Mixsel2

Page 1

II nano-tera.ch

Prof. Ursula Keller (PI) Dr. Bauke Tilma Dr. Matthias Golling Mario Mangold Sandro Link Dominik Waldburger Cesare Alfieri

Vertical integration of ultrafast semiconductor lasers and their applications

Prof. Thomas Südmeyer Dr. Stephane Schilt Dr. Valentin Wittwer Nayara Jornod

Dr. Deran Maas Dr. Thomas Paul

start: Nov 2013

Dr. Jacques Morel Dr. Laurent Devenoges

Dr. Gábor Csúcs


Ultrafast lasers … generate coherent light pulses with pico- or femtosecond duration access ultrashort time scales

observe and use fast dynamics • understand chemical reaction dynamics • fast communication • …

pump-probe

optical clocking

2


a)

Ultrafast lasers … generate coherent light pulses with pico- or femtosecond duration access ultrashort time scales

observe and use fast dynamics • understand chemical reaction dynamics • fast communication • …

concentrate in time and space

achieve extremely high intensities • material processing • multi-photon biomedical imaging 30 µm a)• b) …

Brain Research Institute Prof. Fritjof Helmchen Fabian Voigt 30 µm

b)

pollen grains

50 µm

c)

brain tissue of mouse

50 µm

3


Ultrafast lasers … generate coherent light pulses with pico- or femtosecond duration access ultrashort time scales

concentrate in time and space

observe and use fast dynamics • understand chemical reaction dynamics • fast communication • … achieve extremely high intensities • material processing • multi-photon biomedical imaging • …

intensity

broad optical spectrum

frequency

generate ultrastable frequency combs • high precision spectroscopy • optical clocks • … 4


MIXSEL II

Frequency combs

Multiphoton microscopy

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 5


Ultrafast semiconductor lasers: our approach and goals gain • completely fabricated at ETH Zürich • very compact lasers few µm few

loss µm

• waver-scale production • cost efficient

6


Ultrafast semiconductor lasers: our approach and goals gain

VECSEL Vertical External Cavity Surface Emitting Laser

7


Ultrafast semiconductor lasers: our approach and goals gain loss SESAM

VECSEL Vertical External Cavity Surface Emitting Laser

+

Semiconductor Saturable Absorber Mirror

8


Ultrafast semiconductor lasers: our approach and goals VECSEL gain chip

Emitting Laser

+

n ct io se

AR

re gi on n ga i

M i bo rr tto o m r D

at s he

SESAM

VECSEL Vertical External Cavity Surface

in k

loss

BR

gain

Semiconductor Saturable Absorber Mirror

9


Ultrafast semiconductor lasers: our approach and goals VECSEL gain chip

n ct io se

AR

n ga i

BR

M i bo rr tto o m r D

at s

Semiconductor Saturable Absorber Mirror

ab so AR rbe r se ct io n

BR

D

ir bo ro tto r m

M

bs

tra te

SESAM

su

Emitting Laser

+

he

SESAM

VECSEL Vertical External Cavity Surface

in k

loss

re gi on

gain

10


Ultrafast semiconductor lasers: our approach and goals gain loss SESAM

VECSEL Vertical External Cavity Surface Emitting Laser

+

Semiconductor Saturable Absorber Mirror

MIXSEL

=

Modelocked Integrated External-Cavity Surface Emitting Laser

11


Ultrafast semiconductor lasers: our approach and goals gain loss SESAM

=

Semiconductor Saturable Absorber Mirror

Modelocked Integrated External-Cavity Surface Emitting Laser

ab s pu orb m er p D BR ga in re gi on AR se ct io n

la

M

irr o se r rD

BR

MIXSEL chip

in k

Emitting Laser

+

at s

Vertical External Cavity Surface

MIXSEL

he

VECSEL

12


Targeted laser performance Average output power

10 W

Goal:

1 W

• ultra short pulses ≤ 100 fs 100 mW

• several hundreds mW average output power

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

13


Targeted laser performance Average output power

10 W

Goal:

