Seismic Design of Low-Rise Steel Buildings with Metal Roof Deck Diaphragms: Canadian Seismic Provisions and Building Period Robert Tremblay Ecole Polytechnique, Montreal, Canada Colin Rogers McGill University, Montreal, Canada st tuto Mexicano e ca o de la a Co Construcciรณn st ucc รณ e en Acero ce o Instituto X Symposio Internacionale, Queretaro, Qpro. Mexico March 2009
Plan 1. Background Information 2. Seismic Design of a Simple Building 3. Influence of Diaphragm Flexibility on Building Period 4. Conclusions
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
2
1
1. Background Information Structural System
ROOF BEAMS (typ.)
ROOF JOISTS (typ.)
V VERTICAL X BRACING (typ.)
COLUMN (typ.)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
3
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
4
2
Sidelap Deck Sheet
Joist (typ.)
Sidelap Fastener (typ.)
Frame
Button punch Weld
Frame Fastener (typ.)
Weld Screw or Nail
Screw
Joist (typ.)
q
Deck Sheet
q
γ
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
5
ROOF JOISTS (typ.)
ROOF BEAMS (typ.)
G’, EI
V VERTICAL X BRACING (typ.)
COLUMN (typ.)
w=V/L
b
ΔB
Δ F +Δ S
L/2
L/2 R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
6
3
1500 kN Actuator
Frame
Pin (typ.)
3658 mm
Specimen
Hor. Reaction Vert. Reaction (typ.) 6096 mm
Δ
Joist (typ.)
q
V
qu
a
0.4 qu
G' 1
b
q=V/b γ=Δ/a
γ G’ = q / γ = V (a / b) / Δ
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
7
Design Codes and Handbook National Building Code of Canada CSA-S16 Standard Design of Steel Structures
CISC Handbook of Steel Construction
CSSBI Steel Deck Diaphragms
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
8
4
NBCC 2005:
S(Ta) Mv IE W
V=
Rd Ro
Mv : Higher modes
1.0 0.8
S (g)
Ta : Design period
NBCC 2005 Site Class C (very dense soil)
0.6
Vancouver Montreal
0.4
IE : Importance factor W : Seismic weight
0.2
Rd : Ductility Ro : Overstrength
0.0 0.0
1.0
2.0
Period (s)
3.0
4.0
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
V=
9
S(Ta) Mv IE W Rd Ro S computed with Ta : – Ta = 0.085 hn0.75 (Steel moment-resisting frames) – Ta = 0.025 hn
(Braced steel frames)
– Ta = 0.05 hn0.75
(Shear walls and other structures)
or: Ta = T from dynamic analysis, but not greater than 1 5 x empirical (MRFs) or 2.0 1.5 2 0 x empirical (others)
W = Dead load + 0.25 x Roof snow load + 0.60 x Storage load R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
10
5
V Ve V=
S(Ta) Mv IE W Rd Ro
RdVy
Vy RoVf
Vf
Δ
Δe
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
V= System
S(Ta) Mv IE W Rd Ro Rd
Ro
RdRo
Moment Resisting Frames D MD LD
5.0 3.5 2.0
1.5 1.5 1.3
7.5 5.3 2.6
Concentrically braced frames
MD LD
3.0 2.0
1.5 1.3
4.5 2.6
y braced Eccentrically frames
D
4.0
1.5
6.0
Plate walls
D LD -
5.0 2.0
1.6 1.5
8.0 3.0
1.5
1.3
2.0
Conventional constr.
11
Cat.
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
12
6
NBCC 2005
CSA-S16-05
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
Capacity Design ROOF BEAMS (typ.)
V VERTICAL X BRACING (typ.)
V=
ROOF JOISTS (typ.)
COLUMN (typ.)
Perimeter members
13
Ve RoRd
Brace connections Foundations
V
V Roof Diaphragm
Bracing
Anchor rods
members
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
14
7
Why adopting capacity design for diaphragms? • The system will behave as intended (inelastic response in the vertical elements) • Diaphragm integrity is maintained to ensure proper force transfer to the vertical elements • Damage to the diaphragm can lead to failure of roof framing members carrying gravity loads. • Damage to the diaphragm can be difficult to detect and repair • Lack of quality control to ensure proper diaphragm construction R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
15
2. Seismic Design of a Simple Building 1. Geometry / Seismic Loads 2. Design of the Vertical Bracing 3. Diaphragm Design 4. Drift Estimates 5. Axial Loads in Perimeter Members
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
16
8
2.1 Geometry / Seismic Loads 76.0 m
45.6 m
N
Site: Montreal, Site Class C Vertical Bracing: g Tension Only (T/O) Bracing Type MD: Ro = 1.3, Rd = 3.0 Roof snow loads: Ss = 2.48 kPa Building Height : 8.6 m Design along N-S direction R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
Contreventement en X tension seulement (typ.)
Tablier métallique. 38 mm prof. 3 portées min.
A
6 @ 7600 = 45 600
G
Poutrelles (typ.).
17
Poutre W460x52 (typ.) 10 @ 7600 = 76 000 1
11
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
18
9
Membrane + Insulation + Gypsum board + Steel deck + Joists/Beams + Electr./Mech. 2 = 1.23 kN/m
450
500 18 600
Precast pre-insulated 2 panels : 4.94 kN/m
45.6 m
76.0 m
10 000 300 [mm]
WRoof = (45.6)(76.0) [ 1.23 kPa + (0.25)(2.48 kPa) ] = 6410 kN WWalls = 2 (76.0) [ (9.1)2/2/8.6 ][ 4.94 kPa ] = 3620 kN W = 6410 + 3620 = 10 030 kN R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
19
V = S(T) IE W / (Ro Rd) Ta = 2 x 0.025 x 8.6 = 0.43 s (to be verified) S = 0.422 IE = 1.0 Ro = 1 1.3 3 Rd = 3.0
V = [(0.422) (1.0) (10030) ] / [ (1.3) (3.0)] = 1080 kN 76.0 m
CM 7.6 m
1080 kN
648 kN
Accidental eccentricity = 0.1 x 76.0 m = 7.6 m Note: Contribution of the vertical bracing parallel to the direction of loading is neglected (flexible diaphragm).
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
20
10
2.2 Design of the Vertical Bracing 648 kN
8.6 m θ
θ = 48.5 deg.
X en T/S : Tf = 489 kN HSS ASTM A500 gr. C Fy = 345 MPa 3 requirements : Tr = φ A Fy > Tf KL/r < 200 , with K = 0.5 and L = Lc-c - 500 mm ≈ 11 000 mm bo/t < 330/Fy0.5 si KL/r < 100 425/Fy0.5 si KL/r = 200 & linear interpolation if 100 < KL/r < 200 R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
21
HSS 102x102x4.8 : A = 1630 mm2 Tr = 506 kN > Tf (= 489 kN) KL/r = 5500 / 39.4 = 140 < 200 OK b/t = ((102 – 4 x 4.30)) / 4.3 = 19.7 < 19.8 OK
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
22
11
2.3 Diaphragm Design Expected strength of bracing members & expected horizontal shear in diaphragm, Vu Tu = AR yFy ,où R y = 1.1
(
Cu = 1.2 AR yFy / 1 + λ2.68 y λy =
)
1/1.34
≤ AR yFy
Vu /2
KL R yFy r π2E Tu
HSS SS 102x102x4.8 :
Cu
Tu
Cu
RyFy = 385 MPa Tu = 628 kN Cu = 176 kN
Vu = 4 (Cu + Tu) (cos θ) = 2130 kN (whole building) >> V = 1080kN R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
23
Vu = 4 (Cu + Tu) (cos θ) = 2130 kN (whole building) < V with RoRd = 1.3 = 3240 kN OK Design shear flow: qf = ((2130 kN / 2)) / 45.6 m = 23.4 kN/m q
f
Cu
Tu
Tu
Cu
Vu /2
Canam P3606 Steel Deck : Joist Spacing : 1900 mm 19 mm Welds & No. 10 Screws R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
24
12
Select t = 1.21 mm Welds on 36/9 screws at 150 mm o/c qr = 24.8 24 8 kN/m > 23 23.4 4 kN/m Gâ&#x20AC;&#x2122; = 24.3 kN/mm
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
25
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
26
Alternative solution :
13
2.4 Lateral Deformations w=V/L
w = 1080 kN / 76.0 m = 14.2 kN/m b
ΔB
Δ F+Δ S
L/2
ΔF = 5 wL4/(384 EI) I = 2 x 6440 (45 600/2)2 = 6.70 x 1012 mm4 ΔF = 4.6 mm
L/2
HSS Connectors W460x52 A = 6640 mm2
SECTION "A"
ΔB = 21.1 mm (Bracing)
L = 76 000 mm b = 45 600 mm G’ = 24.3 kN/mm
ΔS = wL2/(8 G’b) ΔS = 9.3 mm
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
27
Check Inter-Storey Drift: Under E :
ΔExpected = RoRdΔElastic
ΔElastic = 21.1 + 4.6 + 9.3 = 35.0 mm ΔExpected = (1.3)(3.0)(35.0) = 137 mm = 0.016 hs < 0.025 hs => OK !
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
28
14
Using a Numerical Model (SAP2000)
Membrane Element
0.01 x ABeam (no connectors) 0.5 x Abracing (T/O) R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
29
Properties of the membrane elements: Îł = 7.7x10-8 kN/mm3 E = 200 kN/mm2 G = 76.92 kN/mm2 t = 1.21 mm
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
30
15
Modification of the stiffness of the membrane elements: Axial Stiffness Modification: Kx (f11) & Ky (f22) Modifier = 0.001 (deck axial stiffness neglected) Shear Stiffness Modification: G’ (f12) G’ = 24.3 kN/mm G’ = G x t = 76.92 x 1.21 = 93.07 kN/mm Modifier = 24.3 / 93.07 = 0.261
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
31
Modification of the seismic mass: w = 1.23 kN/m2 + (0.25)(2.48 kPa) = 1.85 kN/m2 = 1.85x10-6 kN/mm2 w=γxt = 7.7x10-8 x 1.21 = 9.317x10-8 kN/mm2 Modifier = 1.85x10-6 / 9.317x10-8 = 19.9
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
32
16
ΔB = 21.1 mm ΔF = 4.3 mm ΔS = 9.5 mm x 50
ΔTotal = 34.9 mm
x 200 R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
33
Modification of the stiffness of membrane elements: Modifier Kx (f11) = 1219 / 914 = 1.333 Modifier Ky (f22) = 0.001
Joist (typ.)
Deck Sheet
Sidelap Fastener (typ.)
Frame Fastene (typ.)
ΔTotal = 33.5 mm R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
34
17
2.5 Axial Loads in Perimeter Members N-S Beams: (collectors)
2130 kN / 2 / 45.6 m = 23.4 kN/m
2130 kN / 76.0 m = 28.06 kN/m
PLAN 355
117 -239
-61 - 416
23.4 kN/m
Tu
Cu
-355
Tu
Cu
1065 kN R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
35
Tmax
E-W Beams: (chords) C max
2130 kN / 76.0 m = 28.06 kN/m
PLAN
Cmax = Tmax = (28.06 kN/m)(76.0 m)2 / 8 / 45.6 m = 444 kN
Note: E-W seismic loads also induce axial loads in E-W & N-S beams. R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
36
18
3. Influence of Diaphragm Flexibility on Building Period 1 Background 1. B k d IInformation f i 2. Field Test Programs 3. Laboratory Test Programs
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
37
3.1 Background Information w=V/L
T = 2π
M WΔ = 2π K g V
For flexible diaphragms (ASCE-41):
T ≈ 2π
W ( ΔB + 0.78ΔD ) = g V
ΔB
ΔD
W ( 0.004 ΔB + 0.0031ΔD ) , Δ en mm V
For the example building (Section 2) :
W = 10 030 kN Sous V = 1080 kN, ΔB = 21.1 mm & ΔD = 15.2 mm T ≈ [ (10 030 / 1080) (0.004x21.1 + 0.0031x15.2) ]0.5 = 1.11 s R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
38
19
L Diaphragm (EI, G') Bracing Bents (KB)
ΔB
T = 2π
