4 minute read

Prebiocran™ shows in vivo and ex vivo a potential prebiotic effect leading to metabolic health protection

Next Article
Prebiocran™

Prebiocran™

M-SHIME® MODEL

Cattero et Lessard-Lord, unpublished

The M-SHIME® study showed that Prebiocran™ promotes not only the growth of individual bacteria, but also the growth of specific guild of bacteria, enhancing a favorable ecosystem associated with metabolic protection:

• Shift in production of short chain fatty acids (SCFAs) in favor of butyrate production

• Shift in cholesterol-derived bile acids, notably:

- Decrease of DCA (deoxycholic acid), associated with negative effects on metabolic health

- Increase of UDCA (ursodeoxycholic acid), associated with positive effects on metabolic health

Animal Studies

Anhê et al., 2015 ; Anhê et al., 2017 ; Rodríguez-Daza et al., 2020 ; Daoust et al. 2021 ; Medina-Larqué et al., 2022

In our various mouse models of obesity and type 2 diabetes, Prebiocran™ (200 mg/kg of body weight daily for 8 to 12 weeks) significantly demonstrated several metabolic health improvements:

• Prevention of body weight gain, glucose homeostasis alteration and hepatic steatosis in mice fed a high-fat high-sucrose diet

• Reversal of hepatic steatosis in obese mice

Anhê et al. are the pioneers in demonstrating the prebiotic potential of a high in polyphenols cranberry extract and its cardiometabolicassociated benefits. This reference article has been cited more than 900 times.

Metabolomics analyses were performed in the transverse colon.

On the left, short chain fatty acids (SCFAs) quantification showed that Prebiocran™ induced a shift from acetate (yellow) to butyrate (black) production since the first days of treatment.

On the right, the heatmap displays bile acids levels and shows that Prebiocran™ progressively induced an increase of UDCA concomitant to a decrease of DCA.

Our results suggest the role of Prebiocran™ at a low dose of 480 mg, in supporting gut and metabolic health.

— Our Prebiocran™ offer

Prebiocran™ is a 100% cranberry extract in powder, designed to fit most of dietary supplement applications thanks to a low dosage: only 480 mg daily!

Standardized to minimum 30% total polyphenols (Folin-Ciocalteu) Spray dried powder

Highly soluble

Sourced and extracted locally in Canada from high polyphenol cranberry varieties

Sources

Anhê, F.F., Nachbar, R.T., Varin, T.V., Vilela, V., Dudonné, S., Pilon, G., Fournier, M., Lecours, M.-A., Desjardins, Y., Roy, D., et al. (2017). A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Mol Metab 6, 1563–1573. 10.1016/j.molmet.2017.10.003.

Anhê, F.F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T.V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., et al. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64, 872–883. 10.1136/gutjnl-2014-307142.

Cani, P. D., Depommier, C., Derrien, M., Everard, A. & de Vos, W. M. (2022). Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 19, 625–637

Chen, J., Chen, X. & Ho, C. L. (2021) Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 9, 770248

Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. (2019) The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front Nutr 6, 188

Daoust, L., Choi, B.S.-Y., Lacroix, S., Rodrigues Vilela, V., Varin, T.V., Dudonné, S., Pilon, G., Roy, D., Levy, E., Desjardins, Y., et al. The postnatal window is critical for the development of sex-specific metabolic and gut microbiota outcomes in offspring. Gut Microbes 13, 2004070. 10.1080/19490976.2021.2004070.

Daoust, L., Choi, B.S.-Y., Agrinier, A.-L., Varin, T.V., Ouellette, A., Mitchell, P.L., Samson, N., Pilon, G., Levy, E., Desjardins, Y., et al. (2022). Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut, gutjnl-2021-326475. 10.1136/gutjnl-2021-326475.

Denis, M.-C., Desjardins, Y., Furtos, A., Marcil, V., Dudonné, S., Montoudis, A., Garofalo, C., Delvin, E., Marette, A., and Levy, E. (2014). Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clinical Science 128, 197–212. 10.1042/CS20140210.

Feldman, F., Koudoufio, M., El-Jalbout, R., Sauvé, M.F., Ahmarani, L., Sané, A.T., Ould-Chikh, N.-E.-H., N’Timbane, T., Patey, N., Desjardins, Y., et al. (2023). Cranberry Proanthocyanidins as a Therapeutic Strategy to Curb Metabolic Syndrome and Fatty Liver-Associated Disorders. Antioxidants 12, 90. 10.3390/antiox12010090.

Gaur, G. & Gänzle, M. G. (2023) Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Current Research in Food Science 6, 100448

Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14, 491–502. 10.1038/nrgastro.2017.75.

Koudoufio, M., Feldman, F., Ahmarani, L., Delvin, E., Spahis, S., Desjardins, Y., and Levy, E. (2021). Intestinal protection by proanthocyanidins involves anti-oxidative and anti-inflammatory actions in association with an improvement of insulin sensitivity, lipid and glucose homeostasis. Sci Rep 11, 3878. 10.1038/s41598-020-80587-5.

Leylabadlo, H. E. et al. (2020) The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis 149, 104344

Medina-Larqué, A.-S., Rodríguez-Daza, M.-C., Roquim, M., Dudonné, S., Pilon, G., Levy, É., Marette, A., Roy, D., Jacques, H., and Desjardins, Y. (2022). Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front Immunol 13, 871080. 10.3389/fimmu.2022.871080.

Molly, K., Vande Woestyne, M., and Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39, 254–258. 10.1007/ BF00228615.

Régnier, M., Hul, M.V., Knauf, C., and Cani, P.D. (2021). Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology 248, R67–R82. 10.1530/JOE-20-0473.

Rodríguez-Daza, M.-C., Roquim, M., Dudonné, S., Pilon, G., Levy, E., Marette, A., Roy, D., and Desjardins, Y. (2020). Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front Microbiol 11, 2032. 10.3389/fmicb.2020.02032.

Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S., and Marzorati, M. (2015). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, eds. (Springer).

This article is from: