21 minute read
Neutrosophic N-interior ideals in semigroups
Neutrosophic ℵ −interior ideals in semigroups
K. Porselvi, B. Elavarasan, F. Smarandache
Advertisement
K. Porselvi, Balasubramanian Elavarasan, F. Smarandache (2020). Neutrosophic N-interior ideals in semigroups. Neutrosophic Sets and Systems 36, 70-80
Abstract: We define the concepts of neutrosophic ℵ -interior ideal and neutrosophic ℵ−characteristic interior ideal structures of a semigroup. We infer different types of semigroups using neutrosophic ℵ-interior ideal structures. We also show that the intersection of neutrosophic ℵ-interior ideals and the union of neutrosophic ℵ-interior ideals is also a neutrosophic ℵ-interior ideal.
Keywords: Semi group, neutrosophic ℵ − ideals, neutrosophic ℵ -interior ideals, neutrosophic ℵ−product.
1. Introduction
Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to modelling engineering problems, networking, real-life problem relating to decision making and so on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a vague subset and the other is a degree of non-membership to that given subset.
Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set (see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an indeterminacy membership function and a falsity membership function. These sets are applied to many branches of mathematics to overcome the complexities arising from uncertain data. A Neutrosophic set can distinguish between absolute membership and relative membership. Smarandache used this in non-standard analysis such as the result of sports games (winning/defeating/tie), decision making and control theory, etc. This area has been studied by several authors (see [3, 11, 12, 16-18]).
For more details on neutrosophic set theory, the readers visit the website http://fs.gallup.unm.edu/FlorentinSmarandache.htm
In [2], Abdel Basset et al. designed a framework to manage scheduling problems using neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling disagree with the real situation, some data were changed during the implementation process. Here fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing
with uncertainties of the project and their activities duration which were unable to treat indeterminacy and inconsistency.
In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria decision-making framework for professional selection that employed a collection of neutrosophic analytical network process and order preference by similarity to the ideal solution under bipolar neutrosophic numbers.
In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic �� – Ideal of �� – algebra. They analyzed homomorphic image, pre–image, cartesian product and related results, and these concepts were explored to other substructures of a �� – algebra. In [9], Chalapathi et al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements and mainly obtained some properties satisfied by the Neutrosophic complement elements of Neutrosophic Boolean rings.
In [14], M. Khan et al. presented the notion of neutrosophic ℵ-subsemigroup in semigroup and explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups and introduced the concept of the characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets.
In [10], B. Elavarasan et al. introduced the notion of neutrosophic ℵ-ideal in semigroup and explored its properties. Also, the conditions for neutrosophic ℵ-structure to be neutrosophic ℵ-ideal are given, and discussed the idea of characteristic neutrosophic ℵ-structure in semigroups and obtained several properties. In [20], we have introduced and discussed several properties of neutrosophic ℵ-bi-ideal in the semigroup. We have proved that neutrosophic ℵ-product and the intersection of neutrosophic ℵ-ideals were identical for regular semigroups. In this paper, we define and discuss the concepts of neutrosophic ℵ-interior ideal and neutrosophic ℵ-characteristic interior ideal structures of a semigroup.
Throughout this paper, �� denotes a semigroup. Now, we present the important definitions of semigroup that we need in sequel.
Recall that for any ��1, ��2 ⊆ ��, ��1��2 = {����|�� ∈ ��1 ������ �� ∈ ��2} , multiplication of ��1 and ��2.
Let �� be a semigroup and ∅ ≠ ��1 ⊆ ��. Then (i) ��1 is known as subsemigroup if ��1 2 ⊆ ��1. (ii) A subsemigroup ��1 is known as left (resp., right) ideal if ��1�� ⊆ ��1(resp., ����1 ⊆ ��1). (iii) ��1 is known as ideal if ��1 is both a left and a right ideal. (iv) �� is known as left (resp., right) regular if for each �� ∈��, there exists �� ∈�� such that �� = ����2(resp., �� =��2��) [13]. (v) �� is known as regular if for each ��1 ∈��, there exists �� ∈�� such that ��1 =��1����1 (vi) �� is known as intra-regular if for each ��1 ∈��, there exist ��,�� ∈�� such that ��1 = ����1 2�� [15].
2. Definitions of neutrosophic ℵ - structures
We present definitions of neutrosophic ℵ−structures namely neutrosophic ℵ−subsemigroup, neutrosophic ℵ−ideal, neutrosophic ℵ−interior ideal of a semigroup ��
The set of all the functions from �� to [−1,0] is denoted by ℑ(��,[−1,0]). We call that an element of ℑ(��,[−1,0]) is ℵ−function on ��. A ℵ−structure means an ordered pair (��,��) of �� and an ℵ−function �� on ��.
Definition 2.1.[14] A neutrosophic ℵ − structure of �� is defined to be the structure: ����: = where ����, ���� and ���� are the negative truth, negative indeterminacy and negative falsity membership function on X (ℵ − functions).
It is evident that −�� ≤ ����(��)+ ����(��)+ ����(��)≤ �� for all �� ∈ ��. Definition 2.2.[14] A neutrosophic ℵ − structure ���� of �� is called a neutrosophic ℵ −subsemigroup of �� if the following assertion is valid: ����(��������) ≤ ����(����) ˅ ����(����) (∀ ����, ���� ∈ ��) (����(��������) ≥ ����(����) ∧ ����(����)). ����(��������) ≤ ����(����) ˅ ����(����) .Let ���� be a neutrosophic ℵ −structure and ��, ��, �� ∈ [−��, ��] with −�� ≤ �� + �� + �� ≤ ��. Consider the sets:
���� �� = {���� ∈ ��|����(����) ≤ ��} ���� �� ={���� ∈ ��|����(����) ≥ ��} ���� �� = {���� ∈ ��|����(����) ≤ ��}.
The set ����(��, ��, ��)≔{���� ∈ �� |����(����)≤ ��, ����(����)≥ ��, ����(����) ≤ ��} is known as (��, ��, ��)-level set of ����. It is easy to observe that ����(��, ��, ��)= ���� �� ∩ ���� �� ∩ ���� �� .
Definition 2.3.[10] A neutrosophic ℵ −structure ���� of �� is called a neutrosophic ℵ −left (resp., right) ideal of �� if
����(��������) ≤ ����(����) (��������. , ����(��������) ≤ ����(����)) (∀ ����, ���� ∈ ��) ( ����(��������) ≥ ����(����) (��������., ����(��������) ≥ ����(����)) ). ����(��������) ≤ ����(����) (��������., ����(��������) ≤ ����(����)) ���� is neutrosophic ℵ−ideal of �� if ���� is neutrosophic ℵ−left and ℵ−right ideal of ��.
Definition 2.4. A neutrosophic ℵ −subsemigroup ���� of �� is known as neutrosophic ℵ −interior ideal if
����(������)≤ ����(��) (∀ ��, ��, �� ∈ ��)(����(������)≥ ����(��)). ����(������)≤ ����(��)
It is easy to observe that every neutrosophic ℵ−ideal is neutrosophic ℵ−interior ideal, but neutrosophic ℵ−interior ideal need not be a neutrosophic ℵ− ideal, as shown by an example. Example 2.5. Let �� be the set of all non-negative integers except 1. Then �� is a semigroup with usual multiplication.
Let ���� = { 0 (−0.9,−0.1,−0.7),
2 (−0.4 −0.6,−0.5),
5 (−0.3,−0.8,−0.3),
10 (−0.3,−0.8,−0.1),
����ℎ������������ (−0.7,−0.4,−0.6)}. Then ���� is
neutrosophic ℵ −interior ideal, but not neutrosophic ℵ− ideal with ����(2.5)=−0.3≰����(2).
Definition 2.6.[14] For any �� ⊆ ��, the characteristic neutrosophic ℵ −structure is defined as
where
����(��)��: X→[−��, ��], �� → { −�� ���� �� ∈ �� �� ������������������,
����(��)��: X→[−��, ��], �� → { �� ���� �� ∈ �� −�� ������������������, ����(��)��: X→[−��, ��], �� → {−�� ���� �� ∈ �� �� ������������������.