1 W

• ultra short pulses ≤ 100 fs 100 mW

• several hundreds mW average output power

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

For example for supercontinuum generation for stabilized optical frequency combs

applications for optical frequency combs ● ● ● ●

coherent communication spectroscopy optical clocks comb metrology

14


Frequency combs from modelocked lasers I(ω)

train of evenly spaced pulses

equidistant frequency comb

frep

E(t) t

1 / frep

FT

ω

15


Frequency combs from modelocked lasers I(ω)

train of evenly spaced pulses

equidistant frequency comb

frep

E(t) t

FT

ω

1 / frep

Optical Frequency Combs

intensity

frep fCEO

fn = m frep + fCEO CEO: carrier envelope offset

frequency Telle, et al., Appl. Phys. B 69, 327 (1999) Diddams, et al., Phys. Rev. Lett. 84, 5102 (2000) 16


Frequency combs from modelocked lasers I(ω)

train of evenly spaced pulses

equidistant frequency comb

frep

E(t) t

FT

ω

1 / frep

Optical Frequency Combs undefined, optical intensity intensity frequency

phase-stable link: optical to microwave

beat

THz

MHz frequency frequency

Telle, et al., Appl. Phys. B 69, 327 (1999) Diddams, et al., Phys. Rev. Lett. 84, 5102 (2000) 17


Targeted laser performance Average output power

10 W

Goal:

1 W

• ultra short pulses ≤ 100 fs 100 mW

• several hundreds mW average output power

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

optical frequency combs

required: ●

octave-spanning & coherent

very broad optical spectrum: supercontinuum detection of fCEO

υ

18


Supercontinuum generation and CEO detection Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

pulse duration: 231 fs average output power: 100 mW repetition rate: 1.75 GHz center wavelength: 1038 nm

1 mW 100 fs

1 ps Pulse duration

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 19


Supercontinuum generation and CEO detection Average output power

10 W

1 W

amplification in Yb-doped fiber amplifier 100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 20


Supercontinuum generation and CEO detection Average output power

10 W

1 W

pulse compression in LMA fiber 100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 21


Supercontinuum generation and CEO detection Average output power

10 W

[1] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter and U. Keller, Applied Physics B 69, 327 (1999)

1 W

coherent supercontinuum generation in nonlinear fiber

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

supercontinuum

[1]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 22


Supercontinuum generation and CEO detection Average output power

10 W

[1] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter and U. Keller, Applied Physics B 69, 327 (1999)

1 W

coherent supercontinuum generation in nonlinear fiber

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps

RBW 100 kHz fCEO 1

-25 -50

frep=1.75 GHz fCEO 2

fCEO detection

frep

intensity

int. (dBc)

Pulse duration

fCEO

-75

-100

frequency 0.0

0.5 1.0 1.5 frequency (GHz)

[1]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 23


Supercontinuum generation and CEO detection Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

goal: improve performance of the lasers further to get rid of amplification and compression stage

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 13, pp. 16445-16455, 2014 24


147-fs high-power ultrafast VECSEL Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

25


147-fs high-power ultrafast VECSEL Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

shortest pulse duration from a highpower ultrafast SDL

pulse duration: 147 fs average output power: 100 mW repetition rate: 1.82 GHz peak power: 328 W

D. Waldburger, M. Mangold, S. M. Link, M. Golling, E. Gini, B. W. Tilma, U. Keller, accepted at CLEO US 2015 26


Shortest pulses of a MIXSEL Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

M. Mangold, D. Waldburger, S. M. Link, M. Golling, E. Gini, B. W. Tilma, U. Keller, accepted at CLEO/Europe 2015 27


Shortest pulses of a MIXSEL Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

pulse duration: 253 fs average output power: 235 mW repetition rate: 3.35 GHz center wavelength: 1044 nm

cavity length: 44.7 mm

shortest pulse duration from a MIXSEL

M. Mangold, D. Waldburger, S. M. Link, M. Golling, E. Gini, B. W. Tilma, U. Keller, accepted at CLEO/Europe 2015 28


Fiber dispersion modelling supercontinuum generation 1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

SEM image of fiber

spectrum

Average output power

10 W

simulated dispersion wavelength [nm]

29


Prototypes for noise characterization 2 VECSEL prototypes

19 cm

25 cm

noise characterization frequency stabilization

30


2 Photon-microscopy 30 µm

Brain tissue b)of a mouse

a)

50 µm

c)

Pollen grains Brain Research Institute Prof. Fritjof Helmchen Fabian Voigt

a)

30 µm

b)

50 µm

31


Application: Dual-comb spectroscopy possible gas spectroscopy setup

Acetylene has strong absorption lines in the near infrared around 1035 nm.

absorption [%]

requirement: 2 modelocked lasers with slightly different pulse repetition frequencies

wavelength [nm] 32


Dual-comb MIXSEL

33


Dual-comb MIXSEL

34


Dual-comb MIXSEL

Two pulsed lasers from one MIXSEL chip

35


Dual-comb MIXSEL ∆λ = 0.25 nm

0.6 0.4 0.2 0.0

0.8 0.6

966.0 967.0 wavelength [nm] meas

τp = 13.5 ps

sech

2

fit

0.4 0.2 0.0 -40 0 40 delay [ps]

output power [mW] pulse repetition

spectral intensity [arb. u.]

1.0

0.8

λc = 966.11 nm

p-polarized beam 1.0

autocorrelation [arb. u.]

spectral intensity [arb. u.]

1.0

autocorrelation [arb. u.]

s-polarized beam

1.0

λc = 966.01 nm

0.8 ∆λ =

0.6 0.23 nm 0.4 0.2 0.0

966.0 967.0 wavelength [nm] meas

0.8

sech fit

0.6

2

τp = 19.1 ps

0.4 0.2 0.0

-40 0 40 delay [ps]

s-pol

p-pol

76

70

1.895

1.890

frequency [GHz]

36


Dual-comb MIXSEL

amplitude [dBc]

comb1

span 150 MHz RBW 1 kHz

-10

0.4 0.2 0.0

0.8 0.6

966.0 967.0 wavelength [nm] meas

τp = 13.5 ps

sech

2

fit

0.4 0.2 0.0 -40 0 40 delay [ps]

0.48

0.52 frequency [GHz]

0.56

pulse repetition

spectral intensity [arb. u.]

∆λ = 0.25 nm

0.6

output power [mW]

-20 0.44

1.0

0.8

λc = 966.11 nm

p-polarized beam 1.0

autocorrelation [arb. u.]

0

spectral intensity [arb. u.]

microwave comb

1.0

autocorrelation [arb. u.]

s-polarized beam

1.0

λc = 966.01 nm

0.8 ∆λ =

0.6 0.23 nm 0.4 0.2 0.0

966.0 967.0 wavelength [nm] meas

0.8

sech fit

0.6

2

τp = 19.1 ps

0.4 0.2 0.0

-40 0 40 delay [ps]

s-pol

p-pol

76

70

1.895

1.890

frequency [GHz]

 direct link between the terahertz frequencies and the electronically accessible microwave regime S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, Optics Express, vol. 23, No. 5, pp. 5521-5531, 2015 37


Dual-comb MIXSEL

amplitude [dBc]

comb1

span 150 MHz RBW 1 kHz

-10

∆λ = 0.25 nm

0.6 0.4 0.2 0.0

0.8 0.6

966.0 967.0 wavelength [nm] meas

τp = 13.5 ps

sech

2

fit

0.4 0.2 0.0 -40 0 40 delay [ps]

output power [mW]

-20 0.44

0.48

0.52 frequency [GHz]

0.56

pulse repetition

spectral intensity [arb. u.]

1.0

0.8

λc = 966.11 nm

p-polarized beam 1.0

autocorrelation [arb. u.]

0

spectral intensity [arb. u.]

microwave comb

1.0

autocorrelation [arb. u.]

s-polarized beam

1.0

λc = 966.01 nm

0.8 ∆λ =

0.6 0.23 nm 0.4 0.2 0.0

966.0 967.0 wavelength [nm] meas

0.8

sech fit

0.6

2

τp = 19.1 ps

0.4 0.2 0.0

-40 0 40 delay [ps]

s-pol

p-pol

76

70

1.895

1.890

frequency [GHz]

Swiss patent application 01498/14, filed 2 October 2014 S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, Optics Express, vol. 23, No. 5, pp. 5521-5531, 2015 38


MIXSEL II

Frequency combs

Multiphoton microscopy

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 39


MIXSEL II

Frequency combs

Multiphoton microscopy

Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 40


MIXSEL II

Frequency combs

Multiphoton microscopy

Average output power

10 W

1 W

100 mW

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 41


MIXSEL II

30 µm

a)

