Diapositivas geometría

Page 1

COMPETENCIAS MATÉMATICAS

DOCENTE: FERNANDO CARVAJAL


Alguna vez te has puesto a pensar y te has preguntado ¿que forma tiene una caja de galletas?, ¿y un tubo?, ¿y una pelota?, ¿y un lapicero?, ¿y un cono de helado?,... Todos los objetos que nos rodean son cuerpos. Tienen tres dimensiones: altura, ancho y espesor.


Estos ocupan un lugar en el espacio. Dentro de este mundo, hay una clase especial: Los s贸lidos geom茅tricos. No creo que nunca hayas escuchado hablar de ellos. De hecho que te suenan los prismas, cubos o cilindros. Pero otros te preguntaras que son: tetraedro, octaedro,..., pero en el planeta en el que nos movemos vivimos rodeados y manipulando consecutivamente s贸lidos geom茅tricos.


Según las características de los elementos de los sólidos geométricos, se pueden clasificar en dos grandes grupos los poliedros y los cuerpos redondos … creo que me estoy adelantando. Eso lo veremos después.


Los poliedros son sólidos cuyas caras son polígonos regulares. En los poliedros distinguimos: Vértices: puntos donde concurren tres aristas

Aristas: lados de los polígonos regulares


Caras: polígonos regulares

Además podemos fijarnos en: Ángulos planos: cuyos lados son dos aristas convergentes. Ángulos diedros: cuyas caras son dos polígonos adyacentes. Ángulos triedros: formados por tres caras convergentes en un vértice.


Poliedro convexo: si todo ĂŠl estĂĄ en el mismo semiespacio respecto al plano de cada una de sus caras. Poliedro cĂłncavo: es el que tiene alguna cara cuyo plano atraviesa a la figura. Poliedro simple: es el que no tiene orificios que lo atraviesen. En todo poliedro simple se cumple el teorema de Euler.


Teorema que relaciona el número de caras, vértices y aristas de un poliedro simple (sin orificios) cualquiera. Establece lo siguiente: en un poliedro simple, el número de caras, C, más el número de vértices, V, es igual al número de aristas, A, más dos. Es decir: C+V=A+2


En un vértice pueden concurrir m polígonos regulares de n lados unidos vértice a vértice. La suma de los ángulos de cada uno de estos polígonos no debe ser mayor de 360º, pues de lo contrario no formarían un “ángulo sólido”.

Por tanto debe considerarse que:

<360º


Los poliedros más sencillos son aquellos que se forman a partir de un solo polígono regular. Este grupo de poliedros ya era conocido por Euclides (330 a.C.) y estos cinco sólidos estuvieron acompañados de cierto misticismo. Se asociaban con los cuatro elementos supuestos y con el Universo y reciben el nombre de sólidos platónicos. Los únicos sólidos platónicos son:


Formado por tres triángulos equiláteros. Es el que tiene menor volumen de los cinco en comparación con su superficie. Representa el fuego. Está formado por 4 caras, 6 aristas y 4 vértices.


Formado por seis cuadrados. Permanece estable sobre su base. Por eso representa la tierra. EstĂĄ formado por 6 caras, 12 aristas y 8 vĂŠrtices.


Formado por ocho triángulos equiláteros. Gira libremente cuando se sujeta por vértices opuestos. Por ello, representa al aire en movimiento. Está formado por 8 caras, 12 aristas y 6 vértices.


Formado por doce pentĂĄgonos regulares. Corresponde al Universo, pues sus doce caras pueden albergar los doce signos del Zodiaco. Tiene 12 caras, 30 aristas y 20 vĂŠrtices.


Formado por veinte triángulos equiláteros. Es el que tiene mayor volumen en relación con su superficie y representa al agua. Tiene 20 caras, 30 aristas y 12 vértices.


En todos ellos se cumple la relación: CARAS + VÉRTICES – ARISTAS = 2 Nombre

Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Nº de Caras

Nº de aristas

Nº de vértices

Nº de Ángulos Diedros

Figuras que forman las caras

4

6

4

6

6

12

8

12

Triángulo equilátero. Cuadrado

8

12

6

12

12

30

20

30

20

30

12

30

Triángulo equilátero Pentágono Triángulo equilátero


Dos poliedros regulares se llaman conjugados si cada uno de ellos se obtiene del otro uniendo mediante segmentos los puntos medios de cada dos caras contiguas. AsĂ­, el tetraedro es conjugado de sĂ­ mismo, el dodecaedro es conjugado del icosaedro y el cubo lo es del octaedro:


El prisma es un poliedro limitado por varios paralelogramos y dos polĂ­gonos congruentes llamados bases, cuyos planos son paralelos.


Bases: dos polígonos congruentes, cuyos planos son paralelos. Caras laterales: polígonos regulares. Arista: lados de los polígonos regulares. Vértices: puntos donde concurren tres aristas. Altura: distancia entre las dos bases. Diagonal: segmento que une dos vértices que no pertenecen a una misma cara.


En un prisma, el número de caras laterales es igual al número de lados del polígono de la base.

El nombre de un prisma se da según el polígono de la base. Prisma Cuadrangular

Prisma Hexagonal


Es el poliedro convexo cuyas caras son regiones paralelogramos inclinadas y sus bases son regiones poligonales pertenecientes a planos paralelos.


Es el que tiene sus caras laterales perpendiculares a las bases

En el prisma recto, las caras laterales son todas rectĂĄngulos. Si sus bases son polĂ­gonos regulares, el prisma se llama regular.