ΔD
( KB + KD ) W KBKD
b
with : KD =
g
π2 L3 π2EI + L G'b
For the sample building (Section 2) :
KB = 1080 kN / 21.1 mm = 51.1 kN/mm G’ = 24.3 kN/mm, I = 6.70 x 1012 mm4 L = 76 000 mm, b = 45 600 mm KD = 97.0 kN/mm => T ≈ 1.10 s R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
39
From Numerical Simulation: T = 1.10 s
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
40
20
NBCC 2005: Ta = 0.025 hn = 0.025 (8.6 m) = 0.215 s but T = 2 x Ta = 0.43 s permitted if verified y dynamic y analysis y by 0.8
Ta, CNB = 0.215 s - S = 0.67
0.6
T = 2 Ta, CNB = 0.43 s - S = 0.42 S (g)
0.4
T = T calc = 1.10 1 10 s - S = 0.13 0 13
02 0.2 0 0
0.4
0.8
1.2
1.6
2
T (s)
V=
S(T) Mv IE W Rd Ro
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
41
Parametric Study: Site: Vancouver, BC and Montreal, QC Building area : 600 to 4200 m2 Aspect ratio: L/b = 1.0 to 2.5 Building height: hn = 4.8 4 8 to 10.8 10 8 m Bracing type: T/C & T/O SFRS type: Rd = 3.0 (MD), 2.0 (LD) and 1.5 (CC) 1.2
T (Long span)
T (Short span)
0.8
Vancouver
0 05 hn 0.05
0.4
0.025 hn
0.0
Perio od (s)
Perio od (s)
1.2
0.8
Vancouver
0 05 hn 0.05
0.4
0.025 hn
0.0 0
4
8
Building Height, hn (m)
12
0
4
8
12
Building Height, hn (m) Computed T R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
42
21
A = 600 to 4200 m2 L/b = 1.0 to 2.5 hn = 4.8 to 10.8 m T/O Bracing Rd = 2.0 ((Type yp LD)) 40
40
T/O - TYPE LD Vancouver S/(RdRo) 2/3 S(0.2s)/(RdRo) Ta < 0.05 hn Ta = T
20
T/O - TYPE LD Montreal
30
V/W (%)
30
V/W (%)
NBCC: Ta = 0.025 hn < 0.05 hn
S/(RdRo) 2/3 of S(0.2 s)/(RdRo) Ta < 0.05 hn Ta = T
20 10
10
0
0 0.0
0.5
1.0
1.5
Period (s)
2.0
2.5
0.0
0.5
1.0
1.5
Period (s)
2.0
2.5
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
43
3.2 Field Test Programs
University of British Columbia
University of Sherbrooke
Ambient vibration testing (2003-04): Natural frequencies Mode shapes Damping R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
44
22
Test Set-up (University of Sherbrooke)
Portable equipment y measurements Velocity Multiple setups of 6 transducers: 2 reference transducers (x and y) 4 roving sensors 5-10 minutes / setup R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
45
Typical measurements (University of Sherbrooke)
Mode 1
Mode 2
Mode 3
f = 2,3 23H Hz
f = 3,7 37H Hz
f = 4,1 41H Hz
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
46
23
T (s)
Ambient vibration results:
1.0
0.5
T (s)
1.0
Ta
0.0
0.5
0.0 0.0
2.0
4.0
6.0
8.0
hn (m)
10.0
12.0
20
40
60
80
100
120
140
Diaphragm Span, L (m)
.
T = 0.001 5.75 L2 + 1.25 L hn b 1.2
T (Long span)
T (Short span)
0.8
Vancouver
0.05 hn
0.4
0.025 hn
0.0
Perriod (s)
Perriod (s)
1.2
0.8
Vancouver
0.05 hn
0.4
0.025 hn
0.0 0
4
8
Building Height, hn (m)
12
0
4
8
12
Building Height, hn (m) Computed T Lamarche (2005) R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
47
Possible reasons for the observed mismatch: 1. Contribution of non structural roof components to in-plane diaphragm stiffness 2. Amplitude of ambient vibrations too low to trigger slippage of deck and mobilize connection flexibility y 3. Warping restrained at the sheet ends
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
48
24
Influence of non structural roof components 17.5 (45) 15.0 (43) 12.5 S (kN/m)
(39) 10.0 7.5
(41)
5.0 Roofing S-N Bare Steel S-N Bare Steel End Lap BP-W Bare Steel End Lap S-N
2.5 0.0 0
5
10
γ (x10-3 rad)
15
20
Test on 22 gauge 38 mm deep steel deck G’ increased by 26-45%
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
49
30 25
q (kN/m)
20 15 10 25 mm Fibreboard 16 mm Gypsum G B Board d S/N 0.91 mm Steel Deck (305 mm o/c) B/P 0.91 mm Steel Deck (305 mm o/c)
5 0 0
5
10
γ (mrad)
15
20
Mastrogiuseppe, S., Rogers, C.A., Tremblay, R. and Nedisan, C.D. 2006. Influence of NonStructural Components on Roof Diaphragm Stiffness and Fundamental Periods of Single-Storey Steel Buildings. J of Constructional Steel Research, 64, 2, 214-227.
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
50
25
G'BS+GB / G'BS
1.5 1.4 1.3 1.2 1.1 1.0 0
10
20
30
40
30
40
G'BS (kN/mm)
G'BS+G GB (kN/mm)
40
Computed Gâ&#x20AC;&#x2122; with and without roofing
30
20
10
0 0
10
20
G'BS (kN/mm) R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
Average = 0.98
TB BS+GB / TBS
Average = 0.99 1.00
1.00
0.95
0.95
0.90
0.90
Vancouver
Montreal 0.85
0.85 0.2
0.4
0.6
0.8
1.0
1.2
0.0
1.4
0.4
0.8
1.2
1.6
2.0
1.6
2.0
T BS (s)
TBS (s) 0.15
0.15
TBS - TBS S+GB (s)
51
Vancouver
Montreal
0.10
0.10
0.05
0.05
0.00
0.00 0.2
0.4
0.6
0.8
T BS (s)
1.0
1.2
1.4
0.0
0.4
0.8
1.2
TBS (s)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
52
26
Low amplitude in ambient vibration testing & warping restraint Δ
q
V
SDI Procedure :
qu
a
0.4 qu
G’ =
G' 1
b
γ
V (a/b)
ΔS + ΔC + ΔW
G’ = q / γ = V (a / b) / Δ
q=V/b γ=Δ/a
ΔS
ΔC
ΔW
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
53
Too low amplitude in ambient vibration testing q
Steel joist (typ.)
qu
Deck panel
Side-lap fastener (typ.) Frame fastener (typ.)
0.4 qu
G' G 1
γ
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
54
27
Restrained warping SDI method mostly based on single sheet tests Warping deformations in opposite directions In overlaping joints
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
55
Recent ambient vibration test results compared with ith 3D SAP2000 Analysis (2007)
•
Building: 71 m x (91 (91.5 5 + 21) m x 6 6.8 8m
•
NBCC: Ta = 0.05 hn = 0.34 s
•
Ambient vibration: T1 = 0.39 s
Tremblay, R., Nedisan, C., Lamarche, C.-P., and Rogers, C. 2008. Periods of Vibration of a Low-Rise Building with a Flexible Steel Roof Deck Diaphragm. Proc. 5th International Conference on Thin-Walled Structures, Brisbane, Australia, 615-622. R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
56
28
5
21 000
N
14
91 500 11 500
6 @ 10 000 = 60 000
2 @ 10 000 = 20 000 254
Vertical Bracing (typ.) C7
Steel joist (typ.)
C8
J
Button Punch @ 150 o/c
10 000
1
Button Punch @ 600 o/c
H
C2
8 820
Mezzanine EL. 13 405
3265
F
Slab 38+65
C5
27 420
C4
5 @ 10 500 = 52 500
Steel Deck 0.91 x 38 x 914 (typ.)