Frequency combs

50 µm

b)

Multiphoton microscopy

Average output power

10 W

1 W

100 mW

50 µm

c)

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 42


MIXSEL II

30 µm

a)

Frequency combs

50 µm

b)

Multiphoton microscopy

Average output power

10 W

1 W

100 mW

50 µm

c)

10 mW VECSEL

MIXSEL

1 mW 100 fs

1 ps Pulse duration

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 43


MIXSEL II

Frequency combs

Multiphoton microscopy

Spectroscopy

Metrology applications

Product development

MIXSEL prototype 44


45


Overview – ultrafast progress

Average output power

10 W

1 W

100 mW

'VECSEls Keller' 'MIXSELs' 'VECSELs others'

10 mW

1 mW 100 fs Alexander Klenner

1 ps Pulse duration

10 ps

Nov. 2013 May 2015


Overview – ultrafast progress 10 kW

Peak power

1 kW

'Peak Power VECSELs Keller' 'Peak Power MIXSELs ' 'Peak Power VECSELs others'

100 W 10 W 1 W 100 mW 100 fs

Alexander Klenner

1 ps 10 ps Pulse duration

Nov. 2013 May 2015


1200

mm 0 75 % 0 .5

1000

4

m 0m 0 10 % 0 .5

m 0m 0 15 % 0.5

3

800 600 400 200 04

m 00 2 = C 1% O R = T OC 5

6

2

m

7

Pulse duration (ps)

Output power (mW)

Repetition-rate scaling of MIXSEL 1400

mm 0 50 % 0.7

8

9

10

1 2

3

4

5

6

7

8

Repetition rate (GHz)

• Repetition rate-tuning from 5 GHz to 101 GHz with single MIXSEL structure [1] • Watt-level operation up to 15 GHz • Femtosecond operation at 60 GHz and 101 GHz • M2 < 1.1 for all measurements

0 100

9

MIXSEL-chip pump

cavity length reduction: 29.4 mm to 1.49 mm (frep from 5.1 GHz to 101.2 GHz)

output coupler

o ut p ut

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, Opt. Express 22, pp. 6099-6107 (2014) 48


Comb spectroscopy for process control at ABB application: acetylene (C2H2) in ethylene (C2H4) 

Ethylene is the most widely produced petrochemical with >100 million tons per year and a 20 billion USD market size

Acetylene is a byproduct of the ethylene production and considered an impurity in the final product

Traditionally gas chromatography are used to monitor acetylene  slow response and high maintenance < 100 ppm acetylene

< 1 ppm acetylene

cracked gas > 1000 ppm acetylene

catalytic reactor

catalytic reactor

add CO2, H2

< 10 ppm acetylene


Comb spectroscopy for process control at ABB proposed solution

Frequency comb spectroscopy is a powerful new technology with numerous strengths:  fast measurement speed  high resolution  broad spectrum  simultaneous measurement of multiple species  in-situ measurements

3 HITRAN:C2H2 2.5

2 absorption (%)

Acetylene has strong absorption lines in the near infrared around 1035 nm.

1.5

1

0.5

0 1010

1015

1020

1025

1030 wavelength (nm)

1035

1040

1045

1050


Comb spectroscopy for process control at ABB experimental setup MIXSEL 1

gas cell

frep = 1 GHz

digitizer

signal processing

MIXSEL 2 frep = 1 GHz + Δf 3

HITRAN:C2H2 2.5

2 absorption (%)

Simulated spectrum  Repetition rate is 1 GHz (dot spacing)  The resolution is sufficient to reconstruct the absorption spectrum and accurately compute the acetylene concentration

1.5

1

0.5

0 289.65

289.7

289.75

289.8

289.85 frequency (THz)

289.9

289.95

290

290.05


52


53


Milestones MIXSEL II (proposal) X

max. av. power 600 mW

X

+ pulse rep. rate scaling 5-100 GHz

X

year 3 milestone done

x

vention and surprise:

cked MIXSEL with picosecond pulses

Start 1. Nov. 2013

April 2015 1.5 years/18 mos

M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller,Optics Express, vol. 23, No. 5, pp. 5521-553

