LLM Agents for Cyber Defense

Page 1


LLMAgentsforCyberDefense

DakotaStateUniversity+AISweden-IndustrialImmersionProgram

Introduction

Intheevolvingfieldofcybersecurity,newthreatscontinually emerge,challengingexistingdefenses.Theemergenceoflarge languagemodels(LLMs)forexecutingcyberattacksallowsfor quickerandmorecomplicatedbreacheswhileloweringthebarrier ofentryforattackers[1].Thisstudyexplorestheintegrationof LLMswithhoneypotsystemstobolstercybersecuritydefenses. Enhancementstocurrenthoneypotsareproposedbyleveraging LLMsfordeployment,management,andmonitoring.Additionally,thestudydemonstratestheuseofLLMstointerpretlogs intoeasy-to-understandlanguage.

Objectives

• InvestigatehowLLMscanbeusedtocreaterealisticand adaptivehoneypots.

• DevelopaprototypeofahoneypotenhancedbyLLMs.

• ExploreifLLMscanbeusedtoanalyselogsgeneratedby honeypots.

• Comparetheperformanceofadefaulthoneypottoan LLM-enhancedhoneypot.

Cybersecurity

Cybersecurityiscrucialintoday’sdigitalageduetothegrowing dependenceononlinetechnologies[2].Itprotectsagainstcyber threatslikedatabreachesandransomware,safeguardingsensitiveinformationandensuringsystemintegrity.Cybersecurity isvitalacrossvarioussectors,includingfinance,healthcare,and nationalsecurity,whereithelpspreventfraud,protectpatient data,anddefendagainstcyberespionage.Theimportanceof cybersecurityisparamountformaintainingpublictrustandthe functionalityofessentialservices.

Honeypots

Methods

TheLLM-enhancedhoneypotwasdesignedbasedonthesystem architectureshowninFigure1.LLMswereemployedtogenerateconfigurationsandcontentsfor Cowrie,anopen-sourceSSH honeypot.Thishoneypotwasthendeployedtoacceptincomingconnections,withanotherLLMmonitoringandproviding easy-to-understandsummariesoftheinteractions.Currently,all LLMsuseChatGPT-3.5astheunderlyingmodel,butthereare planstotransitiontofine-tunedmodelsinthefuture.

Evaluationmethod

ToevaluatetheLLMenhancedhoneypot´sperformance,the amountofinformationcollectedwascomparedtotheamount collectedfromadefaultCowriehoneypot.Agoodmeasure forinformationdensity,ortheaverageamountofinformation isentropy[3].

Results

FutureWork

FutureworkcouldinvolveenhancinghoneypotswithLLMscapableoflearningfromcyberattackers’behavior,allowingfor adaptiveresponses.Additionally,incorporatingfederatedlearningwouldenablethecollectionandmodelingofattackerbehavior acrossmultiplehoneypots,furtherstrengtheningcyberdefenses throughcontinuousimprovementandcollaboration.ThisapproachwouldensurethatLLMsevolvewithemergingthreats, providingrobustanddynamicprotection.

Conclusion

Thestudydemonstratestheeffectivenessoftheintegrationof LLMsintohoneypotsystems.Implementationenhancestheir realismandreducestheneedformanualconfigurations,thereby enablingthemtoadaptmoreeffectivelytoevolvingattacks. Additionally,LLMsshowpotentialinanalyzinghoneypotlogs andpresentingthemtousersinareadableandcomprehensible format,whichservesasasubstantialtimesaver.However,to achievehigh-qualityanalysisandcategorizationofthelogs,furtherdevelopmentandfine-tuningoftheLLMsbecomenecessary. Byprovidingbettercontextandrefