

MOS ≤ 2.6

2.6 ≤ MOS ≤ 3.1

3.1 ≤ MOS ≤ 3.6

3.6 ≤ MOS ≤4

MOS > 4

E-Model The E-model is used to evaluate DL voice quality. The E-model was proposed by European Telecommunications Standards Institute (ETSI) and then defined by ITU-T Recommendation G.107. It is widely used in the evaluation of conversational voice quality. For the DL, the eNodeB monitors the average DL packet error loss rate and delay on the air interface, inputs the information to the E-model, employs more than 20 default parameters of the E-model, and obtains the voice quality evaluation results. Default parameters include send loudness rating (SLR) and response loudness rating (RLR).

VQI Model The VQI model is used to evaluate UL voice quality. As it is difficult for the E-UTRAN to obtain the average UL delay on the air interface, eNodeBs use Huawei VQI model to evaluate UL voice quality by monitoring the frame error rate (FER), long frame error rate (LFER), and handover state. Specifically, the eNodeB monitors the delay variation of each UL packet. If the variation exceeds the threshold (100 ms by default), the eNodeB considers the packet lost.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

11


eRAN VoIP Feature Parameter Description

4 Key Technologies

4

Key Technologies

4.1 Overview Table 4-1 describes the Huawei eNodeB features involved in VoIP. Table 4-1 Huawei eNodeB features involved in VoIP Protocol Layer

Feature

Description

RRC layer

LBFD-002023 Admission Control

This feature provides admission control policies for VoIP. For details, see 4.2.3 Admission Control.

LBFD-002024 Congestion Control

This feature provides congestion control policies for VoIP. For details, see 4.2.4 Congestion Control.

l LBFD-00201805 Service Based Interfrequency Handover l LOFD-001043 Service based interRAT handover to UTRAN

These features implement service-based interfrequency and inter-RAT handovers. For details, see 4.3 Service-based Inter-RAT or Inter-Frequency Handover.

l LOFD-001046 Service based interRAT handover to GERAN PDCP layer

Issue 03 (2013-10-30)

LOFD-001017

This feature compresses VoIP headers.

RObust Header Compression (ROHC)

For details, see 4.4 ROHC.

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

12


eRAN VoIP Feature Parameter Description

4 Key Technologies

Protocol Layer

Feature

Description

Media Access Control (MAC) layer

LOFD-00101502

This feature provides semi-persistent scheduling mechanism for VoIP.

Dynamic Scheduling

For details, see 4.5.2 Dynamic Scheduling. LOFD-001109 DL NonGBR Packet Bundling

This feature optimizes the DL dynamic scheduling priority when DL dynamic scheduling is used for VoIP. For details, see DL Dynamic Scheduling.

LOFD-001016 VoIP Semi-persistent Scheduling

This feature provides power control policies in uplink (UL) semi-persistent scheduling for VoIP. For details, see 4.5.3 Semi-Persistent Scheduling.

LBFD-002026 Uplink Power Control

This feature provides power control policies in PUSCH semi-persistent scheduling for VoIP. For details, see UL Semi-Persistent Scheduling in 4.6.3 Power Control in SemiPersistent Scheduling. The power control policies for VoIP in other channels are the same as those for data services.

LBFD-002016 Dynamic Downlink Power Allocation

This feature provides power control policies in PDSCH semi-persistent scheduling for VoIP. For details, see DL Semi-Persistent Scheduling in 4.6.3 Power Control in SemiPersistent Scheduling. The power control policies for VoIP in other channels are the same as those for data services.

Physical layer

LBFD-002017

This feature provides DRX policies for VoIP.

DRX

For details, see 4.7 DRX.

LOFD-001048

This feature enhances UL coverage for VoIP through TTI Bundling.

TTI Bundling

For details, see 4.8 TTI Bundling.

4.2 Admission and Congestion Control

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

13


eRAN VoIP Feature Parameter Description

4 Key Technologies

4.2.1 Overview This section describes how the basic features LBFD-002023 Admission Control and LBFD-002024 Congestion Control work for VoIP. For more details about the two features, see Admission and Congestion Control Feature Parameter Description. The eNodeB performs admission and congestion control for conversational voice (QCI 1) and IMS signaling (QCI 5) separately.

4.2.2 Load Monitoring Load monitoring provides decision references for admission and congestion control. The eNodeB monitors various resources in a cell to obtain the usage of physical resource blocks (PRBs), QoS satisfaction rates of GBR services, and resource insufficiency indicators. In this way, the eNodeB can know the current status of a cell.

Conversational Voice (QCI 1) Load monitoring calculates user satisfaction with the QoS of conversational voice (QCI 1) in a cell as follows: l

Downlink QoS satisfaction rate = Sum of downlink QoS satisfaction rates of all VoIP services in the cell/Number of VoIP services in the cell

l

Uplink QoS satisfaction rate = Sum of uplink QoS satisfaction rates of all VoIP services in the cell/Number of VoIP services in the cell

IMS Signaling (QCI 5) N/A

4.2.3 Admission Control Admission control determines whether to admit a GBR service (new service or handover service) based on the cell load reported by the load monitoring module. The cell load is represented by the PRB usage, QoS satisfaction rates of GBR services, and resource insufficiency indicators.

Conversational Voice (QCI 1) The admission control of GBR services with a QCI of 1is performed based on load-based decisions. For details about admission control on conversational voice (QCI 1), see Admission and Congestion Control Feature Parameter Description.

IMS Signaling (QCI 5) Admission control for non-GBR services (QCI 5) is not based on load. If SRS and PUCCH resources are successfully allocated, admission control directly admits non-GBR services (QCI 5). NOTE

Non-GBR services (QCI 5) are admitted based on SRS resource allocation only when the eNodeB is configured with the LBBPc board and SRS resources.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

14


eRAN VoIP Feature Parameter Description

4 Key Technologies

When PreemptionSwitch under the CellAlgoSwitch.RacAlgoSwitch parameter is turned on, IMS signaling cannot be preempted.

4.2.4 Congestion Control When the network is congested, the eNodeB preferentially releases low-priority GBR services to free up resources for other services.

Conversational Voice (QCI 1) The eNodeB monitors PRB usage and QoS satisfaction rate to evaluate load status. When the eNodeB determines that a cell is congested, the eNodeB rejects service access requests and triggers congestion control to decrease load. The congestion threshold is specified the CellRacThd.Qci1CongThd parameter. For details about how to set this parameter, see Admission and Congestion Control Feature Parameter Description.

IMS Signaling (QCI 5) N/A

4.3 Service-based Inter-RAT or Inter-Frequency Handover 4.3.1 Overview This section describes how the following features work for VoIP: l

LBFD-00201805 Service Based Inter-frequency Handover

l

LOFD-001043 Service based inter-RAT handover to UTRAN

l

LOFD-001046 Service based inter-RAT handover to GERAN

This section describes how inter-RAT handovers and inter-frequency handovers work for VoIP.

4.3.2 Inter-Frequency Handover To steer VoIP services to a specified frequency, turn on ServiceBasedInterFreqHoSwitch under the ENODEBALGOSWITCH.HoAlgoSwitch parameter. For details about service-based inter-frequency handovers, see Mobility Management in Connected Mode Feature Parameter Description.

4.3.3 Inter-RAT Handover Service-based inter-RAT handovers can preferentially set up services with specified QCIs in another system when the source and target systems have the same coverage. UtranServiceHoSwitch and GeranServiceHoSwitch under the ENODEBALGOSWITCH.HoAlgoSwitch parameter specify whether to enable service-based E-UTRAN to UTRAN and E-UTRAN to GERAN handovers, respectively. The ServiceIrHoCfgGroup.InterRatHoState parameter determines the handover policies for services corresponding to QCI 1 and QCI 9. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

15


eRAN VoIP Feature Parameter Description

4 Key Technologies

To perform VoIP services within the E-UTRAN, perform either of the following operations: l

Turn off UtranServiceHoSwitch and GeranServiceHoSwitch under the ENodeBAlgoSwitch.HoAlgoSwitch parameter.

l

Turn on UtranServiceHoSwitch and GeranServiceHoSwitch under the ENodeBAlgoSwitch.HoAlgoSwitch parameter, and set the ServiceIrHoCfgGroup.InterRatHoState parameter for QCI 1 and QCI 5 to a value other than MUST_HO.

If neither of the preceding operations is performed, VoIP services are handed over to another system immediately after being set up. For details about service-based inter-RAT handovers, see Mobility Management in Connected Mode Feature Parameter Description.

4.4 ROHC This section describes how the optional feature LOFD-001017 RObust Header Compression (ROHC) works for VoIP. For more details about ROHC, see ROHC Feature Parameter Description. ROHC provides an efficient header compression mechanism for data packets transmitted on radio links to solve the problems of high bit error rates (BERs) and long round trip time (RTT). ROHC helps reduce header overhead, lower the packet loss rate, shorten the response time, and therefore helps improve network performance. If operators have deployed IMS-based VoIP, operators can enable or disable ROHC by specifying the PDCPROHCPARA.RohcSwitch parameter. ROHC is an extensible framework consisting of different profiles for data streams compliant with different protocols. Profiles define the compression modes for streams with different types of protocol headers. VoIP uses profiles 0x0001 and 0x0002 for compressing RTP, UDP, and IP headers. The ROHC compression efficiency varies with the ROHC operating mode and variations in the dynamic part of a packet header at the application layer. A header can be compressed to a size as small as 1 byte, which efficiently reduces the VoIP packet size.

4.5 Scheduling 4.5.1 Overview This section describes how a Huawei scheduler ensures the QoS and capacity of VoIP services using the following features: l

LOFD-00101502 Dynamic Scheduling

l

LOFD-001016 VoIP Semi-persistent Scheduling

4.5.2 Dynamic Scheduling This section describes how the optional feature LOFD-00101502 Dynamic Scheduling works for VoIP. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

16


eRAN VoIP Feature Parameter Description

4 Key Technologies

Overview Dynamic scheduling for VoIP requires that the VoIP delay be as short as possible. Therefore, the Huawei scheduler optimizes the handling of VoIP priorities to ensure VoIP QoS. For details about dynamic scheduling, see Scheduling Feature Parameter Description. Dynamic scheduling is used for VoIP in the following scenarios: l

UEs move at high speeds, for example, on high-speed railways.

l

UEs are in cells with a bandwidth of 1.4 MHz.

l

UEs perform other services together with VoIP.

l

UEs request emergency calls.

It is recommended that semi-persistent scheduling be enabled in scenarios where the increase in the number of VoIP users causes insufficient PDCCH resources.

UL Dynamic Scheduling When UL dynamic scheduling uses the enhanced proportional fair (EPF) algorithm, the priority of conversational voice (QCI 1) is lower than the priorities of signaling radio bearer 1 (SRB1), SRB2, and IMS signaling (QCI 5), and it is higher than the priorities of other initially transmitted data.

DL Dynamic Scheduling When dynamic scheduling is used, the scheduling priority is related to whether the feature LOFD-001109 DL Non-GBR Packet Bundling is enabled: l

If the feature LOFD-001109 DL Non-GBR Packet Bundling is not enabled: When DL dynamic scheduling uses EPF, the priority of conversational voice (QCI 1) is lower than the priorities of common control information, user-specific control information, IMS signaling (QCI 5), data retransmitted in hybrid automatic repeat request (HARQ) mode, and RLC AM state reports, and it is higher than the priorities of other initially transmitted data.

l

If the feature LOFD-001109 DL Non-GBR Packet Bundling is enabled: All data and signaling are prioritized again and the priority of conversational voice may not be higher than the priorities of other initially transmitted data.

When dynamic scheduling is used, the modulation and coding scheme (MCS) selection policy is related to the value of VoipTbsBasedMcsSelSwitch under CellAlgoSwitch.DlSchSwitch: l

When VoipTbsBasedMcsSelSwitch is turned on, the eNodeB determines whether the number of online subscribers and IBLER have affected VoIP services. Selecting an MCS based on transport block size (TBS) takes effect if the number of online subscribers and IBLER meet certain requirements. HARQ retransmission and user delay are reduced if the function takes effect on VoIP services.

l

When VoipTbsBasedMcsSelSwitch is turned off, the eNodeB determines the MCS for VoIP services based on the downlink CQI adjustment algorithm. For details about the downlink CQI adjustment algorithm, see Scheduling Feature Parameter Description.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

17


eRAN VoIP Feature Parameter Description

4 Key Technologies

4.5.3 Semi-Persistent Scheduling Overview The Huawei scheduler allocates time-frequency resources and transmission rates while activating semi-persistent scheduling, and it allows resource and rate reconfiguration through RRC messages. Semi-persistent scheduling is primarily used for services using periodically transmitted small packets. It can reduce the number of signaling messages. Currently, Huawei schedulers use semi-persistent scheduling only for conversational voice (QCI 1). Before enabling semi-persistent scheduling, the eNodeB uses dynamic scheduling to schedule VoIP packets. When enabling semi-persistent scheduling, the eNodeB notifies the UE of the semi-persistently allocated resources through the physical downlink control channel (PDCCH). During periodic scheduling, the eNodeB does not need to indicate the allocated resources through the PDCCH. The period of semi-persistent scheduling is 20 ms. The eNodeB notifies the UE of the period through an RRC message. The PDCP layer determines talk spurts and silent periods for VoIP. During talk spurts, semipersistent scheduling is activated. During silent periods, semi-persistently allocated resources are released. Then, when a VoIP call transits from a silent period to talk spurts, the eNodeB reactivates semi-persistent scheduling. eNodeBs use dynamic scheduling in the following scenarios to supplement semi-persistent scheduling: l

Transmission of large packets

l

HARQ retransmission for the initial transmission that uses semi-persistent scheduling

l

Transmission of packets in silent periods

UL Semi-Persistent Scheduling SpsSchSwitch under the CellAlgoSwitch.UlSchSwitch parameter specifies whether to enable UL semi-persistent scheduling. After determining that talk spurts start for a VoIP service, the eNodeB activates semi-persistent scheduling and determines the modulation and coding scheme (MCS) and the number of PRBs based on the packet size and the wideband signal to interference plus noise ratio (SINR). After semi-persistent scheduling is activated, the UE periodically sends data and the eNodeB periodically receives data using the semi-persistently allocated resources. When the number of empty packets received by the eNodeB in semi-persistent scheduling exceeds the value of CellUlschAlgo.SpsRelThd, the eNodeB automatically releases semipersistently allocated resources.

DL Semi-Persistent Scheduling SpsSchSwitch under the CellAlgoSwitch.DlSchSwitch parameter specifies whether to enable DL semi-persistent scheduling. DL data transmitted in semi-persistent scheduling mode has a lower priority than common control (such as broadcast and paging) information but has a higher priority than UE-specific Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

18


eRAN VoIP Feature Parameter Description

4 Key Technologies

control information and user-plane data. The eNodeB periodically sends data and the UE periodically receives data using the semi-persistently allocated resources. When semi-persistent scheduling is activated, the eNodeB allocates the MCS and PRBs for a UE based on the size of VoIP packets and the UE-reported wideband channel quality indicator (CQI). The UE and eNodeB then receive and send data on the allocated resources. After semi-persistent scheduling is activated, the eNodeB determines whether to reactivate semipersistent scheduling based on the measured IBLER.

4.6 Power Control 4.6.1 Overview This section describes how the following features work for VoIP when dynamic scheduling and semi-persistent scheduling are used: l

LBFD-002026 Uplink Power Control

l

LBFD-002016 Dynamic Downlink Power Allocation

4.6.2 Power Control in Dynamic Scheduling For details about VoIP power control policies when dynamic scheduling is used for VoIP, see Power Control Feature Parameter Description.

4.6.3 Power Control in Semi-Persistent Scheduling This section describes VoIP power control policies when semi-persistent scheduling is used for VoIP.

UL Semi-Persistent Scheduling When semi-persistent scheduling is used for VoIP in the UL, closed-loop power control for the physical uplink shared channel (PUSCH) can be enabled or disabled by setting CloseLoopSpsSwitch under the CellAlgoSwitch.UlPcAlgoSwitch parameter. l

If CloseLoopSpsSwitch is turned on, the eNodeB adjusts transmit power for the PUSCH based on the measured IBLER.

l

If CloseLoopSpsSwitch is turned off, the eNodeB does not adjust the transmit power for the PUSCH.

The PUSCH TPC commands for multiple UEs in semi-persistent scheduling mode are sent to the UEs in downlink control information (DCI) format 3 or 3A.

DL Semi-Persistent Scheduling When semi-persistent scheduling is used for VoIP in the DL, power control for the PDSCH can be enabled or disabled by setting PdschSpsPcSwitch under the CellAlgoSwitch.DlPcAlgoSwitch parameter. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

19


eRAN VoIP Feature Parameter Description

4 Key Technologies

l

If PdschSpsPcSwitch is turned on, the eNodeB periodically adjusts the PDSCH transmit power for UEs that use the quadrature phase shift keying (QPSK) modulation scheme based on the measured IBLER.

l

If PdschSpsPcSwitch is turned off, the eNodeB does not adjust the PDSCH transmit power.

4.7 DRX This section describes how the basic feature LBFD-002017 DRX works for VoIP. With discontinuous reception (DRX) enabled, UEs enter a dormant state when data is not transmitted. In this way, DRX saves power. DRX typically applies to services with consecutive small packets that are transmitted periodically, for example, VoIP. VoIP does not support short DRX cycles when semi-persistent scheduling is enabled. The Drx.DrxAlgSwitch parameter specifies whether to enable DRX. For details about DRX, see DRX and Signaling Control Feature Parameter Description. NOTE

False detection of the PDCCH might cause packet loss, which further deteriorates VoIP service quality. To reduce the impact of false detection, preallocation can be used. For details about how DRX works with preallocation, see DRX and Signaling Control Feature Parameter Description.

4.8 TTI Bundling This section describes how the optional feature LOFD-001048 TTI Bundling works for VoIP. Transmission time interval (TTI) bundling enables a data block to be transmitted in consecutive TTIs, which are bound together and treated as the same resource. As shown in Figure 4-1, four TTIs are bound together. Assume that TTI N is the last TTI in a TTI group. Then, the eNodeB sends acknowledgment (ACK) or negative acknowledgment (NACK) at TTI N+4 in the downlink. Based on the received ACK or NACK, the UE determines whether a retransmission is required. If required, the UE retransmits the data in TTI N+13 through TTI N+16 in the uplink. Figure 4-1 TTI bundling

When the UE's channel quality is poor and the transmit power is limited, enabling TTI bundling improves the cell edge coverage of the PUSCH, reduces fragments at the RLC layer, and lowers signaling overhead. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

20


eRAN VoIP Feature Parameter Description

4 Key Technologies

In the current version, cells with a bandwidth of 1.4 MHz do not support TTI bundling, and TTI bundling is used to improve only the UL edge coverage for VoIP. TTI bundling is controlled by TtiBundlingSwitch under the CellAlgoSwitch.UlSchSwitch parameter. If TtiBundlingSwitch is turned on, the eNodeB determines whether to activate TTI bundling based on the channel quality and the amount of data to be transmitted. After activating TTI bundling, the eNodeB determines the number of PRBs and selects an MCS based on the channel quality and the amount of data to be transmitted. According to section 8.6.1 "Modulation order and redundancy version determination" in 3GPP TS 36.213 V10.1.0 (2011-03), a maximum of three PRBs can be used in a bundle of TTIs, the modulation scheme is QPSK, and the highest modulation order is 10.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

21


eRAN VoIP Feature Parameter Description

5 Related Features

5

Related Features

This chapter describes the relationships between VoIP-related features and other features.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

22


eRAN VoIP Feature Parameter Description

5 Related Features

5.1 Features Related to Admission and Congestion Control 5.1.1 LBFD-002023 Admission Control For details about the prerequisite features, mutually exclusive features, and impacted features of LBFD-002023 Admission Control, see Admission and Congestion Control Feature Parameter Description.

5.1.2 LBFD-002024 Congestion Control For details about the prerequisite features, mutually exclusive features, and impacted features of LBFD-002024 Congestion Control, see Admission and Congestion Control Feature Parameter Description.

5.2 Features Related to Service-based Handovers 5.2.1 LBFD-00201805 Service Based Inter-frequency Handover For details about the prerequisite features, mutually exclusive features, and impacted features of LBFD-00201805 Service Based Inter-frequency Handover, see Mobility Management in Connected Mode Feature Parameter Description.

5.2.2 LOFD-001043 Service based inter-RAT handover to UTRAN For details about the prerequisite features, mutually exclusive features, and impacted features of LOFD-001043 Service based inter-RAT handover to UTRAN, see Mobility Management in Connected Mode Feature Parameter Description.

5.2.3 LOFD-001046 Service based inter-RAT handover to GERAN For details about the prerequisite features, mutually exclusive features, and impacted features of LOFD-001046 Service based inter-RAT handover to GERAN, see Mobility Management in Connected Mode Feature Parameter Description.

5.3 Features Related to LOFD-001017 RObust Header Compression (ROHC) For details about the prerequisite features, mutually exclusive features, and impacted features of LOFD-001017 RObust Header Compression (ROHC), see ROHC Feature Parameter Description.

5.4 Features to Related Scheduling Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

23


eRAN VoIP Feature Parameter Description

5 Related Features

5.4.1 LOFD-00101502 Dynamic Scheduling For details about the prerequisite features, mutually exclusive features, and impacted features of LOFD-00101502 Dynamic Scheduling, see Scheduling Feature Parameter Description.

5.4.2 LOFD-001109 DL Non-GBR Packet Bundling Prerequisite Features None

Mutually Exclusive Features None

Impacted Features This feature affects the VoIP service quality. When UEs are processing non-GBR services and VoIP services, enabling feature LOFD-001109 DL Non-GBR Packet Bundling has the following impact: l

The VoIP service quality may slightly decrease, while still being satisfactory.

l

The DL non-GBR throughput increases if the non-GBR service scheduling probability was low before this feature is enabled because VoIP services take precedence and occupy more PDCCH resources. The non-GBR DL throughput increases with the number of users with satisfactory VoIP quality. The throughput increase also depends on the non-GBR user distribution, traffic volume, system bandwidth, and other factors.

5.4.3 LOFD-001016 VoIP Semi-persistent Scheduling Prerequisite Features None

Mutually Exclusive Features None

Impacted Features l

LOFD-001036 RAN Sharing with Common Carrier VoIP services have a high scheduling priority and are sensitive to scheduling delays. Therefore, UL and DL semi-persistent scheduling does not consider the configured proportions of PRBs that can be allocated to different operators.

l

LBFD-002026 Uplink Power Control During UL semi-persistent scheduling, the MCS remains unchanged but channel conditions vary. Consequently, the IBLER may not converge on a target value. To solve this problem, closed-loop power control can be enabled to adjust UE transmit power for the PUSCH.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

24


eRAN VoIP Feature Parameter Description

l

5 Related Features

LBFD-002005 DL Asynchronous HARQ HARQ process information is not included in the PDCCH grant message for semi-persistent scheduling. Consequently, the retransmitted data and initially transmitted data fail to be combined because the eNodeB cannot identify the HARQ process for the retransmitted data. To solve this problem, the eNodeB reserves HARQ processes for semi-persistent scheduling and sends the number of reserved HARQ processes to the UE through an RRC message according to 3GPP TS 36.321.

l

LAOFD-001001 Carrier Aggregation for Downlink 2CC in 20MHz According to section 5.10 "Semi-Persistent Scheduling" in 3GPP TS 36.321, semipersistent scheduling can only be configured on the primary component carrier for CA UEs.

5.5 Features Related to Power Control 5.5.1 LBFD-002016 Dynamic Downlink Power Allocation Prerequisite Features None

Mutually Exclusive Features None

Impacted Features LBFD-002016 Dynamic Downlink Power Allocation affects the following features: l

LBFD-002025 Basic Scheduling

l

LOFD-00101502 Dynamic Scheduling

l

LOFD-00101501 CQI Adjustment

l

LOFD-001016 VoIP Semi-persistent Scheduling

l

LBFD-00202201 Downlink Static Inter-Cell Interference Coordination

l

LOFD-00101401 Downlink Dynamic Inter-Cell Interference Coordination

l

LOFD-060201 Adaptive Inter-Cell Interference Coordination

This section describes only the impact on LOFD-001016 VoIP Semi-persistent Scheduling. For details about the impact on other features, see Power Control Feature Parameter Description. The downlink VoIP semi-persistent scheduling algorithm provides the achieved downlink BLER as an input to the downlink semi-persistent power control algorithm. The BLER is a prerequisite for enabling PDSCH power adjustment in semi-persistent scheduling.

5.5.2 LBFD-002026 Uplink Power Control Prerequisite Features None Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

25


eRAN VoIP Feature Parameter Description

5 Related Features

Mutually Exclusive Features None

Impacted Features LBFD-002026 Uplink Power Control affects the following features: l

LBFD-002025 Basic Scheduling

l

LOFD-00101502 Dynamic Scheduling

l

LOFD-001016 VoIP Semi-persistent Scheduling

l

LBFD-002010 Random Access Procedure

This section describes only the impact on LOFD-001016 VoIP Semi-persistent Scheduling. For details about the impact on other features, see Power Control Feature Parameter Description. The uplink VoIP semi-persistent scheduling algorithm provides the achieved uplink BLER as an input to the uplink power control algorithm. The BLER is a prerequisite for enabling PUSCH power adjustment in semi-persistent scheduling. If uplink semi-persistent scheduling is enabled, it is recommended that CloseLoopSpsSwitch under the CellAlgoSwitch.UlPcAlgoSwitch parameter be turned on to ensure the convergence of uplink IBLER.

5.6 Features Related to LBFD-002017 DRX Prerequisite Features None

Mutually Exclusive Features None

Impacted Features DRX affects LOFD-001048 TTI Bundling as follows: l

If a UE is in the TTI bundling state, the eNodeB instructs the UE to enter the DRX mode only when the UE needs to perform ANR measurement.

l

If a UE is in DRX mode, the eNodeB instructs the UE to exit the DRX mode after activating TTI bundling. An exception is that if the UE is performing ANR measurement in DRX mode, the eNodeB does not instruct the UE to exit the DRX mode.

DRX also affects features such as scheduling, connection management, mobility management in connected mode, measurement, channel quality indicator (CQI), and timing control. For details about the impact, see DRX and Signaling Control Feature Parameter Description.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

26


eRAN VoIP Feature Parameter Description

5 Related Features

5.7 Features Related to LOFD-001048 TTI Bundling Prerequisite Features None

Mutually Exclusive Features None

Impacted Features LOFD-001048 TTI Bundling affects the following features: l

LBFD-002017 DRX

l

LOFD-001105 Dynamic DRX

l

LAOFD-001001 LTE-A Introduction

If a UE is in the TTI bundling state, the eNodeB instructs the UE to enter the DRX mode only when the UE needs to perform ANR measurement. If a UE is in DRX mode and not performing ANR measurement, the eNodeB instructs the UE to exit the DRX mode when activating TTI bundling. According to 3GPP TS 36.331, TTI bundling cannot be configured if a CA UE performs data transmission in the uplink. When a CA UE is configured with TTI bundling, the secondary cell (SCell) of this UE will be automatically deleted.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

27


eRAN VoIP Feature Parameter Description

6 Network Impact

6

Network Impact

This chapter describes the impact of the VoIP-related features on the network.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

28


eRAN VoIP Feature Parameter Description

6 Network Impact

6.1 Admission and Congestion Control 6.1.1 LBFD-002023 Admission Control System Capacity Admission control maximizes the system capacity while providing users with satisfied QoS, which can be indicated by the VoIP MOS.

Network Performance No impact.

6.1.2 LBFD-002024 Congestion Control System Capacity Congestion control maximizes system capacity while preferentially providing satisfied QoS for high-priority users. The priority refers to the allocation/retention priority (ARP). Congestion control ensures a high satisfaction rate of VoIP users in congested cells.

Network Performance No impact.

6.2 Service-based Handover 6.2.1 LBFD-00201805 Service Based Inter-frequency Handover System Capacity No impact.

Network Performance No impact.

6.2.2 LOFD-001043 Service based inter-RAT handover to UTRAN System Capacity No impact.

Network Performance No impact. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

29


eRAN VoIP Feature Parameter Description

6 Network Impact

6.2.3 LOFD-001046 Service based inter-RAT handover to GERAN System Capacity No impact.

Network Performance No impact.

6.3 LOFD-001017 RObust Header Compression (ROHC) System Capacity ROHC reduces the overhead of IP headers and increases the coverage and system capacity for VoIP users as follows: l

Decreases the size of VoIP packets to be transmitted, which in turn improves uplink edge coverage. Higher compression efficiency leads to better cell coverage.

l

Reduces required PRB resources and increases system capacity, given the same channel quality. Higher compression efficiency leads to higher system capacity.

When ROHC is used, the variation in the sizes of compressed VoIP packets affects semipersistent scheduling. If the sizes vary greatly, the allocated PRBs may be insufficient or excessive for semi-persistent scheduling. Either case affects VoIP capacity and cell throughput. l

If the allocated PRBs are insufficient, dynamic scheduling is triggered temporarily. This causes a waste of PDCCH resources and PRBs and increases scheduling delays due to VoIP packet segmentation.

l

If the allocated PRBs are excessive, some PRBs are wasted, and the cell throughput in hybrid-service scenarios decreases.

Network Performance No impact.

6.4 Scheduling 6.4.1 LOFD-00101502 Dynamic Scheduling System Capacity VoIP voice packets are generally small. If semi-persistent scheduling is disabled, VoIP capacity is mainly determined by PDCCH resources. If the continuous increase of VoIP users causes PDCCH resources to become insufficient firstly, the cell capacity decreases. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

30


eRAN VoIP Feature Parameter Description

6 Network Impact

Network Performance No impact.

6.4.2 LOFD-001109 DL Non-GBR Packet Bundling System Capacity l

When cell load is light In this scenario, the downlink control and traffic channels have sufficient resources and therefore the eNodeB does not trigger this feature, which means this feature does not affect system capacity.

l

When cell load is heavy In this scenario, the resources for control channels are insufficient and therefore the eNodeB triggers this feature. Enabling this feature improves the distribution of scheduling wait time for downlink packets and increases the GBR and non-GBR hybrid service capacity.

Improving the distribution of scheduling wait time for downlink packets will increase VoIP service scheduling wait time while meeting the QoS requirements.

Network Performance No impact.

6.4.3 LOFD-001016 VoIP Semi-persistent Scheduling System Capacity After semi-persistent scheduling is enabled, PDCCH resources do not hinder VoIP capacity because PDCCH resources are consumed only when semi-persistent scheduling is initially activated or reactivated or when semi-persistently allocated resources are released. Therefore, enabling semi-persistent scheduling can increase the number of supported VoIP users. During semi-persistent scheduling, the MCS index cannot exceed 15. This restriction may increase the number of PRBs allocated to semi-persistently scheduled UEs near the cell center. In hybrid-service scenarios (where VoIP UEs and other UEs coexist in a cell), the increase in the number of PRBs allocated to VoIP UEs will cause a decrease in the number of PRBs available to other UEs, and consequently the cell throughput will decrease.

Network Performance No impact.

6.5 Power Control 6.5.1 LBFD-002016 Dynamic Downlink Power Allocation For details about the impact of this feature on system capacity and network performance, see Power Control Feature Parameter Description. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

31


eRAN VoIP Feature Parameter Description

6 Network Impact

6.5.2 LBFD-002026 Uplink Power Control For details about the impact of this feature on system capacity and network performance, see Power Control Feature Parameter Description.

6.6 LBFD-002017 DRX System Capacity DRX increases VoIP delays because it introduces the sleep time. If DRX parameter settings are inappropriate, VoIP capacity will decrease.

Network Performance No impact.

6.7 LOFD-001048 TTI Bundling System Capacity No impact.

Network Performance TTI bundling improves the cell edge coverage of the PUSCH. However, TTI bundling increases signaling exchanges in the cell because the RRC layer needs to trigger the activation and deactivation of TTI bundling.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

32


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7

Engineering Guidelines

This chapter describes engineering guidelines for VoIP.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

33


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.1 When to Use VoIP This section describes when to use VoIP.

7.1.1 Admission and Congestion Control When a network becomes congested with an increasing number of users and higher QoS requirements, eNodeBs need to perform radio resource management so that QoS requirements of ongoing services can be fulfilled and differentiated services can be provided. When radio resource congestion occurs (for example, QoS requirements cannot be fulfilled or radio bearers cannot be set up), activate admission control to relieve congestion and provide service-priority-based access services. When congestion increases so that QoS requirements still cannot be fulfilled, activate congestion control to enable low-priority service release.

7.1.2 ROHC The ROHC feature is recommended when the operator provides the IMS-based VoIP services in LTE network.

7.1.3 Dynamic Scheduling Scheduling Policies Enhanced scheduling uses EPF as the scheduling policy. This policy takes scheduling fairness, cell capacity, and QoS satisfaction into consideration. Enhanced scheduling is recommended if there is no capacity restriction due to control channel resource restriction.

Resource Allocation Huawei eNodeBs support two DL resource allocation modes: frequency diversity scheduling and frequency selective scheduling. Huawei eNodeBs use frequency selective scheduling by default. Frequency selective scheduling considers the differences in channel quality for UEs and brings gains. Frequency selective scheduling is not recommended in the following situations: l

UEs are moving at a high speed.

l

The UL load is high.

7.1.4 When to Use Semi-Persistent Scheduling Semi-persistent scheduling is recommended if operators expect to reduce the PDCCH resources used for VoIP scheduling and to improve VoIP capacity. Semi-persistent scheduling is not recommended if UEs move at high speeds (for example, on high-speed railways) or UEs are in cells with a bandwidth of 1.4 MHz. If UL semi-persistent scheduling is enabled, it is recommended that UL power control for UL semi-persistent scheduling be enabled. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

34


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.1.5 When to Use Power Control For details on the use of dynamic power control, see Power Control Feature Parameter Description. It is recommended that power control for the PDSCH in semi-persistent scheduling mode be disabled. It is recommended that power control for the PUSCH in semi-persistent scheduling mode (controlled by CloseLoopSpsSwitch) be enabled or disabled depending on the following circumstances: l

Enable power control if uplink semi-persistent scheduling is enabled. In this situation, TPC commands are adjusted based on the accuracy of the received initial-transmission data packets to decrease the IBLER, improving VoIP service performance.

l

Disable power control if uplink semi-persistent scheduling is disabled. NOTE

If any of the power control schemes described in this section is enabled, it is recommended that inner-loop power control for the PUSCH in dynamic scheduling mode also be enabled.

