Carbon capture and storage
GLOBAL PROJECT DEVELOPMENT
The EU and US take different approaches to CCS While European developers favour collaborative carbon capture ‘hubs’, the US is developing the technology at individual sites. What could this mean for the global growth of CCS? Laura Syrett investigates.
E
uropean and US interest in carbon capture and storage (CCS) and carbon capture, utilisation and storage (CCUS) is continuing to surge as governments make ever more ambitious climate change commitments. Improvements in technology mean that capturing the CO2 emitted from industrial processes – and either sequestering it or using it elsewhere – is no longer a marginal solution with limited applications. ‘In the past decade, we’ve seen a shift from thinking about CCUS as being a coal-fired power plant with CCS bolted on, to regarding it far more as an emissions-reduction solution for industrial activities with shared CO2 transport and storage infrastructure,’ explains Samantha McCulloch, Head of the carbon capture utilisation and storage unit at the International Energy Agency (IEA). The Global CCS Institute (GCCSI), an international think tank headquartered in Melbourne, Australia, points out that the growing popularity of CCS is partly because it offers polluting industries a sustainable future. ‘CCS immediately offers a cost-effective, mature technology path to decarbonising large swathes of emissions-intensive industrial production,’ a spokesperson from the Institute’s London office told Energy World. ‘An often-overlooked strength of CCS is its ability to allow workers and industries that would otherwise be substantially disrupted by the energy transition to instead be vital contributors to achieving net zero,’ adds the spokesperson. Norway leads the way Europe currently has just two operating CCS facilities, the Sleipner and Snøhvit plants, both located in Norway, running since 1996 and 2008, respectively. But there are now more than 40 projects in the pipeline across 13 European countries. 34 Energy World | October 2021
Beck, International Director, Carbon Capture at the Bostonheadquartered Clean Air Task Force (CATF). A joint project between energy majors Equinor, Shell and Total, Northern Lights aims to transport, inject and store up to 1.5mn tonnes of CO2 per year in its initial phase. The project is supported by $2bn of funding from the Norwegian government – enough to cover the project’s entire capex and 10 years of operating costs. The facility aims to capture CO2 primarily from a cement plant in Oslo – and potentially from a nearby waste-toenergy facility – before transporting it 100 km off the Norwegian coast and storing it 2,500 m below the seabed, south of the Troll natural gas and oil field. Northern Lights’ developers say they are also in discussions with multiple other facilities in Europe, who may want to feed into its open-access CO2 transport and storage infrastructure. Aerial view of Shell’s Pernis refinery in Rotterdam – the Porthos CCS project is designed to capture carbon from several industrial emitters located at the Port Photo: Photographic Services, Shell International Limited
The Sleipner facility separates close to 1mn tonnes of CO2 per year from the processing of natural gas extracted from the Sleipner Vest and Utgard gas fields, offshore southwest Norway. The CO2 is then stored in the Utsira sandstone formation close to Sleipner Vest. Meanwhile, the Snøhvit facility is located on the island of Melkøya off the northern Norwegian coast and separates CO2 from the well stream of natural gas from the Snøhvit field in the Barents Sea. The CO2 is then transported back to the Snøhvit field by pipeline and injected into a subsea formation. During normal operations, up to 700,000 tonnes of CO2 are stored at Snøhvit per year. Of the 40+ projects close to coming online in Europe, the Northern Lights facility, also in Norway, is an example of best practice in terms of its design and policy support, according to Lee
EU ‘hubs’ take shape Another advanced example of this collective model is the Porthos project in the Netherlands, which has received close to $2bn in subsidies from the Dutch government and the European Union. The funding will enable the facility to link up with multiple CO2 emitters at the Port of Rotterdam, feeding into shared CO2 transport infrastructure connected to offshore storage in empty North Sea gas fields. In its early years, the project is expected to store approximately 2.5mn tonnes of CO2 per year. While Europe is behind the US in terms of operational CCS facilities, European projects are designed to be the ‘next generation’ of CCS, according to Beck. They are largely based around ‘hubs’ of industrial emitters feeding into shared CO2 storage and infrastructure. This approach brings a number of advantages, such as economies of scale and reduced complexity, as