Oct. 2014 54


Milestones 1.1

April 2015 1.5 years/18 mos

1.1 Ultrafast OP-VECSEL with sub-300-fs pulse durations and >1 W average power: 1.1.1: First sub-300-fs pulses with >1W average power (year 1) Best result so far: 269 fs, 605 mW, 1.84 GHz, 1.07 kW peak power Shortest pulses so far: 147 fs, 100 mW, 1.82 GHz, 328 W peak power D. Waldburger, M. Mangold, S. M. Link, M. Golling, E. Gini, B. W. Tilma, U. Keller, CLEO US 2015, Talk SM3F.2

1.1.2 and 1.1.3: SESAM optimization and 1:1 modelocking: novel fast QW saturable saturable absorbers, based on LT InGaAs in AlAs barrier more details in 1.2.2 55


Milestones 1.2

April 2015 1.5 years/18 mos

1.2 OP-MIXSELs with femtosecond pulse durations and more than 1 W average power: 1.2.1: First working device at any power: ok, 620 fs, 101 mW, 4.8 GHz, 967.7 nm M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, Opt. Express 21, 24904-24911 (2013)

In addition: Pulse repetition rate scaling to 100 GHz M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, Opt. Express 22, pp. 6099-6107 (2014)

1.2.2: Integrated saturable absorber optimization and characterization: at this point all based on fast quantum well (QW) absorbers Future: move towards QD absorbers and more power (>1 W milestone year 3) 56


Milestones 1.3

April 2015 1.5 years/18 mos

1.3 OP-MIXSELs with <300 fs and >1 W average power: 1.3.1: First working device at any power: year 3 milestone ok, 253 fs, 235 mW, 3.35 GHz, 1044 nm M. Mangold, D. Waldburger, S. M. Link, M. Golling, E. Gini, B. W. Tilma, U. Keller, CLEO/Europe 2015, upgraded to Invited Talk CF-4.1

Using QW saturable absorber in AlAs barrier integrated (MBE/MOCVD growth) 57


Milestones 2.2

April 2015 1.5 years/18 mos

2.2 Coherent supercontinuum generation for stable frequency comb generation:

2.2.1: Develop a broadband white light dispersion measurement system for fibers (year 1) Design done, parts ordered and arriving – work in progress by UniNeu, Südmeyer 2.2.2: Numerical simulation and optimization of SCG (moved to ≈1030 nm) 2.2.3: First coherent octave-spanning SCG from a semiconductor laser (Keller): explained in Milestone 3.2.1 58


Milestones 3.1

April 2015 1.5 years/18 mos

3.1 Noise evaluation and optimization of ultrafast VECSELs/MIXSELs (Südmeyer, Morel): Prototypes delivered to UniNEU and METAS Mar/Apr 2015 (Südmeyer, Morel) Poster presentation with latest noise characterization Picosecond MIXSEL noise characterization M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, IEEE Photonics Journal 6, 1500309 (2014) MIXSEL: >645 mW output power, 14.3 ps pulses, 2 GHz pulse reprate • 127 fs timing jitter – free-running [100 Hz, 100 MHz] • 31 fs timing jitter – stabilized [100 Hz, 100 MHz] • < 0.15% amplitude noise [1 Hz, 10 MHz] 59


Milestones 4

April 2015 1.5 years/18 mos

4 Prototype lasers for application demonstrations, UniZH, UniNeu, Metas (Keller): First generation strain-compensated SESAM modelocked VECSELs UniZH Prof. Helmchen, biomedical imaging, summer 2014: 263 fs, 1.77 GHz, 360 mW Gigahertz pulse repetition rate needs samples with scattering but less absorption UniNeu and METAS, prototype delivered Feb/March 2015: UniNeu: 255 fs, 1.77 GHz, 120 mW METAS: 203 fs, 1.77 GHz, 80 mW 60


Milestones 5

April 2015 1.5 years/18 mos

Dual-comb MIXSEL

5 Application demonstrations: 5.1 UniZH Prof. Helmchen, biomedical imaging, summer 2014: 263 fs, 1.77 GHz, 360 mW Gigahertz pulse repetition rate needs samples with scattering but less absorption METAS and ABB are getting prepared for prototype delivery 61


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.