7.1.6 When to Use Dynamic DRX It is recommended that dynamic DRX be activated in the following scenarios: l

Scenario 1 Operators attach importance to UE power saving and expect to reduce the UE power consumption using dynamic DRX.

l

Scenario 2 Signaling storms occur and operators expect to solve the signaling storm problem using dynamic DRX.

It is recommended that dynamic DRX not be activated when UEs moving at high speeds exist in the cell or UE power saving is not the main concern. When the CellAlgoSwitch.HighMobiTrigIdleModeSwitch parameter is set to ENABLE(Enable), it is recommended that dynamic DRX be activated to prevent negative signaling gains caused by too many handovers. In scenario 1, UEs enter the out-of-synchronization state, and therefore the number of signaling messages increases. A larger difference between the values of RrcConnStateTimer.UeInactivityTimerDynDrx and RrcConnStateTimer.UlSynTimerDynDrx results in lower UE power consumption. In scenario 2, it is recommended that dynamic DRX be disabled if the ratio of the number of handovers in the network to the number of E-RAB setup times is greater than 50%. Handover signaling is the main cause of the signaling storm and it is recommended that handovers be optimized first. When dynamic DRX is enabled, to improve UE power saving effect, it is recommended that the CellDrxPara.FddEnterDrxThd and CellDrxPara.FddExitDrxThd parameters be set to 1000 and that the CellDrxPara.DrxInactivityTimerUnsync parameter be set to PSF200(200 PDCCH subframes). The configuration of the UE Inactivity Timer may have compatibility problems with UEs. Contact Huawei engineers before activating this feature. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

35


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.1.7 When to Use TTI Bundling To improve the cell edge coverage of the PUSCH, TTI bundling is recommended in the following scenarios: l

The UL coverage is poor and the UE's transmit power is limited.

l

An eNodeB is installed outdoors but expected to provide indoor coverage.

7.2 Required Information 7.2.1 Admission and Congestion Control For both admission control and congestion control, collect the QoS satisfaction rates and uplink PRB usage of cells.

7.2.2 ROHC None

7.2.3 Dynamic Scheduling None

7.2.4 Semi-Persistent Scheduling None

7.2.5 Power Control None

7.2.6 DRX The RrcConnStateTimer.UeInactivityTimerDynDrx parameter specifies the length of the inactivity timer for UEs that support DRX, and the RrcConnStateTimer.UeInactiveTimer parameter specifies the length of the inactivity timer for UEs that do not support DRX. Before deploying dynamic DRX, collect information about the RrcConnStateTimer.UeInactiveTimer and RrcConnStateTimer.UlSynTimer parameter values. Assume that the values of the RrcConnStateTimer.UeInactiveTimer and RrcConnStateTimer.UlSynTimer parameters are a and b, respectively. Perform either of the following operations to ensure the accuracy of KPIs: l

If operators do not use dynamic DRX to reduce signaling, perform the following operations to avoid fluctuations in KPIs: 1.

Set the RrcConnStateTimer.UeInactivityTimerDynDrx parameter to a.

2.

Set the RrcConnStateTimer.UlSynTimerDynDrx parameter to b.

If power saving is required, set the RrcConnStateTimer.UlSynTimerDynDrx parameter to a value less than the value of the RrcConnStateTimer.UeInactivityTimerDynDrx Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

36


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

parameter. This configuration does not increase the number of UEs in RRC_CONNECTED mode. l

If operators use dynamic DRX to reduce signaling, perform the following operations to ensure the calculation accuracy of KPIs: 1.

Set the RrcConnStateTimer.UlSynTimerDynDrx and RrcConnStateTimer.UlSynTimer parameters to a.

2.

Set the RrcConnStateTimer.UeInactivityTimerDynDrx and RrcConnStateTimer.UeInactiveTimer parameters to a value greater than a, and ensure that the values of RrcConnStateTimer.UeInactivityTimerDynDrx and RrcConnStateTimer.UeInactiveTimer are the same.

After the preceding operations are complete, the values of the RrcConnStateTimer.UeInactivityTimerDynDrx and RrcConnStateTimer.UeInactiveTimer parameters are greater than a and the number of UEs in RRC_CONNECTED mode increases. For example, if the value of the RrcConnStateTimer.UeInactiveTimer parameter is 20, set the RrcConnStateTimer.UeInactivityTimerDynDrx and RrcConnStateTimer.UeInactiveTimer parameters to 200; set the RrcConnStateTimer.UlSynTimerDynDrx and RrcConnStateTimer.UlSynTimer parameters to 20. Then, the value of the RrcConnStateTimer.UeInactivityTimerDynDrx parameter is greater than that of the RrcConnStateTimer.UlSynTimerDynDrx parameter.

7.2.7 TTI Bundling None

7.3 Planning RF Planning None

Networking Planning An IMS server needs to be deployed to support VoIP. If the E-UTRAN cannot provide continuous coverage and it requires the UTRAN/GERAN to provide continuous voice services, you must configure inter-RAT neighboring cells and set voice service handover switches must be set according to the UTRAN/GERAN voice service policies.

Hardware Planning None

7.4 Configuration of Basic Parameters Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

37


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.4.1 Requirements Operating Environment UEs must support VoIP, and the EPC must support IMS.

Transmission Networking N/A

License N/A

7.4.2 Data Preparation This section describes the data that you need to collect for setting parameters. Required data is data that you must collect for all scenarios. Collect scenario-specific data when necessary for a specific feature deployment scenario. There are three types of data sources: l

Network plan (negotiation required): parameter values planned by the operator and negotiated with the EPC or peer transmission equipment

l

Network plan (negotiation not required): parameter values planned and set by the operator

l

User-defined: parameter values set by users

Required Data None

Scenario-specific Data Different QCIs require different RLC modes. The eNodeB supports adaptive configuration based on QCIs. The following table describes the parameters that must be set in the StandardQci MO to modify a standardized QCI. Parameter Name

Parameter ID

Data Source

Setting Notes

QoS Class Indication

StandardQci.Qci

Network plan (negotiation not required)

N/A

RLC PDCP parameter group ID

StandardQci. RlcPdcpParaGroupId

Network plan (negotiation not required)

N/A

The following table describes the parameter that must be set in the RlcPdcpParaGroup MO to configure an RLC mode. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

38


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Parameter Name

Parameter ID

Data Source

Setting Notes

RLC-UM or RLCAM mode

RlcPdcpParaGrou p.RlcMode

Network plan (negotiation not required)

N/A

7.4.3 Precautions None

7.4.4 Hardware Adjustment None

7.4.5 Initial Configuration Using the CME to Perform Batch Configuration for Newly Deployed eNodeBs Enter the values of the parameters listed in Table 7-1 in a summary data file, which also contains other data for the new eNodeBs to be deployed. Then, import the summary data file into the Configuration Management Express (CME) for batch configuration. For detailed instructions, see section "Creating eNodeBs in Batches" in the initial configuration guide for the eNodeB. The summary data file may be a scenario-specific file provided by the CME or a customized file, depending on the following conditions: l

The MOs in Table 7-1 are contained in a scenario-specific summary data file. In this situation, set the parameters in the MOs, and then verify and save the file.

l

Some MOs in Table 7-1 are not contained in a scenario-specific summary data file. In this situation, customize a summary data file to include the MOs before you can set the parameters. Table 7-1 Parameters related to RLC modes

Issue 03 (2013-10-30)

MO

Sheet in the Summary Data File

Parameter Group

Remar ks

StandardQci

StandardQci

QOS Class Indication, RlcPdcpParaGroupId;

Userdefined sheet

RlcPdcpParaGrou p

RLC and PDCP Parameter Group Configuration

RlcPdcpParaGroupId, RLC-UM or RLCAM mode

Userdefined sheet

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

39


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Using the CME to Perform Batch Configuration for Existing eNodeBs Batch reconfiguration using the CME is the recommended method to activate a feature on existing eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure is as follows: Step 1 Choose CME > Advanced > Customize Summary Data File, or choose Advanced > Customize Summary Data File, to customize a summary data file for batch reconfiguration. NOTE

For context-sensitive help on a current task in the client, press F1.

Step 2 Choose CME > LTE Application > Export Data > Export Base Station Bulk Configuration Data, or choose LTE Application > Export Data > Export Base Station Bulk Configuration Data, to export the eNodeB data stored on the CME into the customized summary data file. Step 3 In the summary data file, set the parameters in the MOs listed in Table 7-1 and close the file. Step 4 Choose CME > LTE Application > Import Data > Import Base Station Bulk Configuration Data, or choose LTE Application > Import Data > Import Base Station Bulk Configuration Data, to import the summary data file into the CME. Step 5 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using the CME to Perform Single Configuration On the CME, set the parameters listed in the 7.4.2 Data Preparation section for a single eNodeB. The procedure is as follows: Step 1 In the planned data area, click Base Station in the upper left corner of the configuration window. Step 2 In area 1 shown in Figure 7-1, select the eNodeB to which the MOs belong.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

40


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-1 MO search and configuration window

Step 3 On the Search tab page in area 2, enter an MO name, for example, CELL. Step 4 In area 3, double-click the MO in the Object Name column. All parameters in this MO are displayed in area 4. Step 5 Set the parameters in area 4 or 5. Step 6 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using MML Commands Step 1 Run the MOD RLCPDCPPARAGROUP command to set the RLC/PDCP parameter group. Step 2 Run the MOD STANDARDQCI command to set parameters related to standardized QCIs. ----End

MML Command Examples MOD RLCPDCPPARAGROUP: RlcPdcpParaGroupId=0, RlcMode=RlcMode_UM, PdcpSnSize=PdcpSnsize_12bits; MOD STANDARDQCI: Qci=QCI1, InterRatPolicyCfgGroupId=0;

7.4.6 Activation Observation The eNodeB can configure RLC modes based on QCIs. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

41


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

To check whether the RLC mode for conversational voice (QCI 1) is UM and that for IMS signaling (QCI 5) is AM, perform the following steps: Step 1 Enable a UE to access a cell and perform a VoIP service. Step 2 Check the S1AP_INITIAL_CONTEXT_SETUP_REQ or S1AP_ERAB_SETUP_REQ message using a drive test tool or S1 tracing task on the M2000 client. Check whether QCI 1 and QCI 5 in the bearer request messages are correct. Figure 7-2 QCI 1 in the dedicated bearer request message

Figure 7-3 QCI 5 in the dedicated bearer request message

Step 3 Record the e-RAB-IDs that map QCI 1 and QCI 5 in the bearer request messages. In Figure 7-2 and Figure 7-3, the e-RAB-IDs that map QCI 1 and QCI 5 are 6 and 5, respectively. Then, check RLC mode for bearer setup in the Uu tracing result. If the RLC mode for QCI 1 is UM and that for QCI 5 is AM, the configurations are correct. Step 4 Check the Uu tracing result. If the RLC mode for QCI 1 is UM and that for QCI 5 is AM, the configurations are correct. Figure 7-4 Uu tracing result

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

42


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-5 UM for QCI 1

Figure 7-6 AM for QCI 5

----End

7.4.7 Reconfiguration N/A

7.5 Deployment of Admission Control For details on deployment of admission control, see Admission and Congestion Control Feature Parameter Description.

7.6 Deployment of Congestion Control For details on deployment of congestion control, see Admission and Congestion Control Feature Parameter Description.

7.7 Deployment of ROHC For details on deployment of ROHC, see ROHC Feature Parameter Description.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

43


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.8 Deployment of DL Dynamic Scheduling Before deploying dynamic scheduling, ensure that the UE supports VoIP services and the EPC supports IMS. This section describes only how to verify DL dynamic scheduling for VoIP. For details about deployment requirements, data preparation, activation, and deactivation, see Scheduling Feature Parameter Description. To verify DL dynamic scheduling for VoIP, perform the following steps: Step 1 Run the LST CELLALGOSWITCH command to check whether DL dynamic scheduling has been activated. If the DL semi-persistent scheduling switch is turned off, dynamic scheduling is used. Step 2 Enable a UE to access a cell from a position close to the eNodeB and perform DL VoIP services. Step 3 Start a task on the M2000 client to monitor MCS-specific scheduling statistics. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > MCS Count Monitoring. Set the tracing duration, to-be-traced MME ID, and UE TMSI, as shown in the following figures. Figure 7-7 MCS Count Monitoring

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

44


eRAN VoIP Feature Parameter Description

3.

7 Engineering Guidelines

Check the MCS-specific scheduling statistics. If the DL MCS indexes for the UE are greater than 15 and less than or equal to 28, dynamic scheduling has been performed for DL VoIP. Note that the highest MCS index in semi-persistent scheduling is only 15. Figure 7-8 DL MCS monitoring results

----End

7.9 Deployment of UL Dynamic Scheduling Before deploying dynamic scheduling, ensure that the UE supports VoIP services and the EPC supports IMS. This section describes only how to verify UL dynamic scheduling for VoIP. For details about deployment requirements, data preparation, activation, and deactivation, see Scheduling Feature Parameter Description. To verify UL dynamic scheduling for VoIP, perform the following steps: Step 1 Run the LST CELLALGOSWITCH command to check whether UL dynamic scheduling has been activated. If the UL semi-persistent scheduling switch is turned off, dynamic scheduling is used. Step 2 Enable a UE to access a cell from a position close to the eNodeB and perform UL VoIP services. Step 3 Start a task on the M2000 client to monitor MCS-specific scheduling statistics. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > MCS Count Monitoring. Set the tracing duration, to-be-traced MME ID, and UE TMSI, as shown in the following figures.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

45


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-9 MCS Count Monitoring (1)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

46


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-10 MCS Count Monitoring (2)

3.

Check the MCS-specific scheduling statistics. If the UL MCS indexes are greater than 15 and less than or equal to 22 or 28 (22 for a category 3 UE, and 28 for a category 5 UE), dynamic scheduling is performed for UL VoIP. Note that the highest MCS index in semipersistent scheduling is only 15. Figure 7-11 UL MCS-specific scheduling statistics

----End

7.10 Deployment of Semi-Persistent Scheduling 7.10.1 Requirements Operating Environment UEs must support VoIP and semi-persistent scheduling, and the EPC must support IMS. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

47


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Transmission Networking N/A

License The operator has purchased and activated the license for the feature listed in the following table. Feature ID

Feature Name

License Control Item

NE

Sales Unit

LOFD-001016

VoIP Semipersistent Scheduling

VoIP Semipersistent Scheduling

eNodeB

per RRC Connected User

7.10.2 Data Preparation This section describes the data that you need to collect for setting parameters. Required data is data that you must collect for all scenarios. Collect scenario-specific data when necessary for a specific feature deployment scenario. There are three types of data sources: l

Network plan (negotiation required): parameter values planned by the operator and negotiated with the EPC or peer transmission equipment

l

Network plan (negotiation not required): parameter values planned and set by the operator

l

User-defined: parameter values set by users

Required Data The following table describes the parameter that must be set in the CellAlgoSwitch MO to set semi-persistent scheduling.

Issue 03 (2013-10-30)

Paramet er Name

Parameter ID

Data Source

Setting Notes

Local cell ID

CellAlgoSwitch.LocalCellId

Network plan (negotiation not required)

Set this parameter based on the network plan. This parameter specifies the local ID of the cell. Ensure that this parameter has been set in the related Cell MO.

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

48


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Scenario-specific Data The following table describes the parameter that must be set in the CellAlgoSwitch MO to set UL semi-persistent scheduling. Parameter Name

Parameter ID

Data Source

Setting Notes

Uplink schedule switch

CellAlgoSwitch. UlSchSwitch

Network plan (negotiation not required)

SpsSchSwitch (SpsSchSwitch) under this parameter specifies whether to enable semipersistent scheduling for UL VoIP. To enable this feature, set SpsSchSwitch (SpsSchSwitch) to On. For setting suggestions, see 7.1.4 When to Use Semi-Persistent Scheduling.

The following table describes the parameter that must be set in the CellAlgoSwitch MO to set DL semi-persistent scheduling. Parameter Name

Parameter ID

Data Source

Setting Notes

DL schedule switch

CellAlgoSwitch. DlSchSwitch

Network plan (negotiation not required)

SpsSchSwitch (SpsSchSwitch) under this parameter specifies whether to enable semipersistent scheduling for DL VoIP. To enable this feature, set SpsSchSwitch (SpsSchSwitch) to On. For setting suggestions, see 7.1.4 When to Use Semi-Persistent Scheduling.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

49


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.10.3 Precautions If UL semi-persistent scheduling is enabled, it is recommended that CloseLoopSpsSwitch be turned on to enable closed-loop power control for the PUSCH.

7.10.4 Hardware Adjustment None

7.10.5 Activation Using the CME to Perform Batch Configuration for Newly Deployed eNodeBs Enter the values of the parameters listed in Table 7-2 in a summary data file, which also contains other data for the new eNodeBs to be deployed. Then, import the summary data file into the Configuration Management Express (CME) for batch configuration. For detailed instructions, see section "Creating eNodeBs in Batches" in the initial configuration guide for the eNodeB. The summary data file may be a scenario-specific file provided by the CME or a customized file, depending on the following conditions: l

The MOs in Table 7-2 are contained in a scenario-specific summary data file. In this situation, set the parameters in the MOs, and then verify and save the file.

l

Some MOs in Table 7-2 are not contained in a scenario-specific summary data file. In this situation, customize a summary data file to include the MOs before you can set the parameters. Table 7-2 Parameters related to semi-persistent scheduling MO

Sheet in the Summary Data File

Parameter Group

Remarks

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch, DL schedule switch

None

Using the CME to Perform Batch Configuration for Existing eNodeBs Batch reconfiguration using the CME is the recommended method to activate a feature on existing eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure is as follows: Step 1 Choose CME > Advanced > Customize Summary Data File, or choose Advanced > Customize Summary Data File, to customize a summary data file for batch reconfiguration. NOTE

For context-sensitive help on a current task in the client, press F1.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

50


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Step 2 Choose CME > LTE Application > Export Data > Export Base Station Bulk Configuration Data, or choose LTE Application > Export Data > Export Base Station Bulk Configuration Data, to export the eNodeB data stored on the CME into the customized summary data file. Step 3 In the summary data file, set the parameters in the MOs listed in Table 7-2 and close the file. Step 4 Choose CME > LTE Application > Import Data > Import Base Station Bulk Configuration Data, or choose LTE Application > Import Data > Import Base Station Bulk Configuration Data, to import the summary data file into the CME. Step 5 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using the CME to Perform Single Configuration On the CME, set the parameters listed in the 7.10.2 Data Preparation section for a single eNodeB. The procedure is as follows: Step 1 In the planned data area, click Base Station in the upper left corner of the configuration window. Step 2 In area 1 shown in Figure 7-12, select the eNodeB to which the MOs belong. Figure 7-12 MO search and configuration window

Step 3 On the Search tab page in area 2, enter an MO name, for example, CELL. Step 4 In area 3, double-click the MO in the Object Name column. All parameters in this MO are displayed in area 4. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

51


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Step 5 Set the parameters in area 4 or 5. Step 6 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using MML Commands l

Run the MOD CELLALGOSWITCH command to activate UL semi-persistent scheduling.

l

Run the MOD CELLALGOSWITCH command to activate DL semi-persistent scheduling.

MML Command Examples MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=SpsSchSwitch-1; MOD CELLALGOSWITCH: LocalCellId=0, DlSchSwitch=SpsSchSwitch-1;

7.10.6 Activation Observation UL Semi-Persistent Scheduling To verify UL semi-persistent scheduling for VoIP, perform the following steps: Step 1 Run the LST CELLALGOSWITCH command to check whether UL semi-persistent scheduling has been activated. LST CELLALGOSWITCH: LocalCellId=0;

Step 2 After the UE accesses the cell, use the UE to perform UL VoIP services. Step 3 Start a task on the M2000 client to monitor MCS-specific scheduling statistics. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > MCS Count Monitoring. Set the tracing duration, to-be-traced MME ID, and UE TMSI.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

52


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-13 MCS Count Monitoring (1)

Figure 7-14 MCS Count Monitoring (2)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

53


eRAN VoIP Feature Parameter Description

3.

7 Engineering Guidelines

Check the MCS-specific scheduling statistics. If the UL MCS indexes are less than or equal to 15 and the number of UL scheduling times is about 50, UL semi-persistent scheduling is activated for the UE. If the UE is not far from the eNodeB, the number of UL scheduling times is about 50. If the UE is far from the eNodeB, the number is greater than 50 due to packet segmentation. Figure 7-15 UL MCS-specific scheduling statistics

4.

Use the following counters to check the status of UL semi-persistent scheduling. Counter ID

Counter Name

Counter Description

1526728563

L.Sps.UL.ErrNum

Number of UL semi-persistent scheduling failures in a cell

1526728494

L.Sps.UL.SchNum

Number of times that UL semipersistent scheduling is performed in a cell

----End

DL Semi-Persistent Scheduling To verify DL semi-persistent scheduling for VoIP, perform the following steps: Step 1 Run the LST CELLALGOSWITCH command to check whether DL semi-persistent scheduling has been activated. LST CELLALGOSWITCH: LocalCellId=0;

Step 2 After the UE accesses the cell, use the UE to perform DL VoIP services. Step 3 Start a task on the M2000 client to monitor MCS-specific scheduling statistics. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > MCS Count Monitoring. Set the tracing duration, to-be-traced MME ID, and UE TMSI, as shown in the following figures.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

54


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-16 MCS Count Monitoring

3.

Check the MCS-specific scheduling statistics. If the DL MCS indexes are less than or equal to 15 and the number of DL scheduling times is about 50, DL semi-persistent scheduling has been performed for the UE. Figure 7-17 DL MCS-specific scheduling statistics

4.

Use the following counters to check the status of DL semi-persistent scheduling. Counter Name

Counter Description

L.Sps.DL.ErrNum

Number of DL semi-persistent scheduling failures in a cell

L.Sps.DL.SchNum

Number of times that DL semi-persistent scheduling is performed in a cell

----End Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

55


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.10.7 Reconfiguration N/A

7.10.8 Deactivation Using the CME to Perform Batch Configuration Batch reconfiguration using the CME is the recommended method to deactivate a feature on eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure for feature deactivation is similar to that for feature activation described in Using the CME to Perform Batch Configuration for Existing eNodeBs. In the procedure, modify parameters according to Table 7-3. Table 7-3 Parameters related to semi-persistent scheduling MO

Sheet in the Summary Data File

Parameter Group

Setting Notes

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch, DL schedule switch

None

Using the CME to Perform Single Configuration On the CME, set parameters according to Table 7-3. For detailed instructions, see Using the CME to Perform Single Configuration for feature activation.

Using MML Commands l

UL Semi-Persistent Scheduling Run the MOD CELLALGOSWITCH command to deactivate UL semi-persistent scheduling.

l

DL Semi-Persistent Scheduling Run the MOD CELLALGOSWITCH command to deactivate DL semi-persistent scheduling.

MML Command Examples MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=SpsSchSwitch-0; MOD CELLALGOSWITCH: LocalCellId=0, DlSchSwitch=SpsSchSwitch-0;

7.11 Deployment of Power Control in Dynamic Scheduling If the PDSCH power adjustment switch (specified by CellDlpcPdschPa.PdschPaAdjSwitch) is turned on, it is recommended that the CQI adjustment switch (specified by CellAlgoSwitch.CqiAdjAlgoSwitch) be also turned on. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

56


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

For details on the use of dynamic power control, see Power Control Feature Parameter Description.

7.12 Deployment of Power Control in Semi-Persistent Scheduling 7.12.1 Requirements Operating Environment UEs must support VoIP, semi-persistent scheduling, and closed-loop power control. The EPC must support IMS.

Transmission Networking N/A

License The operator has purchased and activated the license for the feature listed in the following table. Feature ID

Feature Name

License Control Item

NE

Sales Unit

LOFD-001016

VoIP Semipersistent Scheduling

VoIP Semipersistent Scheduling

eNodeB

per RRC Connected User

7.12.2 Data Preparation Required Data The following table describes the parameter that must be set in the CellAlgoSwitch MO to set power control in semi-persistent scheduling.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

57


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Paramet er Name

Parameter ID

Data Source

Setting Notes

Local cell ID

CellAlgoSwitch.LocalCellId

Network plan (negotiation not required)

Set this parameter based on the network plan. This parameter specifies the local ID of the cell. Ensure that this parameter has been set in the related Cell MO.

Scenario-specific Data The following table describes the parameter that must be set in the CellAlgoSwitch MO to set power control in DL semi-persistent scheduling for VoIP. Parameter Name

Parameter ID

Data Source

Setting Notes

Downlink power control algorithm switch

CellAlgoSwitch. DlPcAlgoSwitch

Network plan (negotiation not required)

The PdschSpsPcSwitch check box under this parameter specifies whether to enable power control in DL semi-persistent scheduling for VoIP. To enable this feature, select this feature. For setting suggestions, see 7.1.5 When to Use Power Control.

The following table describes the parameter that must be set in the CellAlgoSwitch MO to set power control in UL semi-persistent scheduling for VoIP.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

58


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Parameter Name

Parameter ID

Data Source

Setting Notes

Uplink power control algorithm switch

CellAlgoSwitch. UlPcAlgoSwitch

Network plan (negotiation not required)

The CloseLoopSpsSwitch check box under this parameter specifies whether to enable power control in UL semipersistent scheduling for VoIP. To enable this feature, select this check box. For setting suggestions, see 7.1.5 When to Use Power Control.

7.12.3 Precautions None

7.12.4 Hardware Adjustment None

7.12.5 Activation Using the CME to Perform Batch Configuration for Newly Deployed eNodeBs Enter the values of the parameters listed in Table 7-4 in a summary data file, which also contains other data for the new eNodeBs to be deployed. Then, import the summary data file into the Configuration Management Express (CME) for batch configuration. For detailed instructions, see section "Creating eNodeBs in Batches" in the initial configuration guide for the eNodeB. The summary data file may be a scenario-specific file provided by the CME or a customized file, depending on the following conditions: l

The MOs in Table 7-4 are contained in a scenario-specific summary data file. In this situation, set the parameters in the MOs, and then verify and save the file.

l

Some MOs in Table 7-4 are not contained in a scenario-specific summary data file. In this situation, customize a summary data file to include the MOs before you can set the parameters.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

59


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Table 7-4 Parameters related to power control in semi-persistent scheduling MO

Sheet in the Summary Data File

Parameter Group

Remarks

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch, Uplink power control algorithm switch, DL schedule switch, Downlink power control algorithm switch

None

Using the CME to Perform Batch Configuration for Existing eNodeBs Batch reconfiguration using the CME is the recommended method to activate a feature on existing eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure is as follows: Step 1 Choose CME > Advanced > Customize Summary Data File, or choose Advanced > Customize Summary Data File, to customize a summary data file for batch reconfiguration. NOTE

For context-sensitive help on a current task in the client, press F1.

Step 2 Choose CME > LTE Application > Export Data > Export Base Station Bulk Configuration Data, or choose LTE Application > Export Data > Export Base Station Bulk Configuration Data, to export the eNodeB data stored on the CME into the customized summary data file. Step 3 In the summary data file, set the parameters in the MOs listed in Table 7-4 and close the file. Step 4 Choose CME > LTE Application > Import Data > Import Base Station Bulk Configuration Data, or choose LTE Application > Import Data > Import Base Station Bulk Configuration Data, to import the summary data file into the CME. Step 5 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using the CME to Perform Single Configuration On the CME, set the parameters listed in the 7.12.2 Data Preparation section for a single eNodeB. The procedure is as follows: Step 1 In the planned data area, click Base Station in the upper left corner of the configuration window. Step 2 In area 1 shown in Figure 7-18, select the eNodeB to which the MOs belong. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

60


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-18 MO search and configuration window

Step 3 On the Search tab page in area 2, enter an MO name, for example, CELL. Step 4 In area 3, double-click the MO in the Object Name column. All parameters in this MO are displayed in area 4. Step 5 Set the parameters in area 4 or 5. Step 6 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using MML Commands l

Run the MOD CELLALGOSWITCH command to activate closed-loop power control in PUSCH semi-persistent scheduling.

l

Run the MOD CELLALGOSWITCH command to activate power control in PDSCH semi-persistent scheduling.

MML Command Examples MOD CELLALGOSWITCH:LOCALCELLID=0,ULPCALGOSWITCH=CloseLoopSpsSwitch-1; MOD CELLALGOSWITCH:LOCALCELLID=0,DLPCALGOSWITCH=PdschSpsPcSwitch-1;

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

61


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.12.6 Activation Observation Power Control in UL Semi-Persistent Scheduling To check whether the IBLER values can converge when closed-loop power control in PUSCH semi-persistent scheduling is enabled, perform the following steps: Step 1 Run the following command to activate UL semi-persistent scheduling and closed-loop power control in PUSCH semi-persistent scheduling. MOD CELLALGOSWITCH: UlPcAlgoSwitch=CloseLoopSpsSwitch-1, UlSchSwitch=SpsSchSwitch-1;

Step 2 Enable a UE to access a cell and perform UL VoIP services. Step 3 Start an IBLER monitoring task on the M2000 client to monitor IBLER values. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > BLER Monitoring. Set the tracing duration and MME ID, as shown in the following figures. Figure 7-19 BLER monitoring task setting (1)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

62


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-20 BLER monitoring task setting (2)

3.

Check on the M2000 client whether the IBLER values converge. If the Uplink IBLER (Permillage) values are less than 100 (that is, the IBLER values are less than 10%), the IBLER values converge. If the UE is close to the eNodeB, the IBLER values are relatively small. If the UE is far from the eNodeB, the IBLER values are relatively large. In the two cases, the IBLER values do not converge. Figure 7-21 UL IBLER monitoring results

----End

Power Control in DL Semi-Persistent Scheduling To check whether the IBLER values can converge when power control in PDSCH semipersistent scheduling is enabled for UEs far from the eNodeB, perform the following steps: Step 1 Run the following command to enable DL semi-persistent scheduling and power control in PDSCH semi-persistent scheduling. MOD CELLALGOSWITCH: DlPcAlgoSwitch=PdschSpsPcSwitch-1, DlSchSwitch=SpsSchSwitch-1;

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

63


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Step 2 Enable a UE to access a cell and perform DL VoIP services. Ensure that the UE is far from the eNodeB and the MCS index is less than 9. Step 3 Start an IBLER monitoring task on the M2000 client to monitor IBLER values. 1.

On the M2000 client, choose Monitor > Signaling Trace > Signaling Trace Management.

2.

In the left pane of the displayed window, choose User Performance Monitoring > BLER Monitoring. Set the tracing duration and MME ID, as shown in the following figures. Figure 7-22 BLER monitoring task setting (1)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

64


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-23 BLER monitoring task setting (2)

3.

Check on the M2000 client whether the IBLER values converge at the target value. If the values of Downlink IBLER(Permillage) fluctuate around 100, the IBLER values converge at 10%. Figure 7-24 DL IBLER monitoring results

----End

7.12.7 Reconfiguration N/A

7.12.8 Deactivation Using the CME to Perform Batch Configuration Batch reconfiguration using the CME is the recommended method to deactivate a feature on eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

65


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

eNodeBs in a single procedure. The procedure for feature deactivation is similar to that for feature activation described in Using the CME to Perform Batch Configuration for Existing eNodeBs. In the procedure, modify parameters according to Table 7-5. Table 7-5 Parameters related to power control in semi-persistent scheduling MO

Sheet in the Summary Data File

Parameter Group

Setting Notes

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch, Uplink power control algorithm switch, DL schedule switch, Downlink power control algorithm switch

None

Using the CME to Perform Single Configuration On the CME, set parameters according to Table 7-5. For detailed instructions, see Using the CME to Perform Single Configuration for feature activation.

Using MML Commands l

Power control in UL semi-persistent scheduling Run the MOD CELLALGOSWITCH command to deactivate closed-loop power control in PUSCH semi-persistent scheduling.

l

Power control in DL semi-persistent scheduling Run the MOD CELLALGOSWITCH command to deactivate closed-loop power control in PDSCH semi-persistent scheduling.

MML Command Examples MOD CELLALGOSWITCH:LOCALCELLID=0,ULPCALGOSWITCH=CloseLoopSpsSwitch-0; MOD CELLALGOSWITCH:LOCALCELLID=0,DLPCALGOSWITCH=PdschSpsPcSwitch-0;

7.13 Deployment of DRX For details on deployment of DRX, see DRX and Signaling Control Feature Parameter Description.

7.14 Deployment of TTI Bundling

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

66


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

7.14.1 Requirements Operating Environment UEs must support VoIP and TTI bundling, and the EPC must support IMS.

Transmission Networking N/A

License The operator has purchased and activated the license for the feature listed in the following table. Feature ID

Feature Name

License Control Item

NE

Sales Unit

LOFD-001048

TTI Bundling

TTI Bundling

eNodeB

per Cell

7.14.2 Data Preparation This section describes the data that you need to collect for setting parameters. Required data is data that you must collect for all scenarios. Collect scenario-specific data when necessary for a specific feature deployment scenario. There are three types of data sources: l

Network plan (negotiation required): parameter values planned by the operator and negotiated with the EPC or peer transmission equipment

l

Network plan (negotiation not required): parameter values planned and set by the operator

l

User-defined: parameter values set by users

Required Data N/A

Scenario-specific Data The following table describes the parameter that must be set in the CellAlgoSwitch MO to set TTI bundling.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

67


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Parameter Name

Parameter ID

Data Source

Setting Notes

Local cell ID

CellAlgoSwitch. LocalCellId

Network plan (negotiation not required)

Set this parameter based on the network plan. This parameter specifies the local ID of the cell. Ensure that this parameter has been set in the related Cell MO.

Uplink schedule switch

CellAlgoSwitch. UlSchSwitch

Network plan (negotiation not required)

The TtiBundlingSwitch (TtiBundlingSwitch) check box under this parameter specifies whether to enable TTI bundling. The following are setting suggestions: l When the UE's channel quality is poor and transmit power is limited, select this check box. l In common scenarios, clear this check box.

7.14.3 Precautions None

7.14.4 Hardware Adjustment None

7.14.5 Activation Using the CME to Perform Batch Configuration for Newly Deployed eNodeBs Enter the values of the parameters listed in Table 7-6 in a summary data file, which also contains other data for the new eNodeBs to be deployed. Then, import the summary data file into the Configuration Management Express (CME) for batch configuration. For detailed instructions, see section "Creating eNodeBs in Batches" in the initial configuration guide for the eNodeB. The summary data file may be a scenario-specific file provided by the CME or a customized file, depending on the following conditions: Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

68


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

l

The MOs in Table 7-6 are contained in a scenario-specific summary data file. In this situation, set the parameters in the MOs, and then verify and save the file.

l

Some MOs in Table 7-6 are not contained in a scenario-specific summary data file. In this situation, customize a summary data file to include the MOs before you can set the parameters. Table 7-6 Parameters related to TTI bundling MO

Sheet in the Summary Data File

Parameter Group

Remarks

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch

None

Using the CME to Perform Batch Configuration for Existing eNodeBs Batch reconfiguration using the CME is the recommended method to activate a feature on existing eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure is as follows: Step 1 Choose CME > Advanced > Customize Summary Data File, or choose Advanced > Customize Summary Data File, to customize a summary data file for batch reconfiguration. NOTE

For context-sensitive help on a current task in the client, press F1.

Step 2 Choose CME > LTE Application > Export Data > Export Base Station Bulk Configuration Data, or choose LTE Application > Export Data > Export Base Station Bulk Configuration Data, to export the eNodeB data stored on the CME into the customized summary data file. Step 3 In the summary data file, set the parameters in the MOs listed in Table 7-6 and close the file. Step 4 Choose CME > LTE Application > Import Data > Import Base Station Bulk Configuration Data, or choose LTE Application > Import Data > Import Base Station Bulk Configuration Data, to import the summary data file into the CME. Step 5 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using the CME to Perform Single Configuration On the CME, set the parameters listed in the 7.14.2 Data Preparation section for a single eNodeB. The procedure is as follows: Step 1 In the planned data area, click Base Station in the upper left corner of the configuration window. Step 2 In area 1 shown in Figure 7-25, select the eNodeB to which the MOs belong. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

69


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-25 MO search and configuration window

Step 3 On the Search tab page in area 2, enter an MO name, for example, CELL. Step 4 In area 3, double-click the MO in the Object Name column. All parameters in this MO are displayed in area 4. Step 5 Set the parameters in area 4 or 5. Step 6 Choose CME > Planned Area > Export Incremental Scripts, or choose Area Management > Planned Area > Export Incremental Scripts, to export and activate the incremental scripts. ----End

Using MML Commands Run the MOD CELLALGOSWITCH command to activate TTI bundling.

MML Command Examples MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=TtiBundlingSwitch-1;

7.14.6 Activation Observation To verify TTI bundling for UEs far from the eNodeB, perform the following steps: Step 1 Run the LST CELLALGOSWITCH command to check whether TTI bundling has been activated.. LST CELLALGOSWITCH: LocalCellId=0;

Step 2 Start a Uu tracing task on the M2000 client. Select test cells when creating the task. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

70


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Step 3 Enable a UE to access a cell and perform UL VoIP services. Step 4 Enable the UE to be far from the eNodeB until the RRC_CONN_RECFG and RRC_CONN_RECFG_CMP messages are present in the Uu tracing result. Check the IEs macMainConfig > ul-SCH-Config > ttiBundling in the RRC_CONN_RECFG message. The value TRUE (as shown in Figure 7-26) indicates that TTI bundling has been activated for UL VOIP. Figure 7-26 RRC_CONN_RECFG message (indicating that TTI bundling has been activated)

Step 5 Enable the UE to be close to the eNodeB. Check the IEs mac-MainConfig > ul-SCH-Config > ttiBundling in the RRC_CONN_RECFG message. The value FALSE (as shown in Figure 7-27) indicates that TTI bundling has been deactivated for UL VoIP.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

71


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Figure 7-27 RRC_CONN_RECFG message (indicating that TTI bundling has been deactivated)

Step 6 Use the L.Traffic.User.TtiBundling.Avg counter to check the average number of UEs for which TTI bundling is enabled in a cell. ----End

7.14.7 Reconfiguration N/A

7.14.8 Deactivation Using the CME to Perform Batch Configuration Batch reconfiguration using the CME is the recommended method to deactivate a feature on eNodeBs. This method reconfigures all data, except neighbor relationships, for multiple eNodeBs in a single procedure. The procedure for feature deactivation is similar to that for feature activation described in Using the CME to Perform Batch Configuration for Existing eNodeBs. In the procedure, modify parameters according to Table 7-7. Table 7-7 Parameters related to TTI bundling

Issue 03 (2013-10-30)

MO

Sheet in the Summary Data File

Parameter Group

Setting Notes

CellAlgoSwitch

CellAlgoSwitch

LocalCellID, Uplink schedule switch

None

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

72


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Using the CME to Perform Single Configuration On the CME, set parameters according to Table 7-7. For detailed instructions, see Using the CME to Perform Single Configuration for feature activation.

Using MML Commands Run the MOD CELLALGOSWITCH command to deactivate TTI bundling.

MML Command Examples MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=TtiBundlingSwitch-0;

7.15 Performance Monitoring You can use the counters listed in Table 7-8 to monitor VoIP services. NOTE

Conversational voice and SIP signaling of VoIP services are carried on bearers with QCIs of 1 and 5, respectively. Therefore, pay attention to counters related to both QCI 1 and QCI 5.

Table 7-8 VoIP service counters Service Characteristics

Counter Classification

Accessibility

E-RAB setup success rate E-RAB setup failure cause

Retainability

Call drop rate

Volume and quality

Traffic volume Duration DL PDCP packet discard rate QoS

7.15.1 Basic VoIP KPIs E-RAB Setup Success Rate The following table describes the counters used to monitor the E-RAB setup success rates of VoIP services.

Issue 03 (2013-10-30)

Counter Name

Counter Description

L.E-RAB.AttEst.QCI.1

Number of E-RAB (QCI 1) setup attempts in a cell

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

73


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Counter Name

Counter Description

L.E-RAB.AttEst.QCI.5

Number of E-RAB (QCI 5) setup attempts in a cell

L.E-RAB.SuccEst.QCI.1

Number of E-RAB (QCI 1) setup successes in a cell

L.E-RAB.SuccEst.QCI.5

Number of E-RAB (QCI 5) setup successes in a cell

E-RAB (QCI 1) setup success rate = RAB.SuccEst.QCI.1/RAB.AttEst.QCI.1 E-RAB (QCI 5) setup success rate = RAB.SuccEst.QCI.5/RAB.AttEst.QCI.5

Call Drop Rate The following table describes the counters used to monitor the call drop rates of VoIP services. Counter Name

Counter Description

L.E-RAB.AbnormRel.QCI.1

Number of abnormal releases of E-RABs (QCI 1) in a cell

L.E-RAB.AbnormRel.QCI.5

Number of abnormal releases of E-RABs (QCI 5) in a cell

L.E-RAB.NormRel.QCI.1

Number of normal releases of E-RABs (QCI 1) in a cell

L.E-RAB.NormRel.QCI.5

Number of normal releases of E-RABs (QCI 5) in a cell

Call drop rate (QCI 1) = L.E-RAB.AbnormRel.QCI.1/(L.E-RAB.AbnormRel.QCI.1 + L.ERAB.NormRel.QCI.1) Call drop rate (QCI 5) = L.E-RAB.AbnormRel.QCI.5/(L.E-RAB.AbnormRel.QCI.5 + L.ERAB.NormRel.QCI.5)

Access Success Rate The following table describes the counters used to monitor the access success rates of VoIP handovers to new cells.

Issue 03 (2013-10-30)

Counter Name

Counter Description

L.E-RAB.NormRel.HOOut.QCI.1

Number of normal releases of E-RABs (QCI 1) for outgoing handovers

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

74


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Counter Name

Counter Description

L.E-RAB.NormRel.HOOut.QCI.5

Number of normal releases of E-RABs (QCI 5) for outgoing handovers

L.E-RAB.AbnormRel.HOOut.QCI.1

Number of abnormal releases of E-RABs (QCI 1) for outgoing handovers

L.E-RAB.AbnormRel.HOOut.QCI.5

Number of abnormal releases of E-RABs (QCI 5) for outgoing handovers

Access success rate of outgoing handovers (QCI 1) = L.E-RAB.NormRel.HOOut.QCI.1/(L.ERAB.NormRel.HOOut.QCI.1 + L.E-RAB.AbnormRel.HOOut.QCI.1) Access success rate of outgoing handovers (QCI 5) = L.E-RAB.NormRel.HOOut.QCI.5/(L.ERAB.NormRel.HOOut.QCI.5 + L.E-RAB.AbnormRel.HOOut.QCI.5)

Voice Quality The following table describes the counters used to monitor the distribution of UL and DL VoIP voice quality. Counter Name

Counter Description

L.Voice.VQI.UL.Excellent.Times

Number of UL calls with excellent quality

L.Voice.VQI.UL.Good.Times

Number of UL calls with good quality

L.Voice.VQI.UL.Accept.Times

Number of UL calls with acceptable quality

L.Voice.VQI.UL.Poor.Times

Number of UL calls with poor quality

L.Voice.VQI.UL.Bad.Times

Number of UL calls with bad quality

L.Voice.VQI.DL.Excellent.Times

Number of DL calls with excellent quality

L.Voice.VQI.DL.Good.Times

Number of DL calls with good quality

L.Voice.VQI.DL.Accept.Times

Number of DL calls with acceptable quality

L.Voice.VQI.DL.Poor.Times

Number of DL calls with poor quality

L.Voice.VQI.DL.Bad.Times

Number of DL calls with bad quality

Delay The following table describes the counters used to monitor the average UL and DL packet processing delays of VoIP services.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

75


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Counter Name

Counter Description

L.Traffic.DL.PktDelay.Time.QCI.1

DL packet processing delay of QCI 1 in a cell

L.Traffic.DL.PktDelay.Num.QCI.1

Number of successfully transmitted DL PDCP SDU packets for QCI 1 in a cell

Average DL packet processing delay of QCI 1 = L.Traffic.DL.PktDelay.Time.QCI.1/ L.Traffic.DL.PktDelay.Num.QCI.1

Packet Loss Rate and Discard Rate The following table describes the counters used to monitor the UL and DL packet loss rate on the Uu interface and the DL PDCP packet discard rate of VoIP services. Counter Name

Counter Description

L.Traffic.UL.PktLoss.Loss.QCI.1

Number of lost UL PDCP SDU packets on DRBs (QCI 1) in a cell

L.Traffic.UL.PktLoss.Tot.QCI.1

Number of expected UL packets on DRBs (QCI 1) in a cell

L.Traffic.DL.PktUuLoss.Loss.QCI.1

Number of lost DL PDCP SDU packets on DRBs (QCI 1) over the Uu interface in a cell

L.Traffic.DL.PktUuLoss.Tot.QCI.1

Number of transmitted DL PDCP SDU packets on DRBs (QCI 1) over the Uu interface in a cell

L.PDCP.Tx.Disc.Trf.SDU.QCI.1

Number of discarded DL PDCP SDU packets for QCI 1 in a cell

L.PDCP.Tx.TotRev.Trf.SDU.QCI.1

Number of transmitted DL PDCP SDU packets for QCI 1 in a cell

UL packet discard rate on the Uu interface for QCI 1 = L.Traffic.UL.PktLoss.Loss.QCI.1/ L.Traffic.UL.PktLoss.Tot.QCI.1 DL packet discard rate on the Uu interface for QCI 1 = L.Traffic.DL.PktUuLoss.Loss.QCI.1/ L.Traffic.DL.PktUuLoss.Tot.QCI.1 DL PDCP packet discard rate = L.PDCP.Tx.Disc.Trf.SDU.QCI.1/ (L.PDCP.Tx.Disc.Trf.SDU.QCI.1 + L.PDCP.Tx.TotRev.Trf.SDU.QCI.1)

Throughput The following table describes the counters used to monitor the total and maximum UL/DL traffic volumes, from which you can calculate the average and maximum UL/DL throughputs for VoIP services. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

76


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

Counter Name

Counter Description

L.Thrp.bits.UL.QCI.1

Total UL traffic volume received on the PDCP layer for QCI 1 in a cell

L.Thrp.bits.DL.QCI.1

Total DL traffic volume transmitted on the PDCP layer for QCI 1 in a cell

L.Thrp.bits.UL.QCI.1.Max

Maximum UL traffic volume received on the PDCP layer for QCI 1 in a cell

L.Thrp.bits.DL.QCI.1.Max

Maximum DL traffic volume transmitted on the PDCP layer for QCI 1 in a cell

L.Thrp.Time.DL.QCI.1

DL data transmission time on the PDCP layer for QCI 1 in a cell

L.Thrp.Time.UL.QCI.1

UL data reception time on the PDCP layer for QCI 1 in a cell

Average UL throughput for QCI 1 = L.Thrp.bits.UL.QCI.1/L.Thrp.Time.UL.QCI.1 Average DL throughput for QCI 1 = L.Thrp.bits.DL.QCI.1/L.Thrp.Time.DL.QCI.1 Maximum UL throughput for QCI 1 = L.Thrp.bits.UL.QCI.1.Max/L.Thrp.Time.UL.QCI.1 Maximum DL throughput for QCI 1 = L.Thrp.bits.DL.QCI.1.Max/L.Thrp.Time.DL.QCI.1

7.15.2 Admission Control Admission control improves the voice quality of VoIP users when the network is congested. For details about monitoring, see Voice Quality.

7.15.3 Congestion Control Congestion control improves the voice quality of VoIP users when the network is congested. For details about monitoring, see Voice Quality.

7.15.4 ROHC ROHC increases VoIP capacity and improves coverage. For details about monitoring, see Throughput and Voice Quality.

7.15.5 Dynamic Scheduling N/A

7.15.6 Semi-Persistent Scheduling Semi-persistent scheduling reduces PDCCH consumption, increases VoIP capacity, but slightly deteriorates voice quality. Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

77


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

You can compare counters in the following table given the same number of UEs in a cell, UE location, and traffic model. If the values for these counters decrease after semi-persistent scheduling is enabled, PDCCH consumption is reduced. Counter ID

Counter Name

Counter Description

1526728304

L.ChMeas.CCE.ULUsed

Number of PDCCH CCEs used for uplink DCI

1526728305

L.ChMeas.CCE.DLUsed

Number of PDCCH CCEs used for downlink DCI

For details about how to monitor VoIP capacity and voice quality, see Throughput and Voice Quality.

7.15.7 Power Control N/A

7.15.8 Power Control in Semi-Persistent Scheduling Power control in semi-persistent scheduling impacts the voice quality of VoIP users. For details about monitoring, see Voice Quality. NOTE

Power control in semi-persistent scheduling must work with semi-persistent scheduling.

7.15.9 DRX After this feature is enabled, VoIP users in DRX mode will experience longer voice packet delay, which deteriorates voice quality of VoIP users. For details about monitoring, see Voice Quality.

7.15.10 TTI Bundling TTI bundling improves uplink coverage for VoIP users. For details about monitoring, see Voice Quality.

7.16 Parameter Optimization l

Basic parameters N/A

l

Admission control For details, see the parameter optimization section in Admission and Congestion Control Feature Parameter Description.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

78


eRAN VoIP Feature Parameter Description

l

7 Engineering Guidelines

Congestion control For details, see the parameter optimization section in Admission and Congestion Control Feature Parameter Description.

l

ROHC For details, see the parameter optimization section in ROHC Feature Parameter Description.

l

DL dynamic scheduling For details, see the parameter optimization section in Scheduling Feature Parameter Description.

l

UL dynamic scheduling For details, see the parameter optimization section in Scheduling Feature Parameter Description.

l

Semi-persistent scheduling N/A

l

Power control in dynamic scheduling For details, see the parameter optimization section in Power Control Feature Parameter Description.

l

Power control in semi-persistent scheduling N/A

l

DRX For details, see the parameter optimization section in DRX and Signaling Control Feature Parameter Description.

l

TTI bundling N/A

7.17 Troubleshooting l

Basic parameters N/A

l

Admission control For details, see the troubleshooting section in Admission and Congestion Control Feature Parameter Description.

l

Congestion control For details, see the troubleshooting section in Admission and Congestion Control Feature Parameter Description.

l

ROHC For details, see the troubleshooting section in ROHC Feature Parameter Description.

l

DL dynamic scheduling For details, see the troubleshooting section in Scheduling Feature Parameter Description.

l Issue 03 (2013-10-30)

UL dynamic scheduling Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

79


eRAN VoIP Feature Parameter Description

7 Engineering Guidelines

For details, see the troubleshooting section in Scheduling Feature Parameter Description. l

Semi-persistent scheduling N/A

l

Power control in dynamic scheduling N/A

l

Power control in semi-persistent scheduling N/A

l

DRX For details, see the troubleshooting section in DRX and Signaling Control Feature Parameter Description.

l

TTI bundling N/A

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

80


eRAN VoIP Feature Parameter Description

8 Parameters

8

Parameters

Table 8-1 Parameter description MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

RlcPdcpParaGr oup

RlcMode

ADD RLCPDCPPAR AGROUP

LBFD-002008 / TDLBFD-0020 08

Radio Bearer Management

Meaning:Indicates the RLC transmission mode. Only the AM and UM modes are available.

MOD RLCPDCPPAR AGROUP LST RLCPDCPPAR AGROUP

GUI Value Range:RlcMode _AM (Acknowledge Mode), RlcMode_UM (Unacknowledge Mode) Unit:None Actual Value Range:RlcMode _AM, RlcMode_UM Default Value:RlcMode _AM (Acknowledge Mode)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

81


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

ENodeBAlgoS witch

VQMAlgoSwitc h

MOD ENODEBALG OSWITCH

None

None

Meaning:Indicates the switch controls whether to enable the eNodeB to periodically select UEs performing voice services and evaluate voice quality based on the voice quality monitoring (VQM) algorithm. It is recommended that this parameter be set to VQM_ALGO_ SWITCH_ON when voice services are encoded based on adaptive multirate (AMR).

LST ENODEBALG OSWITCH

GUI Value Range:VQM_A LGO_SWITCH _OFF(Disable), VQM_ALGO_ SWITCH_ON (Enable) Unit:None Actual Value Range:VQM_A LGO_SWITCH _OFF, VQM_ALGO_ SWITCH_ON Default Value:VQM_A LGO_SWITCH _OFF(Disable)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

82


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

RacAlgoSwitch

MOD CELLALGOS WITCH

LBFD-002023 / TDLBFD-0020 23

Admission Control

LST CELLALGOS WITCH

LBFD-002024 / TDLBFD-0020 24

Meaning:Indicates the switches used to enable or disable the admission and load control algorithms. DlSwitch: Indicates the switch used to enable or disable the algorithm of downlink admission control based on the satisfaction rate. If this switch is turned on, the algorithm is enabled. If this switch is turned off, the algorithm is disabled. During the calculation of the QoS satisfaction rate of services with different QCIs, the satisfaction estimation method used dedicatedly for VoIP services is implemented on services with the QCI of 1. If a service with the QCI of 1 is not a VoIP service, the satisfaction rate calculated using this method is lower than the actual value, which affects the

LOFD-0010290 1

Issue 03 (2013-10-30)

Congestion Control Radio/transport resource preemption

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

83


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description admission of GBR services. Therefore, if not all the services with the QCI of 1 are VoIP services, it is recommended that this switch be turned off. UlSwitch: Indicates the switch used to enable or disable the algorithm of uplink admission control based on the satisfaction rate. If this switch is turned on, the algorithm is enabled. If this switch is turned off, the algorithm is disabled. During the calculation of the QoS satisfaction rate of services with different QCIs, the satisfaction estimation method used dedicatedly for VoIP services is implemented on services with the QCI of 1. If a service with the QCI of 1 is not a VoIP service, the satisfaction rate calculated using this method is lower

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

84


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description than the actual value, which affects the admission of GBR services. Therefore, if not all the services with the QCI of 1 are VoIP services, it is recommended that this switch be turned off. DlPredictSwitch : Indicates the switch used to enable or disable the algorithm of downlink admission control based on prediction. If this switch is turned on, the algorithm is enabled. If this switch is turned off, the algorithm is disabled. This parameter will be removed in later versions. In this version, the setting of this parameter is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this parameter. UlPredictSwitch : Indicates the switch used to

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

85


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description enable or disable the algorithm of uplink admission control based on prediction. If this switch is turned on, the algorithm is enabled. If this switch is turned off, the algorithm is disabled. This parameter will be removed in later versions. In this version, the setting of this parameter is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this parameter. GbrUsageSwitc h: Indicates the switch used to enable or disable the check on the number of PRBs used by GBR services. If this switch is turned on, the number of PRBs used by existing GBR services is checked before a new GBR service can be admitted. If this switch is turned off, the number

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

86


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description of PRBs used by existing GBR services is not checked during admission evaluation of the GBR services. This parameter will be removed in later versions. In this version, the setting of this parameter is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this parameter. DlLdcSwitch: Indicates the switch used to control whether to implement load control in the downlink of a cell. If this switch is turned on, the system checks for congestion in the downlink of the cell. If the downlink is congested, load control is performed. If this switch is turned off, the system does not check for congestion in the downlink of the cell and the congestion

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

87


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description cannot be relieved. During the calculation of the QoS satisfaction rate of services with different QCIs, the satisfaction estimation method used dedicatedly for VoIP services is implemented on services with the QCI of 1. If a service with the QCI of 1 is not a VoIP service, the satisfaction rate calculated using this method is lower than the actual value, which affects the cell load control. Therefore, if not all the services with the QCI of 1 are VoIP services, it is recommended that this switch be turned off. UlLdcSwitch: Indicates the switch used to control whether to implement load control in the uplink of a cell. If this switch is turned on, the system checks for congestion in the uplink of the cell. If the uplink

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

88


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description is congested, load control is performed. If this switch is turned off, the system does not check for congestion in the uplink of the cell and the congestion cannot be relieved. During the calculation of the QoS satisfaction rate of services with different QCIs, the satisfaction estimation method used dedicatedly for VoIP services is implemented on services with the QCI of 1. If a service with the QCI of 1 is not a VoIP service, the satisfaction rate calculated using this method is lower than the actual value, which affects the cell load control. Therefore, if not all the services with the QCI of 1 are VoIP services, it is recommended that this switch be turned off. RelDrbSwitch: Indicates the switch used to

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

89


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description control whether low-priority services can be released in the case of congestion. If this switch is turned on, lowpriority services can be released. If this switch is turned off, lowpriority services cannot be released. This parameter will be removed in later versions. In this version, the setting of this parameter is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this parameter. PreemptionSwit ch: Indicates the switch used to enable or disable the preemption control algorithm. If this switch is turned on, preemption can be used when the admission of high-priority services fails. If this switch is turned off, only emergency calls can be admitted

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

90


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description to the system when resources are insufficient. GUI Value Range:DlSwitch (dlCacSwitch), UlSwitch (ulCacSwitch), DlPredictSwitch (dlCacPredictSwitch), UlPredictSwitch (ulCacPredictSwitch), GbrUsageSwitc h(GbrUsedPRbCheckSwitch), DlLdcSwitch (dlLdcSwitch), UlLdcSwitch (ulLdcSwitch), RelDrbSwitch (LdcDrbRelSwi tch), PreemptionSwit ch (PreemptionSwitch) Unit:None Actual Value Range:DlSwitch , UlSwitch, DlPredictSwitch , UlPredictSwitch , GbrUsageSwitc h, DlLdcSwitch, UlLdcSwitch, RelDrbSwitch, PreemptionSwit ch Default Value:dlCacSwi tch:Off, ulCacSwitch:Of f,

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

91


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description dlCacPredictSw itch:Off, ulCacPredictSw itch:Off, GbrUsedPRbCh eckSwitch:Off, dlLdcSwitch:Of f, ulLdcSwitch:Of f, LdcDrbRelSwit ch:Off, PreemptionSwit ch:Off

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

92


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellRacThd

Qci1CongThd

MOD CELLRACTHD

LBFD-002024 / TDLBFD-0020 24

Congestion Control

Meaning:Indicates the congestion threshold for services with QCI of 1. This threshold applies to both UL and DL. If the satisfaction rate of services with QCI of 1 in the cell becomes lower than this threshold, the services with QCI of 1 enter the congested state. If the satisfaction rate of services with QCI of 1 in the cell becomes higher than the sum of this threshold and the congestion relief offset, the services with QCI of 1 leave the congested state.

LST CELLRACTHD

GUI Value Range:0~99 Unit:% Actual Value Range:0~99 Default Value: 65

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

93


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

ENodeBAlgoS witch

HoAlgoSwitch

MOD ENODEBALG OSWITCH

LBFD-0020180 1/ TDLBFD-0020 1801

Coverage Based Intra-frequency Handover

Meaning:Indicates the collective switch used to enable or disable. IntraFreqCoverHoSwitch: If this switch is turned on, coverage-based intra-frequency handovers are enabled to ensure service continuity. If this switch is turned off, coverage-based intra-frequency handovers are disabled. InterFreqCoverHoSwitch: If this switch is turned on, coverage-based inter-frequency handovers are enabled to ensure service continuity. If this switch is turned off, coverage-based inter-frequency handovers are disabled. UtranCsfbSwitc h: If this switch is turned on, CSFB to UTRAN is enabled and UEs can fall back to UTRAN. If this switch is turned off, CSFB to

LST ENODEBALG OSWITCH

LBFD-0020180 2/ TDLBFD-0020 1802 LBFD-0020180 4/ TDLBFD-0020 1804 LBFD-0020180 5/ TDLBFD-0020 1805

Service Based Inter-frequency Handover CS Fallback to UTRAN CS Fallback to GERAN CS Fallback to CDMA2000 1xRTT

LOFD-001033 / TDLOFD-0010 33

Flash CS Fallback to UTRAN

LOFD-001034 / TDLOFD-0010 34

Flash CS Fallback to GERAN

LOFD-001035 / TDLOFD-0010 35

CS Fallback Steering to UTRAN

LOFD-001052 / TDLOFD-0010 52

CS Fallback Steering to GERAN

LOFD-001053 / TDLOFD-0010 53

Enhanced CS Fallback to CDMA2000 1xRTT

LOFD-001088 / TDLOFD-0010 88 LOFD-001089 / TDLOFD-0010 89 LOFD-001090 / TDLOFD-0010 90 LOFD-001019 / TDLOFD-0010 19

Issue 03 (2013-10-30)

Distance Based Inter-frequency Handover

PS Inter-RAT Mobility between EUTRAN and UTRAN PS Inter-RAT Mobility between EUTRAN and GERAN Service based inter-RAT

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

94


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description

LOFD-001020 / TDLOFD-0010 20

handover to UTRAN

UTRAN is disabled. GeranCsfbSwitc h: If this switch is turned on, CSFB to GERAN is enabled and UEs can fall back to GERAN . If this switch is turned off, CSFB to GERAN is disabled. Cdma1xRttCsfb Switch: If this switch is turned on, CSFB to CDMA2000 1xRTT is enabled and UEs can fall back to CDMA2000 1xRTT. If this switch is turned off, CSFB to CDMA2000 1xRTT is disabled. UtranServiceHo Switch: If this switch is turned on, servicebased handovers to UTRAN are enabled and UEs with a specific type of services can be handed over to UTRAN. If this switch is turned off, service-based handovers to UTRAN are disabled. GeranServiceH oSwitch: If this

LOFD-001043 / TDLOFD-0010 43 LOFD-001046 / TDLOFD-0010 46 LOFD-001072 / TDLOFD-0010 72 LOFD-001073 / TDLOFD-0010 73 TDLBFD-0020 18 TDLOFD-0010 22

Service based inter-RAT handover to GERAN Distance based inter-RAT handover to UTRAN Distance based inter-RAT handover to GERAN Mobility Management Coverage Based Inter-frequency Handover SRVCC to UTRAN

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

95


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description switch is turned on, servicebased handovers to GERAN are enabled and UEs with a specific type of services can be handed over to GERAN . If this switch is turned off, servicebased handovers to GERAN are disabled. CdmaHrpdServi ceHoSwitch: If this switch is turned on, service-based handovers to CDMA2000 HRPD are enabled and UEs with a specific type of services can be handed over to CDMA2000 HRPD. If this switch is turned off, servicebased handovers to CDMA2000 HRPD are disabled. Cdma1xRttServ iceHoSwitch: If this switch is turned on, service-based handovers to CDMA2000 1xRTT are enabled and UEs with a specific type of services can be handed

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

96


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description over to CDMA2000 1xRTT. If this switch is turned off, servicebased handovers to CDMA2000 1xRTT are disabled. UlQualityInterRATHoSwitch: If this switch is turned on, ULquality-based inter-RAT handovers are enabled and UEs can be handed over to interRAT cells to ensure service continuity when the UL signal quality is poor. If this switch is turned off, ULquality-based inter-RAT handovers are disabled. InterPlmnHoSwitch: If this switch is turned on, inter-PLMN handovers are enabled and UEs can be handed over to cells in other PLMNs. If this switch is turned off, interPLMN handovers are disabled. UtranFlashCsfb Switch: This switch takes effect only when

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

97


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description UtranCsfbSwitc h is turned on. If UtranFlashCsfb Switch is turned on, flash CSFB to UTRAN is enabled and the eNodeB sends system information of candidate target UTRAN cells to UEs during redirection. If UtranFlashCsfb Switch is turned off, flash CSFB to UTRAN is disabled. GeranFlashCsfb Switch: This switch takes effect only when GeranCsfbSwitc h is turned on. If GeranFlashCsfb Switch is turned on, flash CSFB to GERAN is enabled and the eNodeB sends system information of candidate target GERAN cells to UEs during redirection. If GeranFlashCsfb Switch is turned off, flash CSFB to GERAN is disabled. ServiceBasedInterFreqHoSwitc h: If this switch is turned on, service-based inter-frequency

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

98


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description handovers are enabled and UEs with a specific type of services can be handed over to interfrequency cells. If this switch is turned off, service-based inter-frequency handovers are disabled. UlQualityInterFreqHoSwitch: If this switch is turned on, ULquality-based inter-frequency handovers are enabled and UEs can be handed over to interfrequency cells to ensure service continuity when the UL signal quality is poor. If this switch is turned off, ULquality-based inter-frequency handovers are disabled. CsfbAdaptiveBlindHoSwitch: This switch takes effect only when BlindHoSwitch is enabled. If CsfbAdaptiveBlindHoSwitch is turned on, adaptive blind handovers for CSFB are enabled and

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

99


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description appropriate handover mechanisms are selected for UEs based on their locations. If CsfbAdaptiveBlindHoSwitch is turned off, adaptive blind handovers for CSFB are disabled. UtranCsfbSteeringSwitch: If this switch is turned on, CSFB steering to UTRAN is enabled and CSFB policies for idle UEs can be configured. If this switch is turned off, CSFB steering to UTRAN is disabled. GeranCsfbSteer ingSwitch: If this switch is turned on, CSFB steering to GERAN is enabled and CSFB policies for idle UEs can be configured. If this switch is turned off, CSFB steering to GERAN is disabled. CSFBLoadInfo Switch: If this switch is turned on, load-based CSFB is enabled

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

100


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description and a target cell for CSFB is selected based on loads of candidate target cells. If this switch is turned off, load-based CSFB is disabled. Cdma1XrttEcsf bSwitch: If this switch is turned on, eCSFB to CDMA2000 1xRTT is enabled and UEs can fall back to CDMA2000 1xRTT through handovers. If this switch is turned off, eCSFB to CDMA2000 1xRTT is disabled. EmcBlindHoA1 Switch: If this switch is turned on, blind handover event A1 measurements are enabled. If a blind handover event measurement conflicts with a handover procedure, an emergency blind handover can be triggered after the handover procedure is complete. If this switch is turned

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

101


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description off, blind handover event A1 measurements are disabled. If a blind handover event measurement conflicts with a handover procedure, an emergency blind handover cannot be triggered. EmcInterFreqBlindHoSwitch: If this switch is turned on, the eNodeB preferentially performs an inter-frequency blind handover when an emergency blind handover is triggered. If this switch is turned off, the eNodeB only performs an inter-RAT blind handover when an emergency blind handover is triggered. GUI Value Range:IntraFreq CoverHoSwitch (IntraFreqCover HoSwitch), InterFreqCoverHoSwitch (InterFreqCover HoSwitch), UtranCsfbSwitc h

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

102


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description (UtranCsfbSwit ch), GeranCsfbSwitc h (GeranCsfbSwit ch), Cdma1xRttCsfb Switch (Cdma20001xR ttCsfbSwitch), UtranServiceHo Switch (UtranServiceHoSwitch), GeranServiceH oSwitch (GeranServiceHoSwitch), CdmaHrpdServi ceHoSwitch (Cdma2000Hrp dServiceHoSwit ch), Cdma1xRttServ iceHoSwitch (Cdma20001xR ttServiceHoSwitch), UlQualityInterRATHoSwitch (UlQualityInterRATHoSwitch), InterPlmnHoSwitch (InterPlmnHoSwitch), UtranFlashCsfb Switch(UtranFlashCsfbSwitc h), GeranFlashCsfb Switch(GeranFlashCsfbSwitc h), ServiceBasedInterFreqHoSwitc h (ServiceBasedIn

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

103


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description terFreqHoSwitc h), UlQualityInterFreqHoSwitch (UlQualityInterFreqHoSwitch), CsfbAdaptiveBlindHoSwitch (CsfbAdaptiveBlindHoSwitch) , UtranCsfbSteeringSwitch (UtranCsfbSteer ingSwitch), GeranCsfbSteer ingSwitch (GeranCsfbStee ringSwitch), CSFBLoadInfo Switch (CSFBLoadInfo Switch), Cdma1XrttEcsf bSwitch (Cdma1XrttEcsf bSwitch), EmcBlindHoA1 Switch (EmcBlindHoA 1Switch), EmcInterFreqBlindHoSwitch (EmcInterFreqBlindHoSwitch) Unit:None Actual Value Range:IntraFreq CoverHoSwitch , InterFreqCoverHoSwitch, UtranCsfbSwitc h, GeranCsfbSwitc h, Cdma1xRttCsfb

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

104


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description Switch, UtranServiceHo Switch, GeranServiceH oSwitch, CdmaHrpdServi ceHoSwitch, Cdma1xRttServ iceHoSwitch, UlQualityInterRATHoSwitch, InterPlmnHoSwitch, UtranFlashCsfb Switch, GeranFlashCsfb Switch, ServiceBasedInterFreqHoSwitc h, UlQualityInterFreqHoSwitch, CsfbAdaptiveBlindHoSwitch, UtranCsfbSteeringSwitch, GeranCsfbSteer ingSwitch, CSFBLoadInfo Switch, Cdma1XrttEcsf bSwitch, EmcBlindHoA1 Switch, EmcInterFreqBlindHoSwitch Default Value:IntraFreq CoverHoSwitch :On, InterFreqCover HoSwitch:On, UtranCsfbSwitc h:Off, GeranCsfbSwitc h:Off, Cdma20001xRtt

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

105


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description CsfbSwitch:Off, UtranServiceHo Switch:Off, GeranServiceH oSwitch:Off, Cdma2000Hrpd ServiceHoSwitc h:Off, Cdma20001xRtt ServiceHoSwitc h:Off, UlQualityInterR ATHoSwitch:O ff, InterPlmnHoSw itch:Off, UtranFlashCsfb Switch:Off, GeranFlashCsfb Switch:Off, ServiceBasedInt erFreqHoSwitch :Off, UlQualityInterF reqHoSwitch:Of f, CsfbAdaptiveBl indHoSwitch:Of f, UtranCsfbSteeri ngSwitch:Off, GeranCsfbSteer ingSwitch:Off, CSFBLoadInfo Switch:Off, Cdma1XrttEcsf bSwitch:Off, EmcBlindHoA1 Switch:Off, EmcInterFreqBl indHoSwitch:Of f

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

106


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

ServiceIrHoCfgGroup

InterRatHoState

ADD SERVICEIRHOCFGGROU P

LOFD-001043 / TDLOFD-0010 43

Service based inter-RAT handover to UTRAN

Meaning:Indicates whether service-based inter-RAT handovers are required, allowed, or not allowed for a QCI.

MOD SERVICEIRHOCFGGROU P

LOFD-001046 / TDLOFD-0010 46

Service based inter-RAT handover to GERAN

LST SERVICEIRHOCFGGROU P

GUI Value Range:NO_HO, PERMIT_HO, MUST_HO Unit:None Actual Value Range:NO_HO, PERMIT_HO, MUST_HO Default Value:NO_HO

PdcpRohcPara

RohcSwitch

MOD PDCPROHCPA RA

LOFD-001017 / TDLOFD-0010 17

RObust Header Compression (ROHC)

LST PDCPROHCPA RA

Meaning:Indicates whether to enable ROHC. Set this parameter to ON if the eNodeB is expected to support VoIP or video services. GUI Value Range:OFF (Off), ON(On) Unit:None Actual Value Range:OFF, ON Default Value:OFF(Off)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

107


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

UlSchSwitch

MOD CELLALGOS WITCH

LOFD-001016 / TDLOFD-0010 16

VoIP Semipersistent Scheduling

LST CELLALGOS WITCH

LOFD-001048 / TDLOFD-0010 48

TTI Bundling

LOFD-0010150 2/ TDLOFD-0010 1502

Basic Scheduling

Meaning:Indicates the switches related to uplink (UL) scheduling in the cell. The switches are used to enable or disable specific UL scheduling functions. SpsSchSwitch: Indicates whether to enable or disable semi-persistent scheduling during talk spurts of VoIP services. If this switch is turned on, semipersistent scheduling is applied. If this switch is turned off, dynamic scheduling is applied. SinrAdjustSwitc h: Indicates whether to adjust the measured SINR based on ACK/ NACK messages in a UL HARQ process. PreAllocationSwitch: Indicates whether to enable or disable preallocation, which shortens end-to-end service delays when the UL

Dynamic Scheduling

TDLBFD-0020 25

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

108


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description load is light. Preallocation reduces the probability of UEs entering DRX and therefore shortens the service time of the UEs. UlVmimoSwitc h: Indicates whether to enable or disable UL MU-MIMO. If UL MUMIMO is enabled, the eNodeB selects UEs for pairing according to pairing rules. Then, the pair of UEs transmits data using the same frequencytime resources, increasing system throughput and spectral efficiency. TtiBundlingSwitch: Indicates whether to enable or disable TTI bundling. If TTI bundling is enabled, more transmission opportunities are available to UEs within the delay budget for VoIP services on the air interface, thereby

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

109


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description improving uplink coverage. ImIcSwitch: Indicates whether to enable or disable intermodulation (IM) component elimination for UEs. When data is transmitted in both UL and DL, two IM components are generated symmetrically beside the Direct Current (DC) subcarrier on the DL receive channel due to interference from UL radio signals. If this switch is turned on, IM component elimination is performed on UEs. If this switch is turned off, IM component elimination is not performed on UEs. This switch applies only to FDD cells working in band 20. SmartPreAlloca tionSwitch: Indicates whether to enable uplink smart preallocation when

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

110


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description preallocation is enabled (by turning on PreAllocationSwitch). If both PreAllocationSwitch and SmartPreAlloca tionSwitch are set to On, and SmartPreAlloca tionDuration is set to a value greater than 0, uplink smart preallocation is enabled. Otherwise, uplink smart preallocation is disabled. PuschDtxSwitc h: Indicates whether the eNodeB uses the physical uplink shared channel (PUSCH) discontinuous transmission (DTX) detection result during uplink (UL) scheduling. If this switch is turned on, based on the PUSCH DTX detection result, the eNodeB determines whether to perform adaptive retransmission during UL scheduling and also adjusts the

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

111


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description control channel element (CCE) aggregation level of the physical downlink control channel (PDCCH) carrying downlink control information (DCI) format 0. This switch takes effect only on FDD cells. If an FDD cell is established on an LBBPc, this switch takes effect only when less than four RX antennas are configured for the cell and the SrsCfgInd parameter in the SRSCfg MO is set to BOOLEAN_TR UE. The LBBPc does not support PUSCH DRX detection for UEs with multiuser MIMO (MU-MIMO) applied. UlIblerAdjustSwitch: Indicates whether to enable uplink IBLER adjustment algorithm. When this switch is turned on, it Changes

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

112


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description the IBLER restraining goal for upgrading the turnover rate of cell edge. UlEnhancedFss Switch:Indicate s whether to enable the uplink loadbased frequency selection enhancement.T his switch is valid only in FDD mode. UlEnhancedSrS chSwitch:Indicates whether uplink rescheduling is performed only when the On Duration timer for the DRX long cycle starts. Uplink rescheduling is required if the number of hybrid automatic repeat request (HARQ) retransmissions for a scheduling request (SR) reaches the maximum value but the scheduling still fails. If this switch is turned on, uplink rescheduling is performed only when the On Duration timer for the DRX

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

113


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description long cycle starts. If this switch is turned off, uplink rescheduling is performed immediately after the number of HARQ retransmissions for SR reaches the maximum value but the scheduling still fails. It is recommended that the switch be turned on in live networks. SchedulerCtrlPo werSwitch:Indicates whether the uplink scheduler performs scheduling without considering power control restrictions. If this switch is turned on, the uplink scheduler performs scheduling without considering power control restrictions, which ensures full utilization of the transmit power for all UEs. If this switch is turned off, the uplink scheduler considers power

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

114


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description control restrictions while performing scheduling, which prevents full utilization of the transmit power for UEs at far or medium distances from cell center. GUI Value Range:SpsSchS witch (SpsSchSwitch) , SinrAdjustSwitc h(SinrAdjustSwitch), PreAllocationSwitch (PreAllocationS witch), UlVmimoSwitc h (UlVmimoSwit ch), TtiBundlingSwitch (TtiBundlingSwitch), ImIcSwitch (ImIcSwitch), SmartPreAlloca tionSwitch (SmartPreAlloc ationSwitch), PuschDtxSwitc h (PuschDtxSwitc h), UlIblerAdjustSwitch (UlIblerAdjustS witch), UlEnhancedFss

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

115


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description Switch (UlEnhancedFss Switch), UlEnhancedSrSchSwitch (UlEnhancedSrSchSwitch ), SchedulerCtrlPo werSwitch (SchedulerCtrlPowerSwitch) Unit:None Actual Value Range:SpsSchS witch, SinrAdjustSwitc h, PreAllocationSwitch, UlVmimoSwitc h, TtiBundlingSwitch, ImIcSwitch, SmartPreAlloca tionSwitch, PuschDtxSwitc h, UlIblerAdjustSwitch, UlEnhancedFss Switch, UlEnhancedSrSchSwitch , SchedulerCtrlPo werSwitch Default Value:SpsSchS witch:Off, SinrAdjustSwitc h:On, PreAllocationS witch:On, UlVmimoSwitc h:Off,

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

116


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description TtiBundlingSwi tch:Off, ImIcSwitch:Off, SmartPreAlloca tionSwitch:Off, PuschDtxSwitc h:Off, UlIblerAdjustS witch:Off, UlEnhancedFss Switch:Off, UlEnhancedSrS chSwitch:Off, SchedulerCtrlPo werSwitch:Off

CellUlschAlgo

SpsRelThd

MOD CELLULSCHA LGO LST CELLULSCHA LGO

LOFD-0010150 2/ TDLOFD-0010 1502

Dynamic Scheduling

Meaning:Indicates the threshold for the number of consecutive zero-payload packets received by the eNodeB. After receiving consecutive zero-payload packets of a number that is equal to the value of this parameter, the eNodeB performs implicit release of semipersistent resources. GUI Value Range:2~3 Unit:None Actual Value Range:2~3 Default Value:2

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

117


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

DlSchSwitch

MOD CELLALGOS WITCH

LOFD-001016 / TDLOFD-0010 16

VoIP Semipersistent Scheduling

LST CELLALGOS WITCH

LOFD-0010150 2/ TDLOFD-0010 1502

Dynamic Scheduling

LOFD-001109 / TDLOFD-0011 09

Symbol Power Saving

Meaning:Indicates the switches related to DL scheduling in the cell. FreqSelSwitch: Indicates whether to enable frequency selective scheduling. When this switch is turned on, data is transmitted on the frequency band in good signal quality. ServiceDiffSwitch: Indicates the switch used to enable or disable service differentiation. If the switch is turned on, service differentiation is applied. If the switch is turned off, service differentiation is not applied. This parameter will be removed in later versions. In this version, the setting of this parameter is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid

DL Non-GBR Packet Bundling

LOFD-001070 / TDLOFD-0010 70

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

118


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description using this parameter. SpsSchSwitch: Indicates whether to enable semipersistent scheduling during talk spurts of VoIP services. If the switch is turned on, semipersistent scheduling is enabled during talk spurts of VoIP services. If the switch is turned off, semipersistent scheduling is disabled during talk spurts of VoIP services. MBSFNShutDo wnSwitch: Indicates the switch used to enable or disable Multimedia Broadcast Single Frequency Network (MBSFN) subframe shutdown. If the switch is turned on, MBSFN subframe shutdown is applied. If the switch is turned off, MBSFN subframe shutdown is not applied. This

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

119


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description switch is valid only when symbol-based power amplifier (PA) shutdown is enabled. If MBSFNShutDo wnSwitch is turned on, the switch for the mapping from SIBs to SI messages becomes invalid. The latter can be specified by the SiMapSwitch parameter in the CellSiMap MO. If MBSFNShutDo wnSwitch is turned off, the switch for the mapping from SIBs to SI messages becomes valid. MBSFN subframe shutdown applies only to single-mode eNodeBs. NonGbrBundlin gSwitch: Indicates the switch used to enable or disable DL non-GBR packet bundling. If this switch is turned on, delay of non-GBR services can be controlled in non-congestion

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

120


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description scenarios. If this switch is turned off, delay of non-GBR services cannot be controlled. EnAperiodicCqiRptSwitch: Indicates whether to enable enhanced aperiodic channel quality indicator (CQI) reporting. If this switch is turned on, the aperiodic CQI reporting is triggered based on the period of periodical CQI reporting and the downlink services of the UE . If this switch is turned off, the aperiodic CQI reporting is triggered only when downlink frequency selective scheduling is enabled. GUI Value Range:FreqSelS witch (FreqSelSwitch) , ServiceDiffSwitch (ServiceDiffSwitch), SpsSchSwitch (SpsSchSwitch) , MBSFNShutDo

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

121


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description wnSwitch (MBSFNShutD ownSwitch), NonGbrBundlin gSwitch (NonGbrBundlingSwitch), EnAperiodicCqiRptSwitch (EnAperiodicCqiRptSwitch) Unit:None Actual Value Range:FreqSelS witch, ServiceDiffSwitch, SpsSchSwitch, MBSFNShutDo wnSwitch, NonGbrBundlin gSwitch, EnAperiodicCqiRptSwitch Default Value:FreqSelS witch:Off, ServiceDiffSwit ch:Off, SpsSchSwitch: Off, MBSFNShutDo wnSwitch:Off, NonGbrBundlin gSwitch:Off, EnAperiodicCqi RptSwitch:Off

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

122


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

UlPcAlgoSwitc h

MOD CELLALGOS WITCH

LBFD-002009 / TDLBFD-0020 09

Broadcast of system information

LST CELLALGOS WITCH

LBFD-002026 / TDLBFD-0020 26

Uplink Power Control

Meaning:Indicates the switches used to enable or disable power control for PUSCH and PUCCH. CloseLoopSpsS witch: If this switch is turned off, closed-loop power control is not performed for PUSCH in semi-persistent scheduling mode. If this switch is turned on, TPC commands are adjusted based on correctness of the initially received data packet to decrease the IBLER. InnerLoopPusch Switch: If this switch is turned off, inner-loop power control is not performed for PUSCH in dynamic scheduling mode. If this switch is turned on, inner-loop power control is performed for PUSCH in dynamic scheduling mode. PhSinrTarUpdateSwitch is the switch used to

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

123


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description enable or disable PH-based SINR target updates in dynamic scheduling mode. This switch will be removed in later versions. In this version, the setting of this switch is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this switch. This function is incorporated into inner-loop power control for PUSCH in dynamic scheduling mode. Therefore, to enable this function, set InnerLoopPusch Switch to On. InnerLoopPucc hSwitch: If this switch is turned off, inner-loop power control is not performed for PUCCH. If this switch is turned on, innerloop power control is performed for PUCCH. OiSinrTarUpda-

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

124


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description teSwitch: This switch will be removed in later versions. In this version, the setting of this switch is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this switch. This function is incorporated into inner-loop power control for PUSCH in dynamic scheduling mode. Therefore, to enable this function, set InnerLoopPusch Switch to On. PowerSavingSwitch: This switch will be removed in later versions. In this version, the setting of this switch is still synchronized between the M2000 and the eNodeB, but it is no longer used internally. Therefore, avoid using this switch. CloseLoopOptPUSCHSwitch:

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

125


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description If this switch is turned off, closed-loop power control is not optimized for PUSCH in dynamic scheduling mode.If this switch is turned on, closed-loop power control is optimized for PUSCH in dynamic scheduling mode. GUI Value Range:CloseLoopSpsSwitch, InnerLoopPusch Switch, PhSinrTarUpdateSwitch, InnerLoopPucc hSwitch, OiSinrTarUpdateSwitch, PowerSavingSwitch, CloseLoopOptPUSCHSwitch (CloseLoopOptPUSCHSwitch) Unit:None Actual Value Range:CloseLoopSpsSwitch, InnerLoopPusch Switch, PhSinrTarUpdateSwitch, InnerLoopPucc hSwitch, OiSinrTarUpdateSwitch, PowerSavingS-

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

126


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description witch, CloseLoopOptPUSCHSwitch Default Value:CloseLoo pSpsSwitch:Off , InnerLoopPusch Switch:On, PhSinrTarUpdat eSwitch:Off, InnerLoopPucc hSwitch:On, OiSinrTarUpdat eSwitch:Off, PowerSavingSw itch:Off, CloseLoopOptP USCHSwitch:O ff

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

127


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

DlPcAlgoSwitc h

MOD CELLALGOS WITCH

LBFD-002003 / TDLBFD-0020 03

Physical Channel Management

LST CELLALGOS WITCH

LBFD-002009 / TDLBFD-0020 09

Broadcast of system information

LBFD-002016 / TDLBFD-0020 16

Dynamic Downlink Power Allocation

Meaning:Indicates the switches used to enable or disable power control for PDSCH, PDCCH, and PHICH. PdschSpsPcSwi tch: Indicates the switch for power control during semipersistent scheduling on the PDSCH. If the switch is turned off, power is allocated evenly during semipersistent scheduling on the PDSCH. If the switch is turned on, power control is applied during semi-persistent scheduling on the PDSCH, ensuring communication quality (indicated by IBLER) of VoIP services in the QPSK modulation scheme. PhichInnerLoopPcSwitch: Indicates the switch for PHICH innerloop power control. If the switch is turned

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

128


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description off, only the initial transmit power for the PHICH is set. If the switch is turned on, the eNodeB controls the physical channel transmit power to enable the receive SINR to converge to the target SINR. PdcchPcSwitch: Indicates the switch for PDCCH power control. If the switch is turned off, power is allocated evenly to PDCCH. If the switch is turned on, power allocated to PDCCH is adjusted dynamically. EDlMaxTXPwr Switch: Indicates the switch for enhanced maximum TX power of the cell. If this switch is turned off, the maximum TX power of the cell is determined by the reference signal (RS) power and the scaling factor indexes Pa and Pb. If this switch

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

129


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description is turned on, the maximum TX power of the cell can be increased to improve the RB usage in the cell. This switch has no impact on the TDD 20M or 10M cell. GUI Value Range:PdschSp sPcSwitch, PhichInnerLoopPcSwitch, PdcchPcSwitch, EDlMaxTXPwr Switch Unit:None Actual Value Range:PdschSp sPcSwitch, PhichInnerLoopPcSwitch, PdcchPcSwitch, EDlMaxTXPwr Switch Default Value:PdschSps PcSwitch:Off, PhichInnerLoop PcSwitch:Off, PdcchPcSwitch: On, EDlMaxTXPwr Switch:Off

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

130


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

Drx

DrxAlgSwitch

MOD DRX

LBFD-002017 / TDLBFD-0020 17

DRX

Meaning:Indicates the DRX switch.

LST DRX

GUI Value Range:OFF (Off), ON(On) Unit:None Actual Value Range:OFF, ON Default Value:OFF(Off)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

131


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

HighMobiTrigIdleModeSwitch

MOD CELLALGOS WITCH

LOFD-001106

High-MobilityTriggered Idle Mode

Meaning:Indicates whether to enable the highmobilitytriggered-idle switch. When this parameter is set to ENABLE, UEs in high mobility are released and enter the idle mode, and therefore the signaling impact on the network caused by frequent handovers are reduced. When this parameter is set to DISABLED, UEs in high mobility are not released.

LST CELLALGOS WITCH

TDLOFD-0011 0502

High-MobilityTriggered Idle Mode

GUI Value Range:DISABL E(Disable), ENABLE (Enable) Unit:None Actual Value Range:DISABL E, ENABLE Default Value:DISABL E(Disable)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

132


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

RrcConnStateTi mer

UeInactivityTimerDynDrx

MOD RRCCONNST ATETIMER

LOFD-0011050 1/ TDLOFD-0011 0501

Dynamic DRX

Meaning:Indicates the length of the UE inactivity timer for DRX UEs when dynamic DRX is enabled. If the eNodeB detects that a UE has neither received nor sent data for a duration exceeding the value of this parameter, the eNodeB releases the RRC connection for the UE. A large value of this parameter reduces the amount of signaling but increase UE power consumption.Y ou are advised to set this parameter to a value greater than the value of UlSynTimerDy nDrx.In power saving mode, you are advised to set this parameter significantly different to the value of the UlSynTimerDy nDrx parameter, for example a gap of 10 seconds, to avoid power

LST RRCCONNST ATETIMER

Issue 03 (2013-10-30)

High-MobilityTriggered Idle Mode

LOFD-0011050 2/ TDLOFD-0011 0502

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

133


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description consumption increase due to the increase of signaling. GUI Value Range:10~3600 Unit:s Actual Value Range:10~3600 Default Value: 200

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

134


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

RrcConnStateTi mer

UlSynTimerDy nDrx

MOD RRCCONNST ATETIMER

LOFD-0011050 1/ TDLOFD-0011 0501

Dynamic DRX

Meaning:Indicates the timer used to govern the period in which the eNodeB maintains uplink synchronization for a DRX UE when dynamic DRX is enabled. After this timer expires, the eNodeB does not send Timing Advance Command to the UE. You are advised to set this parameter to a value smaller than the value of UeInactivityTi merDynDrx.In power saving mode, you are advised to set this parameter significantly different to the value of the UeInactivityTimerDynDrx parameter, for example a gap of 10 seconds, to avoid power consumption increase due to the increase of signaling.

LST RRCCONNST ATETIMER

High-MobilityTriggered Idle Mode

LOFD-0011050 2/ TDLOFD-0011 0502

GUI Value Range:5~3600 Unit:s Actual Value Range:5~3600

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

135


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description Default Value: 20

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

136


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellDrxPara

FddEnterDrxTh d

MOD CELLDRXPAR A

LBFD-002017

DRX

Meaning:Indicates the threshold for UEs to enter the discontinuous reception (DRX) mode in a cell that operates in FDD mode. This threshold is used in the DRX algorithm. It is expressed as a proportion of the transmission time intervals (TTIs) with data transmission to the total TTIs. If the measurement result of UE traffic is equal to or lower than this threshold, the eNodeB determines that the UE should remain in DRX mode or the UE should be triggered to enter DRX mode. If both the values of the FddExitDrxThd and FddEnterDrxTh d parameters are small and close to each other, the UE frequently enters and exits the DRX mode. When both the FddEnterDrxTh

LST CELLDRXPAR A

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

137


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description d parameter and the FddExitDrxThd parameter are set to 1000 and DRX is enabled, the eNodeB directly determines that the UE should enter or exit the DRX mode, but not according to the measurement result of UE traffic. GUI Value Range:0~1000 Unit:per mill Actual Value Range:0~1000 Default Value: 1000

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

138


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellDrxPara

FddExitDrxThd

MOD CELLDRXPAR A

LBFD-002017

DRX

Meaning:Indicates the threshold for UEs to exit the discontinuous reception (DRX) mode in a cell that operates in FDD mode. This threshold is used in the DRX algorithm. It is expressed as a proportion of the transmission time intervals (TTIs) with data transmission to the total TTIs. If the measurement result of UE traffic is higher than this threshold, the eNodeB determines that the UE should remain in the non-DRX mode or the UE should be triggered to exit the DRX mode. If the value of the FddExitDrxThd parameter is set to 1000 and the value of the FddEnterDrxTh d parameter is set to a value smaller than 1000, the UE will not exit the DRX mode once entering the

LST CELLDRXPAR A

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

139


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description DRX mode. If both the values of the FddExitDrxThd and FddEnterDrxTh d parameters are small and close to each other, the UE frequently enters and exits the DRX mode. When both the FddEnterDrxTh d parameter and the FddExitDrxThd parameter are set to 1000 and DRX is enabled, the eNodeB directly determines that the UE should enter or exit the DRX mode, but not according to the measurement result of UE traffic. GUI Value Range:1~1000 Unit:per mill Actual Value Range:1~1000 Default Value: 1000

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

140


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellDrxPara

DrxInactivityTimerUnsync

MOD CELLDRXPAR A

LOFD-001105 / TDLOFD-0011 05

Dynamic DRX

Meaning:Indicates the DRX inactivity timer for UEs when the eNodeB does not maintain synchronization for UEs.

LST CELLDRXPAR A

GUI Value Range:PSF200 (200 PDCCH subframes), PSF300(300 PDCCH subframes), PSF500(500 PDCCH subframes), PSF750(750 PDCCH subframes), PSF1280(1280 PDCCH subframes), PSF1920(1920 PDCCH subframes), PSF2560(2560 PDCCH subframes) Unit:subframe Actual Value Range:PSF200, PSF300, PSF500, PSF750, PSF1280, PSF1920, PSF2560 Default Value:PSF1280 (1280 PDCCH subframes)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

141


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

RrcConnStateTi mer

UeInactiveTime r

MOD RRCCONNST ATETIMER

LBFD-002007 / TDLBFD-0020 07

RRC Connection Management

Meaning:Indicates the length of the UE inactivity timer. If the eNodeB detects that a UE has neither received nor sent data for a duration exceeding the value of this parameter, the eNodeB releases the RRC connection for the UE. If this parameter is set to 0, the UE inactivity timer is not used. If this parameter is modified, the modified value applies only to UEs that access the network later.

LST RRCCONNST ATETIMER

GUI Value Range:0~3600 Unit:s Actual Value Range:0~3600 Default Value: 20

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

142


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

RrcConnStateTi mer

UlSynTimer

MOD RRCCONNST ATETIMER

LBFD-002007 / TDLBFD-0020 07

RRC Connection Management

Meaning:Indicates the timer used to govern the period in which the eNodeB maintains uplink synchronization for a UE. After this timer expires, the eNodeB does not send Timing Advance Command to the UE. This parameter does not take effect if it is set to 0. That is, the eNodeB will constantly send Timing Advance Command to the UE to maintain uplink synchronization for the UE.

LST RRCCONNST ATETIMER

GUI Value Range:0~3600 Unit:s Actual Value Range:0~3600 Default Value: 180

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

143


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

StandardQci

Qci

LST STANDARDQ CI

LOFD-0010150 2/ TDLOFD-0010 1502

Dynamic Scheduling

Meaning:Indicates the QoS Class Identifier (QCI) of an EPS bearer. Different QCIs represent different QoS specifications such as the packet delay budget, packet error loss rate, and resource type (whether the service is a GBR service or not). For details, see Table 6.1.7 in 3GPP TS 23.203.

MOD STANDARDQ CI

GUI Value Range:QCI1 (QCI 1), QCI2 (QCI 2), QCI3 (QCI 3), QCI4 (QCI 4), QCI5 (QCI 5), QCI6 (QCI 6), QCI7 (QCI 7), QCI8 (QCI 8), QCI9 (QCI 9) Unit:None Actual Value Range:QCI1, QCI2, QCI3, QCI4, QCI5, QCI6, QCI7, QCI8, QCI9 Default Value:None

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

144


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

StandardQci

RlcPdcpParaGr oupId

MOD STANDARDQ CI

LOFD-0010150 2/ TDLOFD-0010 1502

Dynamic Scheduling

Meaning:Indicates the ID of an RLC/PDCP parameter group.

LST STANDARDQ CI

GUI Value Range:0~39 Unit:None Actual Value Range:0~39 Default Value:0

CellAlgoSwitch

LocalCellId

LST CELLALGOS WITCH

None

None

MOD CELLALGOS WITCH

Meaning:Indicates the local ID of the cell. It uniquely identifies a cell within a BS. GUI Value Range:0~17 Unit:None Actual Value Range:0~17 Default Value:None

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

145


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellDlpcPdschP a

PdschPaAdjSwi tch

MOD CELLDLPCPD SCHPA

LBFD-002016 / TDLBFD-0020 16

Dynamic Downlink Power Allocation

Meaning:Indicates the switch for adjusting the PA through power control on the PDSCH. If this parameter is set to ON, the PA is adjusted dynamically when the channel quality is extremely good or bad.

LST CELLDLPCPD SCHPA

GUI Value Range:OFF (Off), ON(On) Unit:None Actual Value Range:OFF, ON Default Value:OFF(Off)

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

146


eRAN VoIP Feature Parameter Description

8 Parameters

MO

Parameter ID

MML Command

Feature ID

Feature Name

Description

CellAlgoSwitch

CqiAdjAlgoSwi tch

MOD CELLALGOS WITCH

LOFD-0010150 1/ TDLOFD-0010 1501

CQI Adjustment

Meaning:CqiAd jAlgoSwitch: Indicates the switch used to control whether to allow the eNodeB to adjust the UEreported CQI based on the initial block error rate (IBLER). If this switch is turned on, the CQI adjustment algorithm is enabled. In this case, the eNodeB adjusts the UE-reported CQI based on the IBLER. If this switch is turned off, the CQI adjustment algorithm is disabled. In this case, the eNodeB does not adjust the UE-reported CQI based on the IBLER. StepVarySwitch : Indicates the switch used to enable or disable the variablestep-based adjustment algorithm. If this switch is turned on, the variablestep-based adjustment algorithm is enabled to

LST CELLALGOS WITCH

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

147


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description accelerate the convergence of IBLER. In this case, rapid adjustment at large steps is applied if there is a relatively large difference between the measured IBLER and target IBLER; fine-tuning at small steps is applied if the measured IBLER approaches the target IBLER. If this switch is turned off, the adjustment is performed at a fixed step. DlVarIBLERtar getSwitch: Indicates the switch used to enable or disable distance-based handovers. If this switch is turned on, distance-based handovers are allowed. If this switch is turned off, distancebased handovers are prohibited. DlVarIBLERtar getSwitch: Indicates whether to enable the downlink target initial block

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

148


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description error rate (IBLER) adaption. If this switch is turned on, the downlink target IBLER is adjusted based on the size of transport blocks (TBs) to improve the spectrum efficiency. If this switch is turned off, the downlink target IBLER is a fixed value. TddBundlingCqiAdjOptSwitch : Indicates the switch used to control whether to enable optimized CQI adjustment algorithm in ACK bundling mode.If this switch is turned on, the optimized CQI adjustment algorithm is enabled. If this switch is turned off, the optimized CQI adjustment algorithm cannot be enabled. TddMultiplexingCqiAdjOptSwitch: Indicates the switch used to control whether to

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

149


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description enable the optimized CQI adjustment algorithm in ACK multiplexing mode. If this switch is turned on, the optimized CQI adjustment algorithm is enabled. If this switch is turned off, the optimized CQI adjustment algorithm cannot be enabled. GUI Value Range:CqiAdjA lgoSwitch (CqiAdjAlgoSwitch), StepVarySwitch (StepVarySwitc h), DlVarIBLERtar getSwitch (DlVarIBLERta rgetSwitch), TddBundlingCqiAdjOptSwitch (TddBundlingC qiAdjOptSwitch ), TddMultiplexingCqiAdjOptSwitch (TddMultiplexingCqiAdjOptSwitch) Unit:None Actual Value Range:CqiAdjA lgoSwitch, StepVarySwitch

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

150


eRAN VoIP Feature Parameter Description

MO

Parameter ID

8 Parameters

MML Command

Feature ID

Feature Name

Description , DlVarIBLERtar getSwitch, TddBundlingCqiAdjOptSwitch , TddMultiplexingCqiAdjOptSwitch Default Value:CqiAdjAl goSwitch:On, StepVarySwitch :Off, DlVarIBLERtar getSwitch:Off, TddBundlingCq iAdjOptSwitch: Off, TddMultiplexin gCqiAdjOptSwi tch:Off

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

151


eRAN VoIP Feature Parameter Description

9 Counters

9

Counters

Table 9-1 Counter description Counter ID

Counter Name

Counter Description

Feature ID

Feature Name

1526728494

L.Sps.UL.SchNum

Number of uplink semi-persistent scheduling times in a cell

Multi-mode: None

VoIP Semipersistent Scheduling

GSM: None UMTS: None LTE: LOFD-001016

VoIP Semipersistent Scheduling

TDLOFD-001016 1526728495

L.Sps.DL.SchNum

Number of downlink semipersistent scheduling times in a cell

Multi-mode: None GSM: None UMTS: None LTE: LOFD-001016

VoIP Semipersistent Scheduling VoIP Semipersistent Scheduling

TDLOFD-001016 1526728562

L.Sps.UL.ErrNum

Number of failed uplink semipersistent scheduling transmissions in a cell

Multi-mode: None GSM: None UMTS: None LTE: LOFD-001016

VoIP Semipersistent Scheduling VoIP Semipersistent Scheduling

TDLOFD-001016 1526728563

L.Sps.DL.ErrNum

Number of failed downlink semipersistent scheduling transmission in a cell

Multi-mode: None GSM: None UMTS: None LTE: LOFD-001016

VoIP Semipersistent Scheduling VoIP Semipersistent Scheduling

TDLOFD-001016

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

152


eRAN VoIP Feature Parameter Description

10 Glossary

10

Glossary

For the acronyms, abbreviations, terms, and definitions, see Glossary.

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

153


eRAN VoIP Feature Parameter Description

11 Reference Documents

11

Reference Documents

1.

3GPP TS 23401, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access"

2.

3GPP TS 23.216, "Single Radio Voice Call Continuity (SRVCC)"

3.

3GPP TS 23.203, "Policy and charging control architecture"

4.

3GPP TS 36.814, "Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)"

5.

3GPP TS 36.321, "Medium Access Control (MAC) protocol specification"

6.

ITU-T G.107, "The E-model: a computational model for use in transmission planning"

7.

ROHC Feature Parameter Description

8.

Scheduling Feature Parameter Description

9.

DRX and Signaling Control Feature Parameter Description

10. Admission and Congestion Control Feature Parameter Description 11. Power Control Feature Parameter Description 12. Mobility Management in Connected Mode Feature Parameter Description 13. QoS Management Feature Parameter Description

Issue 03 (2013-10-30)

Huawei Proprietary and Confidential Copyright Š Huawei Technologies Co., Ltd.

154


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.