Definition 2.7.[14] Let ����: =
�� (����, ����, ����) and ����: =
�� (����, ����, ����) be neutrosophic ℵ −structures of
��. Then (i) ���� is called a neutrosophic ℵ − substructure of ����, denote by ���� ⊆ ���� , if ����(��)≥ ����(��), ����(��) ≤ ����(��), ����(��) ≥ ����(��) for all r ∈ ��. (ii) If ���� ⊆ ���� and ���� ⊆ ����, then we say that ���� = ����. (iii) The neutrosophic ℵ − product of ���� and ���� is defined to be a neutrosophic ℵ −structure of ��,
where ���� ʘ ���� ∶=
For �� ∈ ��, the element �� (����∘��(��), ����∘��(��), ����∘��(��))
is simply denoted by (���� ʘ ����)(��) =
(iii) The union of ���� and ����, a neutrosophic ℵ −structure over �� is defined as
where
(���� ∪ ����)(����)= ����∪��(����)= ����(����) ˄ ����(����), (���� ∪ ����)(����)= ����∪��(����)= ����(����) ˅ ����(����), (���� ∪ ����)(����)= ����∪��(����)= ����(����) ˄ ����(����) ∀���� ∈ ��. (iv) The intersection of ���� and ����, a neutrosophic ℵ −structure over �� is defined as
where
3. Neutrosophic ℵ −interior ideals
We study different properties of neutrosophic ℵ−interior ideals of ��. It is evident that neutrosophic ℵ− ideal is a neutrosophic ℵ−interior ideal of ��, but not the converse. Further, for a regular and for an intra-regular semigroup, every neutrosophic ℵ−interior ideal is neutrosophic ℵ−ideal.
All throughout this part, we consider ���� and ���� are neutrosophic ℵ−structures of ��. Theorem 3.1. For any L ⊆ X, the equivalent assertions are: (i) �� is an interior ideal, (ii) The characteristic neutrosophic ℵ−structure χL(XN) is a neutrosophic ℵ−interior ideal. Proof: Suppose �� is an interior ideal and let ��, ��, �� ∈ ��.
If �� ∈ ��, then ������ ∈ ��, so ����(��)��(������) = −1 = ����(��)��(��), ����(��)��(������) = 0 = ����(��)��(��) and ����(��)��(������) = −1 = ����(��)��(��).
If �� ∉ ��, then ����(��)��(������) ≤ 0 = ����(��)��(��), ����(��)��(������)≥ −1 = ����(��)��(��) and ����(��)��(������) ≤ 0 = ����(��)��(��). Therefore ����(����) is a neutrosophic ℵ−interior ideal.
Conversely, assume that ����(����) is a neutrosophic ℵ− interior ideal. Let �� ∈ �� and ��,�� ∈��. Then
So ������ ∈ ��. ����(��)��(������)≤����(��)��(��)=−1, ����(��)��(������) ≥����(��)��(��)=0, ����(��)��(������) ≤ ����(��)��(��)= −1 .
Theorem 3.2. If ���� and ���� are neutrosophic ℵ− interior ideals, then ����∩�� is neutrosophic ℵ− interior ideal. Proof: Let ���� and ���� be neutrosophic ℵ− interior ideals. For any ��,��,�� ∈��, we have ����∩��(������)=����(������)˅����(������) ≤����(��)˅����(��)=����∩��(��), ����∩��(������)=����(������)˄����(������) ≥����(��)˄����(��)=����∩��(��), ����∩��(������)=����(������)˅����(������) ≤����(��)˅����(��)=����∩��(��). Therefore ����∩�� is neutrosophic ℵ− interior ideal. □
Corollary 3.3. The arbitrary intersection of neutrosophic ℵ− interior ideals is a neutrosophic ℵ− interior ideal.
Theorem 3.4. If ���� and ���� are neutrosophic ℵ− interior ideals, then ����∪�� is neutrosophic ℵ− interior ideal. Proof: Let ���� and ���� be neutrosophic ℵ− interior ideals. For any ��,��,�� ∈��, we have ����∪��(������)=����(������)˄����(������) ≤����(��)˄����(��)=����∪��(��), ����∪��(������)=����(������)˅����(������) ≥����(��)˅����(��)=����∪��(��), ����∪��(������)=����(������)˄����(������) ≤����(��)˄����(��)=����∪��(��). Therefore ����∪�� is neutrosophic ℵ− interior ideal. □
Corollary 3.5. The arbitrary union of neutrosophic ℵ− interior ideals is neutrosophic ℵ− interior ideal.
Theorem 3.6. Let �� be a regular semigroup. If ���� is neutrosophic ℵ− interior ideal, then ���� is neutrosophic ℵ− ideal.
Proof: Assume that ���� is an interior ideal, and let ��,�� ∈��. As �� is regular and �� ∈��, there exists �� ∈�� such that �� =������. Now, ����(����) =����(��������) ≤����(��), ����(����) =����(��������)≥����(��) and ����(����) =����(��������)≤����(��). Therefore ���� is neutrosophic ℵ− right ideal.
Similarly, we can show that ���� is neutrosophic ℵ− left ideal and hence ���� is neutrosophic ℵ− ideal. □ Theorem 3.7. Let �� be an intra-regular semigroup. If ���� is neutrosophic ℵ− interior ideal, then ���� is neutrosophic ℵ− ideal. Proof: Suppose that ���� is neutrosophic ℵ− interior ideal, and let ��,�� ∈��. As �� is intra regular and �� ∈��, there exist ��,�� ∈�� such that �� =����2��. Now, ����(����)=����(����2����) ≤����(��), ����(����) =����(����2����)≥����(��) ����(����) =����(����2����)≤����(��). Therefore ���� is neutrosophic ℵ− right ideal. similarly, we can show that ���� is neutrosophic ℵ− left ideal and hence ���� is neutrosophic ℵ− ideal. □
Definition 3.8. A semigroup �� is left simple (resp., right simple) if it does not contain any proper left ideal (resp., right ideal) of ��. A semigroup �� is simple if it does not contain any proper ideal of ��.
Definition 3.9. A semigroup �� is said to be neutrosophic ℵ−simple if every neutrosophic ℵ− ideal is a constant function i.e., for every neutrosophic ℵ−ideal ���� of ��, we have ����(��) =����(��), ����(��) =����(��) and ����(��)=����(��) for all ��,��∈��.
Notation 3.10. If �� is a semigroup and �� ∈ ��, we define a subset, denoted by ���� as follows: ���� ≔ {�� ∈��| ����(��)≤����(��), ����(��)≥����(��) ������ ����(��)≤����(��)}.
Proposition 3.11. If ���� is neutrosophic ℵ− right (resp., ℵ− left, ℵ− ideal) ideal, then ���� is right (resp., left, ideal) ideal for every �� ∈��. Proof: Let �� ∈ ��. Then it is clear that φ ≠ Is ��. Let �� ∈ Is and �� ∈ ��. Then ���� ∈ Is. Indeed; Since ���� is neutrosophic ℵ− right ideal and ��,�� ∈��, we get ����(����)≤����(��), ����(����)≥����(��) and ����(����)≤����(��). Since �� ∈ Is, we get ����(��)≤����(��), ����(��)≥����(��) and ����(��)≤����(��) which imply ���� ∈ Is. Therefore ���� is a right ideal for every �� ∈��. □
Theorem 3.12.[4] For any �� ⊆ ��, the equivalent assertions are: (i) L is left (resp., right) ideal, (ii) Characteristic neutrosophic ℵ−structure χL(XN) is neutrosophic ℵ−left (resp., right) ideal.
Theorem 3.13. Let �� be a semigroup. Then �� is simple if and only if �� is neutrosophic ℵ−simple.
Proof: Suppose �� is simple. Let ���� be a neutrosophic ℵ− ideal and ��,�� ∈��. Then by Proposition 3.11, ���� is an ideal of ��.As�� is simple, we have ���� =��. Since �� ∈����, we have
����(��) ≤����(��), ����(��) ≥����(��) and ����(��) ≤����(��).
