FunctionalG roup Interconversion C-OH
C-OR
C-H 1- a b c d e f g h i j
C-OH C-X C-NH2 C-S C=O C=C C-CN C-CO2H C-CHO
2- a C-OH b C-(OR)2 c C(O)OR d C-H e C=C f C-CN
C(O)X C=C
C C 6- a
RC CH
b c d e
RCH2-SO2Ph C C C=C RCH(CO2H)-CH3
f g
-C(O)-CH3 O
h i
O X
O
CRR'=CHX
3- a b c d e f g h i j
C-H C-OR C-X C-NH2 C-OCH2OR C-OC(O)R C---OH C=O C O C=C C-X
7- a CH-CX b CH-CH c CX-CY X
d e
C
C
-C(O)-CH3
f C=O g C C h C CH i C=C j C-OH
C=O
C-N
8- a C-OH b C-NH2 c C=O d C(O)Z e C-H
4- a b c d e f g h
C-H C-N C-X C-OH C=O C=C C-C(O)Z C N
C-CH3 9- a C-X
5- a b c d e f g h i j k
C=O C=S C=N-OH, C=N-H C C C N C=C-OR; C=C-SR C(OR)2; C(SR)2 C-OH C-NH2; C-NO2 C-Br C-H
C-H 1- a b c d
C-OH C-X C-NH2 C-S
e C=O f C=C g C-CN h C-CO2H
C-CHO C(O)X
i j
J. Org. Chem. 2000, 65, 6179
1-a C-OH
O
C-H
RCH2 O S CH3 O O
O
(1). for 1', 2' alcohol: i. p-TsCl // LiAlH4
CH3
S Cl O
RCH2OH
LiAlH4
RCH2 O S CF3 O
RCH2-H
dry Py
Ph
ii. Ph2SiHCl / InCl3
Ph2SiHCl / InCl3
Ph
Ph
OH
H
Cl2In
CH3
OH CH3
JOC, 2000, 65, 6179.
Cl
C O Ph
SiPh2
InCl3
Cl
S
CH3 i. ClC(S)OPh // n-Bu3SnH
mesylate
methanesulfonyy chloride (l) ~ $ 30 / Kg
triflate
purification textbook dry pyridine: from CaH2 and distilled
H O
JOC, 2001, 66, 7741.
(2). for 3' alcohol:
toluenesulfonyl chloride (s) ~ $ 30 / Kg
Ph via:
CHCl2 rt, 3 hr
tosylate
Ph
Ph
ii. Et3SiH / Lewis acid
CH3
RCH2 O S O O
CH3 n-Bu3SnH CH 3
H CH3
via:
indium trichloride a unique Lewis acid catalyst, acceleratedeoxgyenation
S O C O Ph
thiocarbonate (an ester) steric OK
SnBu3 S O C O Ph
1-b
C-X
C-H Br i n-Bu3SnH / AlBN
n-Bu3SnH AIBN
(1). free radical reduction ii NaBH4 / InCl3 / CH 3CN
JACS, 2002, 124, 906.
i LiAlH4 (2). hydride reduction
Bu3SnH: (l), easy to remove Ph3SnH: (s), hard to remove Me3SnH: too volatile, toxic
radical reagent
JACS, 1972, 94, 8905. JOC, 1969, 34, 3923.
ii NaBH4 iii NaBH3CN
THL, 1969, 3095.
hygroscopic, dried self, suggest: buy small amount each time unstable in acid, form H2 gas; stable in weak base
NaBH3CN: stable at pH 5-6
iv LiBHEt3 (super hydride)
(3). metal reduction
H
JOC, 1976, 41, 3064.
i Na / NH3; Li / NH3; Na / EtOH ii Zn; Fe; Sn; Mg
Br
Mg / Et2O
H
H2O
(Grignard reagent) Br
n-BuSnH N
N
- N2 CN CN (AIBN) azobisisobutyronitrile radical initiator
CN
R
H R
n-BuSn n-BuSnBr
n-BuSnH
n-BuSn
R
1-c C-NH2
C-H p-TsCl
(1).
BuLi
RCH2NH2
LiAlH4
ArSO2Cl RCH2NH2 Hinsberg's test
RCH2NH
RCH2-H
(2).
NaH
Ar-NH2
NaH
p-TsCl
SO2Ar
LiAlH4 RCH2-H SO2Ar tosylimide weaker C-N bond
Ar-H
O
NH2Cl (3). Ar-NH2
NaNO2 H3PO2 HCl
via:
-
1-d
C-S
C-H
Ag2O
radical mechanism
RCH2NMe3 OH-
N
SO2Ar
Ar
Ar-H
RCH2NMe3 X
(4). RCH2NH2
RCH2
S Cl
CH3
RCH2N SO2Ar
- BuH
tosylamide
O
p-TsCl
BuLi
SO2Ar
R=CH2
N
NaH NH2 - ArSO H 2
Ar
N
(2). Li / NH3
N
N
Ar-H
JOC, 2001, 66, 8293.
R-CH3
JOC, 1985, 50, 427.
EtO2C
EtO2C
(1). Raney Ni
Ar
NH
HN
N O
MeO2C
CH2Ph
Raney Ni
Raney Nickel: Ni - Al alloy, suspension HN
N CH2Ph
S MeO2C
H
(3). LiAlH4 / CuCl2 JCS Perkin Trans I, 1973, 654. NaBH4 / NiCl2 NaBHEt3 / FeCl2 (or CoCl2, VCl3) Chemistry:
R-SH R-S-R R-SS-R remove: Hg+; Ni
burn filter paper if dry mechanism uncertain, probably radical
R2SO R2SO2
1-e
C=O
C-H
SH
HS best suitable for aryl ketone (ArCOR); not good for conjugate ketone OH O preparation: HgCl2 into Zn (1). Clemmensen reduction: Zn-Hg / HCl
C6H13
acidic
Ra(Ni) S H S thioketal
BF3, CH2Cl2
O
H
H
H
thioketal: inert to LAH; react with RaNi; smell terrible and stay long; discard shoses
similar: Sn / HCl SH (2). thioketal:
SH
/ BF3, CH2Cl2 // RaNi
(3). Wolff-Kishner reduction:
neutral
N2H4, OH-, heat
basic O
(4). Pd-C / HCO2NH4: mild, efficient
N NH2
O N2H4 Pd-C
Ph
(5). Tosylhydrazone reduction (Shapiro reaction): (modified Wolff-Kishner reduction):) TsNHNH2 // RED
Ph
NN H
OH-
H
OHN N H - N2
N N Ph
major side-product: drawback of the reaction
Ph
HCO2NH4
Synthesis, 2001, 16, 2370.
H
N N Ts
H
for acyclic, may C=C side product
H(6). enol derivatives:
Tf2O /
N
O
limit: for Îą-H compd.
// H2 / PtO2
B H
RED choice: MeLi; NaBH3CN (good) LAH, NaBH4: 2 group compete at Stanford U. B2H6: very flamable, fire if shoot out from syringe
O
O (7). Et3SiH / CF3COOH
NO2
Et3SiH Ph
NO2
CF3COOH JOC, 1973, 38, 2675.
O
Ph H O C C
O
CF3 S O O
S CF3 O
OTf C C
H H H2 PtO2
N
PtO2 + H2 = Pt
C C H
H H
1-f
C-C-H
C=C
catalyst: Pd-C PtO2 Rh-C; Rh-Al2O3; RhCl(PPh3)3 Ni
(1). H2 / cat
H2 R
PtO2 HO
H2 , PtO2
R N R = NHAc , NH2
TFA , 60 ℃
N
HO H H OH OH stereoselcetive: same side as OH (due to H bond)
in acetic condition JOC, 2002, 67, 7890.
(2). HN=NH (diimide) JOC, 1993, 58, 4979. (3). B2H6 // RCO2H, heat
O
RhCl(PPh3)3
O RhCl(PPh3)3
benzene 12 hr
O (4). n-Bu2SnI / MgBr2-Et2O // H3O+ O O Wilkinson's catalyst: regioselective, prefer isolated double bond soluble in org solvent, 9 Ph group $ 50 / 25 g via:
CO2Me
CO2Me
O
JACS, 1979, 101, 7020.
H H
CH3CO2D B R R
N2H2: unstable; generated in situ from "DEAD" (diethyl azodicarboxylate) or from: N2H4 + H2O2; N2H4 + Cu(II) + O2; NH2OH + NH2OSO3
D
JCS, PT1, 1986, 546.
prepare isotope EtO2C N N CO2Et
OEt O
R
OH-
HO2C N N CO2H H O H O N N O O
OEt n-Bu2SnI
JOC, 2001, 66, 8690.
- 2 CO2
R R
I
R
syn-addition
I
OEt not radical mech.
via: O
R
- N2
OEt
H3O+
MgBr2-Et2O
H N N H
R C C
O Sn
H
H R R
R
O Sn R
R C C R H H
1-g C C N
C-H CN: ~ X (pseudo halogen), form KCN, NaCN with IA elements not quite same: not for H-
(1). K / Al2O3 JOC, 1980, 45, 3227 K / HMPA
characteristcs: IR, CMR
R C C N
which is δ+ ?
(2). Na / NH3
toxic?
HMPA: hexamethylphosphoramide (Me2N)3P=O b.p. ~ 230 C = HMPT: hexamethylphosphoric triamide (Me2N)3P=O highly toxic, cancer suspected agent? modified to: N N yes for white mouse, uncertain for human O
Ph
1-h C CO2H
C-H
R
H
solvent
O
(1). particular structure: β-CO2
Ph
other Cl sources: PCl5; (COCl)2 oxalyl chloride (3). organic electrochemistry CO2H
CO2H
N R
O
(2). normal structure: SOCl2 // PhSeH // n-Bu3SnH
Ph
O Ph CO2
- CO2
Ph
O RCH2
C OH
O SOCl2
RCH2
C Cl
R
O
PhSeH RCH2
Ph H
R
R pyridinium betaine
e-
N
C SePh
n-Bu3SnH
RCH2 H
(radical mechanism?) organoselenium chemistry
1-i
CHO
C-H O
O Cl (1). RhCl(PPh3)3 (Wilkinson's cat) (2).
PPh3
Rh
PPh3
PPh3
- PPh3
Rh(DPPD)2+ ClDPPD = Ph2P-CH2CH2-PPh2
Rh
1-j
C(O)X
C O
oxidative addition
Rh
Cl
Cl
Cl R H
PPh3
reductive elimination
R Cl
R C H
PPh3
O R
PPh3 PPh3
-CH3
HSiEt3 / B(C6F5)3
Rh
PPh3 PPh3
H
R
rearrangement
Cl
H
R C
CH3
JOC, 2001, 66, 1672.
Rh
+
C O
PPh3 PPh3
RC-OR 2- a b c
RC-OH RC-(OR)2
d e
RC-H RC=C
RC(O)OR
f
RC-CN
2-a RC-OH
RC-OR
trimethyloxonium tetrafluoroborate generate H2, or butane gas JOC, 1988, 53, 2985. JCS, 1930, 2166. base: NaH, n-BuLi, Ag2O + CH3-X: CH3I; CH3OSO2R; (CH3)3O BF4 , (CH3)2SO4
application: for protecting group (1). Me: base / CH3-X RC-OCH3
PhCH2-Cl PhCH2-X: PhCH2-Br: reactivity good PhCH2-I: reactivity better than PhCH2Br, RC-OCH2Ph = RC-OBZl = RC-OBn generated in situ, PhCH2Br + NaI Br (3). allyl: base /
Me group: i. Williamson ether synthesis, SN2 type ii. not a good protecting group, too stable to convert back to alcohol Benzyl- group: i. abbreviation: benzyl = PhCH2 = Bzl = Bn ii. deprotecting: H2 / Pd-C
(2). PhCH2-: base / PhCH2-X
RC-OCH2CH=CH2 t-Butyl group:
acid: H2SO4 H3PO4 BF3-Et2O
(4). t-Bu: acid cat / RC-OtBu
Willianson synthesis (base, SN2) not work: elimination side-product with base CH3 CH3
(5). trityl: py // Ph3C-Br RC-OCPh3 = RC-OTr (6). silyl: Et3N / R3SiCl RC-OSiR3
Si CH3
Et3N / TMS-Cl
CH3
/ TBDMS-Cl N H
(8). ArF / CsF
ROH
F
CsF
RC-OR
R
OR O
activator / hydride source
R O
(1). hν / HSiCl3 (2). HCl / NaBH3(CN) (3). AlCl3 / LiAlH4
Ph Si
Cl
Silyl group: i. Willianson synthesis OK: Si - Cl bond long ii. stability of silyl in acid/base: RC-O-TBDPS > RC-O-TBDMS >> RC-O-TBS iii. abbrev.: TBDMS = tert-butyl-dimethylsilyl = TBS =
NO2 RO
OR
2-b RC-(OR)2
Cl
Ph
NO2
TBDPS-Cl
CH3 Si
N
(7). acetal / ketal: (see 3e)
Br base Trityl group: (tirphenylmethyl) i. SN1 reaction ii. abbreviation: triphenylmethyl = trityl = -CPh3 = -Tr (RO-Tr) iii. advantage: high MW, easy to handle (small amount become large amount)
Cl
RCH2 RCH2
aromatic substitution reaction usually contain NO2, F as leaving group
OR OCH2CH2OH
OCH3
HCl
OCH3
OCH3 O O
OH
AlCl3 LiAlH4
O
H
OCH3
2-c
O R C OR
RC-OR
SiCl3 t-BuO RaNi with C=S
radical mechanism:
O
(1). hv / HSiCl3
O
(2). HCl / tBu-OO-tBu
O
HCl
JOC, 1974, 39, 2470.
tBu-OO-tBu (3). Lawesson reagent / RaNi (4). BF3 / NaBH4
S
O
limit for: lactone
Lawesson reagent
O
S
S
P CH3O
OCH3
S
O
O
P
Ar
O
S
~ P4S10 Lawesson reagent JOC, 1983, 48, 1127.
Ar
O
Ar
NaBH4
O
Ar
O
O
see mech-13 O I
RC-OR
HO
I2 / Pb(OAc)4
(1). I2 / Pb(OAc)4 / hv Angew Chem Int Eng., 1964, 8, 525. limit: for 5~6 ring neighboring OH group
hv
e / Pt (2). Organoelectro Chemistry:
O
BF3
OH
2-d RC-H
RaNi
O
e- /
OH
N
Pt, R4NOTs
O
H N O N H
R'MgBr
R4NOTs Ph
Ph (3). NCS / MeOH JOC, 2002, 67, 4498. limit: for allylic alcohol
N
NH2
NCS MeOH
R' OH
Ph
(79 %)
H H
N
H N O N H
OCH3 NH2
I
HO
2-e
C-C-OR
C C
O
O C
2-e.1 C C
C=C-OR
C
O
Hg(O C CF3)2
+ O Hg
peracid:
EtOH
C CF3
OEt
NaBH4
CF3CO3H
C-C-OR CO2H CO3H
i. Hg(OCOCF3)2, ROH // NaBH4 ii. HCHO Prins Rxn
H2O
HCHO (aq)
Synthesis, 1980, 871.
O C
O
OH
O
OH
trans-diaxial attack!
Br
stereoselective
iv. t-BuOOH, Mo(CO)6 HO
HO
v. KHSO5 potassium hydrogen preoxide convenient, inexpensive, powerful.
JOC, 1980, 45, 4758.
JOC, 1982, 47, 2670.
conversion: O OH O
HOAc
OAc OAc
C=C-OR
O
OSO2Me
O O
O
OH
O
Heterocyclic Chem, 1990, 27, 583.
via:
Br
H
C-C-OR Et
ROH / HCl
JOC, 2001, 66, 521.
HO2C
Br2
2-f C C N
CO2Et H OH (+)-diethyl tartrate HO H chiral source CO2Et
JACS, 2001, 123, 2933.
HO2C
Br2 / ROH
Br
O
vi. H2O2, t-BuOH, MnSO 4 // NaHCO 3, pH 8 new, cheap,, simple, green chemistry
O
HOBr generation: NBS + H2O + DMSO
racemic products Sharpless O
OH
O racemic products
O
HOBr H2O
ii. via halohydrin: HOBr, H2O // K2CO3 iii. Sharpless asymmetric epoxidation: t-BuOOH, Ti(OiPr)4 // (+)-diethyl tartrate
O
mCPBA
i. peracid
2-e.3 C C
O
OH
MCPBA (m-chloroperoxybenzoic acid) stable solid, 85 % (contain MCBA) for safety
Cl
limit for allyl alcohol, high e.e.
C
peroxybenzoic acid
HCHO CO3H
via:
2-e.2 C C
good result
CO3H
C
N
EtOH HCl
Et C
OEt OEt OEt
JACS, 1942, 64, 1825.
OH OSO2Me
C-OH 3- a C-H b C-OR c C-X
g C---OH h C=O i C O j C=C
d C-NH2 e C-OCH2OR f C-OC(O)R C-OH
3-a C-H
NH2
NO2
OH
[PhI(OAc)-O]2-Mn(TPP)
e-
JACS, 1983, 105, 2920.
3-a.1
H2O
JACS, 1983, 105, 3515. H
OH
OH R
(1). [PhI(OAc)-O]2-Mn(TPP) Se
indirect
O R
3-a.2
SeO2
H
OH
for allyl H:
R
SeO2
H HO
O
OH
Se
OH
OSiMe3
Me3SiCl
MCPBA
Ph
O H
O
OH
1. Me3SiCl Ph
(1) Me3SiCl // MPCBA//H3O+
Ph OH
O 2. MCPBA
Ph OH
OH
Ph
RO (2). O2, LDA, (EtO)3P
JACS, 1975, 97, 6909.
RO
O2, LDA, CO2R
(EtO)3P
O
via:
RO OH CO2R
RO
O
OSiMe3
O
H3O
JOC, 1975, 40, 3427.
Ph O
OSiMe3
3-a.3
Se(OH)2
OH
JACS, 1972, 94, 7154.
OH
H
O
Se
O
Ph
O
R
H2O
(2). organic electrochemistry (3). X2 / hv // OH-
R
R
O P
OEt OEt
OH
3-b C-OR
C-OH RCH2-O-CH3
i. TMSI ii. BF3-Et2O // R-SH (or HS-CH2CH2-SH)
application: deprotecting
Me3Si-I - I-
iii. BBr3 / CH2Cl2, 0-10 C (1). Me: RC-OCH3
iv. AlCl3 / RSH v. N H
(2). PhCH2RC-OCH2Ph = RC-OBZl = RC-OBn
RCH2-O-CH3
THL, 2001, 42, 9207. vi.
Cl- / heat
/ LiI, heat N
BF3 RCH2
O
SiMe3
I-
CH3
- CH3I
ii.
O Cl
RCH2-OH
- RSCH3
CH3
CO2Me OCH3 OH
- toluene
CN
O CH2
OCH3
O O C
[O]
OH
heat N H Cl- - CH3Cl
+
H2 / Pd-C
O CH2
CN , OH-
RCH2-OH
RCH2-O-SiMe3
RSH
BF3
AlCl3 CO2Me HO CH3(CH2)11 SH odorless
MeO
O
RC-OCH2CH=CH2
O
i. H2 / Pd-C
Cl
(3). allyl:
RCH2
OCH3
OH-
OH
RhCl(PPh3)3, H3O+ JOC, 1973, 38, 3224. RhCl(PPh3)3
(4). t-Bu:
(5). trityl:
RC-OtBu
i. TFA (CF3CO2H) ii. HBr / HOAc iii. TMS-I
RC-OCPh3 = RC-OTr triphenylmethyl
need stronger acid
H O
H3O+
O
H
CF3CO2H
H O
- EtCHO
O OH
- Me3C i. HOAc: weak acid: good leaving group ii. H2 / Pd-C: reserve, too strong, might affect other group
H
+ OCOCF3
H O CPh3 HOAc
H OH
- Ph3C (6). silyl:
RC-OSiR3 -SiMe3 -SiBuMe2 -SiBuPh2
i. F- : HF, Py-H+ F-; n-Bu4N+ F-
Si - F: 140 Kcal/mol
ii. mild base: not for TBDPS organic base: TMG Organic Letters, 2003, 5, 209. iii. mild acid: only for TMS, not for TBDMS, TBDPS if HOBr: OK for TMDMS
JOC, 1987, 52, 4973.
OR
TMG
NH OH
CH3CN 1h R = TBDMS, TBDPS, Ac
TMG:
N
N
1,1,3,3-Tetramethylguanidine
OH
3-c C-X
not practically useful: R-OH cheaper than R-X
C-OH
(1). OH(2). KO2 / DMSO
JOC, 1975, 40, 1678.
THL, 1975, 3183.
(3). Ag2O / H2O
3-d
C-NH2
C-OH
NH2
N2+X-
NO+
OH H3O+
(1). HNO2 // H3O+ NH2
(2). Na2[Fe(CN)5(NO)] / K2CO3 / H2O
RO2C (CH2)3CHR
OH
Na2[Fe(CN)5(NO)]
JOC, 1986, 51, 3913.
RO2C (CH2)3CHR
K 2CO3 / H2O
H3O+ O
H
3-e
R-OC(O)R
+
O
R-OH
HO
OH
O O
OMe OMe
H
H3O+
+
MeOH
(1). Symmetry: H3O+
ketal: use H3O+
RO-CH2OCH3
acetal: use H3O+
RO-CH2OCH2CH2OCH3 (2). unsymetry: RO-MOM RO-MEM RO-MTM RO-THP
JOC, 1984, 49, 3912. i. H3O+; ii. HCl / MeOH; iii. BBrMe2
p-TsOH / MeOH
actually, acetal exchange rather than hydrolysis
H3O+ CH3OCH2CH2OCH2Cl
H3O+
RO-CH2SCH3
RO-MOM highly toxic, world top 10 killer, discard RO-H
not toxic not dangerous
RO-H
CH3SCH2Cl
i. H3O+; ii. ZnBr2 / CH2Cl2; iii. BBrMe2 HgCl2 / CH3CN (aq.)
RO-H
CH3OCH2Cl
R O
H3O+ O O
p-TSOH or CSA
RO-H
p-TSOH
CH3
(p-toluenesulfonic acid) THP: tetrahydropyran
SO3H
SO3H O
CSA (camphorsulfonic acid)
O
3-f
R OH
R' C O R
common esters: formate = HCO2R ------------------------ KHCO3 (or K2CO3, or NH3) / MeOH trifluoroacetate = CF3CO2R ------------ KHCO3 (or K2CO3, or NH3) / MeOH acetate = CH3CO2R = ROAc --------- KHCO3 (or K2CO3, or NH3) / MeOH
(1). base: KHCO3 (or K2CO3, NH3) / MeOH; NaOH (1 %, or 0.5 N)
benzoate = PhCO2R = ROBz -------- NaOH (1 %) / MeOH
(2). acid: H3O+
pivalate = tBu-CO2R = ROPv ------ NaOH (0.5 N) / EtOH
Na / NH3 (3). RED: electron: i hydride: LiAlH4 ii. NaAlH2(OCH2CH2OCH3) CO2CH3
AGIEE, 2002, 41, 3028. OH
NaAlH2(OCH2CH2OCH3)2
CH3O2C
HCl
selectivity:
OH
MeOH
HO
C6H6, r.t.
O
3-g
C OH Mitsunobu inversion
O
LAH
C OH
O
(or K2CO3 / MeOH)
JOC, 1987, 52, 4235.
OH
HO
O
Synthesis, 1981, 1.
PPh3 / DEAD / RCO2H // OH-
O
HO
O
P-TsOH
O O
MeOH
PPh3 / DEAD * PhCO2H
HO
PPh3
EtO2C N
N
CO2Et
HO*
EtO2C N NH CO2Et PPh3
ROH
EtO2C N NH Ph
P O R
Ph Ph
CO2Et
* PhCO2H
O Ph
C
* OR
OH
-
* R-O-H
3-h C O (1). regioselective:
C OH O
LAH ------------ almost all: ald, ketone, acie, ester, acyl X, anhydride (but LiBH4 work for ester) NaBH4 --------------- not for acid, ester B2H6 --------------- not for ester, acyl X, anhydride; solvent: THF, SMe2
OH
BH3 / THF
99.5 % trans
reflux 5 d
JOC, 2001, 66, 7514.
O Ph
H O
Synthesis, 1994, 1007. from bottom: Al (OiPr)3 / iPrOH ----------- Meerwein-Pondorf-Verley rxn IrCl4 / iPrOH / P(OMe)3 ------ Henbest rxn LiBH(secBu)3 ------------------ H. C. Brown JACS, 1972, 94, 7159. (3). HCHO reagent: JACS, 1935, 511, 903. HCHO / KOH HCHO / Ca(OH)2 Org.Syn, 1925, 4, 53. HCHO Me CHO Me KOH HCHO CH3 CHO
LAH
+
O Al(OiPr)2
O OiPr Al OiPr O
H
O
IrCl4
O
H
IrCl3
JCS, 1969, 1653.
JCS, 1970, 785.
OH
OH
OH
O
JACS, 1978, 100, 2226.
[H]
+
THL, 2000, 41, 5631. 49% trace
51% 99%
Luche Reduction
influence of the lanthanide on the regiochemistry
3-i
C OH
R
R3B C
O
R3B, HOCH2CH2OH // H2O2 // NaOH JOC, 1986, 51, 4925.
R
B
R C
B
O O
R3C
B O
OH
O O
H2O2 R3C
R
C
R
R
R
R
B O O
O
B
C
HOCH2CH2OH R
R3C
B
O
O H
O R3C
H
generate acetone opposite to Oppenauer oxidation
OH
NaBH4 NaBH4 / CeCl3
C O
OH
H
OH
C(CH2OH)4
Ca(OH)2
regioselectivity determined by reactivity. reactivity: ald > ketone > ester
OH
O Al(OiPr)3
JOC, 2003, 68, 2030.
Ph
(2). stereoselective: from top: LiAlH4; NaBH4; Na / NH3
H OH NO2
BH3 / SMe2
NO2
O
B O
H2O
R3C
OH
R
C OH
C C
3-j
RCH C
Hg(OAc)2
R
R CH C
R
R
NaBH4
R
R CH C
Hg OH OAc
H2O oxymercuration - demercuration:
H
R
Hg (OAc)2: toxic, hard to remove
OH
H2O2: dangerous, skin whiten, metal decompose
C OH
3-j.1 C C
B2H6
hydration:
(1). H3O+
hydroboration:
(2). Hg(OAc)2, H2O // NaBH4
(40%-60%) H H2O2 B OH
H B
R
(3). B2H6, H2O2 / OH-, H2O
C C OH OH
3-j.2 C C
B
OH
(1). KMnO4 / NaOH cis cis (2). OsO4 tran (3). H2O2/HCO2H cis
(4). Na / EtOH
+
OH JCS, 1946, 2988.
tran
OH
Ann, 1949, 561, 165.
e c i t c a r p
OH
OH O
3-k
OH
JACS, 1945, 67, 1786.
OH
O
JOC, 1967, 32, 3452. OH
OH
OH
OH
OH
OH
OH
OH O
O
OH MeOH
HO
H+
OH
HO
OMe PhCH2-Br OH
BnO
OH
OH
OBn O
OBn
OBn
BnO
H2 Pd-C
OH
OH OH
Py
OBn O BnO
O OBn
BnO OBn
OBn
OTr OBn
chemistry: hemiacetal ROH
O OH
OBn
H OH
OBn
OH OH OH
OH
OBn OBn
OH O
BnO
CrO3
OBn
OH
O
H3O+
OBn
Ph3C-Cl
LAH BnO
OMe
OBn OH OTr
OBn OH OH
OBn
OBn
ROH
1', 2' alcohol ROBn ROTr
ROH ROH
O O H R
H2O OBR2
OH
C-N Compare nomenclature class:
4- a b c d e 4-a
C-H C-N C-X C-OH C=O
C-H
R3C NH2
f C=C g C N h C(O)X i C-C(O)X
primary
R C NH2
RC OH
secondary
R C NHR
R2C OH
R C NR2
R3C OH
tertiary
N N
TPP
N N Ph
SO2NH2 Ph I OAc OAc
C-N
O S N I Ph O
O S NH2 O
Fe (TPP)Cl
not a very useful reaction
NH S O O (insertion)
(1). nitrene insertion process: PhI(OAc)2 / Fe (TPP)Cl (2). PhI=NTs
NHTs
PhI NTs JOC, 2000, 65, 7858. Ru cat
(3). nitrogen cation radical (via Hofmann - Loeffler - Freytag) H
JACS, 1959, 81, 5209. NH2
COOH
N NCS H2SO4 hν
Me2N
AcO H
Me2N O C N N N
COOH 1. SO2Cl2
N C O H2O
HOAc
O N C OH
2. NaN3
AcO
NHCHO
Me2NH
NHCH3 NCS
2. H2 / Pt
Me2N
Cl N CH3 H
N Cl
Cl N CH3 H
N CH3 H
Me2N
Cl
O
O C
CH3
K2CO3
TsCl
MeOH TsO
N CH3 H+
N C
NHCHO
Cl
N CH3
1. LAH
DMF TsO
H
O C
CO2
NHCHO HOAc
NH2
H
N CH3 H hν
H
H
N CH3 H
4-b C-N
special case, limit for axial to equitorial NH2
C-NH2
CF3CO3H
C NH2
4-b.1
C NH2
NH2
CF3CO3H // Fe / HOAc NH2
4-b.2
RC N Z
NH2
RC NH2 RC NH2
RC NO2
Fe/HOAc
NO2
1. Fe3(CO)12 / CH3OH
JOC, 1972, 37, 930. 2. NaBH4 / Pd-C Vogel's 12.57 3. Na2S Vogel's 12.58 Vogel's 12.59 4. Sn / HCl
1. many reducing agents
5. H2 / Pt (S)-C 2. organic electrochemistry
NH2
ii
RC N3
RC NH2
NO2
RC N iii RC N RC N
NH2
CPh
RC NH2
DMF rt. 15 hr
C OPh
RC NH2
R
BF4 Ph
CO2H H
N2
N R
Ph CO2Et
NaN3
R
- TPP (SN2)
CO2Et 1. reduction N3 H
R
2. hydrolysis
H
CO2H NH2 H
D -α-amino acid .
H O N C OtBu
N CH3 NH2
TFA
NH2
BOC-ON
N CH3
H2/cat
N
H
O
O Ac2O
N CH3
O
H
OH N
N
N-oxide
O NH C OH CO2
NH CH2Ph NH2
N
H
N
NH-BOC CO2Et
CO2Et H O N C OCPh
1. H2O2 2. Ac2O 3. H2O
[BOC-OFF]
BOC-ON [58632-95-4]: 2-(t-butoxycarbonyloxyimino)-2-phenylacetonitrile
Cl C O CH2Ph
RCH2 NH2
H2 / Pd-C
O Ph (CH3)3C O C O N C CN
O
H R C NH N N Ph H -
L -α-amino acid
BOC ON
NH2
H
NH2
1. HOAc; 2. H2 / Pd-C
RC NH2 1. TFA; 2. HCl
$ 300 / 100 g
H + R C N N N H
OCH3
application:
C OtBu O
THL, 1975, 4393.
JACS, 1965, 87, 2767.
Eg-Ni: electrogenerated nickel
H2 / Pd-C
RC NH2
CPh3 O
Fe3(CO)12 / CH3OH reflux 8 hr
Eg-Ni
OCH3 RC N
NH2
NO2
NH2
1. NaBH4; 2. Al (Hg)
RC NH2 H2O2 // Ac2O, heat / H3O+
RC N Me
NH2
H
sulfided platium not affect: aromatic rings, ketones, halides, nitriles, amide, easters
JOC, 1999, 64, 2301.
+N O
NO2
NH2
H
i
O
H
H2 / Pd-C
- HCHO NH2
N CH2
OCH3
NH
4b.3 R C N Z
R C N R'
i RC NH 2 R C N
1. HCHO / HCO2H
C
2. HCHO // H2 / Pd-C
HO
H
O
CO2Et
NaBH4
R NH2
COOH
HC(OEt)3
OEt R NH
OEt
NMe2 NH2 HCHO
CO2Et
HCO2H
NH2
CH3 N
CH3
H N C H H
O H C H
H
-
OEt R NH CH2
N N N
R C N
O H C O-
H
-
R N CH3 H
H
NH CH3 O H C H
N
R-BCl2
N N N B Cl Cl R
BCl2
NO2 MeO2C
N3
B Cl Cl
N - N2
R
NH
NaBH4 CoCl2-6H2O (cat) rt
mild condition NO2 MeO2C
NH2
CH3 N CH3
O H C OCO2
1. RBCl2 / base
CoCl2-6H2O
H CH3
R' N3
2. NaBH4 /
R N CH2
CO2
HCOOH
ii
R N CH OEt
COOH
HCHO
- + R C N N N
new: p-TsOH / HC(OEt)3 / EtOH, reflux 5 hr
OEt O
H N CH3
HC(OEt)3
CO2Et
JACS, 1933, 55, 4579.
C
NH2
NH2
about HC(OEt)3: ethyl orthoformate ($ 25 / 1 L), may function as dehydrating agent HC(OEt)3 becomes HCO2Et 原甲酸三乙酯 O CO2Et O OEt old: FeCl3, MgSO4 in Soxhlet extract, reflux 40 hr CH3COCH3 H OH
1. HC(OEt)3 // NaBH4; 2. R2CO // NaBH3CN
RC NC
Synthesis, 1979, 537. high yield not affect:: NO2, C=C, CN, COOR, COOH
N
H R
4-c
C-N
C-X
Ph CH2Br
1. NH3
PhCH2NH2 + (PhCH2)2NH + O
O N K
2. Gabriel:
N K
N2H4
O
O
Ph CH2Br
3. Delepine
O
O
N
N
H2O
commercial available, tetramer of Me3N
N N
Ph CH2Br
N
N N
N N
Ph CH2NH2
O
O N
Gabriel amine synthesis
NHNH2 NHNH2
N2H4
N CH2Ph
N N
not good, usually contain polyalkylation products
(PhCH2)3N
N
N
N
Ph CH2NH2
N
内服后遇酸分解出 HCHO, 可做尿道消毒剂, 治膀胱炎 urotropine (乌洛托品) methenamine (六甲烯胺) hexamethylenetetramine (环六亚甲基四胺) N
N
Br-
4. NaN3 / RED
5. Unpolung
i. LAH, NaBH4 ii. H2 / cat iii Zn / HCl; Al (Hg)
CH2Ph
Mg
R Br
i. Mg // NH2Cl ii. Mg // PhSCH2-N3 // KOH
OMe
R MgBr
NH2Cl
R NH2
OCH3
OMe Br
PhS
MgBr
N
N
N
N
N
OCH3 N
N
SPh OMe
N
N
CH2Ph
OCH3 NH2
H SPh
-N2
OMe
OCH3
OCH3
OCH3
6. CH3NH2 (aq) / EtOH // HCl / Et2O JOC, 1988, 53, 2918.
CH3NH2 / EtOH O
4-d
C-OH
O
HCl / Et2O Cl
C-N
NHMe
O NK
in fact: C-OH C- OTs C-NH2 OH
TSCl
1. Gabriel:
O
NH2
N2H4
2. Delepine 3. NaN3 / RED
OH
4. CBr4, PPh3, NaN3, DMF // PPh3 / THF JOC, 2000, 65, 7110.
N
R
Br
CBr4 PPh3
N
R
NaN3
N N N N
R
PPh3 THF
NH2 N
R
4-e
C-N
C=O
O
N CH3
CH3NH2
reductive amination!
NH CH3 NaBH3CN
acid
1. RNH2 // NaBH3CN most general
O
PH 6
O SiMe3
Me3SiN3
SiMe3
O
N N N
N N
N N N
LiAlH4
2. Me3SiN3 // LiAlH4 via: acetal / ketal type exchange
H N
N
NH2
RaNi / H2
4. PhNHNH2 // Al (Hg)
H
H O
PhNHNH2
N NHPh
H N
N NHPh Al (Hg)
H
(radical)
H
Leuckart reaction O O
6. RNH2 / n-Bu2SnClH / HMPA
NH2
NH3
H
O
-
NH2
Ph
Synthesis, 2000, 789. immonium salt
4-f
C=C
Ph
NHPh
n-Bu2SnClH HMPA
N H Sn
via:
O
Ph By
Cl
By P(NMe2)3
C-C-N C-C-NH2
NH2Cl B
B2H6 / NH2Cl B2H6 / H2NO
3
B2H6 / H2NOSO3H H+
C=C
Ph
PhNH2
CHO
CO2
B2H6
C=C
NH2 LiAlH4
NH3
O
catalytic reductive amination
5. NH4+HCO2-
H N N H
3. NH3 (excess) // RaNi / H2
via: hydrazone
N
C-C-NHCOCH3 CH3CN / H3O+
+
B RR
CH3CN
R N B R H
N Cl H
N C CH3
H2O
OH N C CH3
NH2
O NH C CH3
H
CH3CN: bp 81-2, mp -48; polar solvent, for UV, HPLC, NMR (CMR very high field 0.86 ppm, ring current)
R C NH2 4-g
R C N
R C NH2 R'
4-g.a form
R C NH2
4-g.b form
R C NH2 R'
AlH3 / THF
Br
NH2
TH, 1989, 30, 5137.
