Flusitex

Page 1

F l u s i Te x Fluorescence sensing integrated into medical textiles Markus Bannwarth


Current Wound Monitoring

Current Methods     

Full or partial removal of wound pad Visual Observation Skin Irritation Increased chances of infection Only qualitative information

 Collecting biochemical information  Highly invasive  Expensive


The Business Case

Frost and Sullivan, Medtech insights 2009 $12bn worldwide market aimed solely at wound care Wound monitoring consists less than 1% of this industry 6 weeks treatment of a chronical wound

35.000 CHF


Working Principle

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

pH, metabolites, oxygen,‌


The Team

Dr. Luciano Boesel

Sensing chemistry and matrix development Dr. Michael Richter

Enzyme engineering and coupling

Fluorescent lifetime camera development

Dr. Stefano Cattaneo

Prof. Bradley Nelson

Coating/microfabrication of wound pad Prof. Brigitte von Rechenberg

In vivo evaluation of wound pad


The Matrix Biocompatibility

Facile Processing

Alginate or agarose

Modification On the market


pH Sensing

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

pH


pH Sensing Healing Chronic process wound acute wound

pH-values pH-valuesofofwound wound

88

77 Injury

Injury

66

55

Acute phase

Inflammation

ChronicGranulation phase

Time Time

Dargaville, T. R.; Farrugia, B. L.; Broadbent, J. A.; Pace, S.; Upton, Z.; Voelcker, N. H., Biosens. Bioelectron. 2013, 41, 30-42.

Spontaneous reepithelisation


Fluorescence intensity / a.u.

Fluorescent pH-marker pH = 8 pH = 7.7 pH = 7.3 pH = 7 pH = 6.7 pH = 6.3 pH = 6 pH = 5.5 pH = 5

12 10 8 6 4 2 0 620

640

660

680

700

720

740

pka ≈ 7

Fluorescence Intensity / a.u.

Wavelength / nm 120 100 80 60 40 20 0 5

5.5

6

6.5

pH

7

7.5

8


Biomarker Sensing

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

Metabolites, Enzymes,..


Biomarker Sensing

material proteins and enzymes E

E metabolites and enzymes

Several detection spots on the pad (microfabricated): • Various metabolites / enzymes • pH • Oxygen • etc.


Biomarker Sensing Metabolite/compound

detection

Calcium

Cameleon

A

Bicarbonate

Bicarbonate-dependent

A

Iron

superoxide dismutase Ferritin

A

Glucose

Fluorescent glucose

A

binding protein

B

Uric acid

Glucose oxidase Urate oxidase

B

Lactate

Xanthine oxidase Lactate oxidase

B B

Lactate monooxygenase

B

Histamine

Diamine oxidase

B

Bilirubin

Bilirubin oxidase

B

Cholesterol

Cholesterol oxidase

B

Amino acids

Amino acid oxidases

B

Lactate dehydrogenase

Resazurin

C

Alkaline phosphatase

Fluorescein diphosphate

C

Metalloproteases

Fluorescent fusion

D

Neutrophil elastase

protein Fluorescent fusion

D

protein

metabolite sensing

A Intrinsic protein fluorescence

B Coupled enzyme assay

enzyme sensing

C Commercial fluorescent substrate E

D Designed fluorescent substrates E


Protease Sensing S2 S1

FRET

S0

donor

528 nm

YFP fluorescence

S1

485 nm

CFP fluorescence

YFP: 位em = 528 nm

absorbance

CFP: 位ex = 428 nm 位em = 485 nm

S0

acceptor

485 nm

528 nm

200 180

before cleavage after cleavage

160 140 120 100 80 60 40 fluorescence in

20 0

460

480

500

520

540

位 (nm)

560

580

600


Metabolite Sensing

Lactate oxidase

Lactate, glucose,‌


Oxygen Sensing

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

Oxygen


Oxygen Sensor System

Excitation band

Emission band

PtOEP

Quenching through

O2


Oxygen Sensor System

Correlate lifetime change with amount of oxygen


Oxygen Sensor Fabrication

Nanopillar formation

Electrodeposition

2 Îźm


The Lifetime Camera

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

pH, metabolites, oxygen,‌


The Setup

Objective Pinholes

Focusing lens Diffuser

Mirrors

Laser diode 450 nm


First Sample Measurements


In Vivo Evaluation

Non-invasive TOF camera

One fluorescence signal per sensing parameter per wound area

Sensing layer

Wound

pH, metabolites, oxygen,‌


In Vivo Evaluation  Standardized deep wounds  Wound parameters recorded until closure (pO2, pH, metabolites)  Wound healing semi-quantitative evaluation and tracking (Epithelialisation, wound surface area, granulation tissue)

 Infected deep wounds       

Inoculation with Staphylococcus Aureus or Pseudomonas Aeruginosa Tracking infection progress (sampling, swabs) Sensing wound parameters (pH, pO2, metabolites, glucose) Antibiotic therapy after infection establishment Tracking wound healing (Semi-quantitatively) and recording parameters Comparing infected and non-infected wound environments Correlating wound healing and monitored parameters

WP5 Sensing: in vitro and in vivo

5.1 Testing wound parameter monitoring (in vitro)

5.2

Design of in vivo analysis

Year 2

Year 3


Achievements and Future Efforts Achievements •

Development of: ● pH sensor ● biomarker sensors ● oxygen sensor

Coupling or integration of the sensor systems to/into the coating matrix

Development of optical setup for fluorescence lifetime imaging in the nanosecond range

Future Efforts •

Microfabrication of the functional matrix on a wound pad

Lifetime imaging of pH values, biomarker concentrations and oxygen content with the lifetime camera

In vitro and in vivo analysis of the monitor pads


Prof. Bradley Nelson Dr. Selman Sakar Dr. Chen Xiangzhong

Dr. Luciano Boesel Dr. Markus Bannwarth

Thanks! Dr. Stefano Cattaneo Christoph Hofer

Dr. Michael Richter Dr. Dagmara Jankowska Dr. Greta Faccio

Prof. Brigitte von Rechenberg Dr. Salim Darwiche


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.