Similarly, we can prove that ����(��)≤ ����(��), ����(��)≥ ����(��) and ����(��)≤ ����(��). So ����(��)= ����(��), ����(��)= ����(��) and ����(��)= ����(��). Hence �� is neutrosophic ℵ− simple.
Conversely, assume that �� is neutrosophic ℵ− simple and �� is an ideal of ��. Then by Theorem 3.12, χI(XN) is a neutrosophic ℵ− ideal. We now claim that �� =��. Let �� ∈��. Since �� is neutrosophic ℵ− simple, we have χI(XN) is a constant function and χI(XN)(w) =χI(XN)(y) for every �� ∈��. In particular, we have χI(TN)(w)=χI(TN)(d) =−1, χI(IN)(w) =χI(IN)(d) =0 and χI(FN)(w)=χI(FN)(d) =−1 for any �� ∈�� which implies �� ∈��. Thus �� ⊆�� and hence �� =��. □
Lemma 3.14. Let �� be a semigroup. Then �� is simple if and only for every �� ∈ ��, we have �� = ������. Proof: Suppose �� is simple and let �� ∈ ��. Then ��(������) ⊆ ������ and (������)�� ⊆ ������ imply that ������ is an ideal. Since �� is simple, we have ������ = ��.
Conversely, let �� be an ideal and let �� ∈ ��. Then �� = ������, ������ ⊆ ������ ⊆ �� which implies �� = ��. Therefore �� is simple. □
Theorem 3.15. Suppose �� is a semigroup. Then �� is simple if and only every neutrosophic ℵ− interior ideal of �� is a constant function. Proof: Suppose �� is simple and ��, �� ∈ ��. Let ���� be neutrosophic ℵ− interior ideal. Then by Lemma 3.14, we get �� =������ =������. As �� ∈������, we have �� =������ for ��,�� ∈��. Since ���� is neutrosophic ℵ− interior ideal, we have ����(��) =����(������)≤����(��), ����(��) =����(������)≥����(��) and ����(��)=����(������) ≤����(��). Similarly, we can prove that ����(��)≤����(��), ����(��)≥����(��) and ����(��)≤ ����(��). So ���� is a constant function.
Conversely, suppose ���� is neutrosophic ℵ− ideal. Then ���� is neutrosophic ℵ− interior ideal. By hypothesis, ���� is a constant function and so ���� is neutrosophic ℵ−simple. By Theorem 3.13, �� is simple. □
Theorem 3.16. Let ���� be neutrosophic ℵ − structure and let ��, ��, �� ∈ [−1, 0] with−3 ≤ �� + �� + �� ≤ 0. If ���� is neutrosophic ℵ −interior ideal, then (��, ��, ��)-level set of ���� is neutrosophic ℵ −interior ideal whenever ����(��, ��, ��) ≠ ∅. Proof: Suppose ����(��,��,��)≠ ∅ for ��,��,�� ∈ [−��,��] with −��≤ ��+��+��≤��.
Let ���� be a neutrosophic ℵ −interior ideal and let ��, ��, �� ∈ ����(��, ��, ��). Then ����(������) ≤ ����(��)≤ ��; ����(������)≥ ����(��)≥ �� and ����(������) ≤ ����(��)≤ �� which imply ������ ∈ ���� (��, ��, ��). Therefore ����(��, ��, ��) is a neutrosophic ℵ −interior ideal of ��. □
Theorem 3.17. Let ���� be neutrosophic ℵ − structure with ��, ��, �� ∈ [−1, 0] such that −3 ≤ �� + �� + �� ≤ 0. If ���� ��, ���� �� and ���� �� are interior ideals, then ���� is neutrosophic ℵ− interior ideal of �� whenever it is non-empty.
Proof: Suppose that for ��, ��, �� ∈ �� with ����(������) > ����(��). Then ����(������) > ���� ≥ ����(��) for some ���� ∈[−��, ��). So �� ∈ ���� ����(��) but ������ ∉ ���� ����(��), a contradiction. Thus ����(������)≤ ����(��).
Suppose that for ��, ��, �� ∈ �� with ����(������) < ����(��). Then ����(������) < ���� ≤ ����(��) for some ���� ∈ [−��, ��). So �� ∈ ���� ����(��) but ������ ∉ ���� ����(��), a contradiction. Thus ����(������) ≥ ����(��).
Suppose that for ��, ��, �� ∈ �� with ����(������) > ����(��). Then ����(������) > ���� ≥ ����(��) for some ���� ∈[−��, ��). So �� ∈ ���� ����(��) but ������ ∉ ���� ����(��), a contradiction. Thus ����(������) ≤ ����(��).
Thus ���� is neutrosophic ℵ − interior ideal. □
Theorem 3.18. Let ���� be neutrosophic ℵ − structure over ��. Then the equivalent assertions are: (i) ���� is neutrosophic ℵ −interior ideal, (ii) ����ʘ ����ʘ���� ⊆ ���� for any neutrosophic ℵ − structure ����. Proof: Suppose ���� is neutrosophic ℵ − interior ideal. Let �� ∈ ��. For any ��, ��, �� ∈ �� such that �� = ������. Then ����(��)= ����(������) ≤ ����(��) ≤ ����(��)˅����(��)˅����(��) which implies ����(��)≤ ����∘��∘��(��). Otherwise �� ≠ ������. Then ����(��)≤ �� = ����∘��∘��(��). Similarly, we can prove that ����(��)≥ ����∘��∘��(��) and ����(��)≤ ����∘��∘��(��). Thus ����ʘ ����ʘ���� ⊆ ����.
Conversely, assume that ����ʘ ����ʘ���� ⊆ ���� for any neutrosophic ℵ −structure ����.
Let ��, ��, �� ∈ ��. If �� = ������, then ����(������)= ����(��) ≤ (����(��)�� ∘ ���� ∘ ����(��)�� )(��) = ⋀ {����(��)�� ∘ ����)
and ����(������) =����(��) ≤ (����(��)�� ∘ ���� ∘ ����(��)�� )(��) = ⋀ {����(��)�� ∘ ����)
≤ ����(��)��(��)˅ (��)��(��)˅ ����(��)��(��) = ����(��). Therefore ���� is neutrosophic ℵ −interior ideal. □
Notation 3.19. Let �� and �� be semigroups. A mapping ��: �� → �� is said to be a homomorphism if ��(����) = ��(��)��(��) for all ��, �� ∈ ��. Throughout this remaining section, we denote ������(��), the set of all automorphisms of ��.
Definition 3.20. An interior ideal �� of a semigroup �� is called a characteristic interior ideal if ��(��)= �� for all �� ∈ ������(��).
Definition 3.21. Let �� be a semigroup. A neutrosophic ℵ − interior ideal ���� is called neutrosophic ℵ − characteristic interior ideal if ����(��(��)) = ����(��), ����(��(��)) = ����(��) and ����(��(��)) = ����(��) for all �� ∈ �� and all �� ∈ ������(��).
Theorem 3.22. For any L ⊆ X, the equivalent assertions are: (i) L is characteristic interior ideal, (ii) The characteristic neutrosophic ℵ− structure χL(XM) is neutrosophic ℵ− characteristic interior ideal. Proof: Suppose �� is characteristic interior ideal and let �� ∈ ��. Then by Theorem 3.1, χL(XM) is neutrosophic ℵ−interior ideal. If �� ∈��, then ����(��)��(��)=−1, ����(��)��(��)=0, and ����(��)��(��)= −1. Now, for any ℎ∈������(��), ℎ(��)∈ℎ(��)=�� which implies ����(��)��(ℎ(��))=−1,����(��)��(ℎ(��))= 0, and ����(��)��(ℎ(��))=−1. If �� ∉��, then ����(��)��(��)=0,����(��)��(��)=−1, and ����(��)��(��) =0. Now, for any ℎ ∈������(��), ℎ(��)∉ℎ(��) which implies ����(��)��(ℎ(��))=0,����(��)��(ℎ(��))=−1, and ����(��)��(ℎ(��))=0. Thus ����(��)��(ℎ(��))=����(��)��(��), ����(��)��(ℎ(��))=����(��)��(��), and ����(��)��(ℎ(��))=����(��)��(��) for all �� ∈�� and hence χL(XM) is neutrosophic ℵ− characteristic interior ideal.
Conversely, assume that χL(XM) is neutrosophic ℵ−characteristic interior ideal. Then by Theorem 3.1, �� is an interior ideal . Now, let ℎ ∈������(��) and �� ∈��. Then ����(��)��(��)= −1, ����(��)��(��) =0 and ����(��)��(��)=−1. Since χL(XM) is neutrosophic ℵ−characteristic interior ideal , we have ����(��)��(ℎ(��))=����(��)��(��), ����(��)��(ℎ(��))=����(��)��(��) and ����(��)��(ℎ(��))= ����(��)��(��) which imply ℎ(��)∈��. So ℎ(��)⊆�� for all ℎ∈������(��). Again, since ℎ ∈������(��) and �� ∈��, there exists �� ∈�� such that ℎ(��) =��.
Suppose that �� ∉ ��. Then ����(��)��(��) = 0, ����(��)��(��) = −1 and ����(��)��(��) = 0. Since ����(��)��(ℎ(��))= ����(��)��(��), ����(��)��(ℎ(��))= ����(��)��(��) and ����(��)��(ℎ(��))= ����(��)��(��), we get ����(��)��(ℎ(��))= 0, ����(��)��(ℎ(��))= −1 and ����(��)��(ℎ(��))= 0 which imply ℎ(��) ∉ ��, a contradiction. So �� ∈ �� i.e., ℎ(��) ∈ ��. Thus �� ⊆ ℎ(��) for all ℎ ∈ ������(��) and hence �� is characteristic interior ideal. □
Theorem 3.23. For a semigroup ��, the equivalent statements are: (i) �� is intra-regular, (ii) For any neutrosophic ℵ −interior ideal ����, we have ����(��) = ����(��2) for all �� ∈ ��. Proof: (��) ⇒ (����) Suppose �� is intra-regular, and ���� is neutrosophic ℵ − interior ideal and �� ∈ ��. Then there exist ��, �� ∈ �� such that �� = ����2��. Now ����(��) = ����(����2��)≤ ����(��2)≤ ����(��) and so ����(��) = ����(��2), ����(��) = ����(����2��)≥ ����(��2)≥ ����(��) and so ����(��)= ����(��2), and ����(��)= ����(����2��)≤ ����(��2)≤ ����(��) and so ����(��) = ����(��2). Therefore ����(��)= ����(��2) for all �� ∈ ��. (����) ⇒(��) Let (����) holds and �� ∈ ��. Then ��(��2) is an ideal of ��. By Theorem 3.5 of [4], ����(��2)(����) is neutrosophic ℵ −ideal. By assumption, ����(��2)(����)(��) = ����(��2)(����)(��2). Since ����(��2)(��)��(��2)= −1 = ����(��2)(��)��(��2) and ����(��2)(��)��(��2)= 0, we get ����(��2)(��)��(��)= −1 = ����(��2)(��)��(��) and ����(��2)(��)��(��2)= 0 which imply �� ∈ ��(��2). Hence �� is intra-regular. □
Theorem 3.24. For a semigroup ��, the equivalent statements are: (i) �� is left (resp., right) regular,
(ii) For any neutrosophic ℵ −interior ideal ����, we have ����(��) = ����(��2) for all �� ∈ ��. Proof: (��) ⇒ (����) Let �� be left regular. Then there exists �� ∈ �� such that �� = ����2 . Let ���� be a neutrosophic ℵ −interior ideal. Then ����(��)= ����(����2)≤ ����(��) and so ����(��)= ����(��2), ����(��)= ����(����2)≥ ����(��) and so ����(��) = ����(��2), and ����(��) = ����(����2)≤ ����(��) and so ����(��) = ����(��2). Therefore ����(��)= ����(��2) for all �� ∈ ��. (����) ⇒ (��) Suppose (����) holds and let ���� be neutrosophic ℵ −interior ideal. Then for any �� ∈ ��, ����(��2)(��)��(��)= ����(��2)(��)��(��2)= −1, ����(��2)(��)��(��) = ����(��2)(��)��(��2)= 0 and ����(��2)(��)��(��)= ����(��2)(��)��(��2)= −1 which imply �� ∈ ��(��2). Thus �� is left regular. □
Conclusions
In this paper, we have introduced the concepts of neutrosophic ℵ − interior ideals and neutrosophic ℵ − characteristic interior ideals in semigroups and studied their properties, and characterized regular and intra-regular semigroups using neutrosophic ℵ-interior ideal structures. We have also shown that R is a characteristic interior ideal if and only if the characteristic neutrosophic ℵ−structure χR(XN) is neutrosophic ℵ−characteristic interior ideal. In future, we will define neutrosophic ℵ−prime ideals in semigroups and study their properties.
