ERCM News 125 - Brain-Inspired Computing

Page 34

Special Theme

Touch in Robots: A Neuromorphic Approach by Ella Janotte (Italian Institute of Technology), Michele Mastella, Elisabetta Chicca (University of Groningen) and Chiara Bartolozzi (Italian Institute of Technology) In nature, touch is a fundamental sense. This should also be true for robots and prosthetic devices. In this project we aim to emulate the biological principles of tactile sensing and to apply it to artificial autonomous systems. Babies are born with a grasping reflex, triggered when something touches their palms. Thanks to this reflex, they are able to hold on to fingers and, later on, manually explore objects and their surroundings. This simple fact shows the importance of biological touch for the understanding of the environment. However, artificial touch is less prominent than vision: even tasks such as manipulation, which require tactile information for slip detection, grip strength modulation and active exploration, are widely dominated by visionbased algorithms. There are many reasons for the underrepresentation of tactile sensing, starting from the challenges posed by the physical integration of robust tactile sensing technologies in robots. Here, we focus on the problem of the large amount of data generated by e-skin systems that strongly limits their application on autonomous agents which require low power and data-efficient sensors. A promising solution is the use of eventdriven e-skin and on-chip spiking neural networks for local pre-processing of the tactile signal [1].

Motivation E-skins must cover large surfaces while achieving high spatial resolution and enabling the detection of wide bandwidth stimuli, resulting in the generation of a large data stream. In the H2020 NeuTouch [L1] project, we draw inspiration from the solutions adopted by human skin. Coupled with non-uniform spatial sampling (denser at the fingertips and sparser on the body), tactile information can be sampled in an event-driven way, i.e., upon contact, or upon the detection of a change in contact. This reduces the amount of data to be processed and, if merged with on-chip spiking neural networks for processing, supports the development of efficient tactile systems for robotics and prosthetics. Neuromorphic sensors Mechanoreceptors of hairless human skin can be roughly divided into two groups: slowly and rapidly adapting. Slowly adapting afferents encode stimulus intensity while rapidly adapting ones respond to changes in intensity. In both cases, tactile afferents generate a series of digital pulses (action poten-

tials, or spikes) upon contact. This can be applied to an artificial e-skin, implementing neuromorphic, or event-driven, sensors’ readout. Like neuromorphic vision sensors, the signal is sampled individually and asynchronously, at the detection of a change in the sensing element's analogue value. Initially, the encoding strategy can be based on emitting an event (a digital voltage pulse) when the measured signal changes by a given amount with respect to the value at the previous event. We will then study more sophisticated encoding based on local circuits that emulate the slow and fast adaptive afferents. Events are transmitted offchip asynchronously, via AER-protocol, identifying the sensing element that observed the change. In this representation, time represents itself and the temporal event pattern contains the stimulus information. Thus, the sensor remains idle in periods of no change, avoiding the production of redundant data, while not being limited by a fixed sampling rate if changes happen fast. We aim to exploit the advantages of event-driven sensing to create a neuro-

Figure 1: A graphical representation of the desired outcome of our project. The realised architecture takes information from biologically inspired sensors, interfacing with the environment. The outcoming data are translated into spikes using event-driven circuits and provide input to different parts in the electronic chip. These different parts are responsible for analysing the incoming spikes and delivering information about environmental properties of objects. The responses are then used to generate an approximation about what is happening in the surroundings and impact the reaction of the autonomous agent.

34

ERCIM NEWS 125 April 2021


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

ERCM News 125 - Brain-Inspired Computing: Introduction to the Special Theme

1min
page 6

Security Management and the Slow Adoption of Blockchains

3min
page 47

Graph-based Management of Neuroscience Data Representation, Integration and Analysis

2min
page 44

ACCORDION: Edge Computing for NextGen Applications

2min
page 50

The ICARUS Ontology: A General Aviation Ontology

7min
pages 45-46

Trick the System: Towards Understanding Automatic Speech Recognition Systems

7min
pages 48-49

Human-like AI

5min
pages 42-43

NeuroAgents – Autonomous Intelligent Agents that Interact with the Environment in Real Time

6min
pages 40-41

What Neurons Do – and Don’t Do

6min
pages 37-38

NEUROTECH - A European Community of Experts on Neuromorphic Technologies

2min
page 39

Uncovering Neuronal Learning Principles through Artificial Evolution

6min
pages 35-36

Touch in Robots: A Neuromorphic Approach

3min
page 34

E = AI

6min
pages 30-31

Fulfilling Brain-inspired Hyperdimensional Computing with In-memory Computing

6min
pages 28-29

Memory Failures Provide Clues for more Efficient Compression

7min
pages 25-26

Reentrant Self-Organizing Map: Toward Brain inspired Multimodal Association

7min
pages 22-23

Neuronal Communication Process Opens New Directions in Image and Video Compression Systems

3min
page 27

Brain-inspired Learning Drives Advances in Neuromorphic Computing

2min
page 24

Self-Organizing Machine Architecture

7min
pages 20-21

Fast and Energy-efficient Deep Neuromorphic Learning

6min
pages 17-18

Effective and Efficient Spiking Recurrent Neural Networks

7min
pages 9-10

The BrainScaleS Accelerated Analogue Neuromorphic Architecture

2min
page 14

BrainScaleS: Greater Versatility for Neuromorphic Emulation

6min
pages 15-16

ERCIM “Alain Bensoussan” Fellowship Programme

3min
page 5

Back-propagation Now Works in Spiking Neural Networks!

3min
page 11

ERCIM-JST Joint Symposium on Big Data and Artificial Intelligence

3min
page 4

Brain-inspired Computing

7min
pages 6-7
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.