C3
C1 C6
A Steel Deck 0.76 x 38 x 914 Button punch @ 150 o/c Welds @ 300 o/c
Steel Deck 0.76 x 38 x 914 Button punch @ 300 o/c Welds @ 300 o/c (except otherwise noted)
Button Punch @ 150 o/c
C10
C9
Button Punch @ 150 o/c Frame welds @ 150 o/c
Button Punch @ 150 o/c
Elevations: TOS = 17 000 Column Base PL = 9725
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
C7
57
C8
C2
HSS127x127x4.8
HSS 127x127x6.4
C3
C5
C4
HSS 89x89x6.4
HSS 127x127x4.8 C2 & C5@C9
C1
HSS127x127x4.8 C3
C1 & C10
C4
C6 C10
C9
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
58
29
Case
Description
1 2 2.1 2.2 2.3 2.4 3 3.1 3.2 4 4.1 4.2 Test
Basic model Influence of end member fixity 1 + fixed column bases 2.1 + fix ended W-shape beams (strong axis) 2.2 + fix ended joists (weak axis) and tie joists (strong axis) 2.3 + fixed brace ends Influence of perimeter members and walls 2 + infinite in-plane stiffness for the interior masonry wall on gridline 5 3.1 + infinite in-plane stiffness for all exterior walls Influence of roof diaphragm shear stiffness 3 + infinitely stiff steel deck connectors 4.1 + warping prevented at overlapping deck sheet end laps Measured values
TN-S (s) 1.11
TE-W (s) 1.00
0.98 0.97 0.80 0.79
0.83 0.72 0.70 0.70
0.78 0.74
0.70 0.52
0.67 0.34 0.39
0.47 0.23 0.30
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
59
3.3 Test Program Polytechnique/McGill (2007-2010) 12 @ 1751.6 = 21 020 6400
7310
W360x39
â&#x20AC;˘ Restrained warping
1000 kN Dynamic Actuator (typ.)
W360x39 with HSS 101.6x101.6x4.8 Shear Connectors (typ.)
8 @ 914 = 7310
â&#x20AC;˘ Amplitude of vibration
7310
450mm Joists (typ.)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
60
30
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
61
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
62
31
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
63
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
64
32
Dynamic Testing Protocol
q qu
SS2 SS1
0.4 qu
G' Sine Sweep
γ
12 @ 1751.6 = 21 020
Various displacement time histories with increasing amplitude dynamically applied with actuators at the two ends (frame mounted on rockers)
6400
7310
W360x39
7310
1000 kN Dynamic Actuator (typ.)
W360x39 with HSS 101.6x101.6x4.8 Shear Connectors (typ.)
8 @ 914 = 7 7310
1
450mm Joists (typ.)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
65
Phase I Tests (2007) • 0.76 mm deck sheets with endlaps: 7007 mm
G’ =
1 ΔS + ΔC + ΔW
7007 mm
=
1 0.0229 + 0.0271 + 0.1873
7007 mm
= 4.20 kN/mm
• 0.76 mm deck sheets without endlaps: 21 020 mm
1 G’ = ΔS + ΔC + ΔW
1 = 0.0229 + 0.0282 + 0.0453
= 10.4 kN/mm
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
66
33
Variation of the specimen period with loading amplitude: G’ = 4.20 kN/mm – Tpredicted = 0.18 s
Fundamental Period (s)
0.25
0.20
0.15
G’ = 10.2 kN/mm – Tpredicted = 0.11 s
0.10
White Noise Tests
0.05
Without End Laps With End Laps
0.00 0.00
0.05
0.10
0.15
0.20
RMS Absolute Acceleration at L/2 (g)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
67
4. Conclusions • Metal roof deck diaphragms suitable for seismic resistance • Capacity design for roof diaphragms, collectors and chords in Canadian seismic provisions • Fl Flexibility ibilit off rooff diaphragm di h can lengthen the building period but further studies needed before it can be implemented in design R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
68
34
Acknowledgements • Graduate Students C. Nedisan, C.-P. Lamarche, S. Mastroguiseppe, J. Franquet and R. Massarelli • Technical staff at École Polytechnique • Research groups at U. of Sherbrooke and UBC • Financial support from NSERC, FQRNT & CFI and the industry (WSB, Vancouver steel deck diaphragm committee, CSSBI, SDI, CWB, Hilti, ITW Buildex, SSEF, Canam Group, RJC, Sofab and Acier Leroux)
R. Tremblay, Ecole Polytechnique of Montreal & C.A. Rogers, McGill University
69
35