Reference
1. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
2. Abdel-Basset, M., Ali, M., & Atef, A. Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers & Industrial Engineering 2020, 141, 106286. 3. Abdel-Basset, M., Ali, M., & Atef, A. Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing 2020, 76(2), 964-988. 4. Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in
Industry 2019, 106, 94-110. 5. Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. A Bipolar Neutrosophic Multi Criteria
Decision Making Framework for Professional Selection. Applied Sciences 2020, 10(4), 1202. 6. Abdel-Basset, M., Mohamed, R., Elhoseny, M., & Chang, V. Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing 2020, 145, 106941.
7. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization
Theory Based on Neutrosophic and Plithogenic Sets, Academic Press 2020, 1-19. 8. Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied
Soft Computing 2019, 77, 438-452. 9. Chalapathi, T; Madhavi, L. Neutrosophic Boolean rings. Neutrosophic Sets and Systems 2020, 33, 59-66. 10. Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ℵ −ideals in semigroups. Neutrosophic Sets and Systems 2019, 28, 273-280. 11. Gulistan, M.; Khan, A.; Abdullah, A.; Yaqoob, N. Complex Neutrosophic subsemigroups and ideals.
International J. Analysis and Applications 2018, 16, 97-116.
12. Jun, Y. B.; Smarandache, F.; Ozturk, M. A. Commutative falling neutrosophic ideals in BCK-algebras.
Neutrosophic Sets and Systems 2018, 20, 44-53. 13. Kehayopulu, N. A note on strongly regular ordered semigroups. Sci. Math. 1998, 1, 33-36. 14. Khan, M. S.; Anis; Smarandache, F.; Jun,Y. B. Neutrosophic ℵ −structures and their applications in semigroups. Annals of Fuzzy Mathematics and Informatics 2017, 14(6), 583–598. 15. Mordeson, J.N.; Malik, D. S.; Kuroki. N. Regular semigroups. Fuzzy Smigroups 2003, 59-100. 16. Muhiuddin, G.; Ahmad, N.; Al-Kenani; Roh, E. H.; Jun, Y. B. Implicative neutrosophic quadruple
BCK-algebras and ideals. Symmetry 2019, 11, 277.
17. Muhiuddin, G.; Bordbar, H.; Smarandache, F.; Jun, Y. B. Further results on (2;2)-neutrosophic subalgebras and ideals in BCK/BCI- algebras. Neutrosophic Sets and Systems 2018, Vol. 20, 36-43. 18. Muhiuddin, G.; Kim, S. J.; Jun, Y. B. Implicative N-ideals of BCK-algebras based on neutrosophic
N-structures. Discrete Mathematics, Algorithms and Applications 2019, Vol. 11, No. 01, 1950011. 19. Muhiuddin, G.; Smarandache, F.; Jun, Y. B. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras. Neutrosophic Sets and Systems 2019, 25, 161-173. 20. Porselvi, K., Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ℵ −bi−ideals in semigroups.
Neutrosophic Sets and Systems 2020, 35, 422-434. 21. Prakasam Muralikrishna.; Surya Manokaran. MBJ – Neutrosophic �� – Ideal of �� – Algebra.
Neutrosophic Sets and Systems 2020, 35, 99-118. 22. Smarandache, F. A. Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set,
Neutrosophic Probability. American Research Press 1999, Rehoboth, NM. 23. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl.
Math. 2005, 24(3), 287-297. 24. Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338 - 353.