R'MgX // NaBH4
JOC, 1993, 58, 4313.
R'MgX // Li/NH3(l)
JOC, 1987, 52, 3901.
R'2CuLi // NaBH4
O R C NHR
JOC, 2000, 65, 8152.
THF
Br
R'Li // NaBH4
4-h
AlH3
C N
R
C
R'M // H
N
R
C
NH2
R'
TH, 1989, 30, 5139.
R CH2 NHR
CO2H
H
LiAlH4 N
1. LiAlH4
OH
H
JOC, 1985, 50, 1711.
THF
N
O 2. NaBH3(OCOR) O
B2H6
CH3 C NH
3. B2H6
CO2CH3
CH3 CH2 NH
CO2CH3
4. Et3O+ BF4- // NaBH4 1. Et3O+BF4-
5. P4S10 // RaNi NH
6. Lawesson's reagent // RaNi
not for B2H6, affect C=C
2. NaBH4
O
NH NH
NH
1. Et3O+BF4O
N
H
H
N
Et3O+BF4-
OEt
O
H
N
- Et2O
2. NaBH4
N OEt H
- EtOH
Et3O+: Et source, convert to good leaving group; not use EtBr different from: HC(OEt)3 dehydrating agent; H2C(OEt)2 (ketal agent) NH O
[Sulfide]
NH S
RaNi
NH
H
N
H
4-i
RCH2
4-i.1
O C Z
RCH2
R CH2 NH2 R CH2 NHR'
O C Z
R CH2 NH2
O RCH2 C OH
NH3
R CH2 C Cl NaN3
HN3
Schmidt
O RCH2 C NH2
O
O SOCl2 R CH2 C OH
1. Hofmann: SOCl2, NH3, Br2 / OH- / heat not good, lots of side-products, Br2 strong oxidant toxic, Schmidt died of it 2. Schmidt: HN3 // H2O
O
Beckmann
R CH2 C CH3
O
N
R CH2 C N N N
OH
R CH2 C CH3
Application:
most useful O
O
CO2Et CO2Et
OH-
CO2Et
R CH2 N C CH3
R CH2 C CH3 anti-migration
H2O
R CH2 NH2
H2O
O R CH2 N C CH3
H2O from outside CO2H
CO2H
CO2H
CO2Et
R CH2 N C O
OTs
N
O RCH2 C Cl Curtius: NaN3 // H2O
O R CH2 C N-Br
Curtius
O R CH2 C N N N
Hofmann (see below)
Hofmann O O Br2 R CH2 C NH2 R CH2 C NH-Br OH-
CO2H
CO2H
CO2H
H2 / Pd-C - CO2
RCH2 C CH3
O
O
Beckmann: NH2OH // TsCl / H2O JACS, 1981, 103, 7368.
2.TsCl
N
R CH2 NHR'
N
+
N
Pr- source
Ts
4-i.2 RCH2
Bu2AlH
n-Pr3Al 。 80 C
1.NH2OH O
O C Z
H
H- source
N H
O PhI(OAc)2
NH2
O RCH2 C NH2
NH
OCH3
KOH / CH3OH
O
JOC, 1993, 58, 2478.
PhI(OAc)2 // KOH / CH3OH O R
C
PhI(OAc)2 NH2
O R
C
N
I
Ph OAc
KOH
O R
C
N
I
CH3OH
Ph OAc
R PhI, OAc
N
C
O
O R NH C
OCH3
C=O 5- a C=O g C(OR)2 d C C b C=S e C N C(SR)2 c C=N-OH f C=C-OR h C-OH C=N-H C=C-SR 5-a
C=O
O
i C-NH2 C-NO2 j C-Br k C-H
NaNH2
O
CO2
C OH
H3O+
camphor
Ac2O
NaBH4
O
C NHNH2
O
O R
C
NaNH2
CR
NaBH4
Ac2O
CO2 / H3O
SOCl2
H3O+
HNO2
CH2
R
C
O OO
OH-
Br2
KOH
CeCl3
O
H 3O
Br
OH
-
R
C
CH2R
LDA
limit for: 6 ring, with 1 α-position blocked
+
Ph
S
S
Ph
O
R
C
TsNHNH2 CH2R
MeLi
Br
Br
1. in the presence of CeCl3, H- attack C=O; otherwise may attack β-C . and give mixture; mechanism: form Ce-H, follow by H- transfer other choice: use Al(OiPr)2 / iPrOH (MPV)
KOtBu
O
HgCl2
MsCl
R
CH2
C
R
KOH
TMSCl MCPBA LAH
O
O CrO3
R
CH2
C
PhCHO
HO
OH-
Ph
NaBH4
Ph
CeCl3
O
H O
H+
Ph OH
R O
drawback: require simple structure, use many powerful agents: MeLi, LAH, MCPBA
LDA O TsNHNH2
N N Ts
Li N N Ts H
MeLi
SiMe3 O MCPBA
Li into structure
LAH
SiMe3 OH
CrO3
SiMe3 O
OMs
O LAH SPh
PhSSPh Li
SPh
SPh
HgCl2 CH3CN (aq)
N2, Ts-
thioenol ether OH
O
KOtBu
H
SiMe3 TMSCl
MeLi
SPh H
MsCl
O
H
O
C
O O3 Zn
Ph
H2SO4
H N N Ts
C O O O C
2. need Zn, convert to C=O; other choice Me2S
O
O
aqCH3CN
v. via: epoxysilane O
Zn
O3 Zn
LAH
Br2
O
O CrO3
HBr
iv. via: thioenol ether O
O
OH
O OH
iii. via: aldol process NaBH4
O
corticosteroid
O
Zn
NaBH4
PhCHO
epicamphor O
NaBH4
hecogenin acetate CrO3
HBr
OH OH
O
HO O
O
NH
R
N2H4
ii. via: α-haloketone
NH2
not use NaN3 directly, avoid attack β-C
O O
N2H4
H3O+
N C O
C N N N
O
i. via: α-CO2H
COOH
H 3O +
HNO2
C=O
SO2Cl OAc COOH
OH COOH
O
Ce
Cl
5-b
C=S
C=O
i. hydrolysis
S
ii. MCPBA
5-c
C=N-Z
5-c.2
5-d
C=N-OH
C=N-H
C C
MCPBA
OH H
CH3O O
NMe2
NMe2
NOH
C=O N OH
5-c.1
OH H
CH3O
RaNi
O
NH
i. RaNi ii. TiCl3 iii. KMnO4 / Al2O3 THL, 2001, 42, 4775.
H3O+
C=O Hg2+ / H2O HgSO4 / H2O / H2O
C
O KMnO4 / Al2O3 acetone rt, 5 min
C(CH3)3 O
OH
NH H3O+
C(CH3)3
JOC, 1970, 35, 858.
H
NH2
JOC, 1972, 37, 2138.
Hg2+ Hg
not certain of which mechanism
H2O
O
OH
H2O
HgX
HgX OH H
O
5-e
C N
C=O CN
Ph R-CH2-C
N O R-CH2-C H
5-e.1
O 5-e.2
5-e.3
R-CH-C H R' O R-CH-C R" R' R' X / n-BuLi OH OH
CH3I R''MgBr H3O+
1. DIBAL /
O
Al (iBu)2H
H3O+
C N Al
Ph
C H
Ph
H3O+
2. HCl./ SnCl2 / Et2O 3. OH OH
Stenphen reduction mostly for Ar
H3O+
OH OH
R CH2 C N
H R' X O
N
O
Ar
N
N
H
CH3I
n-BuLi
H JOC, 1973, 38, 2129.
O C
R R
O H
J.Org.Syn, 1925, 3, 1874.
H
R''MgBr O
N
O
N R''
R'
R
H3O+
R
C
O
N
R
H R'
R' H3O+
R R
O
R'
H
R'
H3O+
R
O
R'
R''
5-f
C=C-X
C=O H+
H3O+
C=C-OR C=C-SR
H3O+
OCH3
O
OCH3 Hg2+
Hg2+ / CH3CN (aq)
H2O
tpye:
CH3CN (aq) SCH3
O
X
reactivity:
SR thioenol ether
OR >>
Cl O
5-g
C(OR)2
OR OR
H3O+ / solv (aq)
SR SR
Hg2+ / H3O+
O O
H3O+ / solv (aq)
H
OEt C OEt OEt
OR
>>
OH
R
H
SR
OR
vinyl chloride
OR
O
OR
SR
SR >>
SR
O
R
O R
H
H
C=O preparation: acid catalyst TsOH CSA (camphorsulfonic acid) Amberlite resin
a very common protecting group, deprotect back to ketone
S S
enamine
OH OR
R
- CH3OH
OR enol ether
NR
use:
OH
CH3O
+OCH3
H3O+ / solv (aq)
OR OR
OH OH
acid catalyst
O O
O
S
S
RMgX / H3O+
H
OR OR
ketal
Hg2+ O
via:
O
RMgX R
OEt H
C
R OEt
C H
RMgX
OEt C OEt H
H R
OR OH
hemiacetal
R R
OR OH hemiketal
unstable: only in aqueous acid stable in: basic solution: LDA, NaOMe RED: LiAlH4, NaBH4 organoMetal: RMgX, RLi
O
H3O+ OEt C OEt OEt
R
OR
O O
acid cat
CH3CN
Hg2+ / H3O+
CH3O OCH3
HOCH2CH2OH
H3O+
R
R
acetal
CH3OH acid cat
Type: H OR
O R
C
H
5-h C-OH
O 1st alcohol
THL, 1979, 5, 399.