Los prismas cuyas bases son paralelogramos se llaman paralelepĂ­pedos. En un paralelepĂ­pedo, sus seis caras son paralelogramos.


Cada uno de los dos cuerpos geomĂŠtricos que se obtienen al partir un prisma por un plano que corta a todas sus aristas laterales se llama tronco de prisma.


Prisma

Nº Caras Nº Vértices

Nº Aristas

Triangular

3

6

9

Cuadrangular 4

8

12

Pentagonal

5

10

15

Hexagonal

6

12

18


Prisma Triangular

Prisma Cuadrangular

Prisma Hexagonal


Para calcular su área lateral se emplea la siguiente fórmula: ALATERAL = (perímetro de la base) (altura del prisma) Y para obtener el área total del prisma solamente tendríamos que sumar, al área lateral, el área de las dos bases del prisma. ATOTAL = ALATERAL + 2ABASE


Para calcular el volumen de un prisma se deben multiplicar sus dimensiones. V = largo x ancho x altura Observa que el producto de las dos primeras dimensiones (largo y ancho) es precisamente el área de la base. Para hallar el volumen de un prisma, podemos utilizar la relación: VPRISMA = [Área de la base] · [Altura del prisma]


Prisma Óptico

Sólido Cristalino


La pirámide es un poliedro que tiene por base un polígono y por caras laterales varios triángulos con un vértice en común.

La altura de la pirámide es la distancia del vértice a la base.


Una pirámide se llama triangular, cuadrangular, pentagonal … según que su base sea un triángulo, un cuadrilátero, un pentágono … Pirámide Triangular

Pirámide Cuadrangular


Una pirámide es regular si su base es un polígono regular y el vértice se proyecta (cae perpendicularmente) sobre el centro de la base. En una pirámide regular las caras laterales son triángulos isósceles cuyas alturas se llaman apotemas de la pirámide.


Un tronco de pirรกmide es el poliedro comprendido entre la base de la pirรกmide y un plano que corta a todas las aristas laterales.


Si el plano es paralelo al plano de la base se dice que el tronco es de bases paralelas. La distancia entre las bases es la altura del tronco. Un tronco de bases paralelas de una pirĂĄmide regular estĂĄ formado por dos bases, polĂ­gonos regulares semejantes, y varias caras laterales que son trapecios isĂłsceles. Las alturas de estos trapecios se llaman apotemas de estos troncos.


Pirรกmide Triangular

Pirรกmide Cuadrangular


Pirámide

Nº Caras Nº Vértices

Nº Aristas

Triangular

3

4

6

Cuadrangular 4

5

8

Pentagonal

5

6

10

Hexagonal

6

7

12


En una pirámide regular se cumple que: El área lateral es igual al producto del semiperímetro de la base por la longitud de la apotema de la pirámide. ALATERAL = semiperímetro · apotema


En una pirรกmide cualquiera se cumple que : El รกrea total esta determinada por la suma de las รกreas de las caras laterales y el รกrea de la base ATOTAL = ALATERAL + ABASE


El volumen de una pirámide es igual a un tercio del volumen del prisma. VPIRÁMIDE = 1/3 VPRISMA VPIRÁMIDE = 1/3 (ABASE) (altura)


Las pirámides de Egipto son un ejemplo de construcciones de pirámides. Los Egipcios, según lo que se observa en las pirámides sabían algo de geometría.


En la naturaleza observamos muchos cuerpos geométricos. En esta sección estudiaremos sobre los cuerpos redondos. Los cuerpos redondos tienen algo esférico. Como la esfera por ejemplo, si se dan cuenta no tiene lados es todo circular. El cilindro solo tiene bases aunque ups creo que me estoy adelantado a lo que sigue...bueno...allá vamos...


Sólido generado por la rotación completa de un rectángulo alrededor de uno de sus lados, llamado eje. Radio O

A

Altura O’

B

Bases Generatriz


Bases: dos círculos paralelos Radio (r): AO = BO’ Altura (h): OO’, perpendicular trazada entre las bases. Generatriz (g): AB, lado del rectángulo que gira alrededor del eje. Area Total (AT) AT = AL + 2ABASE AT = AL + 2πr2

Área lateral (AL) AL = 2πr · g Volumen (V) V = ABASE · h V = πr2 · h


Desarrollo de Cilindro

Tubo de Telescopio


Es el sólido originado por la rotación completa de un triangulo rectángulo alrededor de uno de los lados que forman el ángulo recto.

V

Vértice Generatriz Altura

O

B

Base Radio


Vértice: V, punto cúspide del sólido Altura (h): VO, perpendicular trazada del vértice a la base. Base: circulo generado por la base del triangulo rectángulo que rota. Generatriz (g): VB, lado del triangulo que rota alrededor del eje.


Área Lateral (AL): AL =πr · g Área Total (AL): AT = AL + πr2 Volumen (V): V = 1/3 πr2h


Desarrollo del Cono


Fuji-Yama

El Teide


Es el sรณlido limitado por una superficie cuyos puntos estรกn todos a la misma distancia de otro punto interior llamado centro.

Diรกmetro Radio

Centro


Diámetro: segmento que pasa por el centro y cuyos extremos son dos puntos de la superficie de la esfera. Radio (r): segmento que une el centro con cualquier punto de la circunferencia. Area (A): A = 4πr2

Volumen (V): V = 4/3πr3


Reactor de una central elĂŠctrica

La Tierra


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.