flow UK - Quarter 1 2019

Page 22

22 FOCUS ON HYGIENE

Choose wisely for your hygienic applications Suzanne Gill looks at pump system requirements for use in hygienic applications and finds out why it is so important to specify the right equipment and materials.

P

ut simply, in addition to helping ensure consumer safety, correctly specifying a pump system for use in a hygienic application will help prevent bacterial growth, batch contamination and ultimately will reduce product waste. To achieve this, hygienic equipment needs to be carefully designed to ensure it is able to resist the build-up of process soils, and it must be easy to clean between uses. There are also regulatory requirements to be considered when it comes to hygienic equipment. The Machinery Directive EC 2006/42, for example, requires that machinery intended for use with foodstuffs is designed and constructed in such a way as to avoid any risk of infection, sickness or contagion. This means that all surfaces in contact with foodstuffs must be smooth and have neither ridges nor crevices which could harbour organic materials. And they must be easy to clean and disinfect where necessary after the removal of any easily-dismantled parts. Expert advice relating to the design features of hygienic equipment is available from the European Hygienic Engineering and Design Group (EHEDG), a global consortium of over 400 food processing equipment manufacturers whose aim is to ensure the hygienic design of process equipment. It publishes guideline documents and sets best practice, as well as certifying that equipment meets the highest standards of food hygiene, providing a globally recognised test method for establishing the cleanability of hygienic equipment, using a specified cleaning and testing regime. The latest version of the EHEDG Guidelines was published in March 2018 and this document can be freely downloaded from www.ehedg.org. Equipment certified by EHEDG offers the user a guarantee that the product meets strict engineering principles, stringent design guidelines and test procedures. EHEDG was started by Unilever in 1989 following a series of food contamination issues. Despite its best efforts to clean the plant between production runs, the company found that contamination and spoilage organisms were still being carried from one batch of food to the next. Unilever realised that the problem must, therefore, lie with the design of equipment. With a number of its competitors suffering from the same issues, EHEDG was born. OPERATOR BENEFITS It is important to bear in mind that hygienic design is not just about ensuring product safety. It can also offer operator benefits in terms of reductions in cleaning times as well as providing substantial savings in the

Quarter 1 2019

amount of water and chemicals needed for cleaning. For this reason the ease of cleaning and maintenance of pump systems should form part of the total cost of ownership (TCO) equation. Capital outlay forms just a fraction of the total operating expense. Watson Marlow Fluid Technology Group (WMFTG) warns against falling into the ‘cheapest is best’ trap. This, says the company, is short sighted for hygienic applications and it is important to look at overall product performance, reliability and suitability of equipment for an application. There is little point in buying a cheap product if it ultimately costs more in terms of maintenance, installation or integration into a machine or system. The MasoSine pump range, for example, has full steam-in-place and clean-in-place compliance and offers the reassurance that it has been designed and tested to meet the requirements of EHEDG Type EL Aseptic Class I. BEYOND THE PUMP Paul Green, UK sales manager for AESSEAL, moves the discussion on. He explained that ensuring you have a suitable pump system requires more than just specifying a hygienic pump. He said: “Mechanical seals are crucial to the reliable function of processing equipment. Despite this AESSEAL has identified a serious knowledge gap around key pieces of regulation relating to them. As a result, mechanical seals manufactured from unsafe materials are routinely specified in pump design and ongoing maintenance, creating a hygiene risk at several points along a production line.” Food Contact Materials regulation EC 1935/2004 states that any mechanical seal on a food and drink production line must be 100% traceable and a statement of compliance must be clearly marked on the packaging it comes in.

> 24

www.bpma.org.uk


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.