C=O R C H
AcO OAc I OAc O O
O R C R
O
N+ O
O
alcohol
R C OH
+
O
H DMSO
O
PhCH2OH
PhCHO
HCl
via: PhCH2
DMSO
SynLett, 2002, 2041. H
CH3
PhC
O
S CH3
H
Synth. Commun., 1986, 16, 1343.
DMSO
OH
O
Ac2O
+ Me2S
OH R C R
O C CH3
O O C C OH O
H3C S CH3 O
O
DMSO
R C R ClCO-CO2H
O
+ HOAc
Moffatt oxidation
Et3N
Swern oxidation
MeO
MeO
OH DDQ
i. Jones reagent ii. KMnO4
JOC, 1985, 50, 1332.
N OH
Ph
O
TH, 1975, 2647. i. PCC TH, 1978, 2771. ii. PDC iii. Jones reagent (Na2Cr2O7-H2SO4 / acetone) iv. Moffatt oxidation (DMSO / Ac2O) v. Swern oxidation vi. DDQ / dioxane JOC, 1997, 62, 5246. vii. MnO2 / CHCl3 viii. Oppenauer zoidation Al(OiPr)3, acetone ix. K2Cr2O7 (s), rt solvent free THL, 2002, 43, 8843.
CHO
Pfitzner-Moffatt oxidation
R C H
S OH DMSO S DCC Can. J. Chem, 1978, 56, 1268.
NaHCO3 / NaI H 60 %
H11C5
OCH3
O
N O+
RCH2OH
S
DMSO
PDC CH2OH 70 %
H11C5
OCH3
O 1st
CHO
OCH3
S
Ph
O
92 %
CH2Cl2, rt, 30 min JACS, 1991, 113, 7277.
Br
2nd alcohol
O
i. PCC ii. PDC iii. Collins reagent CrO3 - 2 Py iv. N-oxide v. DMSO / DCC vi. DMSO / HCl vii. DMSO / NHCO3 / NaI viii. Dess-Martin Reagent
O
OH PDC
HO
H3C S CH3
H
C R
O
O
CN
Cl
DDQ:
HO
CN
dioxane JOC, 1980, 45, 1596.
Cl O
O aldehyde
R C OH
Al(OiPr)3
Ag2O HO
PCC (pyridinium chlorochromate) (Py-HCl-CrO3) most widely used PDC (pyridinium dichormate) (H2Cr2O7 + 2 Py) use 1 - 1.2 eq.
. N CrO3 HCl
N+ H
Cr2O7- 2 2
acetone
H
O
+ Me2S + Cl, CO, CO2 + Et3NHCl
Synthesis, 1979, 537. O
Collins reagent: (CrO3 - 2 Py) Swern oxidation: (DMSO, oxalyl chloride, Et3N) 1. drawback: use 6 equivalent, a messy reaction drawback: react at low T Synthesis, 1981, 165. 2. must be very dry, fire easily; purify by CaH2 3. an old oxidizing material, isolated by Collin. JOC, 1977, 42, 1991. Ag2O: 1. a mild oxidizing agent 2. must be freshly prepared: NaOH into AgNO3 (aq) 3. may involve surface change, react with CO2, light
R
5-i
C-NX2
C=O O
5-i.1 C-NH2
O
C=O
i. Corey approach: subtituted-quinone //
H3O+
ii. Watt approach a. PhCHO // MCPBA // H3O+ b. ArPhO // MCPBA // H3O+ c. NBS // KOH // H3O+
O
Ph
O
O
Ph Ph
// H3O+
Ph
O
H3 O+
NH2
C H
PhCHO
NH2
Ph Ph
NH2
Ph
O
NH2
O
MCPBA
PhCHO
N C Ph
C=O Nef reaction Chem. Rev. 1955, 55, 137.
i. Et3N // H3O+
ii. TiCl3 / pH 1 or 6
H O
N
O
O
O
O
McMurray reaction O
iii. SiO2 / NaOH // H3O+
JACS, 1977, 99, 3861.
iv. LDA / MoO5-Py- / HMPT // H3O+
v. NaOH // CH3OH / H2SO4 //
H3O+
O
O
TiCl3 pH6
NO2
THL, 1981, 5235.
pH 6: weak acid buffer, avoid interfere with ketal group
O
NO2
OMe
1. NaOH
S Synthesis, 1988, 379.
O
2.CH3OH H2SO4
Ph
H3O+
O
OMe
S
S
Ph
Ph O
vi. KMnO4 / KOH
Ph
H3 O+
N O O
O
TiCl3 pH1
NH
N C Ph
- PhCHO
H
O
O NO2
H3 O+
H3O+ Ph Ph
o
MCPBA
Et3N
NO2
Ph
OH
Ph
N C Ph
5-i.2 C-NO2
N
Ph
Ph
O
Ph
N
Ph
Ph Ph
O
Ph
Ph
N
O
JOC, 1969, 34, 2438.
KOH NO2
N
KMnO4 N
OO-
O O
O
O
N
O Mn
O
O O
O O
Mn
O
- MnO2 - NO3-
O
O
5-j
C-Br
C=O
direct:
Bull Soc. Jpn., 1981, 54, 2221.
1. DMAPO / DBU / CH3CN 2. NaIO4 / DMF a new method
Br
NaIO4 / DMF
N O
ii. DMSO / ZnS
5-k C-H
RCHBrMe OH Br
JACS, 2003, 68, 2480.
N
N,N-Dimethylaminopyridineoxide
84 %
3. DMSO reagents: THL, 1974, 917.
via:
DMAPO
O
THL, 2003, 44, 1375.
O
o
150 C, 40 min
i. DMSO / AgBF4
NMe2
NMe2
indrect: change to RC-OH followed by oxidation
H
Ph DMSO AgBF4
RC(O)Me Br
OH O
DMSO
O
DMSO / AgBF4
R
- AgBr
ZnS
S
O
H
R
R
- Me2S
C=O JCS, 1932, 1875.
1. SeO2
2. DDQ / TFA.
I 3. (3 eq.) O
Ph
Ph
H DDQ
Ar
N
CH3
TFA Ar
N
H
OH O
O
Se
CH3
Synthesis, 1979, 537.
O
O
SeO2
O
JACS, 2001, 123, 3183.
Ar
Ar
N H
O
CF3 O
Ph-F / DMSO a select oxidant
CH2
CH3
CHO
H3O+
DDQ N O
CF3 O
Ar
N H
CHO
C C g
dC C
6- a RC CH b RCH2-SO2Ph c C C
O
e RCH(CO2H)-CH3
h
f -C(O)-CH3
i
O X
O
CRR'=CHX n-BuLi
R C C H
6-a
RC CR'
RC CH
R C C R'
R C C H
R C C CHOH R C C H
R i. n-BuLi / RX
R Br
H
O R C H R C C Li
n-BuLi
OH R C C C H R
II
Pd
R C C Ph
R C C H
Pd I
Ph-I
THL, 1975, 4467.
R C C H
Ph
N Li
OMe
Cl
R C C Ar
R C C H
iv. CuI, NaI, Na2CO3, R
RCH2-SO2Ph
C
C
CH2Cl
RC CR'
Cl CH2 C R
C
C
C
II
Pd C C R
R C C Ph
addition steric δ-
C C R
R C C Li
OCH3
OMe
R'
H
R
n-BuLi
R CH2SO2Ph sulfone
n-BuLi / R'CHO // Ac2O // KOtBu
δ+
N H
OMe
steric base, prevent Nu attack
Pd Ph
Cl
6-b
LiBr
n-BuLi: not MeLi, or t-BuLi, fire easily RX: R-Br, R-TOS, RCHO, RC(O)R
ii. (Ph3P)2PdCl2, CuI, Et2NH / PhI
iii.
R
Li
RCHO
C
C
CH2 C
SO2Ph R C C R' OH
Ac2O
C
R'
Synthesis, 2000, 691.
SO2Ph R C C R' OAc
SO2Ph -HOAc
R C C R' H
KOtBu
R C C R' - PhSO2H
sulfonic acid: PhSO3H; sulfinic acid: PhSO2H; sulfenic acid: PhSOH
6-c
KAPA
C C
C C
C H
JACS, 1975, 97, 891.
K+N-HR
R H
use: KAPA
i. move to terminal
ii. protect - deprotect
limit: continueous CH2, not branch
R
R C C C CH2 CH2-CH2 CH2 CH3 H allene
H
propargylic
NH2 NHK
H R C C C C H
use: Co (CO)8 // Fe(NO3)3, EtOH
R C C C C
CH2 CH2 CH3
R C C C C
CH2 C CH
HO
H
HO C CH CO
HO C
use: i. Br2 / CCl4 // KOtBu
JACS, 1941, 63, 1180.
6-e
R CH CH3 CO2H
Fe(NO3)3 EtOH H
Ph R CH
R C C H
CH3
CO2H
Pb(OAc)4, LiCl Br2/CCl4 R CH CH2 KOtBu KOtBu CH3
use: Pb(OAc)4, LiCl // KOtBu // Br2/CCl4 // KOtBu Cl-
in fact: convert to C=C firstly
OAc R C C O Pb OAc OAc O
LiCl Pb(OAc)4
O CO2H
R C C H
Cl R C CH3 - CO2, - Pb (OAc)2, -OAc1.NaBH4
O
H Cl
2.HOAc
C CH
HO
Ph
1.B2H6
HO
HO
Ph
Co
C
CO Co Co CO CO CO CO CO
Ph
Co
H
HO
ii. Br2 // KOH
C
choose B2H6, not H2/cat: Co poison cat
HO
C C
C
CO CO CO CO CO
Co2(CO)8
C C
K
irreversible at the final step
Fe(NO3)3: weak oxidizing agent
6-d
CH2C C
2.KOtBu
1.Br2/CCl4 HO
involved: reduction NaBH4, oxidation CrO3.Py, prevent α-H attacked by Br2
2.KOtBu O 3.CrO3.2Py
6-f
O R C CH3
R C C H O R C CH3
i. NaBH4, H3O+, Br2, KOtBu
ii. NH2OH, NaNO2 / H2SO4 // Ac2O / DMAP
NaBH4
O R C CH3
O
OH R C CH3
H3O+
R C CH2
H2SO4
NH2OH R C N OH
Br2
RCHBrCH2Br
R C N OH2
NaNO2
CH3
CH3
KOtBu
R C CH
O R C N N O C H H H
JOC, 1979, 44, 4116.
OAc
Ac2O
R C N N
DMAP
C H
R C CH O
H
N
N O
iii. LDA, ClPO(OEt)2
R C CH3
O
OPO(OEt)2
LDA
LDA
R C CH
ClPO(OEt)2
JOC, 1980, 45, 2526.
R C CH
H
vinyl phosphate
N DMAP: 4-N,N-Dimethylaminopyridine German invention, as acylating agent
N C O
CH3
mixture of Ac2O / DMAP:
LDA: Li N(iPr)2, ignored a long time, re-introduced by Michigan State U. became famous, appeared every week
6-g
TsNHNH2
O
O
O
O
use: TsNHNH2 / EtOH, heat
N
O
O
NH Ts
THL, 1967, 3943. H2O2
O
N N
O
N2
O
Ts-
Ts
Na / NH3(l)
CH3 CH CH2 (MVK) O
Robinson Annulation O
OH
6-h
Cl
O
HO
R
LiNH2 / NH3 (l) use: LiNH2 / NH3 (l) / R-X
R
6-i.
R'
C C
X
Cl
O
HO
R
JACS, 1955, 77, 3293.
R C C R'
JACS, 1958, 80, 4599.
Ar i. NaOEt (when X = Br)
RX
Ar'
Br
Ar
C
C
Me
Ar'
via:
H
Me
OSO2CF3
Ph
H
ii. BuLi (when X = -OSO2CF3)
NaOEt
Ph BuLi
Me
C
C
Ph
C
via:
JOC, 1978, 43, 364.
Ar Ar'
Br ?
C C
f
C O
i C C
g
C C
j
c CX-CY X
7- a CH-CX
d
C
C
H
X
C C
C
use:
H OH
C
C-OH
h C CH
e -C(O)-CH3
b CH-CH 7- a
C
C
i. p-TSOH.H2O or CSA ii. weak acid: HOAc; HCO2H; H2C2O4 iii strong acid: H2SO4; HCl iv. ArSeCN, PBu3 // MCPBA
Ph
Dean-Stark
MsCl
H OMs
use base: i. RONa; ii. KOtBu
C C C C
MsO
S O
iii. CH3I N
O
heat
-
NMe2
HCHO
H
OH
C
H i. DDQ ii. chloronail iii. Pd-C; or Ni; Pt, Rh
OAc
MeO O NC
NO2 Se
MeO N
H H2O2
NC O
heat
Cl Cl
MeO2C
O Cl
Cl
DDQ
O
Pd-C
O
O
MeO
RCH2CH2-O-PBu3 TBDMS O H . O
DDQ
RCH2CH2-OH Ph-Se-PBu3
:PBu3
CO2Me
OAc CO2Me
Cl
heat
mechanism:
OAc
OAc
heat
O
Ph-Se-CN MeO2C
-
NMe2
MCPBA
Cl
NMe3 OH
Ag2O
HCO2H
C
heat CH3
H2SO4
OH
NMe3I
NH2
H
minor
syn elimination
compare:
i. CH3I / Ag2O // heat (Hoffman elimination) ii. HCHO / HCO2H // H2O2 // heat (Cope elimination)
C
+
N
CH3I (excess)
7- b C
p-TSOH major
SMe
I DBN
C C
Ph
O
OH
use base: DBN
H NH2
applied for reactions: without rearrangement; no regiosiomer
H
use: heat
I
OH
or KOtBu
i. n-BuLi ii. CS2
H OC(S)SMe C C
C
H
RONa
HO
use: heat
H OAc
C
OH
C C
H
OH
(CO2H)2 / benzene
MCPBA
MeO
RCH=CH2
heat TBDMS O .
23oC, 14h, 88%
.
O .
THL, 1991, 3679.
7- c
C
C
X
X
C
C C
CSCl2
C C
C
O
base C C
O
C
N
i. CSCl2 /
C
P Ph
OH OH
N
thiophosgene
ii. CSCl2 / P(OMe)3
S
C
C
i. Zn / acetone
Br
ii. In / MeOH JCS.CC, 1998, 2113.
C
C
NaI / Zn (Cu)
OMs OMs C
C
OH I
via:
C
C
I
I
O
CSCl2
O
Et H3C
OR S P
OR OR
CCCCC 36 oC CCCC=C 31 oC CCCC C 148 oC
ii. purify compound
H I
OR OR
application: i. protect alkene: via Br2 // Zn
CH3
POCl3 / py // Sn
P(OMe)3
Cl Cl
O
OH
O
or: ?
OH
Br
S P
thionocarbonate
OH
HCO3H
OR
O
OH OH
POCl3 Py
Cl P Cl O H CH3
Et H3C
I
Sn
Et
OAc
H
O
AcO AcO AcO Br
Zn HOAc
OAc OAc
JOC, 1978, 43, 364. C
C
Br
OAc
Zn / HOAc
OAc O
X
7- d
C
C
C
C H
7-d.1
O C
C
C
O
i. WCl6 / RLi
product retention
ii. LiPPh2 / CH3I
product inversion
O
R
C
C
C
LiPPh2
H
CH3I
O
H PPh2
PPh2
Ph
P
H
Ph
O
H
H
oxaphosphetane
(EtO)3P R2
R1
O C
R1
Synthesis, 1977, 1134.
R2
O
N NH
TsNHNH2
n-BuLi
Ts
C Br
HO HO
HO
use: TsNHNH2 // n-BuLi
Pregnenolone (a female hormone)
Li O
N NH Ts
N N Ts
H2O Br2 CH3-S-S-CH3
JACS, 1972, 94, 7748.
TsNHNH2 O
EtOH
H
C
use: (EtO)3P
C CH3
H
SN2
CH3
OH H
H R C C CH2 CH2 CH2 OH H
Na
S
7- e
H
CH3
(special structure):
S
H
OH
H
Cl
7-d.2
WCl6 RLi
C H
iii. Na
H
n-BuLi TsNHN
JOC, 1977, 42, 1079.
S CH3
7-f
C
O
7-f.1 RC
C O
C RC
CR' O PPh3 + H C CO2Me
not CO2Me
i. Wittig Reaction 1953 discover (olefination reaction)
RO = MeO-, EtO-
Et
JOC, 1968, 33, 780.
CN
CN
O
stable ylid gives trans (E)
PPh3
+
not good for Ph3P=CH2 function as base:
Me3SiC-H-MgBr H O
O
THL, 1973, 3947. C
O
N2H4
R
R
iv. CH2(ZnI)2
PPh3 + O Et expensive unstable ylid gives cis (Z)
+ Ph3P CH Et
H
water soluble, removed by extraction (comparison: O=PPh3 highly soluble in organic solvent)
Synthesis, 1984, 384. Me3SiCHR-Li+ + === Ph3SiCH2Br + n-BuLi (exchange) Ph3SiCH2 Li Me3SiC-H-MgBr === Me3SiCH2Cl + Mg (metal reduction) Ph3SiC-HCH2Ph === Ph3SiCH=CH2 + PhLi (addition to vinylsilane) === Me3SiCH2CO2Et + Li (metalation) Me3SiC-HCO2Et Me3SiCH=PPh3 === Me3SiCH2PPh3+ X- + KH R
THL, 1981, 2751.
not O
use: (RO)2PO-CHR'
ii. Phosphonate Wittig Reaction (Horner-Emmons Modification) iii. Silyl Wittig Reaction (Peterson Reaction)
difficult to prepare
H
via: betaine, oxaphosphetane (NMR)
use: Ph3P-CHR'
+
O
Ph3P CH CO2Me
R
R2CO
C NHNH2
SiMe3
C N
O
N C
R
R
R
H2S
R
N C
S
R
R
N C
R
Ph(OAc)4
R
CH2(ZnI)2
Synlett, 1988, 12, 1369.
R
CH2
O
N
R
PPh3
R
R
R
R
O
R
O
C S
R
v. CH2CHBr2, Sm, SnI2 / CrCl3, THF
N
C
Ph O
Chem. Lett, 1995, 259.
S
N N C PPh3
O CH2 OH
N Me
S
use: Ph
S
R
R
R
PPh3
+
R
R
R
R
S C
N. R. if use: Ph3P-CHR' due to steric hindrance
// Al (Hg)
N Me
vii. Grignard reagent:
1. TMSCH2MgCl
use: TMSCH2MgCl
THL, 1988, 4339. THL, 1973, 3497.
O H
2. NaOAc, AcOH
SiMe3
H O H
via:
C R
R'
methylenation advantages over the Wittig: 1. by-products are more easily removed, 2. reaction suffers less from steric effects.
R C
NMe Al (Hg)
CH2 Li
C
Ph S
O
vi. Sulfoximide (Johnson C.)
R
C
C
R
7-f.2
RC
O
RC
CR R C
N2H4
O
R
R
R
R2CO
C NHNH2
R not for Wittig, ylid unstable
O
N
C S
R
O N2H4
O
N
C
O
O
R
PPh3
R
R
3. H3O+
N
S
N N C
R
R
R
C PPh3
S
R
R
O
O
1. H2S 2. Pb(OAc)4
N
R
R
N C
O
O
S
R
R
R
R C
C
R
O TiCl3
N
Zn-Cu Ti (II) O O
N
S
N
N
O
commercial available butene side product (trimer)
Ph(OAc)4
N
N N
O
C R
P(OEt)3 S
N N
+
S
R
R S C
O
1. H2S 2. Pb(OAc)4
N
TiCl3-LiAlH4 / THF JACS, 1974, 96, 4706. TiCl3 / Mg BASF, 1973, 2147. TiCl4 / Zn Chem. Lett, 1973, 1041. TiCl4 / K JOC, 1978, 43, 3253.
PPh3
N
N
O
C
H N
H
H2S
R
i. use: N2H4 / H2S / Pb(OAc)4
ii. McMurry Coupling
R
N C
R
R
O
C N
via:
R
C
C
R
R C
C
R
N
S
N
O
O
7- g
C
C
form trans alkene:
form cis alkene:
C
C
not use H2 / Pt: might convert to alkane
i. Li / NH3; or other IA metals ii. Li / EtNH2 iii. LiAlH4 / THF
i. H2 / Ni2B (P-2 catalyst) ii. H2 / Pd-CaCO3 (Lindlar catalyst) iii. H2 / Pd-BaSO4 iv. B2H6 / HOAc (Diborane) v. N2H2 vi. HCHO / Pd-C / Et3N
R H
R C C R
Et
C C
H R
Me
Et
C C Me
H
C C H H H
Ph C C
CHO
HCHO Pd-C Et3N
Ph C C
C
C
CH
C
C R
H
H
R
C CH
ii. DIBAL / n-BuLi / CH3I (hydroalumination) R
iii. Cp2ZrClH / RX (hydrozirconation)
H
C
C
H
R
H
i. R2BH / Br-CN (hydroboration)
C
C
H
DIBAL
R
H C
H
R C
B
R CN
R
n-BuLi
C
H
Cp2ZrClH
B CN
C
C
C H
C
H
Syn elimination
R
ZrCP2 Cl
C
H
R H
R
H C
C R'
C
H CH3
H
C B R
H
CH3I
R'X
C H
H
Li
H
Br
CN-
R
H
R
H
H
B R
Br
C C
R
C
H
R
H
AlR2
C
Br-CN
B R
C
R
Br
all form trans alkene:
Br
C H
C
CH R BH 2 (Syn)
7- h
JOC, 1980, 45, 4926.
CHO
CN R
7-i C
C
C
application: protecting group
C
not for
via dihalide
via halohydrin via epoxide
C
C
H
OH
C C
C=C
double bond might move
C=C
X X C C
C=C
H X O
C=C
C
C
via diene-olefin addition
CO2Et
7-j
C-OH
C
C NO2
MnO2 / Ph3P CH3 Br- / MTBD
-
Ph
JACS, 1998, 100, 877.
OH
CO2H 180C
C=C Ph
MnO2 Ph3P CH3 BrMTBD
N
NO2
in situ alcohol oxidition Wittig rxn
Br
PhSO2Cl
COOH
1. OH2. H3O+
RONa
C=C
Ph
OH
LAH
NaBr CO2Et CO2Et
CO2Et
C=C
Br
OH
200 oC
CH2
C=C
C C
via diradical
CO2Et CO2Et
EtO2C CO2Et
N N CH3
Synlett, 2002, 215.
MTBD
CH2
C-X c C=O d C(O)Z e C-H
8- a C-OH b C-NH2 8-a
C-X
C-OH
1.
8-a.1
C-OH
C-F
O O Chem. Rev., 1996, 96, 1737. S N F S JOC, 1993, 58, 3800. O O O
CHCl2 O
1. CF3CHFCF2NEt2
N
CH3
2. F3S-NEt2 (DAST) $ 500 / 125 g
OH 2. HOAc / iPrOH
CH3 S O 3. CF3CHFCF2NEt2 (Ishikawa reagent) Cl
1. SOCl2
8-a.2
C-OH
C-Cl
2. HCONMe2 /
N Cl
3. COCl2 / DMF
Me N
N
Et
OH
HCONMe2
Cl
N
JOC, 1983, 48, 2625.
Cl
F NHCOCHCl2 NMe2
H
Me
Cl
H
OH
O S O
via:
Et
Cl
Me
O
Et
H
Cl
N N
Org.Lett, 2002, 4, 553.
Cl
4. CCl4 / PPh3 CCl4
OH
5. HCl / ZnCl2
Cl
PPh3
6. HCl fit for 3rd alc, directly
Can.J.Chem, 1968, 46, 86. HCl
8-a.3
C-OH
OH
C-Br fit for
1. HBr 2 PBr3
Can. J. Research, 1932, 7, 464.
3. TMS-Br (HMDS / PyH Br3)
8-a.4
C-OH
C-I
1. HI PI3 CH3OH CH3I 2. PI3 2. PPh3 / I2 JACS, 2003, 125, 1458.
1st
TMSBr
Cl
ZnCl2
alc
JACS, 1938, 60, 2497.
good for 3rd alc
OH OH
Br
OH
Si Si
prepare in situ
JOC, 1980, 45, 1638.
(HMDS)
JCS, 1905, 87, 1592.
3. TsCl / C6H6 // NaI Intermediate. Org. Chem, 1988.
OTBS BnO
PPh3 / I2 OH
Me
96 %
OTBS BnO
I Me
N + Br3 H
(PyH Br3)
Si
Br
TMS-Br
PBr3
$ 35 / 1000 g
PBr3 PI3
$ 65 / 500 g $ 80 / 50 g
C-X
8-b C-NH2
NH2 Cl
C-F
C-NH2
Cl
NaNO2
Cl
N2BF4 Cl
F Cl
HCl, HBF4
NaNO2 / HCl / HBF4 /
for aromatic amine
C-X
8-c C=O
C-F
C=O
O
CF2Br2 / Zn
CF2Br2 / Zn
F F JCS.PT I, 1993, 335.
58 %
8-d C(O)Z
C-X O
8-d.1 8-d.2
C(O)Z
C(O)Z
Cl
C-Cl
C-Br
Cl RhCl(PPh3)3
R
C
O OH
1. AgNO3/KOH 2. Br2
R
Br
Chem Rev., 1956, 56, 219.
Ber. 1942, 75, 296.
Cl
8-e C-H 8-e.1
C-X
C-H
C-F
i.
S
F+
PhCH2C(O)CH3
Chem. Rev., 1996, 96, 1737.
N F
iii. F2-N2 / CFCl3-CHCl3
Ar F
JCS.CC, 1994, 149.
ii. F-TEDA-BF4
CFCl 3-CHCl3
JOC, 1988, 53, 2803.
HF / electrolysis already industrilized
v. NF3O / TBAH / CH3CN
R
HF
F electrolysis 1.4-1.6 V anode: Pt or Ni O
R = CH3CO, COCF3, CCl3, NO2 O
O
O THL, 2003, 44, 2799.
R' TBAH / CH3CN rt, 12h
R '' H
R
R' R '' F
O
O
O
O
O
NBX R1
R3 H R2
Mg(ClO4)2
R1
C-I I2 / HNO3
X R2
O
X = Cl, Br, I
I JACS, 1917, 39, 437.
N X
NBX:
R3
JOC, 2002, 67, 7429.
C-H
TBHA: Tetrabutylammoniumhydroxide
X = Cl, Br, I
NBX / Mg(ClO 4)2
8-e.3
Ar Me-CN, R TEDA=triethylenediamine
R
R
C-X
CH3
F 55-90 %
90 % 1. regioselective fluorination at the more substituted positions 2. electrophilic in nature
NF3O
C-H
R
OH
F2-N2 adamantane
8-e.2
F-TEDA-BF4
F
O
O
iv.
OH
PhCHC(O)CH3
I2 / HNO3 86 %
C-CH3 9- a C-X
9-a C-X
C-CH3
Me3Al (CH3)3Al Br
CH2Cl2
bridgehead methylation 98 %
Organomet. Chem. Rev., 1996, 4, 47.