ORNL-3369

Page 1



c

ORNL - 3369

MOLTEN-SALT REACTOR PROGRW SEMSGATSTJUAL PROGRESS REPORT For Period Ending A1gus-t 31, 1362 R. 13. Briggs? Program D i r e c t o r

OM RIDGE NATIONAL LABORATORY

for the

U . S . ATOMZC EXECRGY

3 4456 0358717 0



...

1.1.1.

1, MSIEIE: Design No s i g n i f i c a n t changes i n design concept o r i n d e t a i l of nt o r system were made. Design work was e s s e n t i a l l y completed, a r e p o r t g i v i n g all enginee L c u l a t i o n s and a n a l y s e s t h e systems i s b e i n g c o q i l e d . The r e m rk involves p r i m a r i l y t h e i n c a r p o r a t i o n of r e s u l t s of de i n t o t h e final drawings

.

t i o n s i s proceeding as scheduled, Work on t h e major b u i l d i n g modif t h e e s t i m a t e d com-pletion d a t e i s ober 15, 1962. A. c o n t r a c t was utside t h e b u i l d i n g , and this w o r k awarded f o r c o n s t r u c t i o n work r t o o i s t o be completed soon. I s of c o n s t r u c t i o n af t h e exhaust underground p i p i n g , and t h e i n l e t f i l t e r house, t h e c o o l i n g tower filter house. M a t e r i a l s procurement i s o g r a p h i t e , delivery of which i s of components i s approximately

e w i t h t h e exception of t h e c o r e t e d November 1, l962. F a b r i e t e and on sched

The b a s i c i n s t m n e n t c r i t e r i a and the c o n t r o l philosophy were e s t a b l i s h e d . 'The layout of the Inatrwnent and c o n t r o l s system w a s e s t ed, and t h e d e s i g n of c o n t r o l - p a n e l i n t e r c o n n e c t i o n f a c i l i t i e s i s under way.

Designs f o r 30 of t h e 42 instrument p a n e l s e c t i o n s r e q MSIG.3 system are complete. F a b r i c a t i o n of t h e s e p a n e l s by t is maer m y . A f r e e z e - v a l v e t e s t f a c i l i t y was completed and placed- i n o p e r a t i o n ,

The s e l e c t i o n of d e t e c monitoring system i s approxi

p r o c e s s and personnel r a d i a t i o n o q l et e

.

Procurement of a data-ban system w a s i n i t i a t e d . S p e c i f i c a t i o n s iated f o r 8@ of the compone were prepared and procurem i n t h e p r o c e s s instrument system.

2,

MSRE Reactor Analysis

Conceivable r e a c t i v i t y a c c i d e n t s were analyzed t o permit; e v a l u a t i o n of r e a c t o r s a f e t y . Most of t h e ca i o n s were done u atroyd, k i n e t i c s program, log a n a l y s e s were a l s o used. None ophic f a i l u r e of the reactor. i d e n t s analyzed .le Unde s irab1y high temperat eted, however, f o r circumstances a s s o c i a t e d w i t h extreme c n t s , premature c r i t i c a l i t y d u r i n g f i l l i n g , and u n c o n t r o l l e d ro


iv C r i t i i c a J it,y and flux c a l c u l - a t l o n s were revised t o correspond t o the l a t e s t fuel composition and t h e d e t a i l e d design of the c o r e s C a l c u l a t i o n s we-re done f o r a core mode1 c o n s i s t i n g of 19 regions with d i f f e r e n t , volume f r a c t i a n s of fixel, glaaphi'ce, and INOR-8, '1%~clean c r i t i c a l c o n c e n t r a t i o n f o r t h e reactor f u e l e d w i t h s a l t c o n t a i n i n g no thorium was calculated to l i e 0.15 mole Q inraniurn (93$ ~ ~ ' ~ 1 .

IEigh-energy fluxes were a l s o calcul-nted. A t a r e a c t o r power of 10 tlie mximim t1u.x was about ~ , x3 lo1' neutrans/cm'cxx f o r neutrons having e n e r g i e s g r e a t e r than 1 Mev; f o r neutrons hav-i_iig energies g r e a t e r than 0 . 1 Mev, t h e m a x i m flux was about 3.'1 x 10'" mieutmns/crn2*sec.

MW,

Fluxes and pawe-i. d e n s i t i e s from t h e Equipoise calcu1al;:ions were used., t o g e t h e r with t h e d e t a i l e d f l a w d i s t r i b u t i m i n -the MSXE core, t o p r e d i c t t h e gmss temperature d i s t r i b u t i o n s i n the f u e l andl graphite. A t 1.0 Mw, w i t h fuel e n t e r i n g the core a t ll-'T5째F, f u e l i n the h o t t e s t channels l e f t -the reactor a t ~ 6 1 Under ~ ~ the . same cond.it,,i.ons tlze peak graphite ternperatinre vas l296"F A low-tempera-ture region exi.st,ed..through t h e c e n t e r of t h e core where the fine1 v e l o c i t y was above average. e

The zauclea~average temperature, d e f i n e d as t h a t m i i f o m texxierature which r e s u l t s i n t h e same T e a c t i v i t y as t h c a c t u a l d i s t r i b u t i o n , was cabculated for the f u e l and f o r the g r a p h i t e . P@r%urbationt'freory was cmpl-oyed, using coefficients from %he EqinipoLse c a l c u l a t i o n s . A t 10 Mw, wi.th t h e fuel i n l e t at, 117'5째F and the mixed-fuel ou2,'let "Lelnperature a t 1335 t h e nucl_ea.s-.average temperatures f o r -the fuel and graphite were 121.3 a n d 1257"P, r e s p e c t i v e l y , O F 9

Tmnportance-averaged txmperature c o c f f i ciclnts of r e a c t i v i t y wcre ca1c u l a t e d for the case of fuel containing no thorium. The yesults w e m - ) j w 4 > x IO-" and -7.27 x 1Q"' (Gk/k)/"F for the fuel and t'me graphiie, respectively.


d i s t r i b u t i o n s d u r i n g t r a n s i e n t s and u s e s t h e n u c l e a r - a v c r ~ e - t e m p e r a t u r e concept t o r e l a t e temperature changes t o the r e a c t i v i t y .

3.

Component Development Measurements were m d e on

mon-8

f r e e z e f l a n g e s f a r 5-in,-diarn schedt a t e and t r a n s i e n t c o n d i t i o n s with b o t h a n o c t a g o n a l and an o v a l e l r i n g g a s k e t . The %o wing conclusions were dram from t h e s e measurem : t h e f l a n g e j o i n t de^ be s a t i s f a c t o r y from a n accumu t h e r m a l stress standp 0째F and higher; t h e themal d i s t o r t i o n c y c l e s from room temperature t range and i s n o t 0% a n a t u r e t o of t h e fl.anges is s m l l i n t h e operat 1; thermal cycl.inG does n o t cause cause t h e f l a n g e s t o s e p a r a t e a t t h e t h e gas leakage r a t e t o increas above a n a c c e p t a b l e l e v j o i n t w i l l n o t form a f r o z e n plug i n t h e pipe under n o 4 the p i p e h e a t e r s are kept on; t h e thermal and d i s t o r t i o n T M o R - ~flarges are s u p e r i o r t o se of t h e I n e o n e l f l a n e d i d n o t affect; i t s a b i l i t y to ously; and thermal c y c l i n g o f o seal w i t h a nev flange.

40 p i p e under s e v e r a l d i f f e r e n t stea

A f u l l - s c a l e conceptual mo 1 of 2;he control- rod and d r i v e u n i t was assembled. and t e s t e d under o p e r a t i n g c o n d i t i o n s f o r over 2h-,OOO c y c l e s . D i f f i c u l t y with a bushing was solved by replacement w i t h ball b e a r i n g s . Over-all o p e r a t i o n was s a t i s f a c t o r y .

E v a l u a t i o n of a removable 5 - i n , pipe h e a t e r i n s u l a t e d with hadboard. and m i n e r a l wool i n d i c a t e d exce f o m n c e except f 01: the tendency .to produce d u s t a f t e r high-teniperatur peration, Nuclear a c t i v a t i o n a n a l y s e s of i n s u l a t i n g m a t e r i a l s i n d i c a t e d t h a t t h e d u s t present a problem of a i r - b o r n e a c t i v i t y d u r i maintenance. h o t h e r u n i t , cons t m c t e d of foamed f u s e d - s i l i c a , w a s better w i t h respect t o d u s t i had an e x c e s s i v e heat l o s s . A n i ovcd f u s e d - s i l i c a p i p e heater pora-ting some canned ha rd i s b e i n g f a b r i c a t e d , An all-metal r e f l e c tive t y p e of u n i t was procured f o r e v a l u a t i o n . The prototype c o o l i n g bayon f o r removing f u e l afterheat from t h e d r a i n tanks were t h e m a l l y shock tested 381c times without f a i l u r e . Reactorgrade thermocouples were s t i l l i n t a c t a f t e r 6 c y c l e s , whereas o t h e r types of thermocouples f a i l e d i n fever c y c l e s .

Detail drawings of essentially a l l the components and i n s t m e n t a t i o n of the s m p l i n g and e n r i c h i n g system were f i n i s h e d , and c o n s t r u c t i o n af a mockup was s t a r t e d . The sam u l e access-chamber mockup passed the hydrostatic test require o t c e l l removal of a sample from t h e c a p s u l e was demonstrated.

The f u l l - s c a l e WRE c o r e model, was o p e m t e d a t 85째F with water t o make p r e l i m i n a r y measurements o f t l o c i t y d i s t r i b u t ion, heat t r a n s f e r c o e f f i c i e n t s , and s o l i d s - h a n d l i n g c t e r i s t i c s . The v e l o c i t y d i s t r i b u t i o n i n t h e lower core wall-cooling annulus w a s found t o be uniform around t h e circumference, i n d i c a t i that t h e f l o w i n t o the lover head was also uniform. The h e a t t sfer c o e f f i c i e n t s in the lower head agreed


vi

wtth t h e p r e d i c t e d values, except near the axis, wherc t h e measux.erntlnts w e ~ eirregular beca,use of t h e random f ~ Q T ~ J P~ r e l i m i n a r y measuyements af t h c s o l i d s distrih1cat;ian i n thF l ~ w e head r indi-ca-ted that s o l i d s which do remain i n the core tend Lo c o l l e c t near the &rain l i n e at the c e n t e r * XL appeared, however, that they would n o t phng the dtrain 1i n e e

The engineering test loop was yevised. .La i n c l u d e a graphite c o n t a i n e r and. INOR-8 pipe and TJas placed i n opelaation with a newly made zircaniimf r e e c o o l a n t sal-t; 1mfomat:i.on w a s o b t a i n e d of the operating c h a r a c t e r i s t i c s of the frozen seal i n the graphite c o n t a i n e r . 1.1;was foundh. that a sa1.t mist existed in the pump-bowl gas space that, led to some d i f f i c u l t i e s with frozen s a l t d e p o s i t s , but! no such mist was found i n the drain-tank gas space, M t e r 1500 hr of o p e r a t i o n with tine empty con-Lainerr,graphite was installed, vacuum pretreated at 3_20O0F,and prepared f o r f l u s h i n g with srzl..t, t h a t had been t r e a t e d with El? t o lower i t s oxide c o n t e n t .

.

Design and c o n s t m ~ c t i n nof equipment f o r opening and c l o s i n g freezef l a n g e j o i n t s was completed, and p m c e d u r e t e s t i n g was stax-ted, A p e r i scope was purchased for use w i t h this equipment. The dcssign of a por.ta.ble s h i e l d f a c i l i t y for s e m i d i r e c t maintenance operations i s ~osnplet~e. It i s a r o t s r i z e d u n i t w i t h Lhe a p p r s p r i a t z spen?ngs and l i g h t i n g fort. s p e c i f i c opeyeaations a


Development of t h e system i s c o n t i n u i n g . spurious noise generation, s t m c t e d , A complete s y s t e

t a t o r themnoco e s w i t c h were made ta reduce riminator was nd and t e s t e d ,

Testing of mechanical. a t t a c h m e n t s f o r use on r a d i a t o r t u b e s i n t h e MSRE was resumed a f t e r modif t h e test apparatus. T differential between i n d i c a t e d h n e r t e m p e r a t u r e s under sirnula aions was redu the themnocouple was i n s rax p a p e r and was a p p l i e d bet the t h e tube w a l l . ula-ted Chromel-Alumel thermocouples are r. The observed d r i f t i n a l l S s s t h a n +2"F.

S i x Inconel-sheathed ng tested i n 1200 t o 12 after 5000 h r of o p e r a t i o Ten WRE-prototy-pe wa t e m p e r a t u r e t r a n s i e n t s on the d ouple f a i l e d im t e d rapid tempera R e s u l t s of t e s t s of the freeze valve i n d i c a t e t h a t e conductor thermocouples w i l l w i t h i n t h e r e q u i r e d accu

e

thermnocauple B were sed t o f a s t k b a y o n e t - c o o l e r t e s t i n g f;zc The remaining n i n e u n i t s have

.

-

es i n r s t a l l e d on a n MSRE-protot % i n . -OD duplex o r l/lG-in. -OD temperatures s t a n d the t e ant differen

inherent i n t h i s applica ance o r d u r a b i l i t y of t h e u n i t s

t h e perform-

A s i x - c i r c u i t r a d i a t i o n - r e s i s t a n t themnocouple-disc

w a s f a b r i c a t e d and t e s t e d i nect i s simpler i n construe and i s more compatible w i t h

t h e assembly d e s c r i

Part 2,

4.

Materials S t u d i e s

Metallurgy

B were completed vapor on INOR-8 immersed

t h e s e ind.icate t h a t CF4 yap

a t 1112째F b u t t h a t minor a t of f l u o r i d e salts at lZ92"F

.

A f i n a l d e s i g n and a t o - t u b e s h e e t j o i n t s of t h e vidcs f o r u l t r a s o n i c i n s p procedures, a n s p e c t e d by ra cedures f o r rcxno stratcd by t h e f a b r i c a t i o n weye found i n t h e s e by u l t r a

t h e c o r r o s i v e e f f e c t af 112 and l292"F, Resul ct i v e ly nmreac tive t o m moted by CF4 i n the p r e s e n c e

e were e s t a b l i s h e d f o r t h e t u b e xchanger, The f i n a l d t o demonstrate -khe we cmbly was s u c c e s s f u l l y g

s.

IN OR-^ p i p e j o i n t s were Only minor unbonded areas


A d d i t i o n a l mechanical p r o p e r t i e s data were accumulated f o r INOR-8, i n c l u d i n g t h e m 1 f a t i g u e d a t a a t Y2'jO t o l600"F. S t r e s s r e l i e v i n g was :Found t o improve t h e e l e v a t ~ d - t c ~ p e r a t u ystress-mptixjre e p r o p e r t i e s of m l d m c n t s . E v a l u a t i o n s t u d i e s of the mechanical p r o p e r t i e s of h e a t s of m013-8 procured f o r MSW c o n s t r u c t i o n were s t a r t e d , Grade TS-281 graphi-Le, considered r e p r e s e n t a t i v e of %RE m%crial, was found t o be more porous than experimentally made samples of similar graphite; howevez-, it met d e s i g n requirements Specimens of Ts-281 we-re permeated t o O.& of t h e bulk volume i n t h e standard permeation t e s t s . Oxygen contamination was purged f ram R-0025-grade g r a p h i t e i d t h t h e dcExposure composition pl-oducts OP mls*mat temperatures as l o w as 392% of INOR-8 specimens t o t h i s environment a t temperatures varying from. 392 to 1300째F r e s u l t e d i n minimum a t t a c k at 752"Fb S i n t e r i n g s t u d i e s were begun t a develop procedures f o r f a b r i c a t i n g Gd&3*1& c y i i n a e y s f o r mmJc a n t l ~ yoas. ~, m e sh~-inkag;e c h a y a c t e r i s t i c s and bulk d e n s i t y changes as a f u n c t i o n of green d e n s i t y were drttelrxnined, for G d 9 3 p e l l e t s that were f i r e d at 1750째C i n hydrogen.

m203 ana

5. En-Pile Tests a"Fm m o l t e n - s a l t - f u e l e d capsule assemblies, ~ ~ ~ - ~ - m ~and, - h .47-5, q-lc

were b u i l t t o st;uay the formation of CJ?4 i n t h e gas over f i s s i o n i n g MSm f u e l c o n t a i n i n g submerged graphite. %n assembly 47-4, four capsules con-

t a i n i n g a g r a p h i t e core submerged, i n fuel and two with g r a p h i t e crucibl-es coiilainizilu; fuel were i r r a d i a t e d *

Assembly 47-4was i r r a d i a t e d from March 15 t o June 4 , and it i s now undergoing p o s t i r r a d i a t i o n examination at, OR&. 'Fne mxinium measured temp e r a t w e o f <;he capsules vas llcOO + 25째F d u r i n g appraxintlatcl-y 1500 hi" of ffuL1-power steady-state r e a c t o r o p e r a t i o n , S i x t y of t h e 121 recorded -ternperatwe changes of - 3 0 " ~ 04: more included decreases to t h e s d i a u s tern-. pemtur-e of the f u e l salt;.

Two c a p s u l e s containing submerged- g r a p h i t e cores were i n s t a l l e d i n assembly 47-5 to pernit gas sampling d-uring i r r a d i a t i o n . A d d i t i o n a l s e a l e d capsules designed t o provide a range of o x i d a t l o n - r e d u c t i o n Ievel.s by a l t e r i n g t h e a c c e s s i b i l i t y of chromium metal t o t h e f'uel were i n c l u d e d , 'me range o f the r a t i o o f INOW-8 surface area to g r a p h i t e s u r f a c e area i n contact wi.th the f u e l i s 0 t o h5:l. Assembly 4'7-5 i s scheduled -Labe i r r a d i a t e d from September 1'1 t o December- PO, l962, P o s t i r r a d i a t i o n examination of a s a c ~ n b ~4'7-4 y revealed that; e1emen%rzI f l u o r i n e at p r e s s u r e s as Mgh as '35 atmospheres vas generated i r i some of the r a p i d l y f r o z e n s a l t i.ascd i r z t e s t s of t h e e f f e c t of radiation on evol u t i o n of CF4 from f i s s i o n i n g f u e l axid g r a p h t t e The f b u ~ ~ - i n @ undoubtedly , of r a d i o l y t i c o r i z i n , appears i n t h e f m z e n s a l t afterP shutdown and i s possibly the main c a u s a t i v e a g e n t of -the CF4 i n t h e capsules t h a t contained large q u a n t i t i e s of CF4. Since eapsixlcs of d i f f e r e n t c o n f i g u r a t i m i n t h e same irradiated asspmbly showed widcly divergent behavior, the inndesiz-&le products may b e strongly dependent 0x1 sane i n c i d e n t a l . e f f e c t , such as t h e e


ix f r e e z i n g h i s t o r y of the capsule. r i m problem w i l l n o t eo Tests are: in progress (0 t h e evidence f o r a n e g l i g

t i n d i c a t i o n s are t h a t t h e f l u o threat t o the reac

Pre

o b t a i n d i r e c t confi on of fluorine i n t h e

fuel.

60

Chemistry

A d e t a i l e d examination o nary system s u g g e s t s that 67 should be a s u i t a b l e solvent To no ThF4. A -fuel based on

* C c o n t o u r i n the LiF-IS

,

e $), h a s an e s t i m a t e d a d e n s i t y of 2.15 g/cm3 a t

29 mole 5 BeF2, and i n a simplified fuel that contains nt, LiF-BeF2-ZIrF4-UF~ (66 0.15 i n t of 445째C. T h i s compos s g temperature.

The e u t e c t i c i n t h e sys t r a t e (27 mole $ ~ 4 mp, ; 52 of s e g r e g a t i o n on f r e e z i n g of

p e a r s t o be useful. a6 a conccnmakeup. The amount and T y p e f u e l s are t o l e r

Experiments to demonstra

r e a c t i o n of CF4 with Presumably, t h e y atures t h a n the

p o s i t i v e i n d i c a t i o n s , mainly more c o n c l u s i v e results a t h i

C.

S t u d i e s of the cleanup of a n a l y t i c a l aspects o Irminations i n f u e l of' r a d i o a c t i v e samples of f u e l .

i t e and of fuel continued f u e l technology were dire g r a p h i t e and toward homo

7.

s

rd

Fuel P r o c e s s i n g

Work on t h e detailed d e s i g n s t a r t e d . The system p r o v i d e s f a recovery. A simplified flowshee

he WRE f u e l - p r o c e s s i n g system wa de removal from t h e s a l t and uranium

The l i q u i d - s t a t e enth e viscosity of a L i use i n out-of-pile w t $) mixture p r to the were e q e r i m e n i n e d . Unusual s e a t ranted only a l i n e a r f i t y data. The d h e a t ca5 O C is t h e r e f i t y o v e r the t e m p e r a t u r e nematic v i s c o s i t y c o n s t a n t value 0.l113 cal/g* O 16.5 centistokes a t i s t o k e s a t 715"C, An e s t u r e density as a function of the temperature allowed p r e l u t e viscosity.

(30-38-32



Xi

S W Y

.........................................................

.

PART 1

MSRF:

m c

EKING KWLYSIS.

opmm

................................................. Design S t a t u s ............................................... Reactor Procurement i o n ........................ Major M o d i f i c a t i o n s t o B Q 7503 ..................... C o n s t r u c t i o n Outside Bui 7503 ....................... Procurement o f M a ............................ F a b r i c a t i o n of Co ............................ Reactor I n s t r u m e n t a t i o n and C o n t r o l Sys-tem.s..................

1. MSRE DESIGN

2.

Layout of I n s t r u m e n t a t i o n and Control System . . . . . . . . . . . . . Design S t a t u s ............................................ Procurement S t a t u s

MSRE REACTOR ANALYSIS

iii

....................................... ....................................... ..........................

C a l c u l a t i o n a l Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R e s u l t s of F u e l P Power F a i l u r e A n a l y s i s . . . . . . . . . . . . . . E f f e c t s of Cold-S s ...........................

.......................... 1 of Rods ................ .......................... itrion .................... .......................... C r i t i c a l i t y CaZc .......................... F l u x D i s t r i b u t i o n s ....................................... Power D e n s i t y . . . . . . . ................................ S t a t e F u e l and G r e Temperatures . . . . . . . . . . . . . . . . . era-Lure D i s t r i b u t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R e a c t i v i i y C o e f f i c i e n t s ..................................... Tempcr:%twe C o e f f i c i e n t s ................................. Power C o e f f i c i e n t . . . . . . ............................ E f f e c t i v e Delayed-Neutron E' ns ......................... Reactor K i n e t i c s Code Devel ........................... ....................................... Freeze-Flange Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Freeze-Flange-Seal T e s t .................................. Themnal-Cycle T e s t Loop .................................. Freeze T e s t i n The e T e s t Loop ................... i n t h e Prototype-Fuel-Pmlp T e s t of a Freeze F Testing F a c i l i t y ........................................ MSRE C o n t r o l Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3 4

4

'7 7 8 14

14

14

16

17 17 17 17 19 21 21

21 22 22 24 24 24 27 27 29 33 33 34 35 37

41

41 41 43 46

46 46


xii

I1ea:ter T e s t s

................................................

Pipe H e a t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A c t i v a t i o n A n a l y s i s of I n s u l a t i n g Ma2;e:r.Ti.al-s . . . . . . . . . . . . . . Drain-Ta.nk Coolers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sa,mpl.ing and E n r i c h i n g System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D e t a i l Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mockup of Sampling and Enriching Sys-tern . . . . . . . . . . . . . . . . . . Core Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V e l o c i t y Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurem.en-t of Heat T r a n s f e r C o e f f i c i e n t s . . . . . . . . . . . . . . . . Experiments on the Behavior of S o l i d s . . . . . . . . . . . . . . . . . . . . MSRE Engineering T e s t Loop (EYL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frozen-Salt-Sealed Graphite-Con-Lainer Access ?Joint . . . . . . . Salt Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . €€FTr eatme n-1; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cold-Finger C o l l e c t i o n s i n Cover Gas . . . . . . . . . . . . . . . . . . . . . B'YL Gra p h i t e Tr e a t men-ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NSRE Maiatenan.ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Placement and Piemova1 of Freeze -Flange Clxm-ps . . . . . . . . . . . . Mtscellaneous Flange - S e r v i c i n g Tools . . . . . . . . . . . . . . . . . . . . . Remote Viewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Portable Main-knance Shie1.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brazzd-Joint Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hmzed-Joint F a b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brazed.-Jotn.-k S a l t T e s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mecha.ni.ca1-Joint Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pump Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F u e l Pump Dcsign and_ F a b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . Coolant Pump Design and Fa.b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . Design and F a b r i c a t i o n of Lubrica-t;:i-on Stands for Pum.ps . . . Lubrication-Pump Xndurance T e s t . . . . . . . . . . . . . . . . . . . . . . . . . . Drive Motor DesLgn and F a b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . . T e s t Pump F a b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test F a c i l i t y Construction . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . Hydraulic Perfor-mnce T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P a Pump Hot Endurance 'Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T e s t Pwnp Wit;h One M o l t e n - S ~ Z J ~ - L u b r i c a t 2Bearing d ........ ... I n st-ru.rnen-t Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sing1-e-Point Lriqurid.- Level I n d i c a t o r . . . . . . . . . . . . . . . . . . . . . . Pump-Bowl Liquid-Level . 1n.d.i . c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . Sing]-e-Point Temperature Alarm System . . . . . , . . . . . . , . . . . . . Temperature Sea-mer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermocouple Development and T e s t i n g ..................... e

I

4.

PmT 2 .

47

48 49 49 49 49 49 50 51 52 53 53

54

56 56 58 59 59 60

eo

60 61. 61 62 62 62 62 62 63 63 63 63 63 65 66 66 66 66 68 68 7. 1. i-jq-

MA'I'rnIALS S;TT.PDL~S

.................................................. Corrosion E f f e c t s of CF4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding and Bra.z i n g S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rnTLULUKGY

46 46

Tleat Exchanger F a b r i c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R e m o i x Brazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding of I N O R - 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

87 $8 88 92 92


xiii

............................. ..................... ................................ ............................................ G r a p h i t e ...................... -8

c’mnical P r o p e r t i e s P r o p e r t i e s of Reacto Therm1 F a t i g u e of 5: i t e Studies E v a l u a t i o n of Grade E f f e c t s of Thermal NH4F KF on Graphi F a b r i c a t i o n of Gd2O3 a

i t y INOR-8

s i t i o n Products of

8 Systems

......................

................ TESTS ............................................... ORNL-MIX-47 Molten-Salt I r r a d i a t i o n Experiments ............. Experiment ORNL-WR-47-4 ................................. Experiment ORE&-WR-47-5 ................................. P o s t i r r a d i a t i o n Examinat i m e n t a l A s seinbly ORNL-MTX-47-3 . . . . . . . . . . . . . ......................... Chemical Analyses of I r r a u e l for Corrosion P r o d u c t s ................................................ 3-Al203

Pellets

D i s t r i b u t i o n of R a d i o a c t i v i t y and S a l t i n I r r a d i a t e d Graphite ................................................ P o s t i r r a d i a t i o n Examination of Experimental Assembly ORT~L-?YER-~~-~ .............................................. D e s c r i p t i o n of Capsule ................................... F a b r i c a t i o n and Loading of Capsules ...................... Fuel ..................................................... G r a p h i t e ................................................. Decay Energy ............................................. I r r a d i a t i o n and Temperature Data ......................... Production of Xenon and Krypton .......................... G a s Analyses ............................................. D i s c u s s i o n of R e s u l t s ....................................

................................................... Phase Equilibrium S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The System Li.F-BeF2-ZrF4 ................................. The System LfF-BeF .......................

6 . CWmSTRY

Solu-l;ion of UF4 Li.F-W4 E u t e c t i c a for F u e l Makeup .................................. F r a c t i o n a t i o n of L -UF4 on Freezing . . . . . . Crys-t;al Chemistry ....................... Oxide Behavior i n Mol e h y d r a t i o n of LiF ..... Physical Properties ....................... D e n s i t y of LiF-BeF 4 E s t i m a t i o n of Dens Molten F l u o r i d e s . . . . . . . . . . . . . . Graphite Compatibility Rernoval of Oxide from G e Moderat o r Elements . . . . . . . . Behavior of CF4 i n Mo o r i d e s ...................... A n a l y t i c a l Chemistry ........................................ Determination of 1 Mixtures ............ n n i n a t i o n of e ...................... g e n i z a t i o n af Fuel Samples . . . . . . . . . .

....

............................. ......................................

95

95 95 76 96 97

38 100 100 100

102

105 105

106 106 108 108 109 1.09 110 110 110 112 115

117 11’7

3-17

1113

117 121

121 122

123 123 123

125 125 128

130 130 131 131


xiv

7. FUEL PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . IEINGITJFEIKING RESEARCH ON TmWOPIESICL PROBm'CTES OF

............................................... ....................................................

SALT MTXTTJRES

Enthalpy Viscosity

...................................................

133

135

135 136


E

PART 1. MSRE DESIGN, EHGImESIING ANALYSIS, nrJD COMl?ONENT' D 3 X E L O P ~ ~ ~ ~


.


3

1. MSW DESIGN Design S t a t u s Design work on t h e o n l y f i n a l - r e v i s i o g of s y s t of t h e e l e c t r i c a l design. cul-ations and a n a l y s e s o l e d . Much of tl: t i o n of d e v e l o d e s i g n i s t h e rem t e s t e v a l u a t i o n s of two d h e a t e r s e c t i o n s a r e near t be completed a f t e r t h e s yI>p ttC?IIl. Another i k m t h a t a v a i ted i s t h e c o n t r o l s has been o p e r a t e toty-pe u n i t w i l l permit t h e g ordered.

l l y completed. There remains d d e s i g n drawings r e p o r t , i n which a l l e a r e presented, i s p r k remaining t o be corn f i n a l d e s i g n drawi 'pe h e a t e r s and i n s u s of' such removable Design drawings of t h e s e a t e which type

t e v a l u a t i o n b e f o r e t h e d e s i g n can A model i n c o r p o r a t i n g a l l t h e l y , and t e s t i n g of an a c t u a l proe f i n i s h e d . Such a p r o t o t y p e i s

All- l a y o u t s for t h e t h r e e major a r e a s , r e a c t o r c e l l , d r a i n t a n k c e l l , and c o o l a n t cell., a r e complete various penetrations i n t o the have a l s o heen designed. The of i n t e r c o n n e c t i n g gas, water, t r i c a l , and instrument l i n e s b t h e s e c e l l s i s nearin

Considerable e f f o r t was devoted t o t h e d e s i g n of sel, and a l l p a r t s of -t w e r e completed. Se f ecti n g a c l o s u r e with ne t h a t welds t o l e concept could be were analyzed b e f o r e a n acc r i p h e r y of t h e containment i n f o r c e d with a circurnf'eren limits a t design-point p niurn credibl-e a c c i d e n t able pressures within t dent, was designed.

steel shell

S i n c e t h e m o l t e n - s a l t system employs e l e c t r i c a l h e a t t o b r i n g a l l components t o t h e o p e r a t i n g temperature, t h e electrical d i s t r i b u t i o n for t h i s h e a t e r network i s r a t h e r e l a b o r a t e . This e l e c t r i c a l system i s a 40% designed. The h e a t e r c o n t r o l c e n t e r s a r e complete. Conduit and cable-tray layouts a r e 6 e t e . The d e s i g n of m o d i f i c a t i o n s t o e x i s t i n g a u x i l i a r y d i e s e l power c o n t r o l s a r e 60$ complete, All e l e c t r i c a l d e s i g n s a r e scheduled t o be completed by March 1, 1963. Design drawings for t h e c h a r c o a l - a d s o r b e r system f o r t h e offgas a r e Layout drawings of fgas piping i n t h e r e a c t o r c e l l , d r a i n t a n k c e l l , and s p e c i a l equipme a r e 95$ complete. very L i t t l e remains t o be done t o b r i n g t h e d e s i g n of t h e e n - t i r e gas system t o cornp â‚Ź inished.


4 The d e s i g n of t h e j i g s and f i x t u r e s f o r t h e assembly of t h e i n i t i a l and replacement components f o r -the t e s t c e l l w a s completzd, l%e compon e n t s , p i p i n g , and f.l..an.ges a r e supported by a d j u s t a b l e s u p p o r t s t h a t dup l i c a t e or resern'ole t h e t e s t c e l l s t r u c t u r e and a r e p o s i t i o n e d precisel..y by optri-cal t o o l i n g . Design work on -the f i x t u r e f o r t h e assembly of t h e d r a i n tanks and f l u s h t a n k i s i n p r o g r e s s . Co-mpleti o n of Lhe items mentioned above wi..I..l complete t h e d e s i g n of a l l major equipment and f a c i l i t i e s , i n c l u d i n g t h e maintenance c o n t r o l room, t h e remote crane c o n t r o l , -the t e l e v i s i o n viewing d e v i c e s , and t h e '%e d e s i g n of -the work s h i e l d , p r o t e c remotely operable l i f t i n g tongs. t i v e enviyonment e n c l o s u r e (stan.dpi.pe) , t o o l s , and o p e r a t i n g procedure f o r r e p l a c i n g t h e 7/8-in. -OD g r a p h i t e sampler i.s complete. 'The g r a p h i t e sampl-er TI'k identical.. ri.n p r i n c i p a l t o t h e sampler i l l u s t r a t e d p r e v i o u s l y , which was modified t o accommodate t h e control. rods and t o r a k e t h e work shiel..d. 3 ft above t h e 1..ower s h i e l d . beams f o r working convenience.

'

There were no changes i n d e s i g n concept or s i g n i f i c a n t changes i n d e t a i l o f any component o r sys-Lern of t h e WM w i t h i n t h i s r e p o r t p e r i o d , A p l a n drawing of t h e major systems showing arrangement o f v a r i o u s components rin t h e MSRE build-ing i s shown i n Fig, 1..1-. Reactor Procurement and I n s t a l l a t i o n Major M o d i f i c a t i o n s t o Building 7503 The Kaminer Construct i o n Corporation, which has t h e prime con-tract f o r the major modi.fl.cations t o Buli-1-ding 7503, has completed approximat2l-y 90$ of i t s contrac-t. The e s t i m a t e d completion d a t e is October 15, 1762, a s scheduled. Bie sta-bus of t h e work i n p r o g r e s s i s outl-ined i n t h e following s e c t i o n s . Reactor C e l l . S t r e s s r e l i e v i n g of' t h e r e a c t o r c e l l v e s s e l i s compl-ete, and i n s t a l l a t i o n of t h e s l e e v e s betwecn t h e i n n e r a n d o u t e r vess e l s i s p r o g r e s s i n g , This work w i l l bc compl-eted when t h e expansion j o i n t s (bellows) a r e received. The support b e a m f o r t h e l..owe~roof plugs were concre-Le-filled and put, ri-n place. The frames f o r -the lower roof pl..i.i.gs were f a b r i c a t e d and a r e being f i t t e d . -Lo -the c e l l . These plugs w i l l be poured- soon. The upper roof plugs were poured- b u t were n o t d e l i v r r e d because of lack of s t o r a g e space. The s e a l membrane i s o n - s i t e . Drain Tank Cell.. A l l t h e c o n c r e t e was poured i n t h e d r a i n kank c e l l , i-ncl-ud-i.ng t h e upper and lower roof plugs and t h e support s h i e l d beams. Plug welding of t h e s t a i n l - e s s steel l i n e r was completed, as shorn i n F i g s Te2* The lower roof plugs should be i n s t a l l e d - and ready t o w e l d i n t h e s e a l membrane when it i s d e l i v e r e d ,

"'MSRP Prog. Rep. March 1 t o Aug. 31, 1961," 0RIVT;-3215, p 17,

Fig. I... 13,.


5


Fig. l . 2 .

F u e l Drain 'Tank C e l l .

Maintenance Control- Room.

The grade beams for. t h e maintenance con-

The forms f o r pouring up t o e l e v a t i o n 862 f-t a r e being ins-I;al-l-ed, and t h e c o n c r e t e w i l l be pooured soon. t i w l room were poured.

R a d i a t o r Cell. The s h e e t meta3 work i n the r a d i a t o r c e l l i s approxiIt i s expected t h a t t h i s work w i l l be compl-cted on mately 50% complete. schedule. Sheet-Metal L i n e r â‚Źor Crane Bay. A l l f r a m i - n g f o r t h e crane-bay l i n e r was f a b r i c a t e d and 40% of t h e framing was ins-ta-lled. The s h e e t metal l i n e r was fabr.i.ca.ted and- i s ready t o i n s t a l l . Building V e n t i l a t i o n Duct Work. 'l'he duct work i s 90% complete. 'The remaining work c o n s i s t s of t h e i n s t a l l a L i o n of dampers, which a r e schedisll-ed- t o be d e l i v e r e d soon. ReacLor C e J - 1 Exhaust L)uct. The 30-i.n, exhaust d u c t i s i n s t a l l e d t o t h e end of t h e Kaminer p o r t i o n , i n c l u d i n g t h e b u t t e r f l y v a l v e s .

Hot Waste S t o r a g e Ce7.1_. The s t o r a g e t a n k i s installed and 95% of t h e p i p .ing c ornple i; e.


r

7

s t o r a g e cell.

t i n s t a l l a t i o n i n the crane bay esaors arid con ng, which is awnit ing d e l i v A i r and Wzter P i p i n g e mately 98% complete.

The compressed a i r and water p i p i n g i s approxi-

s e IT

plete.

.

All concret,e was poured., and laddex-s and n %his c e l l is

SO$ corriplete.

C o n s t r u c t i o n Outside Building ‘7503 The E. S. Iiixson Construct n Cornpany of Oak Ridge was awar t r a c t - f o r t h e c o n s t r u c t i o r i woyk u t s t d e Building 7503. Work w a s proximately May 1 and i s expected bo be compl-eted. approx The exhaust filter house i s complete except for the i n s t a l l a t i o n of f i l t e r s , which a r e expected t o be d e l i v e r e d a p p m x i m a t e l y S ier 15. The offgas exhaust s t a c k i s i n s The exhaust blowers, duct, arid dampers will he d e l i v e r e d by Se r 1 and i n s t a l l e d by September 15,

.

The c o o l i n g towers were i x i s t a l l e d , and t h e pkpiulg was completed, exThe pumps a r e t o ’ne t l Tae underground. p i p i n g i s compl-ete.

cept f o r connections t o -khe pumps.

Tne i n l e t f i l t e r house i s complete, a.nd t h e steam coils, dampers, duct, and f i l t e r s w i l l be d e l i v e r e d soon,

Procurement o f M a t e r i a l s

With t h e e x c e p t i o n of t h e g r a p h i t e for t h e M S E core, m a t e r i a l s pront i s approximately o The g r a p h i t e i s now prom er 1, 1962, and e f f o r ng made t o improve this d e l The s t a t u s of procurement i s o u t l i n e d i n t h e f o l l o w i n g se

.

INOR-8. Delivery of a l l p l a t e , rod, weld rod, and pipe i s complete, except f o r some miscellaneous p i e c e s . P a r t i a l delivery was n of p i p e and tubing; d e l i v e r -tel.y 75s complete. D e l i ngs, t h a t is, €free -exchanger t u b e - s h e e t bl O-ring g a s k e t s , a f o r g i n g s , i s approximately 80$ complete.

onap15.


. 8 Graphit?. The National Carbon Company has formcd, baked, and grap’riit i z e d all- %he base-stock g r a p h i t e b a r s . The i n d i v i d u a l lots a r e a t v a r i ous s t a g e s of t h e m u 1 t i p l e impregnat ion trzatment,, All bar:; received t h e f i - m t i mpregnzL ion. Therc 3rf about 80 graplii Le b a r s cornpl e t e l y through a l l t h e r e q u i r e d impregnalions; however, i h e f a h r i c a t i o n of sound bases t o c k g r a p h i t e b a r s i s t h e c r i t i c a l p a r t of the f a h r i c a t , i o n . T’hc d e l i v e r y of t h e completely machined g r a p h i t e b a r s was t e n t a i i v e l y rescheduled from September 1 t o November 1, 1962, Auxi-1-iary.._....I...-II Heat Exchangers. .._..._.-.... A c o n t r a c t was awarded Rerl i-n Chapman Compary f o r t h e f a b r i c a t i o n of threc s t a i n l e s s s t e e l a u x i l i a r y hcat exchangers. S t a i - n l e s s..._.S. .t e e l Piping. C o n t r a c t s were tivarded f o r t h e manufacture --of t y F e 304 s t a i n l e s s s t e e l pj-pe, t u b i n g , and fi’Ltings f o r al-1 a u x i l i a r y p i p i n g systems. Most of t h i s rnatcrial has been mani;rfactured aod i s bei.ng i n s p e c t e d at, the vendors’ m i l l s . C o n t r a c t s have not b w n awardrd f o r s p e c i a l f l a n g z s and g a s k e t s . ._ym

-_D_I___

Reactor Cell- Support S t e e l . S t e c l f o r t h e r e a c t o r cell. equipment supporting s t r u c t u r e s being f u r n i s h e d by 0’Neal S t e e l Company. S p e c i a l p i p e s p r i n g s u p p o r i s a r e b c i n g manufactured by Bergen Pipe Support Company-, F a b r i c a t i o n of Componcnt s ‘I”c f a b r i c a t i o n of MSRE components i n t h e Y - 1 2 Machine Shops i s e c tirnaied t o be approximately 50% complete and on schedule. Delivery of t h e f i r s t component i s expected approximately October 1, and a l l cornpon e n t s a r e expected t o be d e l i v c r c d by January 1, The status of comporient f a b r i c a t i o n i s described i n t h e following sections.

Hcactor Vessel, The r e a c t o r v e s s e l (Figs. 1.3 and l”4)i s being f a b _-..~.~ .--r i c a t e d and i s approximately 45% completee D e l i v e r y i s expected approxi matel-y January 7, 1963. _____I__

____1

The s t a i n l e s s s t e e l t h e r m a l s h i e l d . f o r the r e a c t o r v e s s e l i s betiig fabrica-bed i n t h e Union Carbide Nuclear Company Paclucah rnachrine shop and: is approximately 35% compl-ete. Delivery i s expected approximately October I-, 1962. Procurement was i.ni‘i,iated f o r approximately 75 t o n s of s - t e e 1 b a l l s t h a t w i l l ’ue poured li.n-t;o t h e thermal. s h i e l d f o r g a m a s h i e l d inse Heat Xxchanger. The I N O E - 8 primary heat exchanger i s approximately m m l . 5), and delivex-y is expected approximately January 1, 1..963. A vendor, Wa1..1 Colmonoy, is u.nder c o n t r a c t -Lo furnace-braze -th@ t u b e s t o t h e -tube s h e e t w i t h a gold-nickel- a l l o y . 65% c

Radiator. The s a l t - t o - a i r r a d i a t o r i s approximately 12% complete. ‘Il’he headers f o r t h i s component a r e being f a b r i c a t e d i.n t h e Union Carb-i.de Nuclear Company shops a t X - 1 0 and. Paducah and a r e approximately 95% comp l e t e . Delivery i s expected approxirnateI..y January 1, 1963.

.


3

Fig. 1.3. I n s i d e o f Reactor Vessel Sliowtng Flow S t r a i g h t e n i n g

Vm.es .

R a d i a t o r Enclosure. 'The e n c l o s u r e for t h e r a d i a t o r (Fig. 1.6) i s approximately 65% complete, a is expected appl-oxirna , 1963. T'ne d o o r - l i n i s i was f a b r i c a t e d - in a local Machine Shop and i s D e l i v e r y is corn l u t c h e s , brakes, and e heaters for t h i s ant 0

P

rriponerits will b c t o b e r 1, 1963.

Tkie s e v e r a l INORirnately 45% corrrpl l y October 1,

(Fig. expected approximately January 1, 1963.

being f a b r i c a t e d i n t h e K-25 s h

2, aiid be com-

of t h e f u e l and c o o l a n t pumps Deliveyy of t h e f i r s t u n i t i s

and Paducah rnaeh i n e major r e a c t o r components. I n mbly jigs, and. p a n e l boards a r e sampler enrieher, chaircoal beds,


10

Fige

1 . c ~ . F l o w D i s t r i b u t i o n Nozzle for Rezctor Vessel.

UNCLASSIFIED PHOTO 38530

F i g . 1.5.

cha.nger .

Some Comp3-eteti ComponenLs of INOR-8 Primary Heat Ex-


11

D

Fig

1.6. P a r t i a l l y Cc.)-rr!p?.e-t;edRadiator %:rieI.oslnre.


12

.

d

Fig. 1 7. C o o l a n t Sal-t D r a i n 'Tank. a


13


salt; piping, and o t h e r miscellancous p a r t s are being f a b r i c a t e d i n t h e ORNL machine shop. A contract; was awarded t o Taylor Engineering Company f o r the f a b r i c a t i o n of seven s p e c i a l equipment s u p p o r t s and f o u r s p e c i a l vessr-33 s. Reactor I n s t r u m e n t a t i o n and C o n t r o l Systems

Lnvout of I n s t r i m e n - t a ti o n and C o n t r o l System The l a y o u t of t h e instrznxiientation and c o n t r o l s system proceeded. el-osely i n accordance with t h e scheme outlined. i n t h e previous r e p o r t . Drawi.n.gs showing -the exact, 1-oca-Lion o f all- c o n t r o l p a n e l s were completed, i n c l u d i n g d r i l l i n g d e t a i l s for f l o o r p e n e t r a t i o n s i n t h e main and a m i l i a r y c o n t r o l a r e a s . The r e l a y c a b i n e t was moved t o a new p o s i t i o n , and t h r e e panels f o r c o n t r o l of t h e di.esel g e n e r a t o r s were added t o t h e auxil.liary-board. p a n e l arrangement. Requirements f o r wire ways between t h e main c o n t r o l area and f ield-moun-ked cquipment were determined., and d e t a i l d e s i g n i s now under way. These wire ways cons5.s-t; of t h r e e separ a t e s e t s of 3- by 24-in, open t r a y s . Thermocouples, signal. c a b l e s , an.d. c o n t r o l circi3.i-L wiring w i l l be run i n separa.te tl-ays. Cable from isol..ated sig:na.l.. t r a n s m i t t e r s w i l l be r u n in conduit -to %he n e a r e s t t r a y , De-tails for wire t e r m i n a l boxes between f i-eld-mounted e l . e c t r i c a 1 eqiiipinent were a I..s o de-i;e rrnined. e

Design Si;a t u s

Instx-urnent Applicat Ton Di agrarns. Iiist,rument a p p l i c a t i o n flow d i a grams f o r t h e f u e l sampler-enricher system, the f l u o r i n a t ion system, and t h e containmeni system were completed and approved â‚Źor c o n s t r u c t i o n . Nine diagrams previous1 y approved we^ r e v i s e d i n accordance wii,h r e c e n t d e s i g n changes. A t a b u l a t i o n of a l l instruments shown on tlie fl-ow diagrams, g i v i n g i d e n t i f y i n g nuutbers, locat,i.on, f u n c t i o n i n process, and a b r i e f ThPse w i l l be r e v i s e d period i cal l y t o i n d e s c r i p t i o n , was comple'Ler3. corporate d e s i g n changes. Coritrol Panels. T h c d e s i g n of 8 of tlie 1 2 modular instrurneni; p a n e l s e c t i o n s r e q u j r r d f o r the main board was cornpJeted and f a b r i c a t i o n of these panels i s p r e s e n t l y under way i n i,he OlINL p a w l shops. The t h n c remaining p a n e l s J a s w e l l a s t,he coritrol console, w i l l he completc?d wheri a l l the ni;lclear instrurneni, requirements a r e known. A complete d e s i g n f o r one p a n e l s e c t i o n i n c l u d e s ins trument-mount ixig-holc ci;lt,out drawings, pneumaiic t u b i n g diagrams, a d e l e c t r i c a l w i r i n g d i agrarns. 'I'went,y-i'i ve drawings f o r t h e main-board panel s e c i i o n s were approved.

Twenty-four drawings covering t h c d e s i g n of 11 auxil i ary-board panels l o c a t e d i n the t r a n s m i t t e r room and a u x i l i a r y room were completcd, J n a d d i t i 011, t h e d e s i g n o f t h e thermocouple-patch-panel c a b i n c t was cornpleted.

*''MSRP Prog. Rep. E'zh. 28, 1962,

"

OR!YI-3282,

pp 10-19,


-

Designs of t h r e e sarnpler-enricher c o n t r o l p a n e l s and two cover-gas tetl arid approve t r e a t m e n t c o n t r o l p a n e l s were rigs were approved. and- i s s s t r u e t i o n . The ops and when c o p r e s e n t l y being f a b r i c a t e d i n used t o c o n t r o l mockups 070 t h e s e

The d e s i g n s of six o t h e r a u x i l i a r y instrinmenl; p a n e l s I_ocated i n t h e These pan rvc t h e f u e l and coolorit ;punip l u b e nd t h e con1;a.i-nrrient a i r systern. S i x o i l systems, c o o l i n g w a t e r s y s dra w i.ng s we r e c omp12t ed Fa’u r 1 n of t h e containment tern instrument p a n e l was completed, and the panel. was delcontrac-1;or. -field a r e compl-ete.

.

Forty-two 2-Pt modular-pariel.. s e c t i o n s a r e required in t h e MS13E i n strumexit system, Designs a r e co f o r 30 of t h e s e panels. Design ox i_mat c ~y 50% c omplc t e e of t h e remaining panel- sections

Field I n s t a l l a t i o n s .

Information n e c e s s a r y f o r t h e devel t h e e l e c t r i c a l power system c r i t e r i a was prepared. This inclu s a f e t y c o n t r o l c i r c u i t 42-v pow m e n % power requirements, and remot r o l reyui-rements f o r switchgear and motor-control c e n t e r s . The de f electrical control circuitry for t w o 40-hp inst;:riiinerit; a i r compressors was completed.

The rwp-irernents for t h e i n s t r u m e n t s arid c o n t r o l s system r e a c t o r c e l l penetral;Loris for e l e c t r i c n l s i abl-es, thei-niocouple lead wi:ye cables, and prieurnatic l i n e s weye d e t e r

in detail.

A mockup of a t y p i c a l MSKE fre 2 valve, with reactor-1;yp rmocouples, s o l i d - s t a t e s w i t c h modules, cooJ_ant;-air system, and c o n t r o l c i r c u i t s was des igrzed and c o n s t r u c t e d . I r z i t i a l t e s t o p e r a t i o n s ind-icate t h a t a l l c o n t r o l - c i r c u i t componen1;s w i l l p 0r.m sat; 7.s fa(;t;orily,

.

Data Fbndli-ng. A r e q u i s i t i o n was issued for a d a t a system b o be a c q u i r e d on a t’ni-ee-yea.r l e a s e p e r i o d with an opt ion-to-buy c l a u s e , Pre1iminar.y p r o p o s a l s from t h r e e rri c t u r e r x were r e c e i v e d the week of nluated i n terms of c o s t and equip,Tul.y 9. ‘The t h r e e p r o p o s a l s we 1% i n accordance w i b h the spe a t i o n . On t’rie b a s i s of t h e prelirninary proposals, a system was -be v e l y s e l e c t e d . This cel-ec-t;i.onW ~ X based 0x1 p r e l i m i n a r y i n f o r m a t i o n and i s s u b j e c t t o change when t h e f i n a l d e t a i l e d p r o p o s a l s a r c received. A review o r t h e p r o c e s s -

compl-ete.

he s e l e c t i o n of the necesn-t i s approx

Pre1.i.minasr.y detector. l o c a t i o n s and mounting r e q u i P r e l iminar y- invc st i.. * s were s t a r t e d .for the stxument a p p l i c a t i o n d i a p 3 . m ~now two-stack monitoring sys terns. show a l l Lhe proposed p.-rocess m 1-2, w i t h t h e e x c e p t i o n of the high1-evel. p;ilmma monitors f o r t h e re and d r a i n tank cells.

d-i s c 11 sse6e


1.6 The r e s u l t i n g recommendations were reviewed by t h e L a b o r a t o r y ’ s Fixed Instrument Advisory Commi.t-tee and by ORNL R a d i a t i o n S a f e t y C o n t r o l pers onnel-. The recommenda-tions f or p e r s onnel-monitoring ins-trumen%ation a r e suminari..zed below: Ins t rumelit Conti-nuous a i r mont’cor, Q-2240 Monitron, Q-115L~ R a d i a t i o n and contaminat i o n monitor, Q-2091 Hand and Poot monitor, Q-1939 Alpha sample counter, Q-2345 l3ei;a sample counter, Q-234-4 Central. c o n t r o l and a n n u n c i a t o r panel‘The d e s i g n of t h i s system was i n i t i a t e d and procurement of t h e r e q u i r e d i n s t r u m e n t s i s under way. Procinrement S t a t u s S p e c i f i c a t i - o n s were prepared and procurement i n i t i a t c d for approximately 80% of t h e components r e q u i r e d i.n the process i n s t r u m n t sys i e m . All panel-mourited inst-mments a r e e i t h e r on o r d e r o r on hand, One hund r e d and twenty-one s p e c i f i c a t i o n s for cornmcmially a v a i l a b l e s t a n d a r d items were prepared, and procurement; was i n i t i a t e d a

T h i r t e e n detail..ed job s p e c i f i c a t i o n s for some components r e q u i r i n g s p e c i a1.- developrnen-t o r procurement e f f o r t were completed, and procurement was i n i t i a t e d . . ‘These .include such items as weld-sealed transrni-t;’l;ers, v a l v e s f o r r a d i o a c t i v e gas s e r v i c e , tkiermocou.pl_e m a t e r i a l , a d a t a - h a n d l i n g system, a c ool..ant-sal..% - s y s t ern ven-i;u.ri flow element, and h igli -tempera’cure NaK-f i1.J-ed. -i;:r.ansmri.tLers.


Nuclear Accident Analyses Analyses of reactor a v i o r i n p o t e n t i a l l y hazard carried out, and t h e res MSRE P r e l i m i n a r y Hazards incidents t h a t w cludod f i e 1 pwnp f a i l u r e a t h i e r , cold-slug accid c : r i t i c & i t y during core f i l l i n of a graphite s t r i n g e r , pass o f iz s l u ~ of ; concentrated

C a l c u l a t i o n a l Procedures 'file c a s e of stoppage t h an a n d o g c troyd, a d i g i t &

1 pump t r i t h t h e r e a c t o r at power bras All o t h e r s i t u a t i o n s were m d y z e d

am f o r NSRE k i n e t i c s a

3

I n 14urgatroyd t h e f i e 1 and g r a p h i t e i n t h e c o r e are t r e a t e d as s c a r a t e bodies, each w i t h i t s own mean temperature and t c c i e n t o f r e a c t i v i t y , The re t o r i s t r e a t e d 8s a p o i n t , the mean flrel t e m p e r a t w e i s assumed to be t h e average of t h e i n l e t an outLet t e m p e r a t u r e s He between f i e 1 and gr t o be p r o p o r t i o n a l $0 t h between t h e f i e 1 a teapcratures Reactivit can bc r e p r e s e n t e d i 1Uga.t;royd 5 s a series of steps and r e t texIiperature i s 7: arded as being eonstar1t ,

.

Results of Fuel Pump Power F a i l u r e Analysis The r e s u l t s o f a simulated f'uel pump f a i l u r e a t a r e a c t o r power of lo J%wl w i t h no corrective a c t i o n , are shown i n F i g " 2.1, The d e c r e a s e i n f u e l - s a l t flow led t o a dcc core cooling sate m d t o

c r e a s e i n t h e e f f e c t i v e del i n i t i d rise i n tile core te t h e r a t e o f heat t r a n s f e r -t; a c t i o n t h e coolant i n t h e r Less t h a n 2 mine Heat t r m creased q u i c k l y by c l o s i n g

-

r o n f'raction, which r e s u l t e d urcs. Also %he loss i n flaw decreased

ary c o o l a n t , and

hed the f r e e z i n g

e radiator can, doors. R e s d t s

no c Orrec-t;i v e

the c a s e

0%


18

1 1400

1300

c

1200

LL 0

. . d

w

w

b

1000

900

800 12

10

8 6

4

2 0

F i g 2 . I. Power and '!l'emperatures Following FineJ- Pwrip F a i l u r e , w i - t h No Cor-rective Ac-t i o n . e


19 c o n t r o l rod a c t i o n and closing of t over failure are gi

reactivity at d heat removal eircwastances the f i e sec ondary eo a l a n t temrperatm

d i a t o r doors fo1.il.owin.g t h e fie t h e c o n t r o l rods per second l aec was stopTed a f t emperature rise was s not became -too low.

Effects of Cold-Slug Acci&ents I

‘Fhe consequences of cold-slug accidents were estimated by cdcuEtaetivity transient as with passage t h e core and traraien-t i n t o a by considering a e t i i v i t y ramps ated by Murgatr nt i n l e t tempe ed on the t e m p e r a t u r e s would be produced clear heating. i n Fig. 2.3 UNCLASSIFIED O R N L - L R - D W G 67579

1300

CI v O

g

w

1200

1100

ADIATOR INLET

I-

1000 a

IO

8 6

3

0 LL

4

2

0 0

20

40

60

80

IQO

TIME ( s e c )

F i g . 2 . 2 . Pump and Te RadiaLor doors closed and c failure.

Following F u e l Piump Power Fa d r i v e n in at o . L ~ i.n./sec af

B

120


20 1300

1200

1100

1000 4

2 0 -2 -4

400

300

200

100

0

0

2

4

6

8

10

12

14

16

18

TIME ( s e c )

Fi-g. 2 . 3 . System Behavior Associated with Passage of Cold Slugs at 900°F and a 1.200-gpm Flow Rate w i t h t h e Core I n i t i a l l - y at 1200°F.

cases: 20 or 30 fi3 of file1 at 3 0 0 0 ~ vas assunzed to be pumped at 1200 g p m .through t h e core; t h e r e a c t o r w a s i n i t i a l l y c r i t i c a l a t L200°F axid a t 1017 power w i t h no c i r c u l a t i o n prior t o i n t r o d u c t i o n of t h e cold slug. Peak temperatures i n the core w e r e e s t i m a t e d t o r e a c h about 1600~~. T’he core pressure rLse w a s not appreciabbe i n e i t h e r c a s e .


21 Results f o r F i l l i n g Accidents

Crit;ie a1Ity c ould

f i l l e d if“ the f u e l were ab were abnormally low, power ex cursioxis t h a s o c i a t e d with h e a t removal i e n t appropri

cly while the

ntrated, or i f 1 rods were witlid c c:ontinued d e n t s were cam1 u s i n g a file1

In .the f i r s t case it w t h a t t h e f u e l was concen-Lratcd by s e l e c t i v e f r e e z i n g in the ha:;en c o n t a i n i -thorium). With 397; of th i l l i n g the cor i n g l i q u i d a t 1200QF a t a i n trould r e s u l t ion about 60 see a f t e r i n i t i a l c r i t i c a l i t y . No s i surge W O U Lresult. ~

Fi.1lin.g t h e core t e m p e r a t u r e of ~ x I ~w ~ F scribed above i f <all ro t h e fuel concentration a, OF w o u l d produce a. much

t h e n o r m 1 h e 1 cozac tion and a excursion sirriilas t o t h e thdrawn Filling at s corresponding t o c r i t i c a l i t y a t

l e r excursion.

E f f e c t of U n c o n t r o l l e d Withdrawal of Rods

simltm~ol~ wLth*aFTa&l s of all. three rods could produce a large 2oo-cre-r excursion and undesirably hig atures i f -these rods were withdrawn rapidly with the r e a c t o r i r i i t iced o r a t very low power. 1; case examined, t i v i t y addition m,s acsimed to be /k p e r second a d power w a s taken t o be 1 watt. A povcr excursion to ‘730 T4-w surge of 19 psi resdi;ed,, More serious, the c a l c u l a t e d rnc t;i=c ro;-;e from the - j n j t i c d 1.2(]0”~ to a, h i g h of s600V, locrd urcs in e x c e s s of 2000’F were cstiillczLed

0

E f f e c t of Graphite Movcmcnt


22 R e s u l t s of Concentrated fixel Addition An upper l i m i t on t h e d i s t u r b a n c e s which could result from a mcl a d d i t i o n of 1.20 g of IJ23'' was c a l c u l a t e d . For t h i s case it w a s p o s t u l a t e d t h a t t h e added f u e l passed through t h e c o r e as a f l a t pancake-shaped d e ment under normal f l o w - r a t e c o n d i t i o n s . If t h i s were possible and t h e r e a c t o r were i n i t i d l y a t 1 0 Mw, the power would rise t o a peak of 1-20Mw, and t h e f i e 1 mean temperature would r i s e 90째F. The p r e s s u r e surge would be about 2 psi.. SmnaJ-ler d i s t u r b a n c e s would r e s u l t a t lower i n i t i a l . . powers. Reactor S t a t i c s C a l c u l a t i o n s 'The r e a c t o r s t a t i c s caJ_cul..ations r e p o r t e d h e r e are based on the c u r rent r e a c t o r d e s i g n . In t h i s connection, a two-dimensional, 19-region n u c l e a r model of t h e r e a c t o r was u t i . l i z e d t o r e p r e s e n t t h e v a r i o u s r e a c t o r r e g i o n s . Because of t h e 1 - i m i t a t i o n t o two dimensions, t h e c o n t r o l rod thimbles were considered as a s i n g l e 1f;lOR-8 c y l i n d r i c a l annulus concen"cric with t h e core c e n t e r l i n e . A v e r t i c a l h a l - f - s e c t i o n of t h e r e a c t o r model showing t h e r e l a t i v e s i z e s and p o s i t i o n s of t h e v a r i o u s r e g i o n s i s shotan i n Fig. 2 . h . The boundaries of t h e regions and t h e volime f r a c t i o n s of fiel., g r a p h i t e , and INOR-8 i n each a r e swnraarized i n Table 2.1.

4

-

A fie1 s a l t mixture conkrzining x mole $ UF4, 70 mole LiE', ( 2 5 x) 'lhc was considered i n t h e c a l c u l a t i o n s . i s o t o p i c compositions o f l i t h i u m and uranium were based on m a t e r i a l comp o s i t i o n s t h a t might reasonably be a v a i l a b l e f o r use i n the r e a c t o r . The

mole '$ ReFZ, and 5 mole $ ZrF4

Table 2.1.

Region

A

Radius ( i n . )

Inner 0.

29.00

D E

3.00 3.00

0

F

28.00

H X J

27.73

G

3.00 3.00 3.00

K

2.94

M N 0 P

2.34

1,

G

R

S

Height ( i n . )

Composition ( v o l I -

B C

Nineteen-Region Core Model Used i n Equipoise Cal.7.cula'iionsfor !ERE (See F i g . 2.4 for g r a p h i c a l l o c a t i o n of r e g i o n s )

0

0 0 0 0 0 0

Outer

29.56 2 9 3 29*% 29.00 28.00

29.00

28.00

71-75 28.00

27.75 3.00 2.94 27.'73 27 075 39 00 29.00 2.94 2.94 2.94 e

Bottom

74 *92

-9.l i c

-10.26 67.47 66 .m 0

6 5 53 64 059 0

5-50 5-50

2.00 2.00 0 -1.41

-9 .I.)-; 66.22 6 5 53 64 .59 9

'Top

Fuel

Graphite

76.04 74 -92 -9.14 74.92 67 -47 67.47 66.22 65.53 65 53 64.59 74 092 64 *59 3.50

0 0 0 100

0 0 0 0

100

0

9

2.00 0

-1.41 ,-(,!I-.92 66.22 65 53

93 *7

94 .6

63.3

0 22.5 0

25.6

22.5

23 .'[ 46.9 90.8

1-00

89.9

43.8

3.5

5.4 36.5 0

77 - 5 0

74.4 '1'7 .? 76.3 15.3

0 0 1O"I

56.2

5) INOR-8

100 100 100 0

2.8 0

0 0.2 100 0 100 0 0 0

I-'{.8 9-2 0 0 0

Region Represented

Vessel t o p Vessel s i d e s Ve s s e l bottom Upper head

Downcomer Core can Core Simulated thimbles Central region Core fiorizontal s t r i n g e r s Bottom head


23 UNCLASSIFIED ORNL- LR-DWG 73C10

-

D

Q

\

L

.

K

f

I

J

---F B

t

M N

I

F i g . 2 . 4 . Nineteen-Reg See Table 2.1 for e x p l a n a t i o

ore Model for. Equipoise-3A C a l c u l a t i o n s . s.


24 c z l c u l a t i o n s d e s c r i b e d below were f o r an isothermal. system a t 1200째F w i t h no r e a c t i v i t y c o n t r o l l e d by t h e c o n t r o l r o d s , no f i s s i o n - p r o d u c t poisons, and no chemical i m p u r i t i e s i n t h e f'uel . C r i t icczJ_ity C a l c u l a t i o n s

The i n i t i a l c r i t i c a l i t y c a l c u l a t i o n s were made v i t h Modric, a 34-g;r.oup, m u l t i r e g i o n , one -dimensional, n e u t r o n - d i f Pusion p r o g r m for t h e IBM-7O9O. &cause t h i s program. i s limited t o one dimension, two types of geornc4,ry c a l c u l a t i o n s were m i l e . One vas based on slab geometry, w i t h r e g i o n and m a t e r i a l s p e c i f i c a t i o n s corresponding t o an a x i a l t r 3 w r s e through t h e main p a r t of t h e core; a r a d i a l b u c k l i n g term was user1 i n t h i s c a l c i d - a t i o n . 'lbe o t h e r w a s a r a d i a l c a l c u l a t i o n , w i t h r e g i o n and rncteri a1 s p e c i f i c a t i o n s corresponding t o a r a d i a l Lraverse tizrough t h e r e a c t x midplane; an a x i a l 'suckl-jng term w a s used i n t h i s c2_1c u l z t i - o n . The ts:o c z l c u l a t i o n s agreed w i t h i n 1); i n p r e d i - c t i n z a c r i t i c a l uranium concentrdxSon o f 0.13 mole $. l n a d d i t i o n , t h e se c a l cu1a,t ic)n s p r ov ided the t v o -6;r oup nuc 1e nr constant, s for each of t h e r e g i o n s as requi-red for two-dimens iorial, two-group c a l c u latj-om

.

Flux D i s t r i b u t i o n s The s p a t i a l . d i s t r i b u t i o n s of t h e f a s t and thhF.rmal fluxes and a d j o i n t f l u x e s were c a l c u l a t e d f o r t h e 1 9 - r e g i o n 9 2-dimensionzI- model u s i n g t h e Equipoise-3A program. The r e s u l t s f o r a r e a c t o r power o f 1 0 14v a r e p r e s e n t e d i n F i g s . P " 5 and '2.6. The r a d i a l d i s t r i b u t i o n s ( F i g . 2.3) are for an a x i L z l p o s i t i o n t h a t corresponds to t h e maxix:iun i n t h e thermal flux, which i s a t a p o s i t i o n v e r y c l o s e t o t h e core midplctiie. The a x i a l d i s i n . from t h e c o r e c e n t e r t r i b u t i o n s " ( F i g . 2.6) a r e g i v e n for a p o s i t i - o n l i n c ; thi.; r a d i u s corresponds t o t h e maximum v a l u e of t h e t h e r i d flux. Information about t h e space-energy d i s t r i b u t i o n of t h e f a s t f.I.ux was o b t a i n e d by combining t h e Equipoise-3A r e s u l t s w i t h t h e results o f t h e two P4od.r.i~ c a l c u l a t i o n s . Figure 2.7 shows t h e r a d i a l d i s t r i b u t i o n , near t h e c o r e midplane, o:f t h e neutron f l u x e s f o r e n e r g i e s g r e a t e r t h a n 0 . 1 and l . 0 &v, and F i g . 2 . 8 shows the axial- d i s t r i b u t i o n of t h e same f l u x e s 3 i n . fi-om the core ccn-Ler l i n e . This r a d i a l p o s i t i o n corresponds t o t h a t of tile c o n t r o l - r o d thimbles and t h e s m a l l g r a p h i t e t e s t specimens. The fluxes a r e normalized .to a power l e v e l of 1 0 Th. Power Density The s p a t i d . d i s t r i b u t i o n of t h e power d e n s i t y i s determined by t h e t o t a l fission rate. About 87';; of the t o t a l fissions in .the LERE are caused by thermal- n e u t r o n s . A s a rcsuJ..t, t h e s p a t i a l d i s t r i b u t i o n o f t h e f'uel.. power density i s e s s e n t i a l l y tine same as t h a t of t h e theri-nal-neutron flux:. rmzaxirnuni ~fucl-power d e n s i t y at; 1 0 MFI w i t h no f u e l pertneation o f t h e The corresponding;'maximuxi graphi:Le power d e n s i t y g r a p h i t e is 33.6 w/crn3 is 0.83 W/C& e

"Te ' reference p l a n e for a x i a l Ineasurcrncnts vas t h e bottom of t h e h o r i z o n t a l g r a p h i t e b a r s on vhicli t h e v e r t i c a l - stringers a r e zupported.


Y

I

.

..-1_

X

J -

c

25 ........

....... 0

I"

___ ........

I

......


UNCLASSIFIED

ORNL-LR-DWG 736i3 I

I

i

I

I

I

I

I

II UNCLASSIFIED ORNL-LR-DWG 73614

0

5

,

10

I 45

I

20

25

30

RADIUS (in.)

F i g . 2 . 7 . Xaaial Profiles of High-Energy Neutron Fluxes i n Plane of Maximam Flux Based on. Modrie Czlc:iLations.

A X I A L POSITION (in.)

Fig. 2.8. Sigh-Energy Neutron Fluxes 3 i n . from Core Center Line Based on Modr-ic Calculations


27 S t e a d y - S t a t e Fuel and Graphite Temperatures i n e d from Equipoise c d c t u r e distributions and average a t i u n a t 10 plhir."

Fluxes and power d e n s i used to e s t i r m t e fuel an temperatures f o r steadyTemperature D i s t r i b u t i o n s

V

The shape of t h e t mined by the shape o f t r n . I n the main p a r t o channels among the graphite a1 f i e 1 channels a grass d i s t r i b u t i o n s . The e f f e c t on the r e a c t o r a v e r on 1O-Mw r e a c t o r o p e r a t i o n and

on i n t h e r e a c t o r i s d e t e r ribution and the fuel flow where t h e f i e 1 fl o c a temperature e r s are super

t i o n s , which have t h e s c r i b e d below t o t a l f l a w r a t e of 1200 g p m . I

8

In d e s c r i b i n g t h e t h e c o r e which g e n e r a t e o c i a t e d with the considered, t h a t is, the c e n t r .le 'The fie1 temperature in a J, L, M, and N i n Fig. 2.4 and ne1 a t a p a r t i c u l a r e l e o f t h e r a d i a l position channel, t h e i n l e t f'uel. t ature, t h e flow r a t e i n t h e channel t o t a l mount of h e a t p r i n or t r a n s f e r r e d t o t h e from thhe i n l e t t o t h e e Lion. Figure 2 . OWE the ax on of fuel.,temperature i n t h e h o t t e s t charnel f o r t h e t r i b u t i o n calculated for the what 'nigher t h a n t h e r e a c t o r i n t h e entr<mce r e g i o n s t h r must pass in r e a c main p a r t of t h e core. radial v a r i a t i o n i t e n p e r a t a r e a t t h e midpl thhe c o r e . The r e l a t i v e l y lower t; i n the cen2;rcd arid o u t e y i n t h e c e n t r a l c, v e l o c i t i e s i n these r e g i o n s . expected t o be about t h r e e t of t h e remaining c Less extreme v a r i a t i o n s a r e expected i n the outer channels,

The o v e r - a l l temperat i n t h e g r a p h i t e depends on the f u e l t e m p e r a t u r e , t h e graphi-be d e n s i t y , and t h e r e s i s t a n c e to transfer of h e a t produced i n the gr t h e me1 i n t h e a n t ch-else resistance of t h e to heat t r a n s f e r ces sme eLevation of t h e g r a p h i t e t e urc above t h a t of the fuel., b u t he Poppendiek ef f e c t ture d i f f e r e n c e t e m p e r a t u r e in a gr xial d i s t r i b u t i o immediately a d j a c e n t t o the h o t t e s t fie1 c h a n n e l s . ?!he c a l c u l a t e d a x i a l 6Jn H. Engcl and P. N . Haubexlreich, "Temperatures i n t h e MSU3 Core - ~ ~ - 3 7(8i n p r e p a r a t i o n ) During Steady-State Power

"Forced Convection Heat T r a n s f e r 7W. F. Poppendiek and I-,. in Pipes with Volume neat Scnxrces Within -the Fluids," ORT\JL-l393-C, Nov. 11,

1973


-~

0 *)

c‘1

W

t a I

a W K

.............

__

c2

d‘

0

4 -............

\ u) 0

c!

28

“I

(u 0

m 0

In c u

0

In

0


29

P

ansfer i n the horn t h e radi The d i s t r tures would have t h e same L2째F.

.

be expected in t h e MSRE because glected i n the t h e graphite te p l a n e of x ~ m i m u m t would be d i s p l a c e

The g r a p h i t e temperature d i s t r i b u t i o n s i n Figs 2.9 and 2.10 were r e a c t o r power i s produced i n t h e j no other heat sources i n t h e graphtemperature d i f f e r e n c s a l t soaks i n t o t h e ringers. 2% OP t, t h e maximum r and t h a t i n t

calculated on t h e b a s i s t h a t t c by g m a and n e u t r ite T.JCTC considered. The gr er than t h e i n d i c a t e c e s a source o f f i s s vol.wne were u n i f o m i l y f i l l e d the mean temperature i n a channel would i n c r e a s e f'r

a

I n a d d i t i o n t o t h e above r e s u l t s %or the main core r e g i o n s , t h e mean fuel t e m p e r a t u r e s and tempe re a l s o c d c d a t e c f . for a number of peripher'd. r e g i o n s , base O-Mcr r e a c t o r o p e r a t i o n and a n average fluid temperatwe r i s e of 3 through the c o r e , The i n c r e a s e i n ,fuel temperature as the ough a region and t h e a s s o c i a t e d mean tenpcratures f o r t h e are summarized i n Table 2.2

Average Temperatures A useflil concept in r e l a t i n g t h e actu.d. fkl and g r a p h i t e temperature d i s t r i b u t i o n s t o t h e t o t a l . r e a c t i v i t y i s the nuclear average t s q u a n t i t y i s d e f i n e d as %"allows: A t low power, reactor c r assumed to be e s t a b l i s h e d a t i s o t h e r m a l temperature c o n d i t i o n s g r a p h i t p Then, as t h e power i s ed, t h e f'uel n u c l e a r aver i s d e f i n e d as t h e e uniform Sue1 t e toted r e a c t i v i t y leve associated with t h e actu b i t e t e a p e r a t u r z held cons re d i s t r i b u t i o n , w i t S h i l a r l y , t h e graphite nucleax av temperature, T i s d e f i n e d as t h e the same r e a c t 9 v i t y l e v e l as t h a t uniform g r a p h i t e temperature t n by t h e a c t u a l g r a p h i t e t e profile, w i t h t fb.el temperature held c o n s t a n t . A r e a c t o r n u c l e a r average temperatme could be define& an analogous rim,nner; however, it s marc convenient t o c o n s i d e r a t e d below. and T* i n d i v i d u a l l y in t h e manner 43 Using first -order, two-group p e r t u r b a t i o n t h e o r y , the rela-Lion der i v e d between t h e n u c l e a r average temperatures and t h e actual, d i s t r i b u vas 8

,

,

c

'B. E. P r i n c e and J . 8. Engel, Averaging i n t h e lGRE, " ORPL-TM-379

"Temperature and R e a c t i v i t y C o e f f i c i e n t ( i n preparation)

.


30

-)t

'1'

7

J'Reactor.

T ( r , z ) G ( r , z ) dv

J'

Reactor

9

G ( r , z ) dv

where

'Table 2 . 2 . Fuel Terrperature Rise and Average Temperature Associated with Various Keactor l{ei;ions a t a Power Level of 10 I v h

a

Region

Average Temperature Rise i n Passing Through Region (OF)

2 -4

D

F

0.8 1.3

G

0.5

fi

0.6

3

43 -0

E

Aver age Temape ratu r e

in Region ("I1)

1224.7 1223 .i 11'7

.6

1222.4

1231 "9

22.0

L

1.o

14 ri

0

P

Q

1.'-(

1200.9

S

0.2

1199.7

H

0-3

ll.99 9

a

See Table 2 . 1 and Fig. 2.4 f o r 1.ocation and comp o s i t i o n o f r e g i o n s ; only r e g i o n s which contain f'uel- a r e considered here bActuaiL temperature distribution w a s computed i n t h i s region; s e e Fijl;s 2.9 and 2.10.

.

.


31

Y

*

*

*

In E q . (l), T i s e i t h e r Tf or T , nd t h e i n t e g r a t i o n t t h e reactor volume. I n t h e d e f i n 9 t n of G ( r , z ) , $1, &,

t h e f a s t and slow fluxes, and t h e f a s t and slow a d j o i n t lY; -t G i j are c o n s t a n t c o e f f i c i e n t s f o r each r e g i o n of which t h e composition i s uniform and are r e l a t e d t o the macroscopic Lwogroup nuclear. c o n s t a n t s . The vciLues f o r

pl and

*

e r t w b e d f l u x e s and a d j o i n t f l u x e s c a l c u l a t e d a t i s o t h e r m a l con he reactor. In E q a (11, the temperature derivations assacia f'unction G are taken w i t h resp t o Tf i n o b t a i n i n g t h e f'uel-te weighting f u n c t i o n , m d w i t h r e s p e c t t o T i n o b t a i n i n g t h e graphite f u n c t i o n . Q I

C

The temperature-weighting functions were e v a l u a t e d from t h e E R E , u s i n g t h e Equipoise two-group e s , a d j o i n t fluxes, and n u c l e a r parameters. "he r e s u l t s are shown igs. 2.11, 2.12, and 2.13. These c o r r c spoind t o radial and a x i d t r a v s , which p a s s through t h e t'nermal f l u x m i n r e g i o n J of Fig* 2.4. D i s c o n t i r i u i t i e s i n t h e weighting f i n e occur as t h e e f f e c t i v e f i e 1 volume f r a c t i o n changes from r e g i o n t o r e g i o n , and t h u s r e f l e c t t h e c, n l o c d neutron m u l t i p l i c a t i o n , as ~ h ~ eas l l t h e v a r i a t i o n i n nuclear importance from region t o region. UNCLASSIFIED O R N L - L R - D W G 73617

1.0

0.9

0.8

0.7 w z 0

E8

0.6

2

0.5 W

_I

0 3

z

P

Id

-

cl.4

l-

a

J

$ 0.3 0.2

0.1

0 0

5

10

45 RADIUS (in)

20

25

30

Fig. 2.11. R e l a t i v e Nuclear Importance of F u e l and Graphite Temperatlure Changes as n Function of R a d i a l P o s i t i o n i n Plane o f Maximum Tberwml Flux.


32

1

-

UNCLASSIFIED ORNL-LR-DWG 73618

.o

!

I

1

0.8

W

$

0.6

a

0:

a E -

0.4

cy

a W

0.2 3 2 h J

?

o

a

J W K

-0.2

-0.4

-0.6 -20

-10

30

20

10

0

I,AXIAL

40

60

50

70

80

POSITION ( i n )

F i g . 2 . 1 2 . R e l a t i v e Nuclear Inqortazlce of Fuel 'remperatu.re C h n g e s as a Fimctrioii of P o s i t i o n on an Axis Located 7 i n . from Core Center Line. UNCLASSIFIED ORNL-LR-DWG 73619

1.o

0.8 0 W

5

0.6

t-

u:

n 0.

I

-

0.4

K

Q W J

0

0.2

3 z W

2

a

0

,+

w

a:

*

-

~

p

MAIN PORTION OF

CORE

-0.2

-0.4

- 10

0

10

20

30

I ,A X I A L

40

POSITION

50

60

70

80

( in.)

F i g 2.13. R e l a t i v e Nuclear Imnportance o f Graphite Tempera-1;u.re Changes as a Function of Position on am Axis Located 7 i n . from Core Center Line a

a


33 Use was made of Zhese t nuclear averages o f Tf a w i t h reactor i n l e t and ou 'Ihe r e s u l t s o b t a i n e d are f u e l permeation of t h e gr avercage t e m p e r a t u r e s are

ature-weighting f u n c t i o e c o n d i t i o n s o f a 10 a t u r e s of ll7> and 1 l e 2.3, c o n s i d e r i n g levels of e, Both t h e bulk average and t h e nuclear

Table 2.3. Average Temperatures i n Reactor Vessel at LO as a E'unction of Fuel Permeation of Graphite

a

Eflw

Graphite Tenzperature s

Fuel Permeation ($ of graphite

(OF)

volume )

0

0.3

rguciear liverage

I3L.k Average

Average

Nuclear

Bulk Average

1213 .i

119.0

1256*6

1226.3 1227.h 1230

129.4

1263.rq

2.0

. r (

S i n c e axial h e a t t r a n s f e r i n t h e g r a p h i t e w a s n e g l e c t e d , any heat produced i n t h e g r a p h i t e w a s c o n s i d e r e d t r a n s f e r r e d t o t h e f'uel irmedia t e l y adjacent t o i t . As a r e s u l t , t h e gross ~ " u e l t e ature d i s t r i b u t i o n w a s unaffected by f'uc meation. It vas assumed %hat t h e shapes of t h e teraperlzt;ure-weighting functions were a l s o unaffected S O t h a t t h e d i f f e r e n t degrees of Sue1 permeation d i d n o t produce any change i n the me1 n u c l e a r average te e. The changes i n the g r a p h i t e n u c l e a r average t e m p e r a t u r e resulted from changes i n the t e m p e r a t u r e level of t h e graphite e

Reactivity Coefficients

Temperature C o e f f i c i e n t s C o n s i s t e n t with t h e d e f i n i t i o n of t h e nuclear average t e m p e r a t u r e s , e-averaged t e m p e r a t u r e co e n t s of r e a c t i v i t and f i e 1 were c a l c u l a t e d . , The equ for the coeffici on f i r s t - o r d e r p e r t u r b a t i o n t

previously

.

Results of calculations f o r fie1 c o n t a i n i n g no thorium, based on pert u r b a t i o n t h e o r y are co elaw w i t h those based a one-region previous s t u d i e s . 9 homogeneous - r e a c t o r model c o e f f i c i e n t s of r e a c t i v i t y , of (Gk/k)/OF, were: __

-

"'&Ts:E?~ Prog. Rep. March 1 t o August 31, 1961,''ORNL-321Fj, p . 83.


34 For Fuel ____I

P e r t u r b a tion theory Homogeneous r e a c t o r model

For G r azphit e _lll_

-4.46 x 1.QDD5 - 4 ~ 3x 10-5

-'(A27x 10-6.92 x 10-5

The d i f f e r e n c e s i n t h e r e s u l t s from .the two met'riods are small and ml-1 w i t h i n t h e probable error a s s o c i a t e d with t h e vaJue of the temperature c o e f f i c i e n t of expansion o f t h e salt. I%e c o e f f i c i e n t s from the homogeneous model do depend s t r o n g l y , however, on the c o r r e c t choice o f e f f e c t i v e r e actor s i z e . These c a l c u l a t i o n s a l s o account for t h e e f f e c t of t h e sal_% temperature on f a s t - n e u t r o n Leakage; taking t h i s i n t o account has the n e t result of increasing t h e f u e l c o e f f i c i e n t slightly r e l a t i v e t o t h e g r a p h i t e coefficient.

Power C o e f f i c i e n t pawer c o e f f i c i e n t o.f r e a c t i v i t y i s defined here as t h e m o u n t of r e a c t i v i t y r e s u l t i n g from n u c l e a r heating t h a t must 'oe compensated by control rod motion p e r unit i n c r e a s e i n power, This may be caLculated from t h e r e l a t i o n s between nixLea- average t e m p e r a t i u e s , fuel i n l e t and outlet temperatures, and r e a c t i v i t y c o e f f i c i e n t s e At a 1 - 0 - M ~ thermal power, t h e s e relatiions a r e

=

reacLivity change associated with changrs

=

fuel. nuclear average temperature,

nuclea-c. average tamperatuyps,

t.11

obtaining power c o e f f i c i e n t s of reactivity, t h r e e cases we-fe con-


35 w a s assumed t o be 1200OF; t h e r e i z c t i t h e power t o 10 Mw was e for esults a r e p r e s e n t e d i n T a b l e 2.4.

i n i t i a l t e m p e r a t u r e a t zero associated with i n c r e e e cases considered.

Table 2.4.

Condition

Temperatures at 1 0 Ma- and A s s o c i a t e d Power C o e f f i c i e n t s of R e a c t i v i t y

Tfo ("3')

"f i.

Tf

( O F )

( O F )

T;

(OF)

T'*

(OF)

Power

Coefficient [(*$ dk/k)/fsrw]

E f f e c t i v e Delayed-Neutron F r a c t i o n s

.4 sec i n t h e core and 16.4 see f i e 1 circulating at a l a r g e frac on o f the longer i n t h e remainder of t h e 1 l i v e d delayed n e u t r o n s vi side t h e c o r e and e f f e c t i v e l y s o w e e d i s t r i b u t i o n s t h a t will lost Furthermore, t h e s w i l l increase t h e leakage r e s i l t from t h e transpos probabili.ty f o r t h e n e u t r o ted i n t h e core. Tne r coul"cribution of pi, the f group i, t o would have a strang e f f e c t r e a c t o r k i n e t i c behavi k i n e t i c s c r a l e u la t i o n s ( I h r g a t royd s t h a t have been deve ch) do n o t t r e a t t h e ns r i g o r o u s l y , I n s t e a d , t h e y use tron and p r e c u r s o noncirculating syste t i n g from c i r c u l a t i o n , Thus u s e of of pi a d j u s t e d t o allow f o r l o s s e t h e s e p r o g r a r ~ sr e q u i r e s p r e v i o u s e v a l u a t i o n of effce-t;ive (3.1. v a l u e s

,

.

.

Some c a l c u l a t i o n s were made t o determine t h e e f f e c t o f t h c energy and s p a t i d d i s t r i b u t i o n s of t h e de n e u t r o n s on t h e e f ' f e e t i v e values of P i i n steady-state operations r each group, t h e s p a t i d . d i s t r i b u t i o n of t h e delayed-neutron source 'rms c a l c u l a t e d from the precursor p r o d u c t i o n d i s t r i b u t i o n (which w a s assumed t o follow the RuldmentaL mode of' the neut r o n flux), t a k i n g i n t o account t h e t r a n s p o r t of t h e precursors p r i o r t o t h e i r decay. The c o r e w a s r e s e n t e d as a s i n g l e region, with uniform f i e 1 volume f r a c t i o n and v e l o equal t o t h e averages for t h e c o r e . Figures 2.14 and 2.13 c a l c u l a t e d S Q ' L U " ~d~ i~s t r i b u t i o n channel through t h e core. ties a r e per u n i t volume of f i e 1 s a l t , n o m d i z e d to one fission neutron, and apply t o a channel where t h e f l u x L)

"P. N . Haubenreich, " E f f e c t i v e Delayed Neutron Fr.a,tctions i n lGHE, 0RNIJ-TM-~8O ( i n p r e p a r a t i o n )

.

'I


I

I

-

I

36

0


37 equals t h e r a d i a l average.) layed neu.tron t o t h e import r a t i o of t h e a p p r o p r i a t b i l i t y f o r n e u t r o n s of source d i s t r i b u t i o n

The ratio of t h e nuclear imp

m c e of a deprompt neutron wizs taken t o be t h e a b i l i t i e s e The n o d e p was c a l c u l a t e d by r

m = l n==l and a s s i g n i n g t o t h e m,n term a nonleakage p r o b a b i l i t y given by 2

e

-B

T

m i

and

i d d i s t r i b u t i o n for delayed meutrons whcre S . ( r , z ) i s t h e source 5 I c o e f f i c i e n t s , j, i s the m t h r o o t of o f i t h group, Sjem a r e expans %he zero o r d e r Bessel f u n c t i o n , Jo, R i s t h e r a d i u s of t h e r e a c t o r , H i s t h e h e i g h t of t h e r e a c t o r , L i s t h e thermal dif.fusion l e n g t h , and T i s t h e Fermi age f o r delayed neutrons o f t h e i t h group. The age, 1;i y i was reduced from t h a t f o r p e u t r o n s t o allow f o r the lower i . n i t i a l energy of the delayed neutrons. (When t h e fie1 i s not c i r c u l a t i n g , t h i s e f f e c t enhances t h e importance of the delayed neutrons by reducing t h e nanleakage p r o b a b i l i t y , ) R e s u l t s of t h e calculations are swmnarized i n Table 2.3.

Reactor Kinetics Codc Development P r e l i m i n a r y results were o b t a i n e d S r o m a new r e a c t o r k i n e t i c s program, Zorch, i n which approximate i s t a k e n of the space depe e sf fix.3 and g r a p h i t e temperat is i s an iniproved v e r s i o n of the f h r g a t r o y d prograa used in p studies. I n the Zclrch c d _ c u L a t i o n , t h e r e a c t i v i t y was related s t i c a L l y t o the temper by u s i n g -the coficept of nu ge temperatures. m i n g an excursion, the a x i a l povcr-density shape ssumed t o be t h a t of t h e f'mdrwnental. mode, t h a t is, sin rrz/tE. The temperature p r o f i l e w a s r e c a l c u l a t e d a t each t i m e s t e p , taking i n t o account exler~vproduction, transfer, and t r a n s p o r t e I n t h e r a d i a l d i r e c t i o n , t h e magnitudes of t h e temperatures

c


\r,

Ln

.f

m

cu

r(

38


b

I

--~ 39 "[""""'............. . I

.................

. A


. 40 and power d e n s i t y v a r i e d w i k h time; however, t h e power d e n s i t y shape was assumed t o remain t h e same as in-i.tial.1-y.

Results of c a l c u l a t i o n s f o r t h e JURE w i t h f’uel c o n t a i n i n g 176 thorium were obtained for a test case i n which one d o l l a r of r e a c t i v i t y vas added i n s t a n t a n e o u s l y (Feff w a s assumed t o be 0.00311). The i n i t i a l . power l e v e l w a s 1 0 M S J . The axm mum r i s e i n the f u e l n u c l e a r average temperature was 9 6 ” ~ .( T h i s w a s about 4*F h i g h e r t h a n the maximum r i s e i n t h e f i c l mean temperature computed i n t h e Murgatroyd program.) R1so t h e r a t e af rise o f t h e n u c l e a r average “cenrperaturr w a s h i g h e r t h a n t h e r a t e of rise o f t h e mean r e a c t o r t e m p e r a t u r e . The maxiinurn p ~ w e rl e v e l c a l c u l a t e d w i t h t h e Zorch p r o g r m was 78 Mw, as compared w i t h lo7 14-w from the Murgatroyd calculation. A s an o p t i o n i n t h e Zorch program, t h e %emperature p r o f i l e s i n fie1 and g r a p h i t e a t s p e c i f i e d time steps may be p l o t t e d u s i n g t h e Calcomp d i g i t a l p l o b t e r . ?’he temperature p r o f i l e s a t t 0, obtained f o r t h e t e s t case, are shown i n Fig. 2.16. The change i n t h e f’ucl temperature w i t h time fo.lloTting t h e r e a c t i v i t y i n s e r t i o n i s i n d i c a t e d i n F i g . 2 .l’(.


3 . COMPONENT DEVELOPMENT Freeze -Flange Development

A p a i r of INOK-8 freeze f h i i.ns t a l l - e d i n the. freeze- f l a n g e - s

ther~nal-d i s t o r t i o n and gas leaka FolL1-owing Lhe su-ecessful c flanges w a s riated with n e w service. The several t e s t s a r e

f o r > - i n . - d i a m sched-4-0 pipe w a s t e s i i i i g f a c i ~ i - t y lfor measurement of emperature o p e r a t i o n . i s s e r i e s of t e s t s , each of two s srid placed i r i b actua,l s a l t

Free ze -Fl-arge -Seal Test ?"re f l a n g e s mounted.. i n t h e s e a l - t e s t i n g f a c i l i t y were therrnally c y c l e d i - r i a i r , arid p r e c i s e suremerits were made of flarige dimensions and of heliwn leakage a% t h e r i n g - j o i n k seal. This p r c l i i n i n a r y t e s Ling c o n s i s t m l of 10 cycle:; from a c o l d coizditioxi Lo a, h o t equilibriun condi2;ion. The e q u i l i b r i u m temperatures were varied a t 10O0F i n t 800 t o 1-400"F. H e a t was p r o ded by 12 s i l i c o n c a r b i d e h e a t i n g e:LemenCs i r i the bore of the f l a n g e arid by removable pipe-heaters:? a l o n g f;he ex teinior of t h e flarige adaptor, beginning 2 1-/4 i n . from ilie flstnge fac e

A t a bore teniperature of l~+OO째F, t h e r a , d - i a l p o s i ' c i o n of t h e f r e e z e point; was 7.1 i n . , vhich i s b e l i e v e d t o be s a t i s f a c t o r i l y f a r from the average d e c r e a s e of t h e frceze-poifrL ring-gasket r a d i u s of LO.4-i n . raliiis w a s 11/16 i n . f o r each 100째F d e c r e a s e i n b o r e t e n p c r a t u r e . I'he external- thermal d i s t o ion of the ?-in. INOX-8 flanges, b o t h at t e n q e r a t u r e e q u i l i b r i u m and d u r i n eirrpcrature t r a n s i e n t s , w a s f uund t o be much less than t h t i o n OP the 6-in. ~ ~ i e o v z ef l a n g e s t e s t e d p r e v i ~ u s l y . ~(The f f f e r e d only i n nm-tcria,l and bore diarxieter ) T h e IN OH-^ c o o l e r t h a n t h e l n c o n c l flanges, as shown in Fig. 3.1. rider equ-ilibrium condi t i o n s c7,re given in Table 3 . l . Start l . i b s i w - n b o r e temperatures of 1.300 c a r b i d e h e a t i n g elezncnts in t h e axid ~ ~ o o O P , a l l power t o t t r m s i e n t s i m u l a t i n g a s3lt dump IN0li-8 Tlanges m s c u t o f Wlicn t h e bore t c x p c r a t u r e t h e m a x i n u n ex-ter+nald i s t o r t i o n w a s 6 mn.il_s, i n d i c a t i n g t r t i o n i s induced during temperature tmnsieats This l i m i - t s of frozen s a , l - t -that c o u l d be trap-ped between the f l a a rapid cooldowri a,nd which co1d-d l e a d t o p'emanent n. No peirmanen-l; d.:i.s..;-koi%ionwas noted at t h e o u t s i d e of Upurz opening t h e f l a n g e j o i n h , however, the i n n e r f a c e s were Pourzd t o be s l i g l i t l y convex; the a x i a l di-splacement of t h e c e n t e r of t h e bore was 1-4- mils.

.

a

a


UNCLASSIFIED ORNL-I-R-DWG 73982

1400

1200

1000 h

LL 0

v

IJJ

!?j800

ta [r

W

a

2 w I-

600

400

-

FLANGES: 0 INCONEL INOR-8

200

0

0

2

4

6

10

8

DISTANCE FROM PIPE CENTER LINE ( i n . )

FigS.3.1. Temperatures of I n c o n e l and XNOR-8 Freeze Flanges a t Comp a r a b l e D i s t a n c e s from C e n t e r Li.ne of Pipe. Flanges t e s t e d i n a i r .

Table 3.1 e Maximum External- Themial. D i s t o r t i o n o f Freeze Flanges a t Various Bore Temperatures E q u i l i b r i u m Bore

1400 1300 1200 1000

D i s t o r t i o n (nfiils ) 5-in. INOR-8 Flange a

22

18 12

8

6-in. Inconel Flangeb

63 6.1

51 24

a D i s t o r t i o n measured l+, 50 i n . from c e n t e r l i n e . b D i s t o r t i o n measured 5.33 i n . from c e n t e r l i n e ,


'&TO nickel ring-,j o i n t cycles, an oval r.i-rg gasket,

s were tested. For t h e f i r s t f j v e sed; for t h c second five cycles, an o c t a g o n a l r i n g gasltct sms i cd. Ind_ica,i,ed. 1_eskngc:, T ? I : ' L ~ , ~ t k i c b u f f e r space e-vacuated, wads very- low all Limes. Yhcrcsl was a, tendency f o r t h e l e a k ratc t o i n c r e a s e as -the number of cycle,^: increased arid to d e c r e a s e at higher t e m p e r a t u r e s , Leak rates t h c outsi.dc of t h e b u f f e r were cons.istexitly h i g h e r t h a n t h c l e rates t o t h e bore i . ~ h _ ~ ~ u @ ~ senL of - t h i s buf.fe:r z o m

.

7% axial-Cycle -

Test Loop

F o r t y - t h r e e cycl.e:; l i ~ v t 3bec-?n comple Led t o d a t e . A c y c l e s t a r t s with the f l a n g e bore at a,mbienC aiid the slanp and pipe terqeraturcs held constaat TYLe f r e e z e hen preheated un-t3l Le cquilibu.iwn is reached (- 8 o r e terripermtu-rc of 650 s a l t a t t h e d e s i r e d high t c f t h e cycle is intx-odu o s c i l l a t e d be tween t;'r~e two u n t i l t h e flange again. rc;aches terq)er.ay, t h e f l a n g e i s allowed to cool turc e q u i l i b r i u m (- 5 h r ) ; u n t i l t2ie bore i s a t ambier u r c 2 (- 1.0h r ) 'I'hc Lotal cycle r e q u i r e s a4pp,roxirnately 22 hr t o corriplete. 'lke f i r s t 15 cycles > ~ c r e made w i t h a n average f l a n g e bore -tcun-peer..atu.reof .1O2OoF and a n ambient temperature of 85*F. Elor Lhe fol i n g 28 cycles, %hc f l . a n t%le ambient tempera t u n t o 150'~. pe.ra,ture was i n c r e a s e d t o 1250

.

.

'lhe s i z e of -the salt r i u g was p r e d i c t e d on t h e b a s i s of t h e f l a n g e t c m p e rature di-st r i b u t i o n , sho-cm i n F i g . 3.2, as ob t;ni.ncd d u r N o 35, and t h e exp3ccted 20QF -t;errqx.ratuzae d i f f e r e n c e bct-crcen the e x t e r n a l arid i n k r n a l - flaiige faces, w h i c h w a s notcd i n e a r l i e r tcs1,s. The salt


44 UNCLASSIFIED O R N L - L R - D W G 73983

1400

4 200

-

-w

4000

0 La

LT

800

G w

I

w

600

400

0

TESI-ED WITH SALT IN THERMAL-CYCLE TEST LOOP TESTED WITHOUT SALT IN SEAL. TESTING FACILITY

200

0

NOTE: TEMPERATURES RECORDED AT THE OUTSIDE FLANGE FACE

0

2

4 6 8 (0 DISTANCE FROM PIPE CENTER LINE (in.)

42

F i g . 3 . 2 . Temperature D i s t r i b u t i o n of a, 5 - i n . F r e e z e Flslnge i n t h e Thermal-Cycle T e s t Loop Compared wi-Lli t h e D i s t r i b u t i o n in A i r . f r e e z i n g p o i n t of 8b-00~ was reached at, a n external. face temperature of 82ooP’, which occurred a t a diameter of 10.8 i n . i n &he current, series of t e s t s . Examination of t h e s a l t s c r e e n following c y c l e No. 36 (Fig. 3.3) showed t h e s a l t - r i n g diameter t o v a r y he-/;ween 10.5 a,nd l1 i n . A t t h e g r e a t e s t diameter t h e s a l t was s t i l l - 4 i n . from t h e ri.ng.

Two mechanical d i a l i n d i c a t o r s mounted on a s m a l l l a t h e bed. were em@-oyed t o measure thermal- d i s t o r t i o n of the f l a n g e s With t h e f l a n g e b o r e a t equil-ibrium a t lZ50°F, t h e maximum combined tkiermal expansion and d i s t o r t i . o n w-as 25 m i l s . ‘The c a l c u l a t e d thermal expansion was 23..m i l s , and t h u s t h e maximim thermal distorti-c:)n was 4 mil..s. No permanent d i s t o r t i o n of t h e o u t e r f l a n g e races w a s d e t e c t e d i n t h e co3-d- f l a n g e s a f t e r 30 c y c l e s . There w a s a small i n c r e a s e i n ’die i n i e r i o r f a c c warpage of t h e f l a n g e from the i n i t i a l oiit-of-I”latness of 14 mils t o 18 mi1-s a f t e r 36 cycJcs;. No warpage w a s d e t e c t e d on t h e male €larige f a c e . A f t e r c y c l e s a l l b o r e dimensions were checked and found ’LO be undersize. female b o r c decreased by 10 m i l s , t h e male b o r e by 30 m i l s , and t h e l i p by 8 m i l s .

female

36

The male

For t h e first 36 c y c l e s , a n octagonal s e a l r j n g w a s used. ‘lke i n i t i a l cold seal leak r a t e f o r the r i n g w a s between IO-’+arid 10-3 cr~d/scc. A f t e r

the f l a n g e j o i n t had reached i t s i n i t i a l h o t equril ibrium ternpera-bure (7OZO0E’), t h e h o t l e a k r a t e w a s less i h a n 5 x 10-9 cm3/sec. When t h e


45

a

Fig. 3.3.

Freeze Flange S a l t R i n g A.f-t;cr 36 Cycles.

f l a n g e a g a i n reached ambient tcmpcyntu.re, the co Ld l e a k r a t e had decreased to 2.6 x 10-6 cm3/sec. M t c r 36 c y c l e s t i l e hot leak rate h a d - increased. to 3.9 x lo-'( cm3/sec and the c o l d leak r a t e w a s l . 8 x 1O-lL cm3/scc; both thsm lcak rates are coyzsi. d -to be acceptably l o v . hi oval- ring was tested. in the next '( cycles. "he prccycl-ring col d l e a k r a t e of 3.7 x 10-7 cm3/sec bad_ increasccj. to l . 7 x 1-0-2cm3/sec ai; the b @ . n n i n ~ of c y c l e No. 3'1. The fiuial- h o t leak rate at the end of cyc1.c e this r a t e w m considered t o be orily No. 43 was 9.3 x 1-0-3cm3/scc. e r e opened f o r i n s p e c t i o n , .It was rnarg i n a l l y acc eptablc, t h e f l n found-' c h t ~ tforeign mn.at;erial had i n t e r f e r e d wjth proper seatj-rig of %he ring. A second ova3 r i n g vas rinserLed a n d is presently being tested..


Freeze T e s t i n Thermal-Cyc1.e T e s t Loop I n o r d e r t o s i m u l a t e a pump f a i l u r e , t h e s a l t was h e l d i n a stagnanL c o n d i t i o n between t h e two sumps t o determine whether a f r e e z e p l u g would form a t t h e f l a n g e b o r e . I n t h e mos-1; s e v e r e t e s t , t h e p i p i n g was k.ept h e a t e d a t 1000째E'. Although t;he fl.a.nge b o r e %emperature w a s reduced t o 350째F under t h e s e c o n d i t i o n s , only a p a r t i a l p l u g formed. I t w a s concluded t h a t t h e MSW, 5 - i n e - p i p e f l a n g e s would not plug s o l o n g as t h e p i p e h e a t e r s were o p e r a t i v e . ' l e s t of a Freeze Flaizge i n the Prototype-Fuel-Pump ' J e s t i n g --Facility The second 11x0~~8 f l a n g e d j o i n t w a s i n s t a l l e d . i n t h e pump-testing f a c i l i t y 5 ( d e s c r i b e d later in t h i s c h a p t e r ) , with a n oval rii7.g-j o i n t g a s k e t . 'To d a t e t h e f a c i l i t y h a s been o p e r a t e d qxproximately 300 h r w i t h t h r e e cornplete c y c l e s from s t a r t u p to shutdown, The temperature d i s t r i b u t i o n of the f l a n g e d jo i n t h a s c l o s e l y approximated t h e d i s t r i b u t i o n s measured i n b o t h t h e s e a l - . t e s t i n g faci.1.i.t;y and t h 2 t h e m a l - c y c l e t e s t loop. No d.is.tor.tiion h a s been noted, and no leak r a t e s g r e a t e r than 5 x I.0m4 cin3/sec: have been d e t e c t e d w i t h t h e b u f f e r s e a l system of t h i s joi-n-t. The bu-ffer t y p e of s e a l system used i s similar t o t h e r e a c t o r l e a k - d e t e c t i o n system. AJ..though t h e t e s t results a r e encouraging, ad-d-it l o n a l experience i s needed b e f o r e t h e c u r r e n t f r e e z e - f l a n g e d.esign i s considered acceptable. N5RE Control Rod A f u l l - s c a l e model" of one MSRE c o n t r o l r o d and d r i v e w a s assembled and operated. over a range of temperatures from 500 t o 1300째F. The d r i v e i s shown i n Fig. 3.4. The u n i t h a s operatied through. 24,473 cycl..es (56 3/4 i n . fuI-1. t r a v e l i n each d i r e c t i o n ) . The r o d h a s been dropped from v a r i o u s h e i g h t s 862 times. While o v e r - a l l o p e r a t i o n h a s been s a t i s f a c t o r y , t h e d r i v e uni i, f a i l e d when one of t h e lower i d l e r - s p r o c k e t bushings g a l l e d as t h e r e s d t of a f o r e i g n p a r t i c l e . This bushing w a s rep1 aced w i t h a shrouded b a l l bearing, and o p e r a l i o n w a s resumed. 'Tests i n d i c a t e t h % t t h e rod p o s i t i o n i s known w i t h i n k1/8 i n , 94% of t h e tium and 21-/4i r i . loo$ of "Lie time.

Hcater "l'ests P i p e Heaters T e s t i n g o f removable hardboa.rd.-inzul a t e d h e a t c r s f o r 5-in. pipe w a s completed.'{ "be u n i t s operated a t o t a l of 61-36 h r w i t h a p i p e temperatixre

1961, I f OK.NTJ-31_22, p 51. ""MSRP Semiann. Prog. Rep. Feb. 28, 1962," o~m-3282,pp 24-26. 71bid-., pp 26-29. 5"'MSFP Semiann. Prog. Rep. Feb. 28,


Y

!CONTAINMENT VE S S EL-

LPOSITION

LSPRDCKETLMAGNETIC CLIJ ‘TC H

TRANSMITTER AND CHAIN

GEAR \-BRAKE H k0 IJCEH

LOOLINGLMOTOR A I R LINE

Y

F i g . 3.4.

Prst;oty-pe C o n t r o l Rod Drive Viewed from Above.

’.

under t h e h e a t e r s of 14-00 ‘the average power i n p u t w a s 520 w x t t s per 1.i.near f o o t of heated p i p e . ‘Die o r - a l l functional o p e r a t i o n of Llie exce I.llcn”~,b u t t h e hiArdboard exterior telld-ed t o C T riertzl mol l i n i n g d u c t e d a f t e r h e a t i n g , and t h e m e t warped. Three 3.2.teriiate dc s being considerod t o overccme t,hec,e o b j e c t i o n s c o u i st of u m i t s e w i t h blown fiused s i l i c a Glasrock PIfg Co. ), refl.c e tive met n,l- i n sulatio n rmr M f g . Co. ), and combi -t;iom of these materials. The u i a t e r i a l s for use i n t h e MSl-(F, will be :;elect,ed. a f t e r t e s t s of t h e v:hrious combinations

.

l ’ e s t i n g or“ two prot:.oty--c hea-tes boxes u s i n g the G l a s m e k i m t c r i ali n d i c a t e d ai1 c:xccssj vely high h e a t l of 700 vatts/ft. T h e surface t c m perature of t h e heater boxes war; 2)tO -crhon t h e heater:; were opcrnted- at 1)10O0F; t h i s woul.c2 l e a d t o e x c e s s i v e a.t losse:; i n t h e MSRE c e l l F’urtiner t h e rxiterial. i.s unable t o w i t h s t a n d p1iy:;ical abuse w i t h o u t c r a c k i n g or chipping. Or1 t h e other hand it h:ns t h e 1.o’sJes-t c o e f f i c i e n t of expansion of any of t h e materials test,c:d t o datc: a,nd t,kuxs hac very high r e s i k to L h e r m r t l shock. There was no evidence of warping at, j o i n t closures ai, the comp1c:ti 011 0% the t e

.

A l l - m e t a l p r o t o t y p e h e a t e r boxes niade of r e f l e c t i v e i n s u l a t i o r i have been purc:hnscd from M L r r o r Mfg;. CO., for t,csticig, and a t, u n i t made ~f Glasrock, b o a r d i n s i d a t i o n , and metal r e f l e c t i v e s h e e t s i s b e i n g f a b L’i

cated

.

A ~ t i v a t i o nRrialysis of I n s u l a t i n g Materials

Mas t hi&-temnpcrature i r i s u l a t i o n mnateria,l_s will d u s t to some extent, and the d u s t will p r e s e n t a problem i n reactar nxxlntenance i f it i s h i g h l y Z k u i n s u l a t i n g rrmterials l i s d i n Table 3 . 2 were therefore nctivaied. i;e:;ted f o r a c t i v a t i o n f o l l o w i n g i r r a d i a t i o n Tor 16 I i r a t a, neu-tron flux


4.8 Table 3.2.

Results of Activation Anal-ysis of I n s u l a t i n g Materials S t a b l e Element Concen t r a t i o n b

Ob served Radi o a c t t v i t y Sampp3-e M a t e r i a l

Radionuel-i de Supe r ‘I’emnp (Eagle-Picher Co.)

Ceraf el-t (Johns -Manville) Unarc o Board (Union Asbestos and Hubber Co.)

Carey Temp ( P h i l i p Carey Manufacturing

co. )

2 6 0 4 zn6’ 6 0 4 Sb124 40-h La140 5.27-y co60 85-d s~~~ L5-d Fe5’ 40-ii Laaao 85-d S C ” ~ 45-d FeSD 15-21 Nap”

Ac ti.v i t y ( d i s / s e c - g )a

105

2.13

1.91. 8.64 1.99 1.85 5.60 3.63 9.25

103

10-3 105

x 103 x 104

x x l.2( x 1.78 x

103

103

103

106

60-d Sbl?” 5.Z7(-y Co60 Jt0-h La””’

6.57 x io2

115-d Fe5’ 15-h Na2”

8.811 x 103

40-h 85--d

3.06 x

85-a s~~~

S C “ ~

4 5 4 Fe5”

15-h Nap4

2.11 104 2.26 x 103

1.98 x 103

6.82 x 105 1.12 5.02

103 104 x 103

8.51 x 107

Element Zn6“ Sb123 La139

7.8 ( i 0 . 2 )

sc4” Fe58

O.OOOl4 20.3 (i0.1)

co5”

T,aa” sc45

~ 1 ~ 5 8

Na2’ s123

c~~~

~al3”

sc45

Fe58 Na23

T,a13’ sc45

~e~~ Na2

0.0058 (”0 0005)

0.0019

0.028 (iO.001)

o.00008

0.0007

0.46 (iO.02) 0.060 (k0.003) 0.002

0.0003

o.00005 0.0001.5

3.2 (io.]-)

0.035 (kO.002) 0.00085

0.0008 l.82 (io.02) 4.110

(i0.05)

L a l 39 Na2

o.000006 0.0002 o.00003 0.0038

F i b e r f fax ( Carb Oi-uriJun co )

40-h JzL‘~’ 15-h NaZ4

2.72 x 102 1 . 8 2 x 107

G l a srock‘ (Glasrock Manufacturing Co. )

1tO-h LaAeo 85-d S C ” ~ 15-h Na24

9.1-0 103 3.36 x 1-02

La139

7.40 x 1-0

sc“5 Na2’

Glasrock Ceinerit (G7.asrock Msnufacturi ng Co. )

40-h La14o 15-h Na2”

1.36 x 104 6.24 105

~ a 1 3 ~0.0003 Na2 IJ 0.033

.

JI

0.96

(20.01)

“Measured approxi rrzaiel y 211- h r a f t e r r e z c t o r discharge. bT)eiemLir?ed from t h e count r a t e observed f o r each radionucl_ide. ‘Tknsity:

25 l b / f t 3 .

x lo1-’- neutrons/cxn2*sec. The d a t a o b t a i n e d ( s e e Table 3 . 2 ) of about i n d i c a t e t h a t Glasrock, which is nea,rl.y p u r e s i l i c a , may be t h e o n l y ceramic i n s u l a t i o n t h a t can be wLiI..ized uncanned. i n t h e E R E : . Urari-n-Tank Coolex-2

_ _ I I _

‘_llzcp r o t o t y p c c o o l i n g bayonets f o r removing a f t e r l i e a t from fuzl i n ilie WKE d r a i n talks wzre t h e r m a l l y shock t e s l e d 3814 times wjthou-t f a i l u r e . The t e s t system w a s t h e n s h u t down f o r i n s t a l l a t i o n of p r o i o t y p e thermocouples ( s e e l a t c r s e c t i o n of t h i s c h a p t e r ) on t h e I - i n . coolirig bayonets t h a t s l i d e i n t o the 1 l / Z - i n . ’r;himbles i n the s a 7 L pool. In p r e v i o u s o p e r a t i o n s , themocoupl-es i n s t a l l e d i n t h i s area camc loose i n a .few cycl es. %ne r e a c t o r - g r a d e themocaupl es now being t e s Led are i n t a c t , a f t e r 6 c y c l e s and 1-18 hr of exposure a t llfOO°F.


49 A c a r b o n a t e s a l t is being used in place of tlic &ERE fuel s n l t in se t e s t s t o avoid b e r y l l i ndl-ing proI.11ems. 'lkcc a r b N + L ~ C O ~and , KzC wt k ) . l i s p h y s i c a l givefi below, a1 e o f the f u e l salt,

Deta:il Design l)rawiw;s of n e a r l y a l l the componerkc of t h e scampling and enriching w e r e issued f o r cormw.xit. D e t a . i . 1 drawings of the transfer t u b e and the spooJ. piece bctwecn t h e disconnee t flangcts, with it:; p o s i - t i o n i n g t o o l , were approved f o r c o n s t r u c t i o n . I n s t r u n e x i t a t i o n flowshcct,s andyout:; were a l s o aiiiiroved. f o r c o n s t r u c t i o n .

Mockup of Sampling and Enriching Sy stvin A f i i l l - s c a l e mockup of the sample transfer box (area. 3), t h e drive ami the o p c m t i o n a l valve i s b e i n g f a b r i c s t z d f o r in:;tal.lnt i o n on t h e Engineering Test Loop. T h e Lransfzr Lube, whi(91 h shortened t o f i t i n t o t h e space avail l e , has bends and s l o p e s t h a t are the scme as those t o bc used i n the r

box ( a r m lc),

The mockup wi7-1- b e used to s a t i s f a c t o r i l y and t o develop a TEie 'sam@.i rig-capsul e nccess-cha te:;ted at 90 p s i g to cheek t h e The copper sampling capsule w a s removal of a sample from the re

nstrate t h a t each component o p e r a t e s Le sampling and e r i r i c h i q prortedures rnockinp w a s s u c c e s s f u l l y h y d r o s t a t i c a l l y ness a n d strength of t h e acc f ied Lo sirfip1.if y h a n d l i n g , n c a p s u l e was demonstrated.

.

Core Development Model Or,erat, .iori :;

The f u l l - - s c ~ ~ MSRE lc c o r e mod as o p e r a t e d n t 85OF with w z i t e r t o make prelirniiiary measurements of e l - o c i t y d.istr.ibution, w a l l heat tmnsfer- c o e f f i c i e n t s , and soli_ds ing characteris t i c s Since the v i s c o s i t y of wa-Ler is l o w e r than ih:%t of t h e l'ueJ- s a l t , the niodcl i s not exnci;ly similar t o the MS1U w i t h respcct +bo fluid dynarnics. 'The p r e 1irnina:ry tesLs will be usefU_1-, however, i n pltnnning l a t e r tests w i t h a more viscous l i q u i d . e

"Ibid.,

p 30.


50 Vzloci-by Measurements The peak resinl..t,ant v e l o c i t i e s a t %lie bottiom o f t h e c o r e - w a l l coolri-ng annulus were measured a t v a r i o u s flow r a t e s as a f u n c t i o n of t h e a n g l e around. t k i e core. The d a t a obtained- are p r e s e n t e d in F i g . 3.5. A s may be seen, t h e v e l o c i t y p r o f i l e ris f l a t , i n d i c a t i n g t h a t t h e flow e n t e r i n g t h e lower head from thc: annulus i s d i s t r i b u t e d uniformly. Rased on t h e observed r e s u l t a n t v e l o c i t y of 1-1.. 55 f i;/sec and. -the known axial- v e l o c i % y component o f 2 . 1 5 f t / s e c a t 1200 gpm, t h e average t a n g e n t i a l vel-ocitycomponen-I; i s 4.04 fi;/sec at t h e bottom of t h e c o r e annulus. A d i s c r e p a n c y w a s observed be-I;ween t h e f l o w i n t h e o n e - f i f t h . s c a l e model and t h e f u l l - s c a l e model-. I n t h e o n e - f i f t h s c a l e model, Lhe flow i n t h e lower head w a s observed t o have a l a r g e r o t a - i i o n a l component, whereas, in t h e ful.1-scale model, t h e f l o w w a s observed t o be almost p u r e l y r a d i a l . Om examina-tion of the o n e - f i f t h s c a l e model-, it w a s noted t h a t t h e s w i r l k i l - l e r s were n o t r e s t i n g on t h e lower head. ’nut, r a t h e r , were e1eva.-ted 1/8 t o .I/h i n . o f f t h e head. ?‘his allowed- water t o flow underneath t h e s w i r l k i l l e r s and m a i n t a i n i t s r o t a t i o n a l component New s w i r l k i l l c r s were made f o r t h e o n e - f i f t h s c a l e model, and t h e f l o w t h e n behaved. t h e same as t h a t i n -the fi;1.3..3..-scale model. W i - t l i t h i s changz t h e measured h e a t t r a n s f e r coeffi.cien.ts a t t h e c e n t e r ].?.ne of t h e o n e - f i f t h

.

UNCLASSIFIED ORNL-LR-DWG 73984

-

0

7 i I [

90

80

270

-

3 60

A N G L E AROUND CORE (deg)

Fig, 3.5.

R e s u l t a n t V e l o c i t y D i s t r i b u t i o n Around- Bottom of Core-Wall

Cooling ,bnuLus a t Va,rious Flow Rates,


51 scale niodel were h i g h e r t h a n Z;hose measured p r e v i o u s l y , i n f e r r e d t o 'ne b e n e f i c i a l .

GO

t h e change vas

Measurement of 8ea-L T r a n s f e r Coc%.ficients

A-Lterxipts were made t o i n f e r the h e a t t r a n s f e r c o e f f i c i e n t at, tt p o s i t i o n about 4 jn. from the c o r e c e n t c r l i n e f r o m data obtained with (a

UNCLASSIFIED O R N L - L R - D W F 73985

3.0

2.5

-.

'2; 2 . 0 0)

v)

+-

.+-

u

>-

s

1.5

w

>

D

3

1.0

1-1-

A SOUTH POSITION

0.5

0

A NORTH WESI- POSITION

0

0.5

1 .o

4.5

2 .o

2.5

DISTANCE FROM W4LL ( i n . )

Fig. 3 . 6 . V e l o c i t y Profile of Fluid N e a r W a l l . of Lower Vessel Head 17 i n .

nt Radius of


52 h e a t meter. These a t t e m p t s were u n s u c c e s s f u l because t h e r e w a s no p r e dominant d i r e c t i o n of flow a t t h a t p o s i t i o n ; r a t h e r , t h e fl-ow w a s "gusty. The flow w a s f i r s t 5.n one d i r e c t i o n and. t h e n a n o t h e r . It was determined t h a t t h e h r a t t r a n s f e r c o e f f i c i e n t -would be lower t h a n a,t a r a d i u s of 17 i n . , bu'c t h e e x a c t val..ue w a s n o t o b t a i n e d . F u r t h e r a t t e m p t s t o measure t h e h e a t t r a n s f e r c o e f f i c i e n t i n t h i s r e g i o n w i l l be made. E m e r i m e n t s on t h e Behavior of Sol-ids Experiments were r u n t o ob-tain d a t a f o r use i n p r e d i c t i n g the b e h a v i o r of s o l i d par-tiiculate matter in t h e f u e l sal-t;, e s p e c i a l l y i t s tendency t o s e t - t l e o u t i n t h e r e a c t o r vessel- 1..ower head. The e.xperimental procedure c o n s i s t e d of i n j e c t i n g 3 lb (1362 g ) of s i z e d i r o n f i l i n g s i n t o t h e model i n l e t d u r i n g o p e r a t i o n . M . t e r t h e sol..i.ds were added-, c i r c u l a t i o n of w8.te.r w a s con-tinued f o r v a r i o u s p e r i o d s of time ( 0 tc:, 8 h r ) . T h e c o r e w a s t h e n drained, and t h e q u a n t i t y o f s o l i d s t h a t remained i n t h e bottom of t h e r e a c t o r v e s s e l was d.e-t;ermined. A s f a r as t h e sol.iC3.s were concerned., -the loop was c o n s i d e r e d as a once-through system. 'The sediment a t i o n d a t a o b t a i n e d are s m m a r i z e d i n 'Table 3.3. Table 3.3. C o l l e c i i o n of Sediment i n Lower Head of Core Model Followirtg Addition of J362 g of I r o n F i l i n g s

Run NO.

Nornin a l Mesh Size of

Soli d s

1 2

3

4 5

1-50 150

60

Screen Aper Lure (P

1

Time Required t o Add Solids (min)

104

35

248

20 20

104

35

60 2lt8 150 104 30 a All sol i d s swept o u t wiLh water.

Pump liunriing Time M t e r Solids Added ( h r1

Weight of I r o n F i l i n g s Recovered from Lower Head

(Ed

0

127

0

823

e,

e

7 1./2

0"

750

0"

I n t h e c a s e of t h e f i n e s o l i d s , t h e r e appeared t o be some tendency f o r sediment -to form d u r i n g t h e i r f i r s t p a s s through t h e c o r e . Additionalrunning t i m e caused them 'LO be p i c k e d up, however, and swept o u t . I n -the c a s e of t h e coarse m a t e r i a l , a l a r g e r f r a c t i o n s e t t l e d o u t on t h e f i r s t p a s s through t h e c o r e and v e r y 15.ttl-e w a s removed with ad-dl-t;:-i.onal.. pumping time. The 150-mesh s o l i d s t h a t remained i n t h e 1.ower head appeared i n a concentrated- p i l e n e a r t h e drari-n l i n e . On t h e o t h e r hand, t h e 60-mesh sol-ids, as shown i n Tahl-e 3.3, l e f t l a r g e r amounts of sediment t h a t tended t o f o r m a to:r:us around t h e drai.n. These l a r g e r p i l e s were 2 'LO 3 i n . wide and- from l / Z t o 1. i.n. t h i c k , and t h e y were aga,i.ns-t t h e d r a i n l i n e on one s i d e . The r e s u l t s of t h e s e t e s t s i n d i c a t e t h a t t h e MSHE d r a i n l i n e w i l l

.


53

lug as t h e resi.ilt of sedim a t i o n of s o l i d s . IUihough no sedimenmn~iterisl-sRE expected i n t h e r e a c t o r , t h e s e experiments provided

confidence in t h e design.

MSRE Engineering

st

LOOP

(ETL)

The e n g i n e e r i n g t e s t loop" w a s modi.fied t o i n c l u d e a ,?;raphite cont a i n e r i n t h e s a l t - c i r c u l a t i n g loop, and most of the 1rzc:oncl pipe was r e p l a c e d with I N O H - 8 p i p e . The loop was then pl-nced. into o p e r a t i o n w i t h o u t g:;raph.itc i n t h e g r a p h i t e c e r . Most, of t h e p r e v i o u s zisconiurnand t,he drain t a n k was f l u s c o n t a i n i n g f l u s h s a l t cm:; remo y made coolant s a l t Info n was obtt-tincd d u r i n g 1500 hr of a t i o n on t h e o p e r a t i o n a l c e r i s t i c s of t h e g s , ~ ~ h i t e - c o n t a i r i ~ r a c c e s s j o i n t , on Vrie chemical aria1ysj.s of tihe salt beirig c i r c u l a t e d , and on the formation of s a l t d e p o s i t s above the I i q u i d - level..

.

P

M t e r r e c e i p t , i n s p e iori and. clean.ing of t h e g r a p h i k t o be t e s t e d , %he loop w a s s h u t down for i n s t a l l a t i o n 0.C t h e g r a p h i t e . Also, as -part of t h e proposed graphite-treatment proccdu-re, t h e flush salt waz t r e a t e d w i t h HI? and HZ i n Lkie drxin t a r & -to 1 ower .its oxid-e cortknt, b e f o r e i t coxitacted t h e g r a p h i t e Details t e s t s are d i s c u s s e d in t h e fdlowing sections.

.

Frozen-Sal-t-Sealed Granhite-Container Access Joint The f l u s h s a l t was c i r c u l a t e d a t 50 t o '(0 gpni and 120003'S,hroup;h the l o o p and t h e g r a p h i t e c o n t a i n e r while a w a i t i rig d e l i v c r y of %he ETL g r a p h i t e from t h e vendor. The graphi tc coniainer, which i s a n 8-in. - d i m INOR-8 p i p e p o s i t i o n e d v e r t i c a l l y i n the loop,' has a f l a n g e d c l o s u r c tJhat i n c o r p o r a t e s a f r o z e n - s a l t seal t o prevent c o n t a c t of mol.ten salt w i t h t h e conventional metal oval-ring s e a l . ' P h i s c l o s u r e i s s i r n i l a r t o a, s l i g h t l y l a r g e r o r i ~t h a t wi1-1- be used i n the MSPS. R seal of tliis t y p e 'nettween g ~ ~ p k l . i . and t e m e t a l WiLkj te previously.

Tne ETL g r a p h i t e - c o n t n i n e s c l o s u r c i s ari extension of the 8-i.n. - d i m g r a p h i t e contairiel- w i % h a 20-in. -long tapered p l u g i n s i d c t o form a n annu.lus vaxyi-ng f r o m 1/4-in. rad..iaL c3.eararice a t t h e lower end t o l / l 6 - i n 0 radial c l e a r a n c e a t the upper end-. l'he MSIB closinre i s 1.0 i n . i n diameter and 28 i n . long, with gaps of 1/4 and l/8 i n . , r e s p e c t i v e l y . Tlie taperedgap p r e v e n t s a x i a l movernent of f r o z e n s a l t as t h e re:;i~lL of surges i n s a l t prepc dure. L7

The s e a l w m made arid brokcn t l i r e c tirncs, and i-t was l e a k - t i g h t d u r i n g 1500 111- of opcra-tion. Since gas 5s trapiicd i n t h e m n u l u s during

"J. L. Crowley, "Preliminary O p c r a t i q Sequence f o r Gra,pklite 'l'esting i n t h e ETL, " March 19, 1962, unpubl-ished i n t c m i n l repar-t.

'"J. L. Crowley and W. B. McDon "A Metal t o Graphite Joint, for a Molten Salt System, " OHUL CY-60-8-82, Ainguat l'(, 1960.


f i l l i n g , e i t h e r i n i t i a l e v a c u a t i o n o r la-ter o v e r - p r e s s u r ? o r v e n t i n g must b e used Lo f o r c c s a l t i n t o t h e cooled r e g i o n . On Lhe ETL c l o s u r e t h e g a s was p a r t i a l l y vented- a f t e r t h e 7 oop w a s f i l l e d . An i n t e r e sti ng ob s e r v a t i on made whi 1-c: d e t e r r n i n i ng t h e m i ni.murn c o 01..i. ng a i r required. f o r t h e s e a l w a s that; when t h e cool..ing a i r fl.ow w a s reduced below -LIE c r i t i c a l value, t h e s a l t p l u g moved. upward; however, ins-txad of moving u.nifomn.1-y around i t s circumference, i n which c a s e g a s compression wou.1.d have l i m i t e d i t s t r a v e l , t h e s a l t extended upward i n one semi-molten s e c t o r tha-1; w a s c o n t a i n e d w i t h i n f r o z e n s a l t a t t h e edges. This c h a r a c t e r i s t j - c p r e c l u d e s Lhe use of trapped-gas compression f o r p r e v e n t i n g s a l t from r e a c h i n g the metal o v a l r i n g u n l e s s t h e e n t i r e j o i n t i s h e l d a t t e m p e r a t u r e s above -the s a l t m e l t i n g t e m p e r a t u r e . The temperature d i s t r i b u t i o n and. a diagram of t h e c l o s u r e a r e sh.own i n F i g . 3 4 "

S a l - t Cornposit i on I r i order t o rernove as much of t h e ZrF4 from t h e system as possible, the o r i g i n a l f l u s h s a l t w a s removed, t h e f r e e z e v a l v e s were purged, a n d new s a l t w a s i n t r o d u c e d into t h e unused dra,-i.n tank (prcv-iously designated S a l t samples were removed from t h e pump w h i l e i n t h e fuel- d r a i n t a n k ) . U N C L A S S I Fl ED O R N L - L R - D W G 73986

T H ERMOCOlJ P L E NO

' - - - - - - I

T E R N A L COOLING

i

AIR FLOW R A T E 2 3 . 8 scfm (14 1 I N T E R N A L f 9 7 E X T E R N A L ) ; 3 44 k w R E M O V E D

0 COOLING

11C

I N T E R N A L COOLING

ON T A P E R E D P L U G

1

'8

~-

8E

~

INSULA

8 CS

8C ALT OUTLET-

00

300

500

700

900

1100

1300

T E M P F R A T U R E ("F)

0

2

4

INCHES

Fig 3 . 7 . Temperature Prc-i:rile of ETL F r o z e n - S a l t -Sealed G r a p h i t e C o n t a i n e r Access J o i n t D u r i n g Operation a t 1200째F with a Salt Flow R a t e of 50 Lo 70 gpm. a


o p e r a t i o n a n d f r o m the d r the loop was draiiicd. C analyses of t h e salt s\mples i n d i c a t e d %hat -the zirconiurn cori-t;ent w a s from a b o u t 90,000 ihe erid of the p r e v i o u s rim to 500 to I n cornparison, n of 3 w't $ MSKE fuel- s a l t i n t o the flush ii r e s d - t in 945 *,

An i n v e s t i g a t i o n was made of the oxygen pickup i n the sslt 9,s a r e s u l t of contact with loop-metal oxides To siinu-late the expectzd. c , the INOR-8 l o o p and e r e a c t o r corriponents af-ter heat t r c were hea-t,ed Lo 1300°F and h e l d f o r wit;li an oxygeii-contam gas. The l o o p w a s thcn filled wL -ush s a l t , and samples were oxide a n a l y s i s . No i n c r e a s e i n en c o . m e n t r a t i T h i s i s c o n x . i s t e n t with t h e exg of I N O R sarnples t h a t Y'C cc ived similar tr The rrcsiil-L s of oxygcn analyses d.uriwig loop opertz-kioa are p r e s e r i t e d i n There i s c o n s i d c r a b l e scatter of t h e data, b u t no d e f i n i t e i n c r e a s e of oxide content i s d 1.c. T h c loop w a s opencd bctwecn sting p e r i o d s a t 800 t o 110 but it was purged and bakc-out temperature (220°F) before refilling.

Fig. 3.8.

IJNCL.ACjSIFIE0 OR N L LR -OW6 7 398 7

-

0 D R A I N T A N K SAMPL-ES a PUMP TANK SAMPLES LOOP OPERATIOPJ-

LOOP

OPERATION -

c

0

500

io00

1500

2000

2500

TIME ( h r )

F i g . 3 . 8 . Results of Oxide h a S a r r p k s Removed f r o m Pump and Drain

rnent.

Test Lo During Operation and €IF

e s of hkginecring

3000


56 'Treatment Because t h e s m a l l amount of zirconj-um i n t h e f l u s h s a l t i s b e l i e v e d

.tohave lowered t h e oxide so1i.i"bility t o a n unknowri l i m i . t , -the salt w a s %rea$& w i t h HF t o a s s u r e oxygen n o n s a t u r a t i o n b e f o r e o p e r a t i o n w i t h t h e g r a p h i t e . The f i r s t t r e a t m e n t ( J u l y 1962) of 74 h r w-:i.th 11% removed 42 g

of oxygen, 12 e q u i v a l e n t t o l'-(5 ppm i n t h e s a l t . Sampl-cs t a k e n s e v e r a l days latter, however, indica,ted t h a t t h e oxygen conierit had- i n c r e a s e d t o t h e o r i g i n a l l e v e l . While a w a i t i n g f u r t h e r samples and. t o cover t h e p o s s i b i l i t y of the oxide having p r e c i p i t a t e d and been r c l . . a t i v e l y i n a c c e s s i b l e t o t h e HF, t h e t r e a t m e n t w a s r e p e a t e d i n August, as i n d i c a t e d i n F i g . 3.8. The second HF treatmen-k l a s t e d 38 1/2 h r and. removed oiily 9.5 g, o r 40 ppm, of oxygen from t h e s a l t . Although t h i s q u a n t i t y of oxygen w a s h i g h e r than expec-Led, t h e a c t u a l r a t e of oxy-gen removal aL : the end of -the treatment; p e r i o d w a s approximately 1/10 of Lhe maximum r a t e n e a r t h e beginning of t h e p e r i o d . I f t h e r e were oxide s o l i d s l e f t i.n t h e bottom of t h e tank, it; could mean t h a t t h e d.issolving r a t e w a s very low durfng t h e 400 h r between t r e a t m e n t s . Another source of con-Lamination i s a srflal-1 unknown amount; of oxygen t h a t w - a s a d m i t t e d to t h e t a n k during t h e i n t r o d u c t i o n and- removal of t h e d i p t u b e used i n t h e HF t r e a t m e n t . F u r t h e r study w i l l be made of t h e e f f e c t , of t h i s source. The r a t e of c o r r o s i o n of -the c o n t a i n e r w a l l s by t h e HF was a p p a r e n t l y g r e a t e r t h a n d u r i n g t h e t r e a t m e n t performed.. i n t h e o t h e r tanks i n November 1961.~3 There w a s a n e g l i g i b l e i n c r e a s e i n t h e sal-t chromiim c o n t e n t d u r i n g o p e r a t i o n of t h e l a r g e l y IN OR-^ system, which i s t o b e eomp a r e d with t h e chromium c o n t e n t i n c r e a s e from 100 t o 200 ppiri d u r i n g HF tr-ea-tment of s a l t i n t h e I n c o n e l d r a i n taiik. Considering the amount of t a n k s u r f a x e exposed to t h e salt, t h e weight of s a l t treated-, and t h e number of hours of treatment,, t h e removal of chromium i s e q u i v a l e n t t o 0.00084 i n . t o t a l - o r 0.011 m i l p e r hour of HF t r e a t m e n t . The INOR-8 tanks of t h e MSRE arc expected t o b e more c o r r o s i o n - r e s i s t a n t . Cold-Finger Col-lections i n Cover Gas Some d i f f i c u l - t y w a s experienced d u r i n g o p e r a t t o n of t h e loop w i t h plugging of t h e pwnp o f f g a s l i n e . Examination a f t e r t h e f i r s t 738 h r of o p e r a t i o n revealed. a col..1.ection of salt a b t h e j u n c t i o n of t h e u n b a f f l e d 1./2-ri.n. -pipe o f f g a s connection w i t h t h e DANA pump-bowl l i d . Around t h e b a f f l e d g a s - i n l e t l i n e , t h e r e w a s a sma.1-1..b u t unob j e c t i o n a , b l e r i d g e of sal-I;. A s a l t d e p o s i t t h a t -was of concern appeared 6 i.n. above t h e l i q u i d l e v e l i n t h e c a p s u l e s t o p a r e a of t h e sampler-enricher guide tube."" A b u i l d u p t h e r e would i n t e r f e r e with t h e lowering of t h e sample c a p s u l e d u r i n g t e s t i n g of t h e sampler-enricher mockup. Cold. f-i-ngers were t h e r e f o r e 12J. H. Sha,ffer, "IIydrofluorinati on of LiF-ReFZ (66-34 mole %) i n t h e S u p Tank of t h e Engincering T e s t J,oop," MSR-62-58, unpublished i n t e r n a l report,. 13

1962," O R T J T J - ~ ~p ~ 37. ~, Serniann. Frog. Rep. Feb. 28, 1961," ORNL-3122, p 59.

"MSRF' Serniann. Prog. Rep. Feb. 28,

14'1MSRP


57 i n s e r t e d i n t o -the gas space above t h e s a l t level i n t h e purp and tlic d-rain to dc temi-rie whether these i t s were due t o wn.i.:;t caused by a t i o n i n tile purnp o r by the pressure of t h e s a l t . A 1/4-in.-diam copper tube sealed..at one eiid was i n s e r t e d - i n t o t;he pump b o w l gas space and. p o s i t i o n c d 1 i r i . abo-vc the l i q u i d level Vic air-cooled i n t e r r i a l l y for a p e r i o d of 89 h r while t h e pi~mpwas tubc: T h e cxte,erii, of t,he salt deposit, t u r n i n g a t 900 x p - n iri salt at, llOO째F. L C w~ a s &is t i - i b u t c d umiif 0rxil-y around t h e circumferencc, i s shown i n The d e p o s i t was cxamined p e t r o g r . a p ~ i i c a l l y l " and found t o be y i cI,. p 3.9.

Fig. 3.7. C o l l e c t i o n o r I n s e r t e d i n G a s Space

i c l e s on a 1/4-in.-diam Tube Cold Pump of ETL.

ZLiF*BeF2, t h e courrpositiori of t,he s a l t rnixture being c i r c u l a t e d . c o l d Tinger ims inser%eed en-t a'mosphcre of 011 two uccasion:; for. p e r 44 hr at 1200 tzild ctivel-y. Bath t u b e osit, which was L3cra.p ned by x-ray d i f f r a c t i ermined t o bt3 90 t u The d i f f e r e n c e i i i chemical c izd wciglit of Lhe d

'"R.

E. 'Thorns, June-July

1962, p r i v a t e comiunicatiou,

A similar


58 i n t h c pump bowl a n d the d r a i n tank l e d t o t h e conclij-sion that t h e pump bowl d i f f i c u l i i - e s were caused by a n a e r o s o l - t y p e dispersion of s a l t p a r t i c l es. A c y l i n d r i c a l s h i e l d of s h e e t lncone1 w a s t h e n i n s e r i e d i n t o t h e sampler guide tube s o t h a t it extended below t h e l i q u i d l e v e l , and a I /1_6-in. - w i d e l o n g i tudinal s l i t w a s p o s i t i o n e d away from t h e pmip impel 1 e r t u p r e v e n t l i q u i d s a l t from b p j n g forced uii i n t o t h e s h i e l d . Xxamination or" tile sampler guide t u b e a g a i n a f t e r '(40 h r of o p e r a t i o n r e v e a l e d no sal i, deposit jn t h e capsule stop area.

'l'he FTT, g r a p h i t e , which i s t h e same shape as MSlW g-raphi'ce except that, the pjeccr, are only 50 i n . long;, w a s l o a d e d i n t o Lhe W L g r a p h i t e c o n t a j n e r J u l y 13, 1962. 'I'he 1 oading, as shown i n F i g * 3.10, c o n s i s t e d

Fig. 3.10. ETL Graphite C o n t a i n e r Showing Graphite Pieces.


59 of f i v e s t r i n g e r s complete w i t h INOH-8 l i f t i n g knobs: p l u s 16 o t h e r p a r t i a l elements forming 16 fl S e v e r a l m i scellar aiid metal samples were attached t o t h e h i t e holddown s e c t i o n of t h e te1.y 60 kg Lotal) w a s d u s t e d freeze - j o i n t pl~1.g The grxphi w i t h a vacuum brush and w c i

R

The conta,iner, pwnp, and loop were Uien sealed. and evacuated. at; room tenpcrature to 1.30 p Kg through l i q u i d - n i t r o g e n - c o o l e d traps f o r 24 hrr. The total weight g a i n of i h e cold t r a p s was 1 0 g. The s y s t e m w a s then p r e s s u r i z e d with hclium and h e a t e d . The container and gr were h c l d a t 1300째F f o r 3 hr w h i l e helium t m , ~b e i n g c i r c u l a t e d by t h e ywnp and a,l.so purged. through a 7.iquid-rii t;.rogen-cooled Lrap The w gain of the t r a p d u r i n g t h i s o p e r a t i o n w a s 4.5 g. d r y box, described. p r e v i o u s l y , l6 was p o s i t i o n e d ovcxr the: g m p h i t e c o n t a i n e r f(X!-l-owi,ngt h e cooldown. M t e r thc d r y box w a s evacuated, leak tested, and purged w i t h d r i e cori2,ainer w a s opened a r i d gr sampl-es 1.1crc removed f o r vario of oxygen a n a l y s i s e The a n a l y t i c a l r e s u l t s , as well 8,s t h e results of atlialyses of as -received-matcTj..a1., w i l l be r e p o r t e d at a f u t u r e d a t e .

Mal-n-tenancc of t h e MSRE will be accomplished, as d i s c u s s e d previousl.y, p r i m a r i l y w-i. th semidirec t. nrethods e Ikmotc mc-i;hod_s w i l l bc u-sed. f o r operat i o n s which r e q u i r e l a r g e openings i n t h e s h i e l d and produce radi l e v e l s s o high as t o p r e c l u d e occupa of u-nshielded area, r e x t o r c e l l . ,43.most a7.1-t h c in-cell- o p ~ r a t i o n swill be performed semid through bushed h o l e s in 4, d i r e c t l y with long-h3,rdled tools p o r t a b l e maintenance s h i e l d 1.1.be provided windows, and pc:.riscopes. M blocks and larg equipment irit;o o r o u t of 'ih will be doiie remotc2.y .i_ 31si de the slzie l d e d- i n x i n t enanc: e c o n t ro lie overhead c d i r e c t and t e l e v i s i o n monitoring. 1 arid. dcvel-opme intc mnc e tools and developme nt e qiniprent t h e p o r t a b l e s h i av e p roe ee ded- simul t amof the t e c h n i q u e s f o r th Lo produce a c o o r d i n a t e d A procedure that o u t l l u ~ st h e :;teps ncce ssary t 0 a c c ornpli sh i i t a t i v c maintenarice task w a s p r

,

P.l-acemer!t

and Removal. of Freeze -Flargc Cl.amps

The frcezc-fla,n.ge c l will be d r i v e n on and o f f the f l a n g e s by h y d r a u l i c cylinder.:; nrounted i n fr s of1 -[,heends of ~tubu~l..ar rms-Ls R frarncwork c o n s i s t i n g or" a n upper lower b e a m , two v e r t i c a l push rods,

18E.

April Z'(l

C

. Hisc,

1962.

''PElEMbair-rtenance Memo A-l, Maintenance Philosophy, "

l7


60 and two e a r s welded. on t h e h o r i z o n t a l c e n t e r l i n e of the fl..ange"" w i l l remain. i n t h e r e a c t o r c e l l a t t a c h e d t o t h e cla,mps. 'Ynis framework w i l l serve t o c e n t e r the c l w s , t o e l i m i n a t e t i l t i n g d u r i n g disassembly, and. t o s i m p l i f y t h e maintenance tools. When t h e clamps a r c d r i v e n o f f t h e y w i l l . be s t o r e d on a n L n s t a l l e d b r a c k e t by a hook-type h a n d l i n g tool.

-

M i s c e l l a n e o u s --. Flange -Servicing Tool.. s Flange aligrunent w i l l be e f f e c t e d by a system of j a c k s , hooks, and b r a c k e t s i n s i a l l e d i n t h e c e l l , and each f l a n g e w i l l r e q i i i r e custom i n s t a l l ation. The equipment h a s been designed, and a p r o t o t y T e system w i l l b e b u i l t and t e s t e d . The long-hand-led tool s f o r a d j u s t i n g t h e system were f a b r i c a t e d . A tool t o handle replacement g a s k e t s w a s designed and c o n s t r u c t e d , and the complete g a s k e t - i n s t a l l a t j on procedure WELS s u c c e s s f u l l y Lested. The covers t o be placed on open f l a n g e s d u r i n g maintenance were desjgned and c o n s t r u c t e d , and Lheir h a n d l i n g w a s demonstrated.

liemote Viewing A 1.625-in. - d i a m p e r i s c o p e sui t a b l e for r e a . c t o r use w a s purchased from t h e Lema Company. It w i l l b e used i n mockup demonstrations. Approp r i a t e sheaths, windows, m i r r o r s , and l i g h t s a r e b e i n g designed f o r use with the periscope.

Port ab1.e M a i n t e na nce Sh ri. e 1d Design work i s n e a r i n g completion on a portab1.e maintenance s h i e l d to p r o v i d c t h e MSIB wtth a f a c i l i t y f o r shi e l d e d s e m i d i r e c t .maintenance o p e r a t i ons. The s h i e l d i s designed t o t z m p o r a r i l y replace any two a d j a c e n t lower r o o f plugs over t h e r e a c i o r or the d r x i n t a n k c e l l s . A s e r i e s o f b u i l t - i n t o o l a c c e s s p o r t s provide spacc f o r m u J i i p l e maintenance o p c r a t i o n s . The p o r t a b l e s h i e l d assembly c o n s i s t s of f o u r b a s i c coniponents : s l i d e , modules, frame, and t r a c k . The s l i d e dimensions a r c 8 1/2 o r 13 f-'L l o n g by 5 ft wide and c o n s i s t of three layers of 4 - i n . - t h i c k s'Lee1 pl.ate welded t o g z t h e r t o n, to'cal thi.ckness of 1 2 i n . of s h i e l d i n g * 'The s l i d e i n c l u d e s a. c i r c u l a r c u t o u t t h a t accommodates a 35-in. -d.iam plug;. The plug, i n t u r n , incl_ud.es a s e r i e s of small.. c u t o u - t s t h a t p r o v i d e access f o r Various I..j..ghts, wind.ows, and too1.s. Another cu%out, a t one end of t h e slri-d-e, b o r d e r s t h e e c c e n t r i c p l u g of a n a d j a c e n t mod-ule attachment, as w e l l - as a removable crane a c c e s s module.

!Phe modules a r e a d d i t i o n a l s h o r t secti-ons o f s l i d c t h a t c a n be added t o t h e main s l i d e t o a l l o w p o s i t i o n i n g of t o o l hol-es above t h e d e s i r e d work a r e a . 'I'he module a d j a c e n t t o t h e sl-j-de c o n t a i n s a d u p l i c a t e of tlie "'Lxlrg.

No. E - C F G - C - ~ O ~ ~ OFreeze , E'lange and Clamps Assembly.


35-in. - d i m slide plug niou T h i s p l u g - w i t h i n-plug arra a c c e s s o v e r any p o i n t w i t h i the inner plug p e m i t s m u 1 s p e c i f i c a l l y r e q u i r e d for and alig:ruient 'l'he p l u g s a r e p o s i bionirig of t h c i r m u l - t i be employed for d r i v i n g t h e frown 1.2-in. - t h i c k carbon s

c a l l y w i t h i n a 5O--jri, - d - i x n plug. d e s n e c e s s a r y reach t o permit l,oo1. block opening. ?_??_e h o l e l.ayout w i t h i n t o the rear:tor frcc;ze Tlange, nance and f o r o p t i c a l p o s i t i o n i n g ly g e a r - d r i v e n t o nl low p r e c i s e Pnt2uurtatic s o c k c t d r i v e r s may alsc~ modul_es a n d plugs are f a b r i c a

.

The frame, c o n s t r u c t e d of heavy s t e e l p l a t e , s e r v e s 3s Vile s u p p o r t f o r -the s l i d e . M t e r 'the f r a m e i s i n s t a l l e d ovtx a 1 owcr roof plug, -the s l i d e i s moved t o a n end t;r le removal of the c o n c r e t e p1 ug; a n opening 52 by 12'1 i n , i s l i d e i s t h e r i 13et,utn_ctlt o sition over the eel-l. opening de corrgil.ete s h i e l 3/4-'np motor and gear-box co 1nounted on t h c s s l i d e through a rack-and-pi .1; 'l'l?_er a i e c) a v e l i s about, 2 in./sec. Movable end st t o l i m i t travel.. as d e s i r e d . Motor c o n t r o l s 2.m connect nanee c o n t r o l room cipcrating s t a t i o n with a cable. The t r a c k i s an cxtcnsiori t o -the ne t h a t can be mounted r i , t ci1;her end of t h e frame and- on which t h e s l i d e arid motlinle r.ollt?rs 111c)ve. It consci st:; of I b e a n s with channel. and angle b r a c i n g . A shield-ing t h i c k n e s s of LZ i n , of s t e c l i s pi-ovi..d.ed t,hroughout

.

( sl-ride, modxdes, and frame s i d arid e n d s ) Suf'ficierit s h i e l d i n g i s pyav i d e d t o l i i n i t m d - i at,ion levels 211 hr fol-low-iiig r e a c t o r shutdown t o about 1-0

m,hii.

A s many as eleven 150-7~~ ?.i&t;ing .fixtures can be mo ed i i l s p c c h l plug;:; provided- i n t h e slide and thz niodu_Z-c:s â‚Źor s p e c i a l i m i n s t i on of t h e work area. All. work h o l e s a r c designed w i i h steppcd- z p l i t i n s e r t s t o accommodate tools of vario.ins d i a m e t e r s , Sonic i n s e r t s i ne1 ude a d r i l lead b a l l through which tools may be "swimg" 3 n t o pocitxions otlner than d i r e c b l y underrnc:Lth t h c work hole. T1.iree 8-in. - d i a m lezd-glasc w i n d m m-y bc mourited sirriultaneously for d i r e c t viewing. Periscope and t e l evi.s i o n cLmcra opeai ~ i g sare also a v a i l a b l e .

-

E r a zed Joi n-t; De velopnicnt

s i x p r o t o t y p e tirazed j o i n t s i n I l / z - i n . sched.-lcO Z N O R - ~ pipe wcrc fdXci c s t e d u s i n g tools and equ~~Jmenb devcl oped f o r Lhis purpose One j o i n t was made i n a mocku-p of the d r a i i i c d 3 w i t h a l l t h e work accomplished inot,cl.y, as it w i l l be done i i the M S ~ . Ariothex. w a s de on a p i p e i n which molten sal-t liad been c i r c u l - a t e d and- in which ~ o m esalt, x-miaictcd, AlI s i x join-t;s were sub<jected t o 3, h y d r o s t a t i c t e s t , a k l iuvn leak test, and u l t r a s o n i c inspection. Nom evidenced any leakage, and 3 7 - 1 indica-ted t work on t h e j o i n t and met'lmds -feu. i t s adequate bonding. The devclop

.


62

.

remote fabrica,tioii i s consi-dered t o be complete Development work on techniques and equipment f o r remote i n s p e c t i o n i s sti77 under way. Brazed-Joint S a l t 'Ilkst A p r o t o t y p e l 1/2-ri.n. brazed j o i n t w a s t e s t e d i n s e r v i c e t h a t sirfluof 6780 hr, l a t e d a d r a i n I-rine. The j o i n t w a s held. a'c lZ50째F f o r a -total.. i n c l u d i n g 1-23h r i n c o n t a c t w i t h sal-t and l-kOZ simu.l..ated d r a i n s . There was no apparent damage t o t h e j o i n t throughou-l;t h e t e s t . 'I'he j o i n t w a s removed from t h e loop f o r m e t a l l - u r g i c a l examination.

Mechanical - J o i n t Development The d e s i g n of t h e overflow-line disconrlect 2t tliz f u e l pulnp bowl2' w a s compl_c.ied, and a c a r b o n - s t e e l p r o t o t y p e w a s b u i l t , f o r tcsting. The d i s c o n n z c t i s e s s e n t i a l l y a r i n g - j o i n t f l a n g c mounted in a v e r t i c a l Line w i t h a c y l i n d r i c a l b a f f l e extending downward i n t o 'die p i p e t o t r a p g a s npxt t o t h e r i n g g a s k e t . A s e r i e s of t e s t s of t h e p r o t o t y p e a t 1000째F and

70 therm81

cycles

wi i,h h e a t a p p l i e d b o i h i n t e r n a l l y and e x t e r n a j l y i n d i c a i e d f a v o r a b l e tern-

p e r a t u r e di s t r i b u t i o n and e x c e l l e n t l e a k t i g h t n e s s . 'l'hereforc an irnproved INOX-8p r o t o t y p e f l a n g e d j o i n t w a s b u i l t and i n s t a l l e d i.n t h e freeze-valve t e s t loop. 'Jest,i..ng w i t h s a l t i s scheduled t o start i n t h e n e a r f ixi.,ure

.

Pump Developmen-l; P

Fuel Pump Design and F a b r i c a t i o n

The d e s i g n of t h e fuel pimp w a s approved, as p r e v i o u s l y reported-,"' and f a b r i c a t i o n of t h e purp tank i s approximately 30$ complete. ~n IMOK-8 vol.ute casLing w a s weld r e p a i r e d t o the r e q u i r e d q u a l i t y f o r r e a c t o r s e r v i c e , and a s p a r e v o l u t e casLing i s b e i n g weld r e p a i r e d t o t h e same q u a l i t y . F a b r i c a t i o n of t,wo r o t a r y elements I o r t'ne fuel pump i s a p p r o x i mately 80$ cornpleLe

.

Coolant Pmp Design and F a b r i c a t i o n 'Ike d e s i g n of t h e c o o l a n t w a s compl-eted and approved. 'The c o o l a n t and f u e l pwnps a r e s i m i l a r i n design, e x c e p t t h a t the hydraulicc h a r a c t z r i - s t i e s a r e d i f f e r e n t , and t h e coolani, pump t a r i k does not conLain 'die xenon-removal- s p r a y and t h e c o o l i n g shroud for the upper s h e l l of t h e t a n k used i n t h e f u e l pump. The f a b r i c a t i o n o f t h e p u p t a n k is approximately

30% compl..e-te. A n

INOR-8 vol.ute c a s t i n g w a s weld r e p a i r e d t o Lhe qual.Ti.-Ly r e q u i r e d f o r

r e a c t o r s e r v i c e , and a, s p a r e v o l u t e c a s t i n g i s b e i n g weld repai-red t o t h e 2of'MSRZ'

211bid.,

Semiann. Prog. Kep* E'eb. 28, 1962, pp

>1-57-

"

ORNL-3282, p >I.

.


63 same q u a l i t y . T h e f a b r i c a t i o n of two r o t a r y elerrte~ii,:: f o r the c o o l a n t pump i s app-roxima-te1.y 80% complete. Design -

.

and. F a b r i c a t i o n ot L u b r i c a t i o n Stands f o r Purrips d e s i g n of Lhe l u b r i c a t 2 o n s tar1d.s was completed arid aLJproved. d-s w i l l be reqinis o r t h e f u e l pimp and one for. t h e c o o l a n t

prmp "he l u - b r i c a t i o r i sy puri~p-shaftb e a r i n g s and s and. t h e upper t t t r i k st r u e 1;urc p r o v i d e t i m e f o r ord-crly shutd-owiz systems should- becomc i n o p e r a t i v e .

tle:;igncd t o l u b r i c a t e and c o o l t h e t o t r a n s p o i t heat, from t h e s h i e l d p l u g two s t a n d s w j l 1 bc i n t of t h e r c a c i o r in t h e w e n t one of tile

Each s t u n d p r o v i d e s a water-cooled r e s e r v o i r , two c e n t r i f u i n paral-lcl-, a f u l l - f l o w oil f i l t e r , and the necessary valves a re:^ t o r pmps menta-tion t o e n s u r e adequate l u b r i c a t i o n and c o o l i n g of t, The f a b r i c a t i o n of t h e s t a n d s i s t e l y 110%complete.

. I

The t e s t l u b r i c a t i o n pmp has c i r c u l a t e d . it t u r b i n e type of o i l for TJpon resumption of o p e r a i i o n a f t e r Lhe i n i t i - a l tcsl;23- o.f 14-28 hr, the motor ftti_lcd aft w operating a n a d d i t i o n a l 93-3 hr, whcuz one ph of the stator wiridirig bec:<wm gx The s t a t o r was rc;planced arid t e s t i n g w;is reswncd.

51413 hr at 160째F, 70 gpm, and 3300 rpm.

Drive Motor Design

auld

Fabrication

The design of tlie d r i v e motors for. the r e a c t o r pump$ u and approved. YThe basic, d e s i of a t o t a l l y encl cooled, explosion-proof, N-EJ!JI,A " :;p e( 3 :i. :AI. -11LZ -rpo:;e, n q u i r rcl-cage i n d u c t i o n motor. Thc motor f o r fuel p m p i s r a t e d 75 hp at, 1200 rprri, and the motor for t h c c o o l a n t t e d '75hp at; 1800 Tne s p e c i f i c a t i o n f o the ~ drive-motor cont,n,iruncnt v e s s e l s r e q u i r e s t h a , t t h e v c s s e l s pass a er l e a k test w i t h a ht4..ium 1-enk rat4e of 1 ess than 1. x I c . Tile vessel fahi*i.cator has e q i e r i c n c e d d i f f i c u l t y c2cquiri.n able p l a t c material; n second- order of the ~ n a k r i a lf a i l e d t o pass t h e i m p a c t - t e x t reqiniremexil,:; anti i 2; being heat-treated p r i o r t o retesting.

Test I?m. F a b r i c a t i o n F a b r i c a t i o n of the proto-i

Lns-l;atll_edi n t h e t e s t Taci ed, and .i 1; was i n s t

ark w a s courrpletcd., -the ta,rlk ch t e s t i r i g of the rotury 21 c r n c r i t i n the pump t a n k for elcvatcd-

'l'est % ' : w i l i t y Cons Lruction

' h e c o n s t r u c t i o n of t'rle t c s t Catcility (Fig. 3.11) was comy,.l_et;ed. In acid-ition LO t k l e proto%y-pe pump and loop p i p i n g , it i n c l u d e s ( F i g e 3.12)


64


Y

65 !JNCLAISI ilti) OitrJ!.-!.R- GG I 7?4t4

1

I

I........................................

Fig

a

3.12.

J

P r o t o t y p e P u p Test System.

S-Iydra,ulic Pcrformancc T e s t s

The s e i z u r e , which w a s of t h e f r i c t i o n - w e l d t y g e , w a s caused by rubbing between t h e ouber s u r f a c e of the sliaft arid t h e s u r f a c e of t h e b o r e s h i e l d plug. & f l e c t i o n of t h e s h a f t by r a d i a l hydraulic f o r c e 0x1 c l l e r had reduced t h e rurining c l e a r a n c e t o zero j u s t p r i o r t o seizure. T7lie pump w a s oper3tine; n oTf-design c o n d i t i o n well removed from i t s b a l a n c e line when the s e occurred. The pumy) had o p e r a t e d


66 s a t i s f a c t o r i l y f o r 335 h r a i 1200째F. Another r o t a r y element i s b e i n g assembl-cd i n which t h e runni ng c l e a r a n c e s a r e i n c r e a s e d t o accommodate o f f - d e s i g n o p e r a t i o n , and t h e t e s t w i l l b e resumed.

PW Pump Hot Endurance Test The PW t e s t pumy, c o n t i m e d to o p e r a t e and had. accwiula?;ed, a t the end of t h i s r e p o r t p e r i o d , a t o t a l of 5445 h r a t 12Z5째F, l..95O q m , and 5I..O gpm, c i r c u l a t i n g t h e sa.l.t L~F'-BEFZ-T~E'~-UF~ (65-30-4-1 mol-e $) The d i f f e r c n t i - a 1 p r e s s u r e a c r o s s t h e lower shafi; s e a l has been nmintained. a t 1psi. The s e d . l e a k a g e a c r o s s t h e upper s e a l h a s been approximately 5 cm3/day, and a c r o s s t h e lower s e a l , 5.t h a s been t o o s m a l l t o measure conveniently.

.

'l'esl; Pump With One Moltell-Salt -Lubricated Bearing

The t e s t p u p with a molten-salt-1t;lhricatcd b e a r i n g w a s equipped w i t h a new j o u r n a l and b e a r i n g f a b r i c a t e d of INOR-8. IX;lri.ng shaked-own of &lie t e s t f a c i l i t y , it was noted that, t h e h o t , w e t t e d end of a thermocouple w e l l (3/8-in.-diam t u b e ) had corroded away. Operation w i l l be resumed as soon as a n a n a l y s i s of t h e rue1 supply and a r i c i ~ ~ l l u r g i c aexaminatioii l of t h e remainder of t h e thermocouple t u b e have been made. I n s t rune n t Devel oprnenl; Si.n g l e -Point L i quid-Level 1n d i c a t o r

A p r o l a t y p e model of t h e two-level c o n d u c t i v i t y - t y p e l i q u i d - l e v e l probe b e i n g d.eveloped f o r use i n s i n g l e - p o i n t measurement of l i q u i d l e v e l in the MSKE s t o r a g e tanks w a s c o n s t r u c t e d . The completed_ probc assexrhly 3.s shown i n Fig. 3.13. "he b a s i c -principle of o p e r a t i o n of t h e probe w a s r e p o r t e d p r e v i o u s l y ; 22 however, t h e s t r u c t u r a l d e s i g n of t h e probe d i f f e r s from -the conceptual- d e s i g n d e s c r i b e d p r e v i o u s l y i n t h a t t h e c o n t r o l sampling a c c e s s h o l e and t h e mounting f l a n g e have bcen elimina-Led.. The changes were n e c e s s i t a t e d . b y changes i n t h e d e s i g n of t h e s t o r a g e t a n k s - t h a t p r e c l u d e d t h e use of t h e c e n t r a l a c c e s s hole for l e v e l - p r o b e i n s t a l l a t i o n . I n t h e r e v i s e d i n s t a , l l a t i o n , t h e probe will be welded. t n t o a p i p e n i p p l e and will n o t b e removable. 'l'he pro'be assembly i s b e i n g t e s t e d i n mol ten salt, under s i m u l a t e d operating conditions I n i t i a l r e s u l t s of tlie t e s ts i n d i c a t e t h a t t h e d e s i g n concept i s c o r r e c t . S i g n a l s o f 100-mv amplitude were r e c e i v e d when t h e s a l t w a s i n contac'l, with t h e probe. 'The s i g n a l l e v e l w a s l e s s t h a n 2 0 r v when t h e s a l t level- was be3 ow the probe. It i s expected t h a t t h i s l a t t e r s i g n a l l e v e l can be reduced by b a l a n c i n g c a p a c i t i e s and by use of a p h a s e - s e n s i t i v e demodulating c i r c u i t j n t h e m e e i v i r i g equipment. T e s t i n g of tlie p r o t o t y p e probe w i l l c o n t i n u e i n o r d e r t o determine t h e long-term r e l i a b i l i t y of t,he d e v i c e and. t o obtai..n d a t a for use i n i h e d e s i z n of t h e

.

22"TvzSW Prog. Rep. March 1 t o Aug.

31, l96l," OliNL-3Zl5, pp 72-y6.


h


68 MSlU i n d i c a t o r .

b e i n g prepared.

D e t a i l e d d e s i g n s of probe assemblies f o r the MSRE are

Pump-Bowl Liqia.j.d-L,evel I n d i c a t j . on

c

Devel-opme n t a1 t e st ing of a c o n t inuou s 1i q u i d - l e v e l - rindi.c a t ing element2" f o r use j.n rneasi.xrernent of mol-ten-sal..t l e v e l s i n t h e MSRE f u e l and cooll..ant pump bowls w a s continued. A four-month i n i L i a 1 t e s t a t t c m p e r a t u r e s between 900 and 1300째F w a s terminated. June 4.. During the l a s t t h r e e months of t h i s p e r i o d t h e tempera-ture was maintained a'c 120O0F, and t h e molten s a l t w a s held. a t a c o n s t a n t l e v e l . 'Il'lie maximum v a r i a t i o n recorded d u r i n g t h i s p e r i o d w a s 0.1- i n . ; t h e span of t h e i n s t r m e n i ; i s 5 i n . Test:; made a t t h e end of t h e four-mon-th -'Lest period. r e v e a l e d no ev.i.dence of cal.ibra-L.i.on s h i f t , hys-Leresis, or o t h e r d e g r a d a t i o n of -the performance c h a r a c t e r i s t i c s of t h e ins.Lrurnent i n excess of 2% of fu.3..11. s c a l e (0.1 i n . ) . Cal-ribration curves made t h r e e months a p a r t a r e shown i n F i g s . 3.14 and 3.15. There has been no incl.li.cat,lon of b u i l d u p of s o l i d s as a r e s u l t of vapor d e p o s i t i o n i n t h e c o r e t u b e of t h e instrLment; however, s o l i d d e p o s i t s were found- on a spark-plug l e v e l probe removed from t h e t e s t s t a n d a t t h e conclusion of t h e four-month t e s t . After completi.on of t h e f our-month test, t h e instrimen-t; w a s d r a i n e d and t h e tempera-ture w a s cycl-ed. t h r e e times between 500 and. 100O0F. Subsequent checks r e v e a l c d no evid-ence t h a t t h e instrimen-L w a s damaged by -tihis r e p e a t e d h e a t i n g and. cooling. The i n s t r u m e n t w a s retmrned -to o p e r a t i o n a'c 1200째E', and longterm 'cesting i s continuing. A t h i r d i n s t r u m e n t i s b e i n g cons-tructed and. w - i l l be i n s t a l l e d on t h e MSB3 pump t e s t i n g f a c i l i t y t o o b t a i n experrience under o p e r a t i o n a l c o n d i t i o n s approx.?m~ti.ngt h o s e which w i l l be encountered i n t h e MSRE. T h i s ins-trumen-t w i l l use a n INOR-8 rnctal.-bal-l- f ]..oat, s i n c e g r a p h i t e w i l l . n o t f l o a h i n t h e b a r r e n s a l t used :in t h i s fa.ci.l_i-i;y. The t r a n s f o r m e r w i l l be mounted above t h e f l o a t because t h i s t y p e of assembly ris p r e f e r r e d f o r t h e MSKE instal.l.at:ion and because t e s t s of a similar unit, d e s c r i b e d above, revealed- no o b j e c t i o n a b l e operat:ional. c h a r a c t e r i s t i c s .

S i n g l e -Point Temperature Alarm System I n v e s t i g a t i o n s of s i n g l e - c h a n n e l thermocouple alarm switches f o r use i n frc:eze-fla,nge and. f r e e z e - v a l v e monitoring and c o n t r o l sys-Leins con-Linued. S e v e r a l components of -tihe E l e c t r a Systems Corporation2* monit o r i n g system were r e c e i v e d i n l a t e March. The systcm i-ncl.ud.ed a d u a l l i m i t alarm module (ET-4210), two s i n g l e - l i m i t a l - a m modules (ET-4200), a c o n t x o l module (ET-4300), and t h e power supply and module e n c l o s u r e . The u n i t s were t e s t e d i n t h e J a b o r a t o r y . As p r e v i o u s l y r e p ~ r . i ; e d , ~ ~ t h e s i n g l e - l i m i t a l _ s , ~ mmodules appear t o be s u i t a b l e f o r f r e e z e - f l a n g e 23"MS~IL-' Se-miann. Prog. Rep. Feb. 28,

'"lbid.,

p

60.

1962,''ORNL-3282,

pp

61-66.


69

UNCLASSIFIED ORNL-LR-DWG 73988

too

0 CALIBRAT ION 6 - 6 - 6 2

90

/ i -

~

@ CALIBRATION 3 - 1 6 - 6 2

TRANSFORMER IN 1 2 2 5 ° F FURNACE

80

70

60

50

40

/

30

20

.-. .

10

..

0

~

4

.

. .. .

.

. . . ......

...

5

6

7

a

9

IO

T A N K NO. 2 S C A L E R E A D I N G SHOWING M O L T E N - S A L T LEVEL CHANGE (in.)

F i g . 3.14. C a l i b r a t i o n Curve of Recorder of Pump-Bowl Liquid-Level I n d i c a t o r No. I Before and A f t e r ‘lhree Months OperaLion at 1200°F.


70

UNCLASSIFIED OR N L- L R -DWG 73989

YO0

0 C A L I B R A T I O N 6-6-62

90

C A L I B R A - II O N

3 -1 6- 6 2

TRANSF-ORMER A B O V E F U R N A C E AND

NOT H E A T E D

80

70

60

50

40

30

20

io

0

4 T A N K NO.

5

6

7

a

9

10

2 S C A L E R E A D I N G S I - { O W I N G M O L T E N - S A L T L E V E L C H A N G E (in.)

3.15. C a l i b r a t i o n Curve of Recorder of Pump-Bowl Liquid-Level I n d i c a t o r -No. 2 Before and After Three Months O D e - s a i i o n a t 1200째F.

a


71

.

nion.ito-r.ing Recent t e s t s i n d i c a t e t h a t c o n t r o l module ET-4300 i s s u i t a b l e for the valve-monitoring sys t a n . T h e e v a l u a t i o n t h u s f a r i s based o n l y on l a b o r a t o r y t e s t s . 'The E l e c t r a System vas placed i n f i e l d o p e r a t i o n on a f r e e z e - v a l v e undergoing full f i e l d - t c s t e s t i n g facility i n m-id u t i l i z i n g thc control syi t h e r e a ~ t o r . The e v i o u s l y described.. System is composed of modular u i i i t e r n a l w i r i n g of one mo iwig two sin,gle-alarm switches i s s h o ~ mi n Fig. 3.16, an ern is shown i n Fig. 3.1'1. The u n i t the rnodu1.c ericlosure t o p innit i s the power s -limi-1; alarm w i t c h e s or 10 c o n t r o l modules.

.

1 Kclay, Model A-82, were m i i t could be ver, the i n d i v j T h i s would r e q u i r e addj-n as well as a cornion po the u n i t s i s S O low (35 t1iexmocouple lead:;

Tcs-t:; of the Daystr completed. As previous1 flange- and valve-monitou t*Tould have t o b e i.nteGEi a l ~ ~ r m - l - i tu ~Lights, i rela su-pply Furtkier, t h e i r t h a t it coultl cause a pro

,

.

Temgernt iirc Scanner

orriruut at o r therm ficd to reduce

Development work on t h e

system is c o n t i n u i n g . l k c s g e n e r a t i o n . &i nl=trm disc rirrti r e ferene c -theLrrnocouple is

t h e alarm d i s c r i m i n a t o r . width wz:; receivzd, and a n c! d i spla y t h e thermocouple s i g n

designed and- c o n s t r

was irnproved and pa

dc a,mp3_ifierw i t ' x i o s c i l l o s c o p e vas r e p a i r e d t o

l7-in.

%'he complete system was asscjr A ditqymn of .t;'n The 1a b o r a t o r y were s u c c e s s f u l , and the

.

f a c i l i t y i n early August facil.i.l,y were used 3s i s y st ern c o n t i n u e s t o ope r a t e opcrtttion. Opcration w i l l b e con of t h e mc.rcur.y s w i t c h .

k e s t e d i n the lttborator'y in now e x i s t s i s shown

l c d on a l i q u i rnlocouples f r o e scaiincr. A t r i l y a f t e r more t h to determine the

8 ) shows the p r i l i c i p l

The diagram of t h e t i o n . One hundred therm j e t switch a t a rate of' i s fed t o an intcpytttj-rig s y s t s i s t a . n c e of the dc anpLif-ier.

tched in sequence by second. The ou 11.g of a c a p a c i t o r an 1 level is h e l d duri

31, 1961, ORNL-3Zl5, p 25-27. 28, l96Z," Ol<_nTL-3282, p 59.

25g'MSW Prog. Rep. March 1 to Aug.

26"MSRP

ouple-scanni:q2" u-rious noise

Scmiann. Prog. Rep. F'cb.


UNCLASSIFIED PHOTO 38688

Fig. 3.16. Dual-Limit A l a r m Module.


73

Fig. 3.17.

Tem33erature-Monito~ing System Assembly. UNCLASSIFIED ORNL-LR-DWG 5 8 9 1 0 R 3 A

i rl

Two DOUBLE-POLE DOUBLE- THROW CHOPPERS OPERATING SYNCHRONOUSLY

P

t-

._ -

__ -

THERMOCOUPLE REFEHENCE

I

F

*REFERENCE APPROXIMATELY EQUAL TO SCANNED THERMOCOUPLE SIGNAL

*-REACTOR

~

MERCURY-JET SWITCH (100 CONTACTS )

_________

DISCRIMINATOR ALARM SETPOI N T f 5OoF

ANN U N C l ATOR

__.--I__

REFERENCE TH ERMOCOlJPLE ON REACTOR PIPE

Fig. 3.18.

Block Diagram of Temperature Scanner.


74

.

t o - p o i n t switching -1;:i.me The r e f e r e n c e therrnocouplc signal.. is f e d t o two double-pole double-throw choppers w i t h a capaci.tor between t h e p o l e s of each chopper. The r e f e r e n c e thennocouple i s connected i n o p p o s i t i o n t o t h e o u t p u t of t h e mercury switch. The choppers s t o r e t h e charge from each s i d e of t;he r e f e r e n c e t h e m o c o u p l k d u r i n g one h a l f of t h e o p e r a t i n g cycle and t h e n switch ri.t a c r o s s -the l a r g e i n t e g r a t i n g c a p a c i t o r s i.n each o u t p u t l i n e of t h e mercury switch. The d i f f e r e n c e s i g n a l i s .fed. t o t h e de amp]-ifier and arnplified to 1 v o l t . The output of the a m p l i f i e r i s f e d .to t h e o s c i l l o s c o p e and to t h e alarm discrirnina-Lor. The alarm d i s c r i m i n a t o r can ’ne a d j u s t e d t o prod-uce a n a,l..amn when t h e d i f f e r e n c e s i g n a l exceeds a n a d j u s t a b l e range of n 5 O t o +300°F. If t h e r e f e r e n c e s i g n a l and t h e commutated s i g n a l a r e equal, a s t r a i g h t l i n e i s seen on t h e o s c i l l o s c o p e . I f a s i g n a l from one thermocouple i s h i g h e r t h a n t h e r e f e r e n c e , it i s f e d through t h e system as a n a c s i g n a l and appears as a posi-Live p u l s e on t h e o s c i l l o s c o p e . By u s i n g a synchronizing pul-se from t h e switch, t h e 100 thermocouple s i g n a l s a r e displayed. on t h e o s c i l l o s c o p e li.n a f i x e d p o s i t i o n s o t h a t cach signal- i s i d e n t i f i e d w i t h a p a r t i c u l a r themlocouple

.

Y’he switch m o d i f i c a t i o n c o n s i s t e d of i n s t a l l i n g shortj-ng s t r a p s between t h e c o a l e s c e r c o i l and t h e common mercury pool, as shown i n F i g . 3.19. This reduced t h e sta-1;:i.c charges which were g e n e r a t e d between t h e c o a l e s c e r coil. and t h e mercury pool and r e s u l t e d i n a s i g n i f i c a n - t , reductri-on i n t h e s p u r i o u s n o i s e g e n e r a t e d i n t h e swi-Lcli. A block diagram of t h e a l a r m d i s c r i m i n a t o r i s shown i n Fig. 3 . 2 0 . T h i s c i r c u i . t i s designed t o produce a n alarm when p u l s e s i g n a l s having a n amp,~-it;udeof tl volt o r g r e a t e r arid a r e p e t i t i o n r a t e of 20 p u l s e s p e r second are a p p l i e d -Lo t h e i n p u t . With p r o p e r adjustmeni, of t h e d i f f e r e n t i a l d.c a m p l i f i e r , t h e d i s c r i m i n a t o r may b e a d j u s t e d t o produce a n alarm wi,th s i g n a l s as smal..I.. as ?5U°F. A p u l s e - i n t e g r a t i n g ( c o u n t - r a t e ) circui.1; p r e v e n t s s p u r i o u s alarms from rand-om n o i s e p u l s e s . Since t h e mercury scanning switch sampl-es each p o i n t 2 0 times p e r second, i n p u t p u l s e s r e s u l t i n g from a t r u e alarm c o n d i t i o n w i l l have a r e p e t i t i o n r a t e of a-1; least; 2 0 p u l s e s p e r second and a n a l a r m w i l l occur. The d.i.scriminatoralarm c i r c u i t r y i.s comple’cely t r a n s i s t o r i z e d and i s packaged i n a 3 l / Z - i n . -wide, ‘7 1./2-in. -high, panel-mounted- housing. Also packaged i n t h e housing are t h e r e f e r e n c e - t h e r ~ ~ i o c o u p li es o l a t i o n system, a sync-pulse a m p l i f i e r f o r d r i v i n g t h e oscri.l..loscopc t r i g g e r , and the necessary powersupply c i r c u i t s .

Themoc ouple Devel oprnent; and Testi.rig

.

R a d i a t o r Thennocouple T e s t T e s t i n g of mechanical thermocouple attachments for use on r a d i a t o r tubesz7 i n the MSE3 w a s resumed a f t e r t h e t e s t a p p a r a t u s w a s modified t o e l i m i n a t e e r r o r s i n measuring t h e i n n e r w a l l temperature. P r o v i s i o n s f o r purging w i t h i n e r t g a s wcrc added; Llie r e f e r e n c e thermocouple w a s a t t a c h e d t o t h e i n n e r w a l l of i h e INOR-8 tube by s p o t welding; and thermal i n s u l a t i o n w a s p l a c e d between the t h e m o coupl-es and t h e copper s l u g ( F i g . 3 . 2 1 ) . 271bid.,

p

58.


UNCLASSIFIED

ORN ILR- OWG 72559

SIGNAL PIN

R 0 - P 0R

HARNESS A SS EM 8 LY

GAS K E T, NOZ Z LE COUNTERWEIGHT

-

CL-A M P ASSEMBLY -. % ' .

'MERCURY

SHORTING STRAP

POOL

y-MOTOR

Fig. 3.19.

Model 21-0Delta Switch.

ASSEMBLY


76 UNCLASSIFIED O R N L - L R - DWG 7 2 5 5 8 A .............

...........................

D I S C R I M I N AT OR

INP

....

2 -t 5OoF

I

I.

Fig. 3 . 2 0 .

Block Diagram of Alarm D i s c r i m i n a t o r . U N C ? ASSIFIED O R N L - L R - DWG 73990

REFERENCE THERMOCOUPLE SPOT WELDED TO W A L L H E A T E R THERMOCOUPLE INOR-8 TUBE

I N SU L A T I O N

WEDGE- FIT1-ED COPPER SLUG

PURGE -GAS

I NCONE L - S H EATH ED TEST THERMOCOUPLE

INCONEL C L A M P I N G B A N D ATTACHED TO TEST THERMOCOUPLE WITH G O L D - N I C K E L B R A Z I N G ALLOY AIR STREAM

POWER L E A D S

Fig. 3.21. Seetiiorial V i e w of Radiator Therrmcouple Test Apparatus. I

S e v e r a l t e s t thermocouples were p r e p a r e d w i t h one s c c t t o n of a twop i e c e c1.am-p made of 3/16-in. -wide, 0.020-in. - t h i c k I n c o n e l a t t a c h e d to -the s h e a t h near t h e end. seal w i t h g o l d - n i c k e l b r a z i n g al-l-oy. The themnocouples were t h e n a t t a c h e d t o t h e t u b e by p l a c i n g t h e upper seci;:Lon over the tube, engaging t h e lower s e c t i o n , and crimping both, as shown i n Fig. 3.22. S e v e r a l t e s t s were r u n w i t h t h e tItiermocoqXl.es a t t a c h e d as d e s c r i b e d above and. writh thermal i n s u l a t i o n c o n s i s t i n g o f (3.i:f:ferent t h i c k n e s s of F i b e r f r a x board. o r paper p l a c e d over -the j u n c t i o n end.. of t h e .thexmocoupl..e The thermocouple shown a t t h e f a r r i g h t i n Fig- 3 . 2 2 i s i n s u l a t e d w i t h Fiberfrax paperJ and Z;he .themmocoup3..e second from r i g h t i s i n s u l a t e d wi-th F i b e r f r a x board. 'i'he accuracy of t h e wal-1.-temperature measurements w i t h


77


78 t h e t e s t thermocouple w a s improved c o n s i d e r a b l y w i t h b o t h forms of F i b e r f r a x i n s u l a t i o n . The f l e x i b l e paper form of F i b e r f r a x i s p r e f e r r e d over t h e r i g i d board, however, because it reqi.n.i.res no machining o r p r e forming p r i o r t o i n s t a l l a t i o n . mi.cal._r e s u l t s o b t a i n e d i n r e c e n t t e s t s of .thermocouples a t t a c h e d and i n s u l a t e d as described. a r e I-isteed i n Table 3.1-1-. The t e s t .thermocouple used i n r u n 5 w a s covered w i t h 'SJ7nemnom, a heat-conductive cement r a t e d t o l..Z50°F, and 3 l a y e r s of 1./8-in. -'l;hi.ck F i b e r f r a x paper. It 3.s n o t known y e t whether Thermom w i l l be a c c e p t a b l e f o r tinis a p p l i c a t i o n . A t e s t specimen of a t,ypica.l_ thermocouple a t t a c h ment covered with 'll'hemom i s now undergoing a corrosiom . t e s t . Engineering T e s t Loop Instal-la-Lion. E i g h t N?€U3-pro-Lo-Lype s u r f a c e mounted.. thermocouples were install-ed. i n t h e ETL f a c i l i - t y t o determine, under s i m u l a t e d o p e r a t t n g condi-Lions, t h e r e l i a b i l i t y of attachments and "ihe accuracy of w a l l temperature measurements .Laken wi-th thermocouples l o c a t e d on t h e w a l l s of p i p e s and cornponen-ts a d j a c e n t t o h e a t e r s . Shea-Lhed, 1/16-in. -OD, single-conductor two-wire, and 1/8.-in. -OD, sheathed, duplzx 'c;hermocolxples were mounted i n p a i r s a d j a c e n t t o 3O-ga bare-wire r e f e r e n c e thermocouples a% t h r e e I-ocations. A similar. p a i r of thermocouples w a s loca,-'c;ed a d j a c e n t -to a r e f e r e n c e thermocouple i n s t a l l e d i n a w e l l at a f o u r t h l o c a t i o n . A t y p i c a l i n s - L a l l a t i o n i s shown tn F i g . 3.23.

All t h e thermocouples have been i n s e m i c c s i n c e A p r i l 16, 1-962, a n d a r e s t i l l performi-ng s a t i s f a c t o r i l y ; however, they have accurnul-ated on1 y 1-500h r of o p e r a t i o n time a t 1_040t o 1200°11' during t h i s p e r i o d because of loop downtime. Wi-th. s a l t c i r c u l a t i n g a t t h c 2bove temperatures, d i f f e r ences i n r e a d i n g s between t h e t e s t themnocouples and t h e r e s p e c t i v e Table Run

NO.^

I 2

3

4 5

3.4..

R e s u l t s of T e s t s or" R a d i a t o r Tube The.iimwouples

Approximate Air Flow (fps)

0 90 0

i70

0

50 0

50 0

50

Inner W a l l Temperature

(OF)

996 990 998 735

1009

1009 1009

1000

100y 101..0

T e st 'lh c rrno c oupl e Temperature

(OF)

985 354 984 905 996 983 996 972 1002 1001

Tempe rat,u r e Diff e r e nc e

(OF)

-11

-36

-114.

-30 -13

-26 -13

-28 -5 -9

a The t e s t thermocouples used i n r u n s I_, 2, 3 and 4 were i n s u l a t e d w i t h E'iberfrax board; t h e run 5 t e s t thennocouple w a s covered wi'ch 'I'hermom and i n s u l a t e d w i t h F i h e r f r a x paper; a l l - r e a d i n g s were t a k e n w i t h t h e t e s . t thermocouple downstream of t h e a i r flow.


79


80

.

r e f e r e n c e thermocouples, as noted p e r i o d i c a l l - y , were inconsist,ent Tbe l i m i t s of v a r i a t i o n i n temperature d i f f e r e n c e between a n i n d i v i d u a l t e s t thermocouple and its r e s p e c t i v e rcfereiice the-rmocouple a r e l i s t e d i n 'Table 3.5. D r i f t T e s t . Six Inconel-sheathed MgO-insulated Chraxnel-Mumel thermocouples a r e b e i n g t e s t e d t o determine t h e sLa'uility of c a l i b r a t i o n a t MSIXE -t;eniperatures. Over 5000 h r of soaking time i n 1200 t o 1250째F a i r h a s been a.ccvunula,ted 4x1 date. None of t h e thermocouples have d r i f t e d more ' F e q u i v a l e n t in emf o u t p u t . than 2

.

Bayonet Thermocouples Ten MSLG-prototype wall-mounted thermocouples were t n s t a l l e d i n t h e d r a i n - t a n k bayonet-cooler t e s t f a c i l i t y -Lo determine t h e e f f e c t s of f a s t temperature t r a n s i e n t s on -the l i f e of -these thermocouples and t o determine how f a s t t h e y would respond t o t r a n s i e n t s . The thermocouples t e s t e d . c o n s i s t e d of b o t h 1/16-in. -OD, sheathed, s i n g l e conductor, two-wire and 1/8-in. -OD, sheathed, duplex thermocouples w i t h j u n c t i o n s grounded to w a l l s and end s e a l s . One 1 / 8 - i n . -OD u n i t f a i l e d immediately a f t e r s t a r t u p of t h e - b e s t . I t s e a r l y f a i l u r e i s thought t o have been due t o f a u l t y c o n s t r u c t i o n , s i n c e t h e o t h e r n i n e u n i t s have for been s u b j e c t e d t o r a p i d temperature changes between 1 2 0 0 and. 600'F over a week w i t h o u t f a i l i n g . The thermocouples t h a t endure t h e thermal.c y c l i n g tiest w i l l be checked f a r speed- of response.

.

Freeze-Valve Tkemocouple T e s t s Six MSW-prototype wall.-mounted. thermocouples were i n s t a l l e d on a, f r e e z e v a l v e in a t e s t conducted t o de-Lermine t h e d u r a b i l i t y of t h e s e u n i t s i n this type of s e r v i c e and t o d . e t e m i n e t h e accuracy of t h e measurement of wal-1.. ,temperature a t t h e cooled. and h e a t e d area of t h e v a l v e . Sheathed, 1./16-in. -OD, s i n g l e conductor and 1/8-in. -OD duplex thermocouples were mounted i n p a i r s ad-jac e n t t o a 30-93 bare-wire r e f e r e n c e thermocouple a t t h r e e l o c a t i o n s on the v a l v e . The l o c a t i o n s and methods of attachment are shown i n Fig. 3.21.1.. The . L e s t the-mocouples agreed w i t h t h e r e f e r e n c e tiherrnocouples,

..

Table 3 5 V a r i a t i o n s i n Readings of Thermocouples I n s t a l l e d on the Engineering Test Loop T y p e of Reference Thermocouple

S ta t i on

No. 30 AWG bare w i r e

1

2

3 1./8-i.n. -OD, i n wel.1-

sheathed,

4-

Outside Diameter of T e s t Thermae ouple (in. )

1/16

1/8

1/16 l./8 1/16

L i m i t s of Variat i o n i n Tempera-. t u r e Difference

(OF)

+I. t o c6 i-1 t o

+6

-2 to +I.\.

-2 t o 0 -3 t o i-5 -2 t o 4-5

-5 to -6 -3 $0 -t6


lve

.


except, t h a t d u r i n g r a p i d h e a t i n g and cooling, d i f f e r e n c e s o f 1-5 t o 2O0b' i n t einpe :rature r e a d i n g s were noted.. A l l t h e t h e m o c o u p l e s were s L i . 1 1 funcNo sigt i o n i n g a f t e r two weeks of i n t e r m i t t e n t o p e r a t i o n of the v a l v e . n i f i c a n t d i f f e r e n c e in t h e performance o r d u r a b i l i t y of t h e 1/16-in. singJ-e-conductor and 1/8-in. duplex themocoupl e$ has been noted.

.

A s i x - c i r c u i 2; r a d i a t i o n - r e s i s t a n t t;he:c-moThermocouple Disconnects coupI..e-disconnect assembly t h a t was f a b r i c a t e d from commercially a v a i l a b l e T h i s d i s c o n n e c t i s s i m p l e r i n concomponents i s shown i n Fig. 3.25. s t r u c t i o n t h a n t h e assembly previ-oixsly described2' and i s more compatible w i t h fi5RE requirements. The p l u g and j a c k p a n e l s were s u p p l i e d by t h e Themnio E l e c t r i c Company and are similar t o their s t a n d a r d p l u g and j a c k panel. assemblies, e x c e p t f o r t h e i n s u l a t i n g ma.teria.1, which i s E l e c t r o b e s t o s . !The housings a r e modified FS-type conc2u.j.t boxes. The j a c k housing ( t o p h a l f ) has a removable back p l a k t o f a c i l i t a t e w i r i n g connect i o n s . Swaged-type t u b e f i t t i n g s are u t i l i z e d t o support, and r e s t r a i n t h e i n d i v i d u a l metal-shetz%hed themocouples. A d i s c o n n e c t of t h i s type was tested i n the remo-te-rnaintenance t e s t f a c i l i t y and aperaLed s a t i s f a c t o r i l y . Alignment of the p i n s d u r i n g remote maintenance o p e r a t i o n s will be accompl5shed by means of a gu-id-e i n c o r p o r a t e d i n t h e h a n d l i n g t o o l .

Prog. Rep. E'eb. 28,

196.1, "

ORraL-3l2ZJ pp

61-62.


83

F i g . 3.25. Six-Circuit Radiation-Resistant Them~ocoupl-eDiscon-

nect.



PART 2.

MATI3EUXLS STUDIES


.


87

4.

METALLURGY

INOR-8specimens,

e

cia1 a t t a c k by CF4 vapo

b o t h oxide and f l u o r cimen s u r f a c e s exmi camera. I n o r d e r t o de n of t h e ~ 3 0 surf ~ ~ 8 c i n e n s immersed. i n a

or over t h e fluoride salt,

The two experiments were p pots a t temperatures of 111 were scheduled for 1000 h r the higher temperature r hr, Specirneris b e i n g t e s 100-hr i n t e r v a l s . The s weight changes and showe however, spccirnens t e s t e d i

t r o n microscope ese f i l m s had

a;S experiment composition L apor passed con

respectively. d e p l e t i o n of t n of t h i s exper removed f r o t h e salt t t e r n of we se e x h i b i t e d results, s

i n c r e a s e , i n accordance i n s a l t a t 1292째F gained s cases a metallic-appeari showed it t o c o n s i s t p r i (>r$> of molybdenum, Spe c o n s i s t e n t , weight losses and were covered w i t h a greenish reactian product; 0

Metallographic examinations OS t h e specimens t e s t e d at 1112째F r e v e a l e d no evidence of surface ch Specimens t e s t e d at 1292째F were l i g h t l y p i t t e d i n weas C by t h e m e t a l l i c shown i n Fig. 4.1. Areas covered by t h e c o a t i n g were un e of c a r b u r i z a t i o n could be t ed metalLogr a p h i call I a n a l y s e s of t h e spe t h e t e s t showed no c con-bent compared with r e c e i v e d samples

.

The results of t h e s e and e a r l i e r experiments i n d i c a t e t h s t m4 vapor i s e f f e c t i v e l y n o n r e a x t i v OR-8a t 1112째F b a t t a c k may be promoted by CF4 i nee of f l u o r i d e A t least p a r t of the a t t a c k at ars t o be a t t r i b t o hydrolysis of t h e CF4 by t r a u r e i n t h e system. T h i s c l u s i o n i s based on t h e d e t e c t i o n o f s m a l l m o u n t s of CO and CO, gas l e a v i n g t h e t e s t v e s s e l . '"MSRP

Semiarm, Prog, Rep, Feb.

28, 1962," om-3282, pp 77-79.

*


88 UNCLASSI 'IED Y-468 0

LQ!. 002 OO? -

cn w

x0

ze

086 001 --

OOf

_ I

M: 010 01 I

I _

-2 01

01 3

I I

014 011 X

0

.

-*

- .

. c

-

0

.*a

-

F i g . 4.1.

1

.

e e

.

d

clla-

"a,,

**

.

--*0 e .a

cn' l u -..

Corrosion E f f e c t s of CF4 on ZNOR-8 a t 1292째F. Welding and Brazing S t u d i e s

Heat Exchanger F a b r i c a t i o n Tube-Joint Design and Fabrica-kion. A f i n a l design and a welding procedure were e s t a b l i s h e d for the tube-to-tube s h e e t j o i n t s of t h e MSm primary h e a t exchanger that, i n c o r p o r a t e d rnodifications of t h e previous design2 -toprovide f o r i n s p e c t i o n of t h e back-brazed r e g i o n .

The j o i n t , shown i n Fig. 4.2, w a s changed by f l a r i n g t h e weld end s u f f i c i e n t l y s o that weld r o l l o v e r would not in-berfere w i t h t h e i n s e r t i o n of an u l t r a s o n i c i n s p e c t i o n probe i n t o the t u b e . The welding c o n d i t i o n s e s t a b l i s h e d t o a s s u r e a miniixum w1.d p e n e t r a t i o n o:C 42 m i l s are l i s t e d below: "Ibid.,

pp

81-84.


89 UNCLASSIFIED

ORNL-LR-DWG 6

5

~

~

~

2

GROOVE WITH

(17)

Fig. 4 . 2 .

BEFORE BRAZING

Tube-to-Tube Sheet J o i n t Design f o r MSRE Heat Exchanger.

Welding c u r r e n t Welding speed E l e c t r o d e diameter Electrode-to-work d i s t a n c e Electrode position I n e r t gas

39 t o 40 amp 4.4 r p m 3/32 i n . 0.035 i n . 0.005 i n . outside j o i n t i n t e r f a c e

Argon

A t e s t assembly, shown i n Figs. 4.3 and 4.4, w a s f a b r i c a t e d t o demonstrate s u i t a b l e f a b r i c a t i o n procedures and welding t e c h n i q u e s and t o study t h e e f f e c t o f s i z e on the Sack-brazirig o p e r a t i o n . The I-y contained 96 welded a back-brazed j o i n t s Welding was completed without d i f f i c u l t y , and good f l o w of braze metal, i n d i c a t e d by filleting, occurred i n all b u t one of the j o i n t s . Metallog i n v e s t i g a t i o n of % h i s b r a z e d j o i n t r e v e a l e d t h a t contamination v:ieini.ty of t h e f e e d e r holes had i n t e r f e r e d with flow of t h e a l l o y , as To avoid a similar s i t u a t i o n in t h e E R E be seen i n Fig. 4.5. eat exchmgw, p r e c a u t i o n a r y i n s p e c t n measures have b i n -the f a b r i c a t i o n procedu.re a

Tube-Joint I n s p e c t i o n . Methods of i n s p e c t i n g t u b e j o i n t s were at are a p p l i c a b l e to t h e RE h e a t exchanger. These i n c l u d e of t h e weldrnents and an I r a s o n i c Lamb -wave t e chriique f o r i n s p e c t i n g the b r a z e d j o i n t s . T e s t welds were examined w i t h b o t h x-ray and i r i d i u m : - ; O U T C ~ G under a v a r i e t y of c o n d i t i o n s arid w i t h curved s t r i p s of f i l m p l a c e d i n t h e


90

SSI FI ED 582 84

F i g . 4.3. o:F J o i n t .

Weld Side of T e s t Assembly w i t h MSRE Heat Exchanger Type

t u b e s a t t h e welds. O f t h o s e t e s t e d , t h e o p t b u m r a d i o g r a p h i c c o n d i t i o n s found f o r t h e h e a t exchanger weld were:

X-ray energy F i l m t o focal d i s t a n c e Incident angle Time Film t y p e

160 kv

48

i n e

30-35 deg

2.5 min

M

Four t o s i x exposures were r e q u i r e d t o completely i n s p e c t each weld; however, t h e t u b e arrangement on t h e MSRE h e a t exchanger al-lows f o r s e v e r a l t u b e welds t o be radiographed a b one time, and t h e o p e r a t i o n w i l l be more economical t h a n for t h e t e s t wel-ds. The d e f e c t s observed were somewhat d i s t o r t e d because of the method of film placement, but, d e s p i t e t h i s , pores s e v e r a l m i l s i n d i a n e t e r were d e t e c t e d . The u l t r a s o n i c Lamb-wave technique developed f o r t h e e v a l u a t i o n o f bonding i n brazed tube j o i n t s u b i l i z e s a small probe ‘that fits instdc t,he 1../2-in. - d i m t u b e , The probe c o n t a i n s two p i e z o e l e c t r i c c r y s t a l s


91

Fig. Lp.4. of J o i n t

Braze Side of T e s t Assemb1.y wi-th MSRE Beat Exchanger Type

e

t h a t s e r v e as u l t r a s o n i c g e n e r a t o r and r e c e i v e r , r e s p e c t i v e l y .

The n i n c i d e n t arigles were d e t e r m i i e a t e d . Approx a custom probe w a s d e s i g e r e evaluated u t s w i t h v a r i o u s degrees and m e t a l l o g r a p h i c exrunina-tions are i n p r o g r e s s t o provide c o r r e l a t i o n of the t e s t r e s u l t s .

proper u l t r a s onic frequency


Q

92

TUBE W A L L

F i g . 4.5.

D e f e c t i v e Braze Caused b y Metal Chips :i.n Feeder Holes.

Hemotc Brazing The b r a z i n g procedure and equipment, d e s c r i b e d previously3 f o r remotely f a b r i c a t i n g I N O R - 8 p i p e were used i n t h e p r e p a r a t i o n of six prototype j o i n t s Eva.l-uat,i.on of these by u l t r a s o n i c t e c h n i q u e s developed4 previ.ous1.y i n d i c a t e d only minor nonhonding i n f i v e of t h e brazed areas The sixth j o i n t contained ,z number of unbonded. areas i n t h e upper portion of t h e braze, %'he bonding i n a t y p i c a l . remotely b r a z e d j o i n t i s described. i n Fig. 4.6. a

Welding of INOR-8

A mechanical p r o p e r t i e s i n v e s t i g a h i o n i s b e i n g made of INOR-8 weld matcrial from h e a t s t o be used i n t h e N5R-E. As p a r t of t h e prel-irninary s t u d i e s , d a t a were o b t a i n e d on t h e e f f e c t of s t r e s s - r e l i e v i n g on st,rcs,smptuu-e p r o p e r t i e s These i n i t i a l tests were made u s j n g t r a n s v e r s e weld 3Tbid,

PP 84-84. *KO V. Cook and R e W. McClung, ffDevelopment of U l t r a s o n i c

Techniques â‚Źor t h e Evaluatton of Brazed J o i n t s , " OI3Nb-'TM-356 press) a

(in


93 ,OIJTFR

-

I I

/ ' I '

lJNCLASSl FIFO 0RNI:LLR--0WG 69026R

SLIRFACE

.

-

4

1 in.---

~

I

I

. . BONDED A R E A

L I

UNRONDED AREA

1

Fig. 4 . 6 .

Joint.

Results of Ultrasonic Inspection of a Remotely Brazed Pipe


94 specimens cut from a weld-containing base p l a t e ( h e a t N o . N1-5090) and weld wire. Two samples were t e s t e d a t 1300째F i n t h e as-welded c o n d i t i o n and two i n t h e s t r e s s - r e l i e v e d c o n d i t i o n ( 2 h r a t 1.600"~).The d a t a It i s e v i d e n t t h a t the s t r e s s obtained a r e p r e s e n t e d i n Table 1 c . l . r e l i e v i n g trca,tment improved t h e o v e r - a l l properti-es of t h e we1 dment, probably because of a r e d i s t r i b u t i o n of r n i c r o c o n s t i t u c n t s , such as grain-boundary c a r b i d e s

.

.

Table 4 1 E l e v a t ed-Temperat w e S t r e s s-Rupture Te s t Data on Transverse INOR-8 Weld. Specimens in the A s -WeI-ded and S t r e s s -Relieved Cond.itions a

Sample Condition

Time t o Rupture

'Total S t r a i n

113 9 79.1

4 3 6.6 12.5 1-25

A s welded

.

234 2 233 3

Stress relieved

($1

0

T e s . 1 ; ~were also performed on w e l d s made w i t h t h e s h o r t - a r c serniautomatic welding process T e n s i l e t e s t s a% 1..300"F provided t h e d a t a p r e s e n t e d i n Tab1.e 4.2. The low d.uct.il_i-t-beswere probably dire t o d e f e c t s i n t h e weld. It i s expected t h a t improvements i n t h e process can produce welds having p r o p e r t i e s comparable w i t 1 1 t h o s e of welds produced by t h e manual, twgsteir-a.rc p r o c e s s

.

.

!L'a,ble 4.2, T e n s i l e T e s t s a t 1.30C)"F of 'l'ransverse I N O R - 8 Short-Arc Weld Specimens in t h e As-Welded Condition

Sarql..e

No

e

Tensile Strength (psri )

Yield Strength (Psi-)

E1ongation

58,300 60,800 67,300

47,500 47,500

7.5 9.5 15,5

1 2 (a>

47,200

(%I

%y-pi.cal. 1300째F t e n s i l e d a t a f o r manual, timgsten-arc,

INOR-8 welds.


95 Mcclzcnnical P r o p e r t i e s oP

INOR-8

P r o p e r t i e s of Reactor-Quality m0wm8 mechanical p r o p e r t i e t m c t i o n are being d - q u a n t i t y production mens f o r t e n s i l e and s t r e s s - r u p ive INOR-8 p l a t e , ensile p r o p e r t i e s s t r e s s-rupture prop 1100, 1300, and 1-500"F.

1 IN OR-^ m a t e r i a l procured f o r n order t o evaluate t h e e d - q u a l i t y requirements. s-t;ing were prepared from eats N1-505f5, Nl-5075, and ed f r o m rooa temperature t o a will be determined i n a i r a t

Thermal Fatigue of INOR-8

IN OR-^ a r e being deterrmin t e e n t e s t s w e r e completed 1250 t o 1600"~ and cycle maximum t e s t t e m p e r a t u r e s i n t of b. and 10 min. R e s u l t s of t h e s e t e s t s are p r e s e n t e d i n Fig. The t h e r m a l - f a t igue grope hods d e s c r i b e d by Car

to-'

w

W

a w cr

5

2 ,62

W

W

5

E

5

F i g . LP. 7 .

Themnal-Fatig

son w i t h Inconel and T y p

%or INO;R-$ ( B e a t Nl-5050) in Cornl e s s Steel.

t h e p l a s t i c s t r a i n range ( m a x i m u m i n t e r n a l width of s t r e s s - s t r a i n versus t h e n m b e r of c y c l e s t o f a i l u r e f o r INOR-8, Inconel.., and

5A. E. Carden, "Thermal hod,'' OHVL-TM-405 ( i n prep

- An

Anal.ysis of the Experimental


96 t y p e 304 s t a i n l e s s s t e e l . i n c h d e d f o r comparison.

The d a t a on I n c o n e l and stai.nl..ess s t e e l a r e

The t h e r m a l - f a t i g u e data of Fig. 4.7 i n d i c a t e t h a t I n c o n e l and t y p e 304 s t a i n l e s s s t e e l have g r e a t e r a b i l i t y t o s u s t a i n p l a s t i c flow An a n < d y s i s of t h e temperature d i f f e r e n c e v e r s u s c y c l e s t h a n 1x0~~8. t o f a i l u r e f o r comparable maximum temperatures and f r e q u e n c i e s shows, however, t h a t IN OR-^ will s u s t a i n more r e s t r a i n e d thermal c y c l e s and. t h a t INOR-8 r e q u i r e s a g r e a t e r temperature d i f f e r e n c e t h a n t y p e 304 s t a i n l e s s s t e e l o r I n c o n e l t o produce f a i l u r e i n a comparable number of c y c l e s . The p l a s t i c s t r a i n p e r c y c l e i s l e s s i n INOH-8 because of i t s lower thermal c o e f f i c i e n t of expansion and h i g h e r e l a s t i c s t r e n g t h . Considerable p l a s t i c flow w a s observzd i n INOR-8 during t h e hold time in t h e 10-min p e r c y c l e t e s t . T h i s phenomenon i s b e i n g s t u d i e d f o r hold. times: of up t o 24 h r .

Graphite S t u d i e s Evaluation of Grade TS -281 Graphite specimens of grade ‘11‘5-281 g.r a p h i t e were e v a l u a t e d f o r molten. s a l t and mercury permeation i n s t a n d a r d s c r e e n i n g t e s t s , and t h e specimens met MSfB design requirements, T h i s g r a p h i t e w a s produced for the Engineering Test Loop i n t h e s i z e r e q u i r e d f o r t h e MSRE and w i t h e s s e n t i a l l y t h e same c h a r a c t e r i s t i c s as t h o s e of t h e graphi.te f o r t h e MSRE. Exposure of TS-281 t e s t p i e c e s t o molten. s a l t a t t h e c o n d i t i o n s d e s c r i b e d i n Table b.5 r e s u l t e d in a n average s a l t permeation of 0.2% of t h e b u l k volume. The MSElE s p e c i f i c a t i o n a l l o w s a maximum of 0.5% permeation. Impregnation of sjrnilar s p c i m e n s w i t h mercury at t h e c o n d i t i o n s d e s c r i b e d i n Table 4.5 r e s u l t e d i n an average weight g a i n of 1.2%, as compared w i t h a maxinluul allowabl-e MS?JE s p e c i f i c a t i o n of

3.5%.

A comparison of -the permeation of TS-281 g r a p h i t e w i t h t h a t of experimental grades of s i m i l a r g r a p h i t e ( r e p o r t e d i n Table l - ~ . h - )

Table 4.3, T e s t Conditions for Standard Permeation Screening T e s t s Test Conditions

,

Temperature OF Test; period, hr P r e s s u r e , psig a.

Molten-Sn1ta Test

1300

LOO 150

Mercury Test

70

20

4’70

LiF-BeFz -ThF+JFl, (67-18.5-14-0.5 mo1.e %),


97 Table 4.4. TS-281 a G

G r a p h i te Grade

TS-281

CGB -X CGB -Y

Permeation f o r Grade ilar Experimental of G r a p h i t e

Size os Cross S e c t ion (in. )

Bulk Volime Permeated

2 I-//. x 2 1/4 4 (diameter) 2 l / 4 x 2 1/L,

OQ

0.2 0.03, 0.04

i n d i c a t e s t h a t f u l l - s c a l e o r commercial f a b r i c a t i o n irnposes t h e p e n a l t y of g r e a t e r p o r o s i t y . I n t h e tes-Ling of t h e 95-281 specimens, the g r a p h i t e b a r s were found t o be s l i g h t l y more porous and l e s s dense toward t h e i r c e n t r a l er, these r e g i o n s were well w i t h i n t h e requirements s p e c i f i e d apbite. Radio xaminations are b e i n g a t o de-teI3-nine it; i.on of s a l t i o n i n CGB-Y and Z'S-281- g r a p h i t e .

A d e t e r m i n a t i o n was made of t h e e-ffec-Ls of temperature on t h e purging procedure" developed t o remove oxygen from g r a p h i t e by u t i l i z i n g os it ion p r o d u c t s o f -I€F. The e f f e c t s on I examined c o n c u r r e n t l y .

Grade R-0025 g r a p h i t e specimens were exposed i s o t h e r m a l l y f o r 20 hr i n I n c o n e l c o n t a i n e r s a t kernperatures varying from 392 t o 1300°F. Both. 0.2 and 1.0 g q u a n t i t i e s of T\TH4F*l-Fwere included. i n t h e test; system. The following q u a l i t a t i v e r e s u l t s were o b t a i n e d from t h i s study.

1. Both 0.2 and 1.0 g of f f e c t i v c l y removed oxygen contcminat;ion from the g r a p h i t e , e i n one i n s t a n c e , The t e s t uiade wi.tl-1 1.0 g at8592°F w a s i n c o n c l u s i v e and i s b e i n g checked.

2. For purges w i t h 0.2 o r 1.0 g o f NI-I4F*iIF t h e r e was a minimum r e a c t i o n of t h e I N O R - 8 specimens a t 752"F, as determined by weight; g a i n .

3. I n g e n e r a l t h e r e w a s l e s s r e a c t i o r i (weight g a i n ) of INOR-8 a t all purging temperatures f o r t h e t e s t s w i t h 0.2 Q of NR4E'.IP tlmn f o r tests w i t h 1..0 g. "'MFP Prog. Rep, A p r i l 30,

1960," OBHL-2973,

p

59.


98

4. %?le r e a c t i o n (weight, g a i n ) of mon-8 v a r i e d i n p r o p o r t i o n t o t h e amount of g r a p h i t e p r e s e n t and w a s l e a s t i n t h e t e s t w i t h no g r a p h i t e . T h i s i n c r e a s e d a t t a c k i n t h e presence of g r a p h i t e w a s probably caused by oxygen products a v a i l a b l e i n t h e g r a p h i t e , F a b r i c a t i o n of Gd203 and Gd2O3-AI2O3

Pellets

A study was begun t o develop t h e f a b r i c a t i o n procedure n e c e s s a r y t o make c y l i n d r i c a l shapes of Gd203 md Gd203--A1203 mixtures. These p a r t s a r e of i n t e r e s t as c o n t r o l rod elements f o r t h e M.5R.E and a r e being designed t o withstand a n i t r o g e n atmosphere contaminated w i t h i s added t o a i r and moisture a t temperatures up t o 1400째F. mini.rnri.ze h y d r o l y s i s and subsequent d e t e r i o r a t i o n of t h e @d203. A p r e l i m i n a r y -Lest was made o f t h e s i n t e r i n g c h a r a c t e r i s t i c s o f the m a t e r i a l s under a s i n g l e s e t of c o n d i t i o n s . P e l l e t s c o n t a i n i n g 0, 20, and 30 w t A1203 were prepared by d r y blending, p r e s s i n g , and s i n t e r i n g i n hydrogen a t 1750째F for 5/14 h r . ,411 s i n t e r e d p i e c e s were gave s e t on molybdenum s h e e t . O f t h e compositions tested-, only Gd,O, a sound p e l l e t . w i t h good d e n s i t y . T'ne d e n s i t y and shrinkage da-ta a r e l i s t e d . i n Table 4,5. The mixtures of @d203 and. A1203 showed evidence of e u t e c t i c melti.ng o r t h e formation of a 1 o w - r n e l t i n g - t e m ~ e r ~ ' c ~ e compound t h a t i n d i c a t e d t o o high a E i n t e r i n g temperature Additional specimens of Gd2O,-Al2O3 mixtures w i t h v a r i o u s green densi'cies have been prepared and. w i l l be f i r e d at 1600, 1650, and l 7 O O " C to d-etervliine optj.mm s i n t e r i n g c o n d i t i o n s .

.

Table 4. 5.

C h a r a c t e r i s t i c s 0% Gdz03-Al203 Mixbures S i n t e r e d i n Hydrogen a t 1750째C f o r 3/L+ hr

Compo s i t i o n

Densi-ty-

( $ of t'r1eoretical)

Shri&ag e

(%I

23

13

Pel.l.ets of Gd203 w i t h green d e n s i t i e s ranging from 2.9 to 3.8 g/cm3 were t e s t e d f o r determining t h e e f f e c t s of gr'eexi d e n s i t y on s i n t e r i n g c h a r a c - t x r i s t i c s Shrinkage and bulk d e n s i t y data f o r these p e l l e t s a r e p r e s e n t e d i n Figs. 4.8 and 4.9. Using t h i s information, t h i n wall. c y l i n d e r s having t h e dimensions r e q u i r e d for TVZSRSE control.. rods w i l l be f a b r i c a t e d for proof t e s t i n g .

.


b

h

99

......

/


100

5.

IN-PILE 'II'ESTS

O K ~ V L - ~ P R -Mol. ~ I ~ t e n - S a l t T r r a d i a t i on Experi ments _ _ _ _ _ D .

The carbon t e t r a f l u o r i d - e found i n ihe cover g a s over m o l t e n - s a l t f u c l i r r a d - i a t e d i n g r a p h i t e crixciblzs i n assembly OL11!-Mi'R-~+7-3 i s considered i o have formed a t t h e s a l t - g r a p h i t e i n t e r f a c e s and t o have p a s s e d through t'ne g r a p h i t e t o the cover g a s . 1 Ti, i.s p o s t u l a t e d t h a t i f t h e CFic had been f o r c e d t o p a s s through m o l t e n f u e l , i t would have been consumed. Two experi-mental assemblies, ORNL-WlTB-47-4 and llr(--5, were designed t o Lest t h i s h y p o t h e s i s and t o stixdy t h e formation 01 CF4. S i x cyl.indrica1- I N O X - 8 capsules, f o u r c o n t a i n i n g a cen-Lral g r a p h i t e c o r e submerged i n fuel.. s a l t and two c o n t a i n i n g g r a p h i t e crucihl.es, were ins-'r;al.led i n assembly ORNL-MTX-~-l-.J-b.. The capsules were immersed i n molten sodium., which s e r v e d as a h e a t t r a n s f e r medium. The primary- purpose of t h e eqerimen'ii w a s t o determine w-hether CF4 would e x i s t i n t h e cover gas over .MSKF, fuel i r r a d i a t e d i n c o n t a c t wi.'~hcoripletel-y submerged g r a p h i t e . Because t h e fuel coi;l.l..d n o t be maintained molten du.ring r e a c t o r scrams and shui;doms, t h e g r a p h i t e s u r f a c e w a s ii?tcrmi.t-tenily i n d i r e c t contact. with t h e covzr g a s through c r a c k s i n t h e s o l i d f u c l . 'i'he c r u c i b l e ca.psules, which c o n t a i n e d exyosed graphite i n contact w i t h fuel, provided a b a s i s f o r corfl-parison with t h e c a p s u l e s of t h e 47--3 experimeiit and a n eval-ua-Lion of t h e e f f e c t i v e n e s s of graphi-be submersion i n p r e v e n t i n g -Lhe n e t gcnera-Lion of CF4. Also, experiment 47-1-1-provided. for a further demonstration of t h e compn-t.i.bility of the fuel--f.,raphite--lNOR-8 system under thermal condibions a t ?.easi; as s e v e r e as t h o s e exFected. -Lo e x i s t d u r i n g MSM operation.

.

Yhe temperature h i s t o r y of tlie 'i7-4 c a p s u l e d u r i n g tlic i r r a d i a t i o n p e r i o d of March 15 t o June 4 i s summarized i n Table 5.1. The f o u r submerged - 5 r a p h i t e c a p s u l e s contai ned central Chromel-Alumel thermocouples. 'Thc in t e r n a l LcxxiperaturC d i s t r i b u t i o n ( F i g . 5.l), o b t a i n e d by use of t h e compu%cr program 'l'OSS, i n d i c a t c s Lhat the thermocouple should give, e s s e n t i a l l y , t h e g r a p h i t p - Lo-salt i n t e r f a c e temperature. 'Yhe Lempcr2ti;lre histo-ry of t h e inninstrumented c r u c i b l e capsul cs w a s c a l c u l a . t e d based on temperature measurcmcnts i n t h e surrounding 1 i qui d sodi 17111. The m a x i m i m measured iernp e r a t u r r among t h e f o u r instrumented cxpsules w a s l ) + O O >O0P. The mean cab ured temperature =: of 'LIE o t h e r t h r e e instrumented c a p s u l e s werc: approxi m a t , c J y 1.380, 1370, and 1310째F, r e s p e c t i v e l y . The corresponding cal-culated IN OR-^ capsimJ c wall-to-sa3 'I, i n t e r f a c e teinperatums were 1130, J 7 25, 1 1 15,


101 Table 5.1.

Temperatwe History of Fuel S a l t i n ORNL-MTR-47-4 Capsules Time at T e m p c r a b w e (hr)

Temperature Interval

Submerged Graphite Core ( 2 8 , 4A, 5 8 , 6, 6A)b

("C)

C r w itl e

(4)

Steady-state o p e r a t i o n

0-100 100-700 700-750 750-$00 800-$50 850-900 Total

Nonsteady-st a t e operation

Total i r r a d i a t i o n

390.6 44.0 1203.7 254.0

390.6 1-2.1 3. €3 17.6 11.4 1456.9

1892.3

1892.3

51.7

51.7

1553.4

1553.4

a Calculated t e atzrre h i s t o r y based on temperatures w e d in svkrnerged graphite e bCa-psule id-entifi e a t i o r i number.

UNCLASSIFIED ORNL-LR-DWG 67930

1600 GRAPHITE CORE

-FUEL SALT

1400

APSULE WALL

4200

--1 1-

5 - 1000

1

5

W w

I

:"

1

. SODIUM TANK WALL

W r 3 c

-

800

VARIABLE GAS GAP

600

400

200

0

+-

I - t -1

0 0.2 0.4 0.6 DISTANCE FROM CAPSULE CENTER LINE ( i n )

0

F i g . 5.1. Radial Temperature Di

0.2 0.4 0.6 0.8 DISTANCE FROM INNER TANK SURFACE (in.)


102 and l - l l O O E ' . The ternperati.n-e of t h e s u r f a c e o f Yne TNOR-8 end cap i n cont a c t w i t h the f u e l s a l t w a s c a l c u l a t e d Lo be t h c same as t h a t o f t h e g r a p h i t e - t o - s a l t i n t e r f a c e t e n p e r a t u r e . The a r e a of ihe end cap wetLed by t h e salt w a s adbout 12% of t h e t o t a l 5.6 i n . 2 of metal s u r f a c e i n c o n t a c t with i h e s a l t ,

The accumula.'l;ed trime durri-ng t r a n s i e n t o p e r a t i o n i n c l u d e s only times f o r temperature changes of approxima-tely 30째C or more. O f t h e 121.- such teniperatu.re changes recorded, 60 i n c l u d e d d e c r e a s e s to -the s o l i d u s t e m p e r a t u r e of -the f u e l s a l t . Tlie assembly was removed from t h e MTK, part:iall.J..y disassembled, and. r e t u r n e d t o ORKL, where it w a s completely dismantl-ed. P o s t i r r a d i a t i o n examination of t h e c a p s d - e s li.s i n p r o g r e s s . As a n a i d t o in-LerIpreta'l;:i.on of .i-rrad.ia-tioii e f f e c t s , a n out-of - p i l e experiment was run t h a t d u p l i c a t e d t h e terripera-Lure h i s t o r y , inclindixg t h e -transienLs

.

'The 47-5 experimental assemb1.y w a s designed a n d c o n s t r u c t e d t o p e r m i t g a s :;ampling from two capsules d u r i n g i r r a d i a - L i o n t o stixiy t h e CEl, content, i f any, of t h e o f f g a s from fissioiTii1g MSKE fuel. i n c o n t a c t wj.th submerged g r a p h i t e . These c a p s u l e s ( F i g . 5 . 2 ) a r c 1 i n . i n diameter and 2.25 i n . long, and t h e y c o n t a i n a central. CGB gra-phitx c o r e 1/2 i n . Ti.n d.Ti..ameter and 1- i n . long submerged approximately 0.3 -in. t n about 25 g of :fuel. 'I'be two caysul-es d i f f e r only i n t h e urani-um c o n c e n t r a t i o n in t h e f u e l .

A d d i t i o n a l c a p s u l e s included i n t h e assembly are designed t o p r o v i d e a range of o x i d a t i o n - r e d u c t i o n l e v e l s t h a t incl udes what, m i g h t be b o t h early and l a t c s t a g e s j m t h e l i f e h i s t o r y of a r e a c t o r . This i s accomp l i s h e d by a l t e r i n g the a c c c s s i b i l i t y of chromi um from the c o n t a i n e r a l l o y NOR-^) t o i h e f u e l . These c a p s u l e s are e x t e r n a l l y s i m i l a r t o Lhe purged capsules, b u t the g r a p h i t e cores a r e markedly d i f f e r e n t . A high rnetal--toe r a p h i Le w e t t e d - s u r f a c e - a r e a r a t i o (46:l) i s o b t a i n e d ( P i g . 5.3) by u s i n g a c e n t r a l c o r e o f I N O K - ~ , except for a 0.1 - i n . - i h i c k CGR g r a p h i t e wafer. A low mcial-to-g-raphiie s u r f a x e area r a i i o (l:)!) i s o b t a i n e d (4Y.g. 5.4) by u s i n g a c l o s e - f i t t i n g g r a p h i t e c r u c i b l e 0.7 i n . i n iiiteriial diasnetcr a n d l . 5 i n . l o n s , with a c e n t r a l g r a p h i k c o r e t h a t i s 0.311 i n . i n diameter a n d 1 . 2 5 i n . long.

.An extreme c a s e i n tlie o x i d i z a t i o n siudy i s a c a p s u l e w i t h no metal, i h a t i s , w i t h g r a p h i t e preperIncated w i t h f u e l s o i h a t tile only f u e l i n the c a p s u l e i s contained w i t h i n t h e p o r e s OP zn i s o l a t e d g r a p h i t e c o r e . Two srnall- c a p s u l e s of this type (J?ig* 5.5) are i n c l u d e d and w i l l be o p e r a t e d a t d i f f e r e n t , power d e n s i i i e s . 'l'hese are 5/8 i n . i n diameter by 2 . 2 5 i n . 1 onp; and c o n t a i n 0.32-i n. -diameter by 1 3/11 -i n. -1 ong c e n t r a l l y suspended AGGT g r a p h i t e c o r e s . l r r a d i a t i o n i s scheduled io b e g i n thz week of Septmnber 1I, 1962


W

f

J

w > W

103


bJ J

W I

-

0 z

LL

0 Y 7

z a

0

co I n

f

0

I

a n

IrJ

W Q N

104

ks 5

L d

zi2 * -E 5 t

z -

LIJ LL

0 0

m I

E

0 L -

I

7

a

W

f Y

I

W 7 0 W

_J

W 7 W 7

0 t

cn

J

n


105

iixzations of irradia embly i n which CFq was tion on t h e c o r r o s i o n prod 1-t 3.n t,he g r a p h i t e Tho p formed from t h e f l u o r i n e s in test 47-4,placed st h'p-3. Tne f u e l mi

pecirncns f roni assembly ORr;n[,-MTR-~&'/-3, ,4 provided- some n t h e distribuiiouz o ty t h s t much of the he fi*ozen salt a, the iiiteupre t:xti. 4 i n this cqcr

the

Chemical Analyses of 1r:r.adia-bcd-li'uel f o r Corrosion Produc ts

Corrosion-product; a n a l y s e s weme carr.ied out on an a l i q u o t of the: s o l u ccd during d i s s o l u t i r r a d i : i t,ed f u e l r reducing-power ana aliquot was ev 1;hree L i m e s after nd.d.i Lions of no1 to remove the exee used t o improve the i n i t i a l d i s i o n . TIic dry residue 1.0 to 1-5m.1. of' 9 M IIN03 w 3 M hydro;(7jlmnine t o v d e n t chromium t o t h e tr and t;he t h o r i u m the s o l u t i o n on an ui.ionVie s o l u t i o n ihc urarzium was extraction i n t o LC iron, ch:romium, (3. mol.ybdernnm c oTI"o s ioxi cd- by tlic intcnsi spectral lirics 1a-L stand.t-;l.rd The r e made w i t h a the photographic plate.

.

The analyses f o values s o m e w h a t d i f f duct; c,oriccf i t rati 011s that

thatt difL'er e d-uccd widely d.if.f'cr.eri2, tan a,mounts of cll'~l33rose

f r e e z i r i g of t h e f u c l .

as shown i n 7'abl.e 5 2, gave ously report :k on INOR-8 ia.n several- h 5.1 for- i r o n , chro present; s(mc p u r n i b l e between ea i s can. be ex-lairie g r a p h i t e by . f l

Another point, o.f i~iix:res-bis the a'Dsence of molybdemvzn t of tietection) in t1-e f u e l in s p i t e of o ' ~ v i . 0 derlum coiqons e Thc molyb&emxti may have v o l a cnce in a, r e ng mnelt d be d i f f i c u l t i; ected, however, i n an a here t h a t would 2. ridi rig the molyb d-cnun1 i n fuel may i n d i c a t e t on t h e w a L l of the c : p n u l e .


R e s u l t s of Corrosion-Product Analyses oC FueJ I r r a d i a t e d i n A s sexribly ORNL-MT!R-l'7-3

Table 5.2.

-~..-"-----.-

Capsulk

Sarnp1e

Corrosion P-roducks (pprn) Cr

a___

3

1 2b

790

60

310

8

1 2

20 120

<130

1.5 -

.".".""--

Fe

40 4-0

1..

2

230

<21-0 220

230

Mn <2 oa 36 <lo <20

<20 <20

Mo

-

Ni

<40 <5 0 <60

70 1100

4 0 <loo

<230 <310

<I20

a IraJ-ues preceded by t h e less t h a n symbol i-ndicate t h e lowest d e t e c t a b l e 1 - i m i - t

50 100

e

bThe unusu.ally h i g h v a l u e s f o r b o t h chromium and n i c k e l , as well as t h e presence of manganese, i n d i c a t e the possibil.j--ty t h a t t h e sample w a s contarninated.. The compound XeE'4, which w a s r e c e n t l y d i s c o v e r e d a-L Lhe ilrgoniic N a t i o n a l Laboratoiy, 6 i s b e i n g s t u d i e d . As mentioned. l a t e r i n connection w i t h experiment 47-4, t h e r e i s a cI..ose c o r r e l a - t i o n between f.Tl-uori.ne o r evid-cnce of f l u o r i n a t i o n i n t h e fimn of CF4 and a pronounced d e f i c i e n c y of xenon i n -the i r r a d i a t e d - cover gas. 'This c o r r e l - a t i o n and an observed i n c r e a s e i n t h e xenon--Lo-l/;rypton r a t i o i n samples c o l l e c t e d over a l o n g period. of t i m e are c i r c u m s t a n t i a l . evid.ence that XeF4 w a s formed i n some capsules. Conversel-y, 'tP.ie p r e s e n c e of xenon i n o-ther capsu.l.cs i.s a p o s s i b l e i n d e x of -the absence of' fl-uorine, a t l e a s t d u r i n g the time f a v o r a b l x f o r r e a c t i o n w i t h xenon, and t h i s must o v e r l a p p a r t of t h e range i n which CF4 i s formed.. The r e a c t i o n between xenon and f l u o r i n e proceeds a t 40OoC.

Distri.but3 on of R a d i o a c t i v i t y and Sal-;t i n I r r a d i a t c d Graphite -."IData on t h e d i s t r i b u t i o n of r a d i o a c t i v i t y and s a l t w e r e obtained from corcd sarnp1-e~of g r a p h i t e p a r t s Pattclrns of r a d i o a c t i v i t y were determined by gmma spectrornetry, and the s a l t d i s t r i b u t , i o n w a s o b t a i n e d from p e t r o g r a p h i c s t u d i e s with a n op-tical microscope. The s c a t t e r of the d a t ? p r e c l u d e immediate i n t e r p r e t a t i o n , and t h e data wi 11 t h e r e f o r e be hel-c?.f o r exam; i i a t i o n along w i t h daLa f r o m f u t u r e s j m i l a r expcriments. P o s t i r r a d i a t i o n Examination of Experirncntal As seinbly O E ~ N L - M T R - ~-I/ I~ The h y p o t h e s i s t h a t CFjc shou1.d. r e a c t w i t h the rne3..t r a t h e r t h a n accumulating in the cover g a s i n i r r a d i a t e d c a p s u l e s c o n t a i n i n g mol-tenf l u o r i d e

'H. Iâ‚Ź. Claasen, H. S e l i g , and John G. IvIaLm, l e % ' ~ e to r e d i t o r of J. Am. Chem. SOC. dated Aug. 17, 1962, i i i p r e s s .


LO? f u e l and submerged g r z p h i t e w a s t e s t e d f u r t h e r w i t h the irrad.i c a p s u l e s , de s c r i b e d p r e v i x of 1013 neutrons/em m o ~ et h a n 1-500'nr i n the data sougiit i n the test, nanely pa,rtia,l p r e s s u r e of CF4 n ag c o n d i t i o n s , were obscu ope rie d t h u s mount:; of r s d i o l y t i c t h e f r o z e n f u e l . O f the f l u in the gas phase, of the fl_uori.de i n t h e fuel-, free f l u o r i r i e and t ZO$ w a s CE'4, rxlost of which p r wa,s a secondary r e a c t i o arising from aLtack on the g by the f l u o r i n e yeleased by r:id.iolysis

after shutdown.

Two smaller capsules c o n t a i n i n g xiolteri s a l t i n g r a p h i t e c r u c i b l e s were i r r a d j a t e d i n t h e same A%-MTR-47 -4) and r n e u t r o n dosages and h e a t i n g cyc :;e caps;ulcs were a l y . 2 P i e s e LWO caps eluded i n the assembly t ns f a v o r a b l e f o r t h e ac a t i o n of a measurable ;;tea, on of CE'4 a t two po ; one eapsulc c much UF4 as t h e o t h e r ca-psu. c a p s u l e opened a s l i g h t l y lower power e o t h e r becaus .ne and oriLy t h e m CY4. f o r this ty-pe of c orifigu-ra - t i o n were found.

-

F l u o r i n e zitorns undoubtedly a r c formed i n f i s s i o r i i a g fuel a-t a n r a t e 8s a r e s u l t of r a d i o l y s i s , The rate of foxmation i s o p o r t i o n a l to the po n s i t y . The l a c k of carrosri.on of aphite indicate d rever:;e r e a c t i o n s i n thc molten e the f 1-uorine he s t e a d y - s t a t e covicentr e n t a l fluorine to n All. 0-ther. c Ling 3ur.l. s y s t e odcrahor and co emnodynamic q u i s t h e fi.s :;ior1 e

As shown by some of t h e result:; d e s c r i b e d below, r e s - b r i c t e d m o b i l i t y i n t h e f r o z e n c r y s t a l s of f u e l , a l o n g with the pronounced t u r e s t h a t prevails i n i r r sules after rea on occasion, l e a d t o '3oiidi-ti.oris in t h e f o cescive amou~itsof u n r e a c t e orirze. I n such. reverse r e a c t i o n mechanism:; t h a t con f l u o r i n e are even curtailed of1 shutdown t h a n nergy release t t o f l u o r i m atoms. T'he r e s u l t i n g b u i l d u p of fl.uoririe mole frozen capsule con-trasts ma t h e s i t u a t i o n a t op

,

5

Also t h e marked c o i i t r a s t between v a r i o u s f r o z e n sa,rxiples i s m a l l d i f f e r e n c e s i n ge Not a l l f r e e z i e been a s i g n i f i c hat occurx-ed d u r i n ' i c i e n t t i m e la f l u o r i n e 'FTLLG f some d i d not c o n t a i n t i o n of why some cap asis of c u r r e n t i n f o r m a t i o n nswercd only coiiJ ec-1;

s

t

n.


108 D e s c r i p t i o n of Capsules

.

The The capsu.I..es were c o n s t r u c t e d of l/16- i n . -wall INOR-8 tubing l a r g e r t y p e c o n t a i n e d 25 g of f u e l of t h e nominal composri--t;:ion LiF-BcFZ-ZrF4-Y'hF4-UF4 (7O-Z3.3-5-l-Oe'.( mole $), which gave t h e a n a l y s i s mole $. The c a p s u l e s shown i n Table 5.3; t h a t i s , r~1.0-zz.6-~t..r-j.-~.~.0-0.7 wcre f i l l e d by l i q u i d t r a n s f e r t o a l e v e l c o n t r o l l e d by blowing excess f u e l Somewha.t l e s s back through t h e d i p l e g associa-Led w i t h t h e v e n t l i n e . " t h a n t h e d z s i g n vol.ume of 3.5 cm3 of vapor spacc a-L teniperature probably remained i n t h e capsule, perhaps because O S c a p i l l a r y e f f e c t s . Because of c o n t r a c - t i o n o:f t h e f u e l , p r i n c l p a l l y on f r e e z i n g , t h e r e was 2.5 ern3 more vapor space a t room temperature t h a n a t t h e operating temperature. The room-temperature volumes, as tal-ibrated w i t h known volumes a f t e r puncture Initiall..l_y two c o n c e n t r a t i o n s of and. g a s csl..l_ec.l;:i.on,were zbout 4.5 cm3 UF4 were to b e uscd i n p a i r s of t h e l a r g e capsules, b u t breakage o f a t r a n s f e r l i n e duci-ng f i l l i n g J a t t r i b u t e d - to ernbrittl..em.ent by s u l f u r f rorn a n unknown source, e l i m i n a t e d %he p o s s i b i l i t y of meeting schedules w i t h 'LIE more c o n c e n t r a t e d f u e l .

Table 5.3.

Chemicsl Analysis oâ‚Ź F u e l i n Targe Capsules in As s emb 1y OWL -MTR- 4 7- 4-

Nominal

Urantim

Conterit (molr p )

0.7 1.4'7

--

Corrosion Pi-odl.xc.l;s (ppm)

1oiii.c C o n s t i t u e n t s (WZ;$) ~ - ....__ --s-y""...

I-4-

u4+

Li'

7J++

Bc

3.89 7.5

11.6 30.5

10.1 10.4

4.8

m4+

3.8 5.2

4*3

.*....

.m.l.1

F-

Ni

Cr

Ee

63.6 61.5

25 15

21,

97 133

4-0

'lhe s m a l l e r c a p s u l e s were l o a d e d w i t h . molded in.gots of about 10 g of

f i ~ l -c o n t a i n e d i n g r a p h i k crucib_l..es o r l i n e r s , and in one of them t h e UFq.

c o n c e n t r a t i o n w a s i n c r e a s e d t o l . 4 mole $ to provide a powcr d.enr,i.-t;y- of about 1-60w/cm3. 'The cover-g,a,s space had a volume of about 2 c : d . There were no thermocouples i n t h e s e capsul-cr,, and the fuel. should. n o t have been i n con-tact with amy metal, although t r a c e s of s o l v e n t probably d-i. s - b i l l e d t o t h e i n t e r f a c e between t h e g r a p h i t e liner. and -the INOR-8 c a p s u l c wa1.l. Fabri-caiion and Toading of Ca,psul.es

-*-

'The metal c~~-psurl..c p a r t s were cleaned by f i - r i n g i n hydrogen g a s a% 1000°C, b u t a vacuum OS q u e s i;ionabI.c qiial.ity- was i n a d v e r t e n t l y imposed. w h i l e t h e p a r t s were s t i l l a t t e n p e r a t u r e The r e s u l t i n g contamination by a i r cai,zsed a gmenri.sh oxide f i l h on the INOX-8p a r t s , b u t -time f o r a n o t h e r tmatmenk had e l a p s e d b e f o r e t h e e r r o r w a s noted. 'The f i l m w a s partial_l..y removed- with s t e e l wool p r i o r to assembling and welding the par-Ls i n a heliui-n-filled glove box. 'The g r a p h i t e core i n capsule Zk w a s cI..eaned by

.


109 t o 2000°C i n znn evacuated system. The g r a p h i t c par-Ls i n t s were cleaned by f l u s h i n g w i t h a molten f l u o r i d e s a l t *

The larger c a p s u l e s were t h e n conncctcd with a f i l - l i n g sysbem and heated. The mol-txn f u e l salt was r u n i n i o each c a p s u l e arid the excess blown back w i t h helium p r e s s u r e . The f u e l s a l t level- w a s monitored with a t e l e v i s i o n x-ray system. F i n a l c l o s u r e w a s made i n a glove box where thc external end:; o€ the f i l l t u b e s were crimped and welded s h u t . Fuel

_I__

“hc r e s u l t s of i o n i c analyses of t h e bulk c o n s t i t u e r i t s and a n a l y s e s of t h e c o r r o s i o n p r o d u c t s of t h e two f u e l s p r e p a r e d f o r use i n e OIiNL-b1TR-47-4 are p r e s e n t e d above i n Table 5.3. The f u e l s a l ~ a ; and; t h e n for t r e a t e d at ‘(50 t o 800°C by sparging f o r 2 hr w i t h hydrog 8 h r with a 5 : l hydr.ogen+yd.rogen f l u o r i d e gas mixture, followed with a 48-hr sparge with hydrogen gas. Graphite

The CGB g r a p h i t e used i n experiment 47-4had- a surfrtce area of as detcmined- by the BE thod. The o t h e r proper2,:ies of‘ t h i s

0.71 mz/g

g r a p h i t e are l i s t e d below:

P e r m e a b i l i t y of a 1.5-in.-OD, 0.5-in.-ID,1.5-in.-longspecimen

s i t y (Beckrnan a i r pycnometer)

Bulk d e n s i t y

B u l k volume accessible to air

Tota,l void volurne as percentage of bulk yrolume

6.56 x lom4 em2 of He (STP) per see ond

2.00 g/cm3 1.838 g/crn3

8.7%

19.5%

R rxmi quant it a t Fve spectrogr

ic a n a l y s i s of t h e gr hown 1 low l e v c l s of trace ome of which may have been i n t r o d u c e d to the specimens during the v a r i o u s

i.n. Table d

5.4, r e v e a l e d only t h e u

Table 5.4. S p e c t r o g r a p h i c D e t e c t i o n of’ Trace Elements i n Graphlite Used i n Ekperimental Assembly ORNL-MT1?-47-4 Elcme nt D e te c t e d

Level Detected (PPd

Element Detected

Level Detected ( PPrn 1

A1

10-100 1-10 1-10 1-10 10-100

Fe Mg Ni Pt Si

10-100 1-10 10-100 10-100 1-10

&s

Ca

Cr cu


110

A-g

As

h 13

â‚Ź33

Bi

Cd CO Ga Ge

Hg Mn Mo NEI.

P Ph Pd Ru

Sh Sn

SI? Ta Te T.I

T I V

Zn Sr Cb

The f u e l s a l t froze w i t h i n 5. m i n a f t e r t h e r e a c t o r shiAldown t h a t terniifiated t h e i r r a d i a t i o n o f asserflbly kr7-4. Calcul at, Loris of t h e decay energy i n i h e large c a p s u l e s i n d i c a t e d t h a t d u r i n g t h e f i r s i 1 - h r p c r i a d f o l l o w i n g t h e inriLjal 5-rnin f r e e z i n g p e r i o d about 10 w-hr o f cnergy vas d i s s i p a t e d , whereas d-uriug norrnal 5 r r a d i a t i o n about 8110w w a s d i s s i p a t e d .

I r r a d i a ."."""t i o n and 'I'empera'cure Data -.I-.Exposure d a t a f o r assembly 47-'-c a r e summarized i n iilabler, 5.5 and 5.6. U i f f e r e n c e s i n fl..ux f o r t h e vari-ous c a p s u l e s were due t o t h e f l u x grad.j.ent rin t h e beam. ho.7..e a t t h e PPR. The val-ues f o r t h e S,h.elmal f l u x were o b t a i n e d from t h e a c t i v a t i o n o f CoA0 i n t h e s t a i n l e s s s'ieel w i r e s t h a - t were used- as dosimeters, and. were confirmed by countj.ng Cr51. 'They apply to 1-553 h r d u r i n g t h e p e r i o d from March 12 t o June 4, 1962. The f l u x was determinedon bo-Lh t h e exposed. and t h e shad-ed s i d e of -the capsul-e, but only averaged valu.cs a r e t a b u l a t e d . These v a l u e s a r e higher t h a n t h e desigtn f:i.gures, and. "che g r a d i e n t i s -Lwice t h e d e s i g n v a l u e . If t h e s e data are cor:rect, t h e burnup in -the capsul-es v a r i e d over a 'Lhreef oZ.d. range. No e x p l a n a t i o n h a s been found. f o r -the discrepancy betwecjn t h e s e v a l u e s and the d e s i g n e s t i m a t e s , which arc more c o n s i s t e n t w t t h h e a t t r a n s f e r calcul_at:i.ons.

The tamperatures wcre c o n i r o l l e d from c a p s u l e 24, and t h e changes i n t1Le r e t r a c t o r p s i t i o n r e q u i r e d t o hol d a constant, temperature were n o t unusual. 'lhe thermocouple r e a d i n g lor c a p s u l e 45 appeared 'LO d r i f t , dowri-

ward by about 35OC d u r i n g tlie 12-week exposure, but, t h i s w a s t h e o n l y symptom of dzvi a n t t m p e r a t i a re r e c o r d i n g s

.

Produe-Lion of XenonY i e l d s of l o n g - l i v e d and s t a p l e i s o t o p e s of krypton and. xenon, r e s p e c t i v e l y , were about )-I- and- 2l.$, o r 0.038 and. 0.20 em3 for 1% burnup of 1 Q of U235. 'Ill'hus t h e expected y i e l d s i n c a p s u l e 6 were about 0.05 and. 0.3 cm3, and i n c a p s u l e s 24 and 36, 0.27 and 1.11-c d , according -Lo t h e burnups l i s t e d i n Tables 5.15 and- 5.6.


.

e

Table 5 . 5 .

Weight

Capsule

el

of

U r z n i x Coi=t;ex~t

1

laole

$

3xpos.a-e D a t x for Large C a p u l e s ir, ksseniblj 47-4

Therma1-Neutron Flux” Based on Co6C Activaxion (neutrons/cm’ see 1

8C

12 24 36 45

~~

6.993 1.023 G .9?9 0.987 0.963 G .996

0.7 0.7 0.7 0.7 0.7 3.7

25.532 26.303 25.174 25.374 24,886 25.598

Graphitet o - Salt,

-

x

x 1013 3c

Temperat-ze ( “ c )

Psst -Meutron (>3 lilev) FIUX Base3 on Co58 Activation (neJ%rons/crn’ see )

-

g

E

Irite-rface

2.n

3.85

Salt Interface’

Fuel De

Power

Calculated

2.6134 2.5412 2.5863 2.5863

67

5.5 7.3 7.3 3.7

lo1* 750 680-

2.1 3.2 3.3 3.3

2.10 2.70

IXlR-8-to-

610 605

595

6CO

~~

63

85 117

sion of f i n d i r r a d i a t i o n cycle.

Weight

Capsule

lb 3 ’

5

4 6

~~

Fue 1 (g)

9.381 6.805 9.829 13.101 9.915

Uraniwn Contenc Koie $

3.7 0.7

1.47

1.47 0.7

Q

Tn e m a l -1k u t ron

F lxsa Ba sed on Co60 Act Lvat ion (ne,xrons/cx* sec

-

Fast -Neutron

w

Flux

Base2 on c 0 5 8 Ac:i.rat ion { neutrons/cm2 see )

-

x 101’ 0.365 0.265 0 . 737 0.758 0.386

Temperature of C e n t r a l Xeglon

Fuel 3ensity

Derisity

Power

Calculated

2.5270

260

11.4

(“C>

t 5LJ 750 895 835“ l - 7 0

4.79 1.31

5.2 1.3

a1 ne-xran flux. l e readirGs p r i o r t o tei-aication of f i n a l i r r a d i a t i o c cycle.


112 G a s Analyses The c a p s u l e s werc pimctured a t ORflL i n t h e Building 4501 h o t c e l l s on a f l a t ) s u r f a c e p r e v i o u s l y machined €or t h e purpose The screw-driven p u n c t u r i n g t o o l w a s s e a l e d by a bellows and, a t t h e T l a i s u r f a c r , by a Neop-wne O-ringe G a s escaped i n t o a c a l i b r a t e d c o l l e c t i o n system t h a t had been evacuated and l e a k checked. A Toctppler pump w a s used t o i r a n s f c r g a s e s c o l l e c t e d a t low p r e s s u r e s . The a n a l y s e s were made by m a s s spectrorne t r y ; t h o s e on samples con-taining f l u o r i n e were made a t K-25.

.

Data from Capsules 5 and 6. The volune of hel-rim (from t h e glove box wel_d:ing t o r c h b l a n k e t ) w a s o n l y one h a l f atmos t h e f r e e voJ..usne of irrad..i.ated c a p s u k 6, as shown i.n Table 5.7. This could have r e s u l t e d from a n e f f e c t i v e teniperature of 300°C d u r i n g w d d i n g . “he amounts os” xenon and k r y p t o n a r e in agreement w i t h t h e c a l c u l a t e d y i e l d . This may rncan t h a t XeFj.,. w a s a b s e n t from t h e capsule, o r -that no F was p r e s e n t , or, w i t h even I k s s assurance, t h a t t h e CFj.,. p r e s s u r e i n tgis caps u l e w a s r e p r e s e n t a t i v e of t h a t t o ’ne expected i n t h e g r a p h i t e at, opera t i n g c o n d i t i o n s . I f so, t h e CF4 pressure w a s around- 120 mi Iig ai; 71,5OC. Table 5 . 7 .

Analyses of Cover G a s i n I r r a d - i a t e d Capsule 6

Volume o f gas removed.: Measwed gads space in c a p s u l e : Correc-Led. volume of capsi.iLe g a s : Estimated gas space a t o p e r a t i n g tempera'^ u:re :

Gas CF4. Air

He A Kr Xe

Quan1;ity

vol $

Corrected vol- $

2.2 4.7

(+.2

1.5 em3 Volwfle ( em3 )

0.07 1.5

0 23 51 4.2 19

12 27 2.2 9.9

3 . 2 cm.3 2.5 cm3 1.7 cm3

} 1.2 Ooo7 } 0.4 0.32 OW3*

0.86

~rypton-85and xenon-133 were t h e only r a d i o a c t i v e s p c i e s noted i n t h e g a s . The i s o t o p i c d i s t r i b u t i o n of xenon and krypton found by m a s s spectrometry of g a s from c a p s u l e 6 vas as f o l l o w s :

Dis t r i b u t i on 42.06

-

31 77 16.82 9.34

KY*~

Krg4

51.88 7.51

26.62 1-3.99


DE data of Table 5.8 f o r c o n t r o l capsule 5 i n d i c a t e t h a t t h c r c ’ ~ l a s veiy l i t t l e inleakage of a i r d i n g of capsule 5. The -vol.ianes einent w i t h t h e va, of helium and argon are :in rea,for capsule 6. ‘I’he h i g h t c q e e crxpsul-c d u r i r g be a r e a s o n a b l e e q l a n a t i o n f o r t h e srm1.l. volume of t h o s e g Table 5 . 8 .

Analyses of Cover C a s in C o n t r o l Cassule 5

V o L m e of gads collected: Measured- f r e e volume of c a p s f i e :

Gas Re

A 0

CO-tN

Quantity (vol $)

15 79

0.7 5.3

1 . 3 em3 2.7 em3

Volwnc; (crf13)

1.0 O o 2 } 1.2

0.01 0.00’7

D a t a from Capsule 24. When i r r a d i a t e d c a p s u l e 21t w a s punctinred, 8 4 ern3 (STP) o€ gas wa:; col-lected. TnrLr, s o m r e a c t i o n w i t h the apparabus. A ouvit % h a t r e a c t e d wit the ‘l‘oeppler p a black scum t h 2 t was i ay as H ~ z F z . Th i d e n t i f i e d - as predorrfina the c o l l e c t i o n syskcm +ped for n r e a c t i v e eciab2.e amount of F2 must hnvc been Lost to t h e metallic parts of t h The remainder reacted. with @ass -to give SiF4 and OZ and with o cs t o give 02. Stu-dies of %hcs gas were hampeycd by Like p r e s e n c e of an excessive amount of Te’-29 a c t i v volunc of capsule 24 3.t;TOO r n t u r e was 4-.6end, based or1 the u r e change when heLiurn w a s d in-to -the capsu.7.e from volume e I ~ S Sspectxom y of two ~ . ~ - - csamples, m~ tlie 84 cm3 of 0.1% Xe, 0.4$ Kr $ (CO -t Nz), 6% COz, and la@ CF4. !The cinder was 02 and SiF4 i n roughly e q u a l amounts, matching t;hc products

Based on

W;LS

5% Hc,

of t h e r e a c t i o n

P o r t i o n s of gas W C Y ’ ~c o l l e c t e d uridcr n v a r i e t y of c o n d i t i o n s . l’hc k r y p t o n yield l i s t e d above i s i n fair agreement w i t h t h e calculat,ed value, b u t the xenon y i e l d i s Sur t o o low. L a t e r saniples, o b t a i n e d a f t e r l o n g cxposurc of capsule t o a n evacuated tainer, had 0.3 an3 o€ 1-es s than o m --Le nth %hat cmoun ‘LOU. Tais, I-ikc o t h e r cases of unexplained holdup of xenon, s ’uc a s s o c i a t e d with t h e pieeence of c r y s t a l l i n c Xc.F)-+

a

P


114 The CF4 conLent, approximately 15 cm3, woul d have corresponded t o a p a r t i a l - p r e s s u r e of n e a r l y 20 atmospheres had it bCCJ1 p r e s e n t at o p e r a t i n g temperature; t h i s i s h i g h e r by a f a c t o r of 1-00 t h a n found i n c a p s u l e s t h a t yiel-ded no evidence of f r e e f l u o r i n e . Capsul-e 24 w a s sawed open t o r e v e a l a, l o n g i t u d i n a l c r o s s s e c t i o n . No damage o r evidence of c o r r o s i o n w - a s visi'ble under low magnj..fi.c_a-i;:j.on. 1'c.irograplnic samples from random l o c a t i o n s were i n general- Loo f i n e g r a i n e d ( c r y s t a l l i t e s l e s s than 1 p i n size) t o b e iden.i,:j..fi.ed. One sa;mple from n e a r t h e g r a p h i t e n e a r t h e c e n t e r of t h e c a p s u l e w a s cl.ear1.y recognized- -to con-La.i.nthe normal.. phases and t o have g r e e n U 4 1 i n the ~ I . , ~ F * ~ ? ("n uF, F)~ , s o l i d sol-ution. Y'his m a n s t h a t t h e flinoride d e f i c i e n c y i n -1;he s a l t w a s s h a r e d rando-mly, as expected, for l o s s of fl.u.orine from t h e f r o z e n s t a t e b u t not f o r l o s s from t h e l i q u i d . s t a t e . G a m a specirornctry of ihe samples chosen f o r p e t r o g r a p h i c examination r e v e a l e d a preponderance of ruthenium toward t h e lower p a r t of t h e f u e l when compared w i t h the zirconium-niobi wn a c t i v i t y i h a t i s g e n e r a l l y assumed t o be unifomnly d i s p e r s e d w i t h t h e ZrF4 i n t h e f u e l . Ceriurn a c t i v i t y wds â‚Ź a i r l y evenly d i s i r i b u t e d w i t h the zirconium-ni ohium througho u t t h e f u e l , and cesi inn, along with zirconium-niobium, w a s found on ineta] s u r f a c e s exposed t o t h e gas phase.

Data. from Capsule 36.

The a n a l y s e s of '(;he g a s from i r r a d i a t e d capsule o f i h e cont e n t s of t h e c a p s u l e because a n e s s e n t i a l l y all-metal. c o l l e c t i o n system, comprised l a r g e l y of p r e f l u o r i n a t e d n i c k e l , w a s used. t o t r a n s f e r and hold t h e sampl..es, and because a s u r p l u s of sample w a s avai1abI.e f o r m a s s spec-brametry. Also, the a n a l y s i s w a s made promptly. Th.is i s pertinent because samples allowed t o s i t i n incompletely c o n d i t i o n e d a p p a r a t u s showed evidence of r e a c t i o n of f l u o r i n e . The analytical.. d a t a a r e p r e s e n t e d i n Table 5.9.

36, a d u p l i c a t e of c a p s u l e 24, a r e more d i r e c t l y r e p r e s e n t a t i v e

The q u a n t i t y of f l u o r i n e w a s t o o g r e a t t o have been p r e s e n t at opera%ing temperatures. The amount of CFl+ a g r e e s w e l l w i t h t h a t found i n duplicate c a p s u l e ' 2 b . AJ-so, t h e xenon appears t o have been h e l d up9 as i f by XeF),., while t h e k r j p t o n i s p r e s e n t i n r o u g h l y t h e expected y i e l d . The gamria spectrometer w a s able t o d e t e c t Kr85 b u t no ot'ncr a c t i v i t y through t h e n i c k e l w a l l s of t h e sample containers used for t h e g a s from c a p s u l e 36. E f f o r i s Lo improve thi.s a n a l y s i s are under way. An attempt; w a s made t o remove t h e c o n t e n t s of c a p s u l e 36 by m d t i n g and t o provide r e p r e s e n t a t i v e ground sauiplcs, aI..l.. under a n i n e r t atmosphere, i n a manner s u i t a b l e f o r chemical- a m l y s i s and, i n p a r t i c u l a r , f o r a d e t e r minati.on of Lhe reducing power t h a t i s c.xpec-Led as a consequence of t h z l o s s of f l u o r i n e . A n a p p a r a t u s f o r accomplishing such a sequence of operat i o n i n a h0-L c e l l worked w e l l w i t h c a p s u l e 3A, a n unirrad.ia,t,ed c o n t r o l sample, and a t f i r s t appeared t o have g i v e n s a t i s f a c t o r y r e s u l t s wikh c a p s u l e 36 The me]-I;:i..ng-ou-t o p e r a t i o n y i e l d e d , however, o n l y about h a l f t h e capsu.1e c o n t e n t s , and the mel-ted-out sa1.t w a s green. T11i.s rnigh-t be e x p l a i n e d by s e g r e g a t i o n of t h e red-uced p r o d u c t s i n t h e high-melting h e e l ,

.


115 Table 5 . 9 .

Analyses of Cover G a s from I r r a d i a t e d . Capsule 36

Volume of gas space i n capsule a t room temperatixe : Volume o f gas space at operating tempcrat w e : V o l m e o f gas removed. from capsule:

Gas

Qu8ntity ( v o l $)

F2

CF4 02

Xe Kr

He

CO+N?

co2

A

ELF

83.5 10.0 2.5

0

0.3

2.8

0.1 0.7 0

4 . 6 em3

2.6 cm3 18.8c,3 vo~ume(crn3)

156 19

4.7

0 0.56 5.3 0.19 1.3

(4

a P r o b a b l y present i n s-mall amounts from r e a c t i o n v:i-th adsorbed. w a ' b e r .

Discussion of Kcsu1i;s m

Experirn: r i t a l cviclencc from p r e v i o u s i n - p i 1 e t e s t s l e n d s con II inoririe i s riot g e n e r a t e d b y inoltcn fissioni n g f u c l . There i s no evidence of s(3vcre c o r r o s i o n on m e t a l - exposed to t h : gas phase above f i s s i o i i i n g fuel o r on metal wct by f u e l . -T,ikewi::c, no severe: damage was observed i n s i m i l a r l y e,xposcd g r a p h i t e

to the view Gnat hi@i-prcssurc:

.

More f l u o r i n e was found t h a n should have been produc;ecl by L h c decay energy l i b e r a t e d d u r i n g the 5 min required f o r cooling to essenti:tll.y room t c m p e r a t l x c . When ;-,herc:_tcto_r wns shut down, t h e power produced i n c a p s u l e s 211 a n d 36 dropped- from 81+0 w t o 14 w i n 5 min, '( w i n 1 hr, 1.6 w in 100 hr, and 0.1.9 w in 95 clays ( c a l c u l a t e d from t h e Way-Wiper equation). Assumi.ng t h a t h a l f o C t h e energy x l - e a s e d d u r i x g 95-d-ay c o o l i n g p e r i o d w2.s absorbed i n t h e t ' i x l , a G value of oriLy 0.035 v o u l d have beer1 r e q u i r e d to produce f l u o r i n e found i n capsule 36.

8

i

No firial choice of a theory e x p l a i n i n g why f l u o r i n e i s not, always observed can be made. A d i f f e r e n c e i n c r y s t a l l i z a t i o n b e h a v i o r i s a


1.16 p o s s i b i l i t y . The r e s u l t s from ca-psii’..cs 24 and.. 36 a r e probably q u i t e anomal o u s i n comparison w i t h any-thing t h a t h a s been s e e n b e f o r e i n eaxl-ier exp e r i m e n t s . They p o i n t -to a problem that, r e q u i r e s a t t e n t i o n Li;r.t; which does n o t appear t o b e a s e r i o u s thrcn-’c t o the i n t e g r i t y of the MSW.


Phase E a u i l i b r i w n S t u d i e s

The System LiF-BeF2-ZrF4 Die proposed simp1.ificatiori of t h e f'uel mixture by t h e omission of T M I ' ~l e d t o a more d e t a i l . . s t u d y o f t h e t e r n a r y system LiF-13eF2-ZrF4, l e s o l v e n t s t o c o n t a i n t h e 0.15 with a view toward p r e s c r i b i mol-e $, TJF4 now needed f o r c r i t The phase diagram of t h e s o l v c n t system did. not change s i g n i f i c '*but new information on liquidus contours w i t h i n t h e system est ed t h e p w i t e c t i c point i n v o l v i n g the s o l i d phases LiJ?, 6LiF*E3eF2.ZrF*, and 2LiF*13cF2 at a composition of LiF-BeF2-ZrF4 (67-29.5-3.5 mole $I) and a t ~ - C 4 5 O G . Also, b e t t e r information 011 the temperatures along t h e boundary curve s e p a r a t i n g t h e : pr irnary phase f i e l d s of 6LiF*BcF2.Z:rFa and LiF w ~~

L

A m i n o r s u r p r i s e , i n view O F the rather u n r e s t r i c t e d interchangeab i l i t y of the q u a d r i v a l e n t c a t i o n s ZrF4, ThF4, and W4 i n the 10 t o 15 rriol e $I MF4 c o n c e n t r a t i o n rcmge, vas found i n t h e f a c t t h a t ' I mole $ ZrF4 g i v e s a I-iquidus 25째C h i g h e r than t h a t of t h e 5-1-1 mole o;' ZrF4ThF4-UF4 mixture when the remairider of t h e composition i s '(0 male $3 LiF and 2-j mole B ~ F as ~ ,in t 1 that, w a s nominally LiF-WeF2 -ZrF4T ~ F ~ - w (70-23-5-1-1 ~ mole uch a large change i n l i q n i d u s temperat w x , o r more s p e c i f i c a l l y , i n t h e f r e e z i n g - p o i n t d e p r e s s i o n of LiF, for a c~itmgei n composition of only 2 mole $ i s unusual i n f l u o r i d e fuel mixtures and Iwrice provides i n t e r e s t i n g p o i n t f o r Curther analysis from t h e s t a n d p o i n t of t h e thcrruodyn:mics of s o l u t i o n s

4

O n e of t h e s p e c i f i c a t i o n s f o r t h e fuel was a mel-t,inp; p o i n t below

k 5 O 0 C s o t h a t t h e f u e l would not; freeze beforc t h e cool_ant. Since the

0.15 m o l c $ z 1 ~ 4i n the f u e l was expected t o cause only a s l i g h t lowering of t h e l i q u i d u s , t h e f u e l s o l v e n t was s e l e c t e d from t h e 450째C contour LiF-Bcl;i -ZrF4 t e r r i a r ystcm. A s shown i n F i g , 6.1, which thr. 1~50째C contour on a larger scale t h a n t h a t used previous m a x i m u n LiF c o n t e n t occurs, i n 1;erms of t h e n e a r e s t whole x i 67 laole $, LiF, 29 mole $' I 13eF2, ttnd 1.1- mole $ ZrF4. Since bo pressure and t h e v i s c o s i t y sh c r e a s e as t h e LiF coucexitra2,ion iricrc ase s, t h i s c oxnpos it i0x1 re s of i n t e r e s t as a f u e l s o l v e n t .

,

The mixture LiF-BeF2 -ZrF4-UF4 ( 66.85-23-11-0 15 molc $> w i t h an e s t i.m,zted melting p o i n t of 445"C, w a s t h e r e f o r e s e l e c t e d f o r p a r t i c u l a r study. The obtuse c o r n e r i n t h e 450째C contour marks the change from LiF as a primary phase t o and f o r t h e f u e l c a p o s i t i o n c t e d t o be 6LiF*E3eF2-Z d e s i g n a t c d above t h e prima cr s i g n i f i c a n t differ e c t e d between l i q u i d s as LTl?-BeF2 - Z r F 4 ( 6r7-29-4- mole i s c o n j e c t u r a l , b u t a r i c h e r ZrF4 coritent may prove adv e

l"MSI?P Semiann. Irog. Rep. Feb.

28, 1.962,it o m ~ - 3 2 8 2 , p 1-14.


118 UNCLASSIFIED ORNL-LR-DWG 72906

PRIMARY P H A S E S .

I I IF I1 6 L i F BeF2 Z r F 4

111 2 L i F BeF2 IV 2 L i F LrF4

L I F (mole % )

k'ig

a

6.1.

T h e Sys-tern LiF-BeFz -Z-rF4.

i n c r e a s i n g t h e oxide t o l e r a n c e of t h e f u e l and i n g i v i n g a. primary phase t h a t would bc e a s i e r t o mzlZ, than TliE (rnp, 840"~) i n c a s e of a c c i d e n t a l plugging by p a r t i a l frcezinp;. Samples of compositions i n t h e LiF-BeF2-ZrF4 systeem 'chat c o n t a i n mor2 th.a.n 60% BeF2 and hence a r e t o o v i s c o u s t o be of present i n t e r e s t as f u e l s were quenched from temperatures above t h e l i q u i d u s . The quenched samples c o n s i s t e d of t-w.0 amorphous rnat;e:rials of d i s t i n c t l y d i f f e r e n t ; i n d i c e s o f r e f r a c t i o n , as if t w o g l a s s phases o f d i f f e r e n t If t h i s i m p l i c a t i o n i s borne c o n p o s i t i o n were simultaneously p r e s e n t . out, t h e f i r s t i n s t a n c e of liquid-l-iquid. i m i s c i b i l i t y i n fI-1iori.de m e l t s w i l l . have been encountered.

S t u d i e s p e r t a i n i n g to c o n c e n t r a t e d s o l u t i o n s f o r f u e l makeup and t o segregaL3.m i n the qiij-nary system t h a t i-ncludes ThF4"i n MSW f u e l s were n e a r i n g completion at approxi.mat;el.y the same time t h a t i.t was proposed tha-1; t h c inconvenience of c a r r y i n g token amourits of TW4 could be avoided.. The conclusions from -these i n v z s t i g a , t i o n s are a p p l i c a b l e , i n a r e p r e s e n t a t i v e fashion a t l e a s t , t o f u e l s from t h e quatenary system t h a t do n o t c o n t a i n ThJ?4 a.xid. are t h e r e f o r e p r e s e n t e d i n t h e n e x t two s e c t i o n s 3s examples of t h e ty-pe of behavior t h a t can be expected,


Y

LiF-IJF4 E u t e c t i c as a Concentra%ed Sol-ution of lJF4 f o r Fuel Makeup

One of t h e m e a s considered f o r f u e l i n g the MSN i n c h d c d an i n i t i a l norinucle,w operat i o n w i - t h a solverit; mixture f oll. owed by conv e r s i o n -tot h e fuel. composition LiF-BeF2-ZrF4-ThF4-UF4( 7 O - 2 5 - 5 L - l mole by L i t r a t i n g t o c r i t i c a l i t y w i t h t h e l i q u i d LiF-UF4 e w t e c t i c mixture ('73-27 mole 76; mp, 52'7°C) It w a s a l s o proposed" tba'c the f u e l makeup salt be added as t h e f r o z e n LiF-UF4 e u t e c t i c mixt,urc. A study OF t h e phase behavior arid c s c t e r i s t i c s of tile compasj-tjon sect;ion gives a l l p o s s i b l e e a t i o n s of s o l v e n t and concentrat,c shows ( F i g . 6.2 and Table 6 ~ that ) t h e m e l t i n g temperature of the IJiF-UF4

06)

.

UNGL PS5IFIEII

500

480

-

(3

460 K t-3 (r

!,,

a

2 440 cw

420

4 00

25

20

15 UF,

(mole%)

fO

5

F i g . 6.2 The See t i o n L ~ F - W L ,(73-27 mole $) (70-23-5-1-1mole $).

0

-L

~ F - B ~ ~ * - Z ~ F 4 - T ~ 4 - ~ ~

mixture i s h i g h e r than that of any i n t e r m e d i a t e composition f orsled i n g , that at l e a s t four c r y s t a l l . i n e comgounds appear as ses at vsri-ous intcrrn j a t c c o a p s i t i o n s , and t;ila,t uranium and thorium c r y s t a l l i z e t o g e t h e r ixl ti s i n g l e s o l i d - s o l u t i o n phase From. t h e phase r e l a t i o n s h i p s observed i n this cornposit i o n s e c t i a n .it appears that the LiF-UF4 e u t e c t i c mixture should serve as a s u i t a b l e f u e l i n g mixture â‚Źor t h e WRE. At clccreasing c o n c e n t r a t i o n s of K!.'~, urm-i u -c ont a i.ni n g phase s prc e i p i t ate l a t, e r i n thc c r y s t a11izi n g sequence I n the f uel i t self, the uranium eompound 7 L i F 6(TJ,T'n) F* p i t a t e s as the t e r t i a r y phase, and solids t h a t do n o t c o n t a i n UF4 are formed d u r i n g c r y s t t f i l i z a - L i o n of Lhe primary and secondary phases

.

.

2P. N. Ha?nbenreich and J. 13. Engel, "Safety C a l c u l a t i o n s for TSISRE," OZWIJ-T%l-251 (May I$, 1962) p 22.

.


cv 0

+I

-1-1 31

m m c v

0

*

* N

N

+ +

4 4 4

+I

+I

+I

4-1

N c v c v

r-4

(3

+I

0

co

+I

cvcvcv

Q

0 c3 b

0

co

0 c?

rt

4-

.I

r-i

I"

0

(s\

cv

cv

cv

u3

d-

UI

0 fi


121 F r a c t i o n a t i o n of LiF-BeF2 -ZrF4-TW4-W4

on Freezing

An assumed sequence o of t h e five-component MSRX 5-1-1 mole was s t u d i e d r e g a r d i n g (1) the f r a c t i o n t h e onset of c r y s t a l l i z a t i ZrF4 c o n c e n t r a t i o n w a s ade of U02, ( 2 ) t h e e o n c e n t r a t phases w i t h i n which i t i s c p o s i t i o n of t h e s e phases i n t h e and ( 3 ) t h e approximxte eo a t t e m p e r a b w e s just above

(6)

f r e e z i n g and t h e r e l a t i v e

Q

f %he f r e e z i n g r e a c t i o n s was rig the c r y s t a l l - i z a t i o n are

Although only a31 ex made, s m c q u a l i t a t i v e s warranted, During free f r a c t i o n o f t h e mixtare (6LiFaBeF,*ZrF* and 2Li w i t h i n t h o l i q u i d . i.s i n r a t i o i s decreased. A s noted be exceeded,

centration i n the liquid primary and s w h i . l e t h e IJF r c o n i u - t o -ur a e o n c e n t r a t ion t h e l i m i t of p r o t e c t i o n can

,

The apparent s o l i d u s temperature f o r the f ive-component mixture i s 429째C. Comparison w i t h s o l i d u e s i n t h e l i m i t i n g LiF-BeF2W4 systems i m p l i e s that t h e crx~p n of t h e five-component, liquid a t t h e s o l i d u s c o n s i s t s of no more t h a n 40 mole $I BeF2. T short ternpercctture i n t e r v a l r e complete f r e e z i n g i s 11.0 conducive t o e x t s m i v e segreg o a large difference i n average conipositicjxi of t h e a1 r e s i d u a l l i q u i d s , Hence t h e products of c-ryst a l l i z o t c o n t a i n s o much LIE cooled fuel. ;.aixture sh y e c t e d t o be very ti f u e l mixture i s LIP , 6(u,m) F ' ~ , , l a s t s o l i d . phase observed r o p o r t i o n of UF4 was debermi wliich c o n i a i r i s 13.3 mole $ U F ~ . by two indeyentient; methods: (1) l c u l a t i o n of t h e m a t e r i a l b a ~ i d( 2 ) from measurements a c t i v e indices o f the solid so n. Three norrhygro:;eopi.c solid pph found i n m e l t s cooled u n d e r equilibrium conditions: 6 ~ i ~ 4, 2LiF*BeF2, and 7LiF*6(1J,Th)Fr~,. It i s -bo be n o t e d t h a t specimens .ned from a v a r i e t y of expe i n which equill.briurn cc: "nen t a1 e ng i n c e ring t en c o n t a i n 3LiF*Z r F r a t h e r than -bine equil. ~.'KII'~IXII s

Crystal Chentistry

__I

me It; i phase e q u i l i b r i a i n the CsF-ZrF4 systcma 3"MSRp

Prog. R e p a March 1 to Auge

.

Crystals o w i n g the inv X-ray d i f f r a c t i o n a n a l y s i s

31, 1961," ORNL-3215, p 124,


122 showed t h a t t h e s e c r y s t a l s were isomorphous with K37JrF7 and Q!-K3I%'7 The Cst- and Zr"' i o n s i t e s were determined, and t h e FM i o n s were sho~m t o be i n a d i s o r d e r e u arrangement. The f a c e - c e n t e r e d cubic u n i t cell has a 9-70 -I

.

Ind-ium T r i f l u o r i d e ( InF3) The conpound, InF3, which was prepared f o r use i n m o l t e n - s a l t cryoscopy s t u d i e s , c r y s t a l l i z e d wiLh the same t y p e of s t r u c t u r e as h'eF3 and s c v e r a l o t h e r t r a n s i t ion-metal t r i f l u o r i d e s . The rhombohedral u n i t cell has a L 5.73 A and = 56"1tot, and it c o n t a i n s two TnF3 formula weight;;. The c r y s t a l d e n s i t y i s 4.64 g/cm3. Complex Alka1.i. F l u o r i d e s : P.,iRbF2 and LiCsF2. The c r y s t a l struc-kures of LiRbF3, and LiCsF2 were found to be isomorphous In each c r y s t a l , t h e Li' i o n s a r e surrounded by i e t r a h e d r a of f l u o r i d e i o n s , and t h e s e t e t r a h e d r a s h a r e c o r n e r s and edges i n such a manner + as t o form continuous s h e e t s . The Rb and Cs' i o n s a r e s i t u a t e d between t h e s h e e t s a i d bind them t o g e t h e r ,

.'

S.tabiliz Lion of F l u o r i t e NaYF'4 S o l i d SoTLut ion. The equ.ili'Drim i n v e r s i o n temperature f o r t h e pure Nam4 crystal..s invert:i-,rg from the high-temperature f l u o r i t e fo-rm t o t h e low-temperature hexagonal. form i s 692째C. During continuing i n v e s t i g a t i o n s of t h e phase r e l a t i o n s h i p s i n -the system Na,F-YF3, it was discovered that a t n e z r l y s a t u r a t i n g c o n c e n t r a t i o n s of YF3 i n t h e f l u o r i t e cubi.c s o l i d s o l u t i o n , NaYF4-YF3, s o l i d sol-u-tions c o n s i s t i n g of approxima-te1.y 65 mol-e $I YF3 appear as e q u . i . l i b r i u phases to temperatures below 475째C. Hence t h e cubic form of NaW4 i s s t a b i . l i z e d a g a i n s t i n v e r s i o n t o the low-tempera'i;ure f o m t o t h e e x t e n t of approximately 15째C f o r each mole p e r c e n t of d i s s o l v e d a L -

__.,

m3.

Oxide Behavior i n Molten Fl-uorides - Dehydration of EiF

A marked decrease i n t h e c o r r o s i o n of grade-A n i c k e l c o n t a i n e r s used f o r t h e fEF dehydration of molten EiF w a s achieved by u s i n g a hydrogen atmosphere a t a l l times when h e a t i s a p p l i e d . Previously, LiF intended for t h e prod-uction of u l - t r a p u r e c r y s t a l s was melted- under a hel.iuui atmosphere and dehydrated with a mixture of H2 and HI?. Under t h e s e c o n d i t i o n s , b o t h discolored. and cl-ear LiF w a s produced. The discol.ored a r e a s contained t h e i m p u r i t i e s found i n grade-A n i c k e l , such as copper, i r o n , manganese, and sil..i.con, as well as n i c k e l , i n t h e 1.0" ppm range. Material. produced u s i n g a hydrogen atmosphere throughout d i d not contain d i s c o l o r e d a r e a s No copper, i r o n , s i l i c o n , or n i c k e l was d e t e c t e d by emission spectroscopy, Only 1.0 ppm Mn w a s found, and t h e total impurity w a s <300 ppm.

.

%.D. Robbins and S * E. Burn.s, "X-ray D i f f r a c t i o n Study of Cs3ZrF7,'I ORNL-TM-TlO (August 7, 1962)

'Paper t o be p r e s e n t e d a-t t h e Southeast; Regional Meeting of the American Chemicd.. S o c t e t y , Gatl-inburg, Tennessee, November 1962 . I


123 P h m i c a l P r o p e r t i e s of Molten S a l t s DensiLy of LiF-ReF2 -ZrF4-W4

The d e n s i t y of a proposed fuel, LW-BeF2-ZrF4-T4 (66.85-294 ) w a s d e t e m i n c d from t h e bo-uyancy of a platinum et suspended i n t h e melt. T' vo.l.uxue of the p l m n e t , c o r r e c t e d t o t h e h i g h temperatures, was kn w i t h i n fO.l$, and t h e change in weight of about; 2.5 Q could 'ue meas (I t,o about 1 mg. The f u e l was prepared i n a 200-e;b a t c h and p u r i f i e d b ment w i t h 40 Q of NH4 remove oxide and h y d r o l y s i s pro Temperatures were measwed w i t h a c a l i b r a b e d platinum vs r themnocouple i n a w e l l t h a t proj e c t e d downward into t h e m e l t from t h e s i d e a t an angle. T couple w a s c a l i b r a t e d a t t h e N Bureau of Standards.

4-0.15 mole

,

A s t i r r e r w a s o p e r a t e d manually t o ensure t h a t t h e s a l t melt was o r i g i n a l l y uniform and was n o t used f u r t h c r . P r o t e c t i o n from the atmosphere w a s maintained by flowing argon. The data f o r LiF-BeF2ZrF'4-UF4 (66.85-29-4-0.15 mole $) f e l l on t h e s t r a i g h t l i n e d = where t i s i n

O C ,

2.4'78 - (5 x lO'")t

,

w i t h a p r e c i s i o n of 0.276.

A t 663"c, the fuel temperature at the outlet of t h e core, t h Unexplained behavior which i n d i c a t e d t h a t t h e d e n s i t y i s 2.147 &/ern3 plummet and s t i r r e r had f r o z e n i n was rioted a t 542"c, a 1 0 0 째 C above t h e m e l t i n g p o i n t . Po obtained at h i g h e r tern both before and a f t e r t h e c t was noted fell on t h e straight line Subsequent e x a n i n a t i o n of t no deposits of oxide, s o t h t e n t a t i v e l y accepted as v a l i d . F u r t h e r checks t o e s t a b l i s are i n p r o g r e s s . e

.

E s t i m a t i o n of D e n s i t i e s of Molten F l u o r i d e s D e n s i t i e s of many mol-te de mixtures, esppecia MSRE importance, can now be d t o w i t h i n 3$. The f i r s t , c a l c u l a t i n g t h e molar volumes of the mixture a t 6 from t h e e q u a t i o n

yes,

i

where N i s t h e mole f r a c t i o n of coaponent i aid V . i s t h c empirical. i mol-ar volume of componen$ i given i n T a b l e 6.2. ~i!ie average molecular a t 600 and 8 t, of t h e mixture i s t h e n d i v i d n t h e d e n s i t y . By assuming t h ras a simple matter. t o t u r c , w i t h i n t h e range of i n t e r e s t , n t h e d e n s i t y e q u a t i o n f o r t h e niixtur d t = a + b t

,


124 Table 6 . 2 .

Empirical Mabar Volmies of F l u o r i d e s Molar Volume (cm3/rnol.e )

I.,3.F BeF2 ZrF4 TW4 UF4 presen-t up t o 8 mol-e % U F ~p r e s e n t as 8 t o LOO mole

A-l; 600째C

A t 800째C

14.0 23.6 46 47.8

1-4.. 7 2)+ . 4

49 49.0 60 50

58 48

%

where d i s t h e d e n s i t y a t temperature t ( i n "C) and a and b a r e cont stants.

By way of i l l u s t r a t i o n , t h e density e q u a t i o n of the t e n t a t i v e P&SKE f u e l mixture LiF-BeF2-ZrF4-UF4 (66.85-29-4-0.15 mole $I) i s evaluaked

below:

At 6oo0c, vIll-iX

'mix

=

=

= =

0.6685(14.0) + 0.29( 23.6) 18.13 ea3; 0.6685(14.7) -t 0.29( 24.4) 18.95 em3;

Molecular Weight;

=

--

d600 - d800 Goo - 800

0.6685( 26) + 38.1-7g ;

--b-

0.29(

3

0.04-( 46) t- 0.0015( 58)

3- o.oj-i-( 11-9)t-

47.01) + o.ok(

38.17-__-38.17 m m -200

I=

0.0015(Go)

167.22) -t O.OOl?( 311)

- 4.6 x lo-" g/cm3

"C

.

Therefore

dt

=

2.381 - (Ic.6 x

10"")t

in units of g/cm3. D e t a i l s of how Tabbe 6.2 and. t h e percentage r e l i a b i l i t y were obtained are r e p o r t e d elsewhere.

b. Cantor, "Reactor Chem. Div. Ann. Prog. Rep. Jm.31, 1962," 01m~~3262, p 38. I

6

3


Graphite C om'pati b il-i t y

S i n c e t h e unclad gr of t h e MSRE i s a p o s s i b l e r c e of oxide cont conceivably cause Zr02 t o i n t h e fuel sal t h a t favor the rem adsorbed g a s e s from t h e ncluded i n t h e i n i t i a l start sequence, Sone d e s o r p t i o n when t h e r e a c t o r core i s heat t o about 650°C i n an a t b e ; helium, and when a b a r r e n f l u o r i e i s c i r c u l a t e d f o r prenuc Accordingly, an i n v e s t a c t e r i s t i c s of gas ev from g r a p h i t e wider c o n d i t i o n s s i m u l a t i n g t h e s e s t a r t u p o p e r a t i o n s i s i n progress, !!%e experimental p r i d e d i n t o two p a r t s . I n one set apbite b l o c k s p l a c e d i n a c i r c u l a t i n g of experiments, gas evol stream of helium at 650" d i e d . The second part of t h i s program i s concerned w i t h t h e r 1 of adsorbed g a s e s from it€? immersed i n a mol-ten-fluoride r n i x t u r e n

I n i t i a l l y t h e r e a c t o r core of t a t a maximum rate of approxied h c l i w z i s c i r c u l a t e d through t h e core mtz-t;ely jQ°C/hr while preh a t about 75 l i t e r s / s e c . p i e c e s of g r a g h i t e ( 6 t o 12 i n . i n l e n g t h ) were canned i n a manner that provided t h e s m e crosss e c t i o n a l confibmration f o r flow as an MSR3 moderator element, and gas e n t r y and e x i t p o r t s were provided at e i t h e r end. This as w a s inounted v e r t i c a l l y i tube f u r n a c e as p a r t of t h e e i r c u i 6 c o n s t r u c t e d so t h a t p o r t i o n s of g a s - c i r c u l a t i n g loop. t h e gas stream e n e r g i n g f r o m t e block could. be d i v e r t e d i c Water h a l y z e r and c2 gas-s through a P4EECO Model system, The c i r c u l a t e d gas s t r s e d through a ruagnesiwn c h l o r a t e d r y i n g eo t o remove moistuxe, Rased r e a c t o r core, a f l a w r a t e on a uni-fom gas v e l o c i t y through t h e out 2.5 l i t e r s / n a i n through t h e experimental loop was assumed tcj roximate gas purge condi 11s around each moderator element. A ramming device was used t o c o n t r o l t e m p e r a t u r e s

,

e f r m a b l o c k of AGOT g r h i t e a r e p r e s e n t e d i n Fig n of t h e gas e v o l u t i o n were t h e removal of p h y s i c d l y abs r e a t temperatures below 1 0 0 " ~ t h e removal of chemisorbed moisture over t h e temperature i n t e r v a l 20 to 400°C. The a d d i k i o n a l aaouizt removed between 400 and. 600°C should 'ne r e l a t i v e l y i n c o n s e q u e n t i a l t o r e a c t o r o p e r a t i o n s . I n s e v e r a l e x p e r i merits, AGOT g r a p h i t e spec r e p r e t r e a t e d with water'vapor by c i r c u l a t irig moist helium t h e loop. The d a t a f r degassing, p r e s e n t e d i n F protide f u r t h e r i l l u s t r a t i o n of t h e c h a r a c t e r i s t i c bimodal be The data on e v o l u t i o f r m rn a s - r e c e i v e d p i e c e of E 6 Ii- The predominant cha

.

4


126 UNCLASSIFIED

ORNL-LR-DWG 74358

160

''Oo0

140

ppm

-.

k

2 120

GRAPIiITE WEIGHT. 695 g VOI I J M r . 418 c m 3 GAS V O L U M E . 2 96 liter: ( S T P ) GAS FLOW R A r E 2 5 l i t e r s / m i n T t M P t t 3 A T U R E RISE. 3 0 째 C / h r

f

w IT 100

z

I-

z

0

2 t

80

2

W

z

0

60 0 ar

a I

40

t w

3

20

0 0

Fig

e

.............

100

L

200

300 400 TEMPERATURE ( " C )

500

600

700

6..3. Removal. of Moisture from AGOT Graphite by H e l i u m Purging.

UNCLASSIFIED

0 R N L - L R - DWG 74 3 5 9 ..............................

I OFF SCALE > 1000 ppm J

0

\+J 100

200

i

300

400

500

600

700

TEMPERATURE ( " C )

Fig. 6.4. Removal of Moisture f r o m ETL Graphj-te by Keliim Purging.


Y

UNCLASSIFIED ORNL- LR- DWG 74360

500 E a n

2.5 I i t e r s / m i n

I

3 -

400

__

J

W I

z

6 300 k-

F LT 0 w 2

u 0

200

rr

8

BI p

100

2

0

0

400

200

300 400 TEMPERATURE ( " C )

500

600

700

F i g , 6 . 5 . R e s u l t s of Helium Puxy$.ng of AGOT Graphi-be t o Remove Moisture That Had Been Added by Contact w i t h Moist Helium. Data on e v o l u t i o n of o t h e r gaseous i m p u r i t i e s from AG0T g r a p h i t e , S i n c e no as d-e-tex-mined s p e c t r o s c o p i c a l l y , a r c p r e s e n t e d i n F i g . 6.6. p u r i f i c a t i o n train, except f o r moisture removal, w a s included i n t h e helium circuit, t h e s e d a t a demonstrate t h e accumulation and recombination of ii- purities i n t h e system and t h u s a r e not direct1.y a p p l i c a b l e t o t h e MSdE s t a r t u p c o n d i t i o n s . Experiments a r e i n progress t o study v a r i o u s gas flow r a t e s and the c o n d i t i o n s . Also t h e removal of a i r and carbo wil followed under c o n d i t i o - i s t h a t b e t t e r s i m u l a t e ed w i t h d a t a o b t a i n e d by and t h e r e s u l t s w i l l be c m e n t a l techniques .7

Gas Evolution by Immersion in a Molten S a l t . When -the primary c i r c u i t oâ‚Ź t h e PISRE: i s f i l l e d with the barren f l u o r i d e mixture f o r

p r e n u c l e a r t e s t o p e r a t i o n s , ad adsorbed gas may be r e l e a s e d so, t h e s a l t mixture i s expected f r t m t h e unclad. g r a p h i t e moder t o remove t h e oxide f i l m from c3. -to permit t h i s sa.~.rce of f.lael contamination t o be f l u s h e d from the system. A laboratory demonstration ed in the f o l l o w i n g manner. of t h e s e p r o c e s s e s w a s a t t e

An experimental f l u s h s a l t , LiF-BeF2 (66-34mole $ I ) , was p1-e i n a copper c o n t a i n e r by c o n v e n t i o n a l tecliniques. Treatment with IT% and hydrogen was continued u n t i l t h e analyzed oxide conkexit of t h e m e l t was l e s s than 200 ppm. A p o r t i o n of this melt was t r x n s f e r r e d into a 7L. G. Overholser and J. P. Blakcly, "Reactor Chem. Div. Ann. Prog. Rep. Jan. 31, 1962,'' OR?JTJ-3127, p 125. 8


UNCLASSIFIED ORNL-LR-DWG 74361 ......................

i -

GRAPHITE WEIGHT 695 g VOLlJME: 418 cm3

0

100

200

300

400

500

600

700

TEMPERATURE ("C)

Fig. 6.6.

Gas Evolution from. AG(YC Graphite by Helium.Purging,

c l o s e d v e s s e l of mo~-8a l l o y t h a t contained g r a p h i t e , as d e s c r i b e d below, A connecting gas manifold p e r m i t t e d a known v o l m e of helium t o be c i r c u l a t e d over t h e m e l t and samplcd f o r s p e c t r o g r a p h i c a n a l y s i s . P r o v i s i o n s were made t o s a p l e t h e melt; p e r i o d i c a l cly without s e r i o u s a l t e r a t i o n of t h e gas-phase c o n s t i t u e n t s .

S i n u l a t i o n of r e a c t o r c o n d i t i o n s w a s based on d u p l i c a t i o n of the r a t i o of salt; volume t o g r a p h i t e volume and t h e ratio of g r a p h i t e s u r f a c e a r e a s . Right crircular c y l i n d e r s of AGOT g r s p h i t e , 2, I, and 1/2 i n . i n di.arn.eter, were h e l d i n 2 p o s i t i o n i n g rack. - t h a t was submerged i n t h e m o l t e n - s a l t mix-t;ure A g i t a t i o n w a s achieved by slowl-y r e v o l v i n g t h e graphite holder

.

.

The e x p r i m e n t n l da-t;a obtained. -Lhs f a r i n t h i s program are shown g r a p h i c a l l y i n Fig. 6.7. R p o s s i b l e conclusion from these r e s u l t s i s t h a t t h e e v o l u t i o n of gas from t h e g r a p h i t e should be of I - i t - L l e consequence t o MSRE o p e r a t i o n s . Only a few t e n t h s of a cubic centimeter of carbon monoxide escapes i n t o gas space p e r 100 cm' of graphite p e r 100 h r , and t h e r e i s l i t t l e e f f e c t on the oxide content of t h e s a l t . The i n i t i a l r a p i d r i s e i n oxide content resembles, qualitati.veI.y, the expected d i s s o l u t i o n of oxide scal..e from t h e INOR-8, but i n general the v a l u e s for oxide content a r e puzzling. Behavior of CF4. i n Molten F l u o r t d e s A d d i t i o n a l a t t e m p t s t o measwe t h e s o l u b i l i t y of CF4 i n MSRE m e l t s brought t h e t o t a l to t h r e e experiments a t 600째C and t w o experiments a t 800"c i n which t h e sol-ubi-1-it;yw a s a p p a r e n t l y below the l i m i t of d e t e c t i o n


UNCLASSI Fl ED ORNL-LR-DWG 74367

CONCENTRATIONS

OF 0 2 , C H 4 ,

AND

H 2 IN GAS P H A S E

I

WERE NEGLIGIBLE

I

-1

700

TIME ( h r )

F i g . 6.7. Removal of Adsorbed Gas from AGOT Graplii-te Immersed in LiF-BeF2 (66-311-mole %) a t GOO'C,

of melt per atmosph-ere, he e of about low8 ~ Z O ~ Cof S CF4 m e n t a l equipment, d e s c r i b e d previously,8 was reealibr&ed. with ar t h e data were fciuncl t o be in it nt w i t h e a r l i e r ~ ~ c ~ s u ~ c ~ ~ e y ~ ~ s ometry of a mixtuye of Cd;l, w i t h that gas," Analyses by m y at 700 o r 800째C through bel-ium t h x t was recirculated c t o TvIiich urani LiF-BeF2 - Z r F ~ - ! L ' ~ f l ~ - l J (F70-23~ had been added i n d i c a t e d a slow loss of CF4 at 700째C t h a t reached a r a t e o f , perhaps, 4$ per a t 800째C. Enough uranium had been added t o convert 201,; of the ura in t h e m e l t to UF3, but;, for r e a s o n s not t h e reducing power of t h e f u l l y understood, aaal.yse $ u3.'. hat; is, less t;hm 0.1 melt gave c o n s i s t e n t l y ne w i t h a gas l i n e before t h e The experiment was i n t e r rate of r e a e t i o n at 800째C could be e s t a b l i s h e d w i t h c e r t a i n t y .

8)

H. Grimes, N. V. Srni-th,

862 (1958) e

cznd G. M. Watson, J. Phys. Chem,,

62:


130 In s t a t i c experiments a t '7,oO"C involving 15 Q of LiF-BeF2 (66-3lt (added as UF3 c r y s t a l s ) , no evidence mole $) c o n t a i n i n g 1.45 w t $ 'U of r e a c t i o n of CY4 wi-t'n t h e melt was found whcn a o n e - t h i r d excess of C F 4 was used i n t h e cover gas during t h r e e t r i a l s i n a l 5 5 - c ~ ~ ~

r e a c t i o n v e s s e l , The p o s s i b i l i t y Lhat CF4 mi-ght r e a c t m e t a t h e t i c a l l y w i t h oxides a t 600"c w a s a l s o i n v e s t i g a t e d , b u t the r e s u l t s were inconclusive.

In experiments t a c t w i t h a reduced r a t e of r e a c t i o n w i t h e hydrolysis r a t e

now b e i n g prepared, CF4 w i l l be brought i n t o conmelt at a g r a p h i t e i n t e r f a c e t o s e e whether t h e l l i n c r e a s e , and an attempt w i l l be m a d e to measure of CF4. A n a l y t i.c,zl Chemistry

q___

Determination of Oxygen i n MSRE E'crel Mixtures Work continued. on t h e determination of oxygen i n s a l t mixtures by the i n e r t - g a s carbon-reduc t i o n method. A g r a p h i t e c r u c i b l e tapped t o accept a t h r e a d e d plug t h a t , i n t u r n , screws onto a grap1il-k s p i n d l c i s used t o c o n t a i n the s a l t , The plugged capsule f a c i l i t a t e s t h e l o a d i n g of t h e sample w i t h i n t h e d r y box a i d subsequent ra,?id weighing. The q u a r t z t u b e t h a t i s uscd t o provide an envelope f o r t h e i n e r t gas was modified by e n l a r g i n g the d-iameter of t h e c e n t r a l expanded s e c t i o n and by inser-ting m i n n e r q u a r t z shc17 These m o d i f i c a t i o n s were intended t o lengthen t h e u s e f u l l i f e of the q u a r t z t u b e . e

Standard cal-Lbration curves were obtained by using m e t a l l i c t i n sta.nd.ard samples of a known oxygen c o n t e n t that were s u p p l i e d by t h e Laboratory Equipment Corporation. The oxygen content of r e a g e n t -grade ZiF was assayed as a, t e s t determination. The v a l u e o b t a i n e d was 250 + 11.0 ppm based on f i v e d e t e r m i n a t i o n s The method was f u r t h e r t e s t e d on samples of LiF-T3eF2-ZrE'4-fCh3F4-UY~ t h a t were a l s o anal zed by t h e KBrY4 method" and t h e " t r i . t o n " a c t i v a t i o n analysis methods LO3[,, ( H3,n)F18] The measured oxygen c o n c e n t r a t i o n s a r e l i s t e d i n Table 6.3.

.

Table 6 . 3 .

R e s u l t 6 of Comparative Oxygen Analyses of MSIW Fuel Mixture ~xygen.Content (ppn-~)

Sampl-e

No.

4285 4282 4-98?

Neutron A c t i v a t i o n Method

952, 963 416 330, 386

804, 793, 706 626, 668, 597 74-7,745, 605

--.",

' I n e r t G a s Fusion Met hod

897, 568, 550 4-30,425 404, 604, 518


1-31 Although t h e comparison i s not as good as a n t i c i p a t e d , t h e r e s u l t s a r e i n g e n e r a l agreement. wide s p r e a d s a r e obs in t h e r e s u l t s of' a s i n g l e m This was rioted p r e ssibly t h e r e s u l t of (I) inh e r r o r s i n t h e meth a p p l i e d t o f l u o r i d e salts, ( 2 ) inhom cont caminatio n d u r i n g s a p l i n g and ha The latter has been proved t o be a (3. r e s u l t s vary by n f a c t o r of 5 i n some c a s e s when t h e s d e l i b e r a t e l y exposed to t h e tixne -to e l i m i n a t e e i t h e r of i l i t i e s of e r r o r , but e f f o r t s a r e contirnxing t o a s c e r t a i n tile sources of ez-rore

.

Determination of Oxygen i n Graphite S e v e r a l methods were t e s t e d f o r t h e d e t e r m i n a t i o n of oxygen i n g r a p h i t e . The methods used t o daLe i n c l u d e (1) f l u o r i n a t i K B ~ F ~ ,(2) ' - ~i n e r t - g a s fusion, ( 3 ) um f u s i o n , and ( 4 ) n e u t r o n a c - t i v a t i o n w i t h I_h--Mev n e u t r o n s + raphite exmined was high-purity material, and t h e smplcs varied ght from 50 t o 250 mg. I n t h e i n i t i a l tests t h c q u a n t i t y of oxy taineCi by means of t h e first three prscedmcs was essentiallyblanks f o r the p r o c e d u r e s + Based on the weight of sample used, t h e oxygen c o n c e n t r a t i o n in t h e i t e was less than 50 l a r g e r srmples and a t t e n d a n t f i c a t i o n s of t h e app relquired t o e s t a b l i s h lower s of s e n s i t i v i t y . F 1-g samples were used, the c) c o n c e n t r a t i o n s as low izs 10 ppm could be dctermined. C u r r e n t l y , e f f o r t s a r e being d i r e c t e d toward use o f the neutrona c t i v a t i o n technique u s i n g l4-Mev n e u t r o n s g e n e r a t e d by t h e CockroftWalton. g e n e r a t o r . T h i s met i G n o n d e s t r u c t i v e and c the c o n d i t i o n of t h e s e n s i t i v i t y t h a t depends o Oxygen ((Ix6) in. the g r a p h i t e undergoe an n,p r e a c t i o n which has a w i t h high-energy n e u t r o n s t o p -ked u s i n g a gamma cpcctrclmeter The g m a a c t i v i t y of the N"" and a m u l t i c h w m e l anaLyzer. S p e c i a l pneumatic t r a n s f e r of t h e sample t o t h e c o u n t e r i s n e c e s s a r y t o achieve t h e u l t i m a t e s e n i v i t y . Only c u r s o r y r e s u l t s have been o b t a i n e d t h u s far. It i s pl_anned -to extend t h i s technique t o oxygen d e t e r m i n a t i o n s i n o t h e r m a t e r i a l s .

',

Homogenization of R a d i a a c t i v e MSRE: Fuel Samples Equipment was designed t o remove and homogenize r a d i o a c t i v e MSI?E s o l i d s a l t smpl-es p r e p a r a t o r y t o m a l y t i c a l marLipulatioris .ll The "G.

Goldberg, A. S . Mcyer, Jr., and J I C. White, Anal. Chem.,

.

32: 314 (1960)

,

"Me J. Goitanis, C. E. L and L e T. Corbin, "Horns of Molken Sal-L Reactor P r o j e c t Fuel Samples," ORNL-rm-291_ ( A I J w . ~ ~15,

1962)

e


132 equi-gment i n c l u d e s a copper pulverizer-mixer and a copper s a p l . i n g ladle t h a t c o n t a i n s t h e solidified f u e l . The smplimg ladle i s placed i n the pulverizer-mixer, which i s ag:i-tx-Led on a mixer m i l l . lie f u e l i s f r a c t u r e d . out of the ladl.e, p u l v e r i z e d i n t o a homogeneous powder, and t r a n s f e r r e d t o a s t o r a g e b o t t l e . %%.e homogenized fuel s m p l e i s t h e n a v a i l a b l e f o r analysis

.


133

Work on the d e t a i l l e c o n s i s t s of a f l u o r i n a t i o n sys i n addition t o t h a t of the salt with a ernoval * R simplifi e

in Piga 7.1,

fuel-proce s s i n g system ranium recovery, was

previously'

i s now i

hydrogen and hyd dsheet af t h e system i

UNCLASSI FlED ORNL- LR-DWG 73991

NaF ABSORBERS AT 180째F

SAMPLE F U E L OR FLUSHING SALT FROM DRAIN TANKS

H2-HF MIXTURE OR FLUORINE

L

so2 F2

W A S T E TANK

CAUSTIC SCRUBBER

\

I

Fig.

i

REACTOR

TO OFFGAS FILTER AND STACK

I

7.1. MEXE Fuel-Processing Systern.

In the proposed system, oxide removal is accomplishecl by sparging the molten s a l t with a n N ~ - Winixtu-re, The Hz, 1120, ~ X C ! ~ GHSI?, and Some v o l a t i l e fission products, principally niobium, t e l l u r i w n , and iodine,


134 are evolved, The 750째F N@ t r a p removes t h e b u l k o f t h e niobium, The RF-H@ mixture i s condensed, s,mpl_ed, an6 analyzed i n o r d m to f o l l o w

t h e progress of t h e t r e a t m e n t . The sample pot i s emptied, after spargingJ t o t h e c a u s t i c tank, where i-odinc and t e l l u r i u m are c o l l e c t e d . After s u f f i c i e n t decay, t h e c a u s t i c i s s e n t to the liquid-waste t a n k and the ORfssL waste system. F l u o r i n a t i o n of t h e fuel. salt volatilizes some fission products, i n Lo WQ, but, an over-all decontamination factor sf >lo7 i s expected. A d d i t i o n a l decont,mina-tion f m m ruthenium, zirconium, and n i o bium i s o b t a i n e d as the l9-F~passes through t h e 750째F N e t r a p . The uranium i s c o l l e c t e d as u176*3NaF i n t h e 180"~' N U absorbem. These are p a r t a b l e units that will b e moved t o t h e V o l a t i l i t y P i l o t P l a n t for d e s o r p t i o n and cold t r a p p i n g . Excess f1uow.i.m w3.11 b e disposed of by r e a c t i n g i t with SO2 a t 400째F. A re1ativel.y inert gas S O 9 2 i s formed and can b e safely sent; -through t h e Fiberglas filters and discharged t o add;.tl.on

the stack.


13%

8.

L PROPERTIES OF

ENGINEERING I?ESEARCH 0

The mixture L i 2 C O 3 - N f o r use in o u t - o f - p i l e basis of s i m i l a r i t y i n p this m i x t u r e will ease noncarrosive t o s t a i n l e s s urements of t h e e n t h a l p y a n

-38-32 wt $I) h a s been relating t o the of t h e MSRE fuel m s because it i s e s s e n t i a l l y a protective a t f t h i s s a l t are

re.

Enthalpy Experimental d a t a on t h e e w t $) salt i n t h e l i q i

t e m p e r a t u r e span

y of t h e Li2CO3-Na2@03p r e s e n t e d i n Fig, can be r e p r e s e n t e

475 t o 't

-

'30째C

=

18.10

+ 0.413 t

,

UNCLASSIFIED ORNL-LR- DWG 73992

350

3

1300 Q >-

II 9 L

!2

w

250

V

R

7

200

24 50

300

400

500

6 00

700

800

TEMPERATURE ( " C )

ture.

Fig. 8.1. Enthalpy of a Li2C03-Na2C03-K2C03 (30-38-32

1st

$) Mi-x-

where t h e e n t h a l p y , H, i s i n cal/g when t h e t e m p e r a t u r e , t, i s i n 'C. l i n e a r f i t w a s s e l e c t e d i n view of t h e u n u s u a l l y l a r g e (U 6.1 c a y g ) . The d e r i v e d t y i s 0.413 ca urements will be r e p e a t e d w i t h a p r e p a r e d sampl twe! i n t h e hope of r e d u c i n g t ntal s c a t t e r and es e f f e c t of t e m p e r a t u r e on t h e e h e a t capacity. I-

A


136

V i s casity

m e viscosity of the L ~ ~ c o ~ - N ~ ~ c o(30-38-32 ~ - & c o ~ $91 miXt~p"ewas The kinemtic v i s c o s i t y (v = p / ~ ) d e l e m i n e d by efflux-cup measweaents i n t h e temperature range k6O to 715째C can be expressed as e

v -- 0.024 e here

V

48a8/~

is in centistokes and T is in

Y

OK.

The density of the mixture has not been measured; however, assuming i d e a l s o ~ u t i o n ,the mixture d e n s i t y (based on i n d i v i d u a l component aa.ta) i s estimated t a be Q =

2.21.2

-

0.00039 t

,

where the density, p, i s in dcm" ana t h e temperature, t, is in OC. absolute viscosity of t h e s a l t , calculated using this estimated d e n s i t y , is shown i n F i g , 8.Zs

UNCLASSIFIED DRNL-LR-DWG 73993

900

800

(000

(400

TEMPERATURE ("F)

Fig

e

8.2

I

w-t %) Mixture.

1200

4300

Predicted V i s c o s i t y of a LizC03 - N a 2 C O 3 -K2@O3 (30-38-42


137 Previous r e p o r t s in t h i s s e r i e s are: ORNL-2799

P e r i o d End

ORrJz-2890

P e r i o d End

July 31, 1959

October 31, 1959

OR?&-2973

Periods Ending January 31 and April 30, 1960

ORm-31-22

P e r i o d Ending February 28, 1961

ORTJL-3014

ORNL-3215 ORTJL-3282

Period End

g July 31, 1960

P e r i o d March 1 to August 31, 1961 P e r i o d Ending February 28, 1962



139

3 A K RiDGE NATIONAL LABDRATORY

MOLTEN SALT WE CTBR PROGRAM ALGUST

:562

! j

MSRE OPERATIONS

1

MSRE PROCUREMENT AND CONSTRUCTION

I

i

.

COMPONENT D i V E L O P M E N T

!

R

I. SPIEWAK' j D. SCOTT

R. H. GUYMON'

1

I

METALLURGY A. TABOADA K. V COOK'

W H. COOK

I

ENGINEERING P. H. A. W.

H. HARLEY

R. N. C. J. H. L. V.

PAYNE SMITH ULRICH WESTSIK' WILSON

SITE PREPARATION B L E E. W. E. 1. A.

G. W. N T. G. W.

CHILD DERIEUX bUNWDODY' NORTHUP RENFRO SALLEE WATSON

I

INSTRUMENTATION AND CONTROLS

R. L . MOORE

lac

BALL R. BROWN H. BURGER M. CATE G. DAVIS G. HERNDON J. JONES W. KREWSON E. STEVENSON J. R. TALLACKSON R. WElS

lac lac lac lac

i S. J.

J. G T. D. P. 8. : J. C.

1 i

1

W. M. BROWN J. 1.DlCKlE J. K. DUNCAN W. C. GEORGE

C. C. HURTT R. H. JONES A. R. KERR J. 0. NICHOLSON L. E. PENTDN C. A. ROBERTS W. ROBINSON F. L. ROUSER W. G. STERLING J. A. WATTS

i

B/ R !

p1 EBM EBM EBM EBM EBM

1

J H. DEVAN' R. G. DONNELLY' R. G. GILLILAND' J. T. VENARD C H. WODTKE J L . GRIFFITH' M. A. REDDEN'

I

ISC

1

RC

F. F. BLANKENSHIP 5 . CANTOR'

RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC

M M M

H. F. MCDUFFIE' J. H. SHAFFER R. E. THOMA' D. R. CUNEO' F. A. DOSS J. E EORGAN

M M M M M

M

G. H A. M. HEBERT' FRIEDMAN' S S KIRSLIS J. E. SAVOLAINEN

I

FLOW MODELS

C W. F. B. W. W. R.

I SC

ILC

WEAVER' K. R. F I N N E L L F HITCH JENNINGS P. TEICHERT G. ROSS'

:6C

lac

CTS

B. N. J. R. J.

ANALYSIS R R R

H. WEBSTER E. DUNWDDDY* P. JACKSON S. JACKSON P. JARVIS J. W. FREELS L. P. PUGH

REMOTE MAINTENANCE E. C. HISE' R. BLUMBERG P. P. HOLZ' R. F. BENSON J. R. SHUGART

R EBM EBM EBM EBM ELM EBM

R

R R R R

-I

SCHEDULING

F U E L PROCESSING CT

1

W. W. C. GOOLSBY H. LaMASTER

EBM EBM

INSTRUMENTATION A N 0 CONTROLS INSTALLATION J. L . REDFORD

lac

RADIATION TESTING

C. A. BRANDON j J. A. CONLIN'

I

R. 8. LINDAUER

W. R. GRIMES'

lac

CONSTRUCTION

P. N. HAUBENREICH J R. ENGEL 8 . E. PRINCE

REACTOR CHEMISTRY M

1

R R

COMPONENTS D. SCOTT

R

A. N. SMITH H. S. WEBER L. SHERSKY

R R

M. RICHARDSON

+ J. j j j

L. R. E. R. W.

R R

LOOPS CROWLEY GALLAHER E.CARNES H. DUCKWORTH

AC CT CTS 0 EBM iac M

RC

A N A L Y T I C A L CHEMISTRY DIVISION CHEMICAL TECHNOLOGY DIVISION CONTINENTAL DIRECTOR'S DIVISION TECHNICAL SERVICES ENGINEERING AND MECHANICAL INSTRUMENTATION AND CONTROLS DIVISION

METALS AND CERAMICS DIVISION REACTOR CHEMISTRY DIVISION

R

REACTOR DIVISION

*

P A R T TIME ON MSRP

i j

i j

i

ANALYTICAL CHEMISTRY L . T. CORBIN' J. C. WHITE' R. F . A P P L E M. J. GAITANIS

w.

L. MADDoX'

AC AC AC AC AC


.


141 ORrJL -3369 UC - $0 - React o r Technol-ogy TID-4500 (18th ed.) I n t e r n a l Distribution

.

1. G. M. Adamson

44

3. 4. 5. 6.

47. 48. 49

2.

7.

8. 3. 10

.

1-1

12

13

.

.

14.

. 17 . 15 14.

18.

19. 20 21. 22. 23. 24 25 26.

.

.

.

.

27 28. 29. 30

31. 32.

33.

34 35

.

.

36. 37

38. 39. 40 41. 42 * 43.

L. S. C. E.

G. Alexander E. B e a l l E. B e t t i s S. B e t t i s De S. B i l l i n g t o n F. F. Blankenship E. P. Blizard Aa Le B O C h E. G. Bohlmann S. E. Bolt C. J. Borkowski G. E. Boyd E. J. Breeding R. 53. Brj-ggs Fa R. Bruce 0. W. Burke D. 0. Campbell S. Cantor W. G. Cobb J. A. Conlin w. € I . Cook L. T. Corbin G. A. C r j s t y J. I,. Crowley F. L. C u l l e r J. €1. DeVan R. G. Domelly D. A, Douglas E, P. E p l e r W e K. Ergen A. P. Fra-as J. €1. Frye, Jr. C . H. GaFbard W. 13. G a l l RI B. G a l l a h e r 157. R. Grimes A. G. G r i n d e l l C. S . H a r r i l l M e R. IiiL1E. C . Hise H. W. Hoffman P. P. Holz

45 46e

A. Hollaender

L. N. W. H. €3. 6. P. R. 50 R. J. 51. M. T. 52. B. W. 53. R. W. 54. 3’. A. 55. C. E. 56. T. A. S. C. 5? 58. 59.

.

. . . . 6r7.

60 61 62. 63 64 65 66.

H. W. E. H. W. C. Ell 68. R. 69. K. J. 70 I.

.

Howell Jordan Jordan Kasten Ked1 Kelley Kinyon Knight Lane Larson

Lincoln Lind

MacPher Manly Mann McJXxffie B. McDonald K. McGlothlan C. Miller

G. D. Re F.

L. Moore Z. Morgan C. Moyers

71. J. P. Murray (K-25) 7 2 . M. Le Nelson

. . .

73 74. 75 76. 77 78. 79. 80

C. W.

W. L. P. H. D. W.

81. M. 82 83

.

R. T.

.

A.

e4. 85-86. tT7

Nestar

T. Ea NoYthUp

R. D.

R. Osborn F. Parsly Patriarca R. Payne Phillips B. P i k e Richardson C. Robertson K. Roche W. Savage W e Savolai Scott


8 8 . H. E . Seagren 89. J. H . Shaffer E. M. 92 G93 . A . 94. P . 95. A .

D . Shipley J . Skinner 14. Slaughter N . Sm.tth @ . Smith H. S n e l l

98. 99.

A . Swartout; Taboada R . Tallackson H . Taylor E . Thorn â‚Ź3. T r a u g e r

90. 91. I

I . Spiewak 97. C . D. Susano 96.

J. A. 100. J. 101. E . 102. R . 103. D .

104. 105. 106. 107. 108. 109. 110. 111. 112. llM14. 115-118.

W. C U l r i c h D. C . Watkin

Watson Weinberg Westsik White Wilson Wodtke Biology L i b r a r y Reactor Division L i b r a r y ORTJTrY -12 Technical Librayy, Dociment Reference Section 119-121. C e n t r a l Research Library 122-151. Laboratory Records Depar Lment 152. Laboratory Records, ORN, R . C . M. M. H. C. L. V . C. 11.

G. A. J. 3.

E x t e r n a l Distribixti(:,n

153-154. D 155. 156. 157.

3. Wett, AEC, Washington R . W . McNamee, Manager, Research Administration, UCC, New York A . W . Larson, AEC, OR0 158. D i v i s i o n of Research and Development, AEC, OR0 159-765. Given d i s t r i b u t i o n as shown i.n TID-4.500 (18th e d . ) under Reactor Technology category (75 c o p i e s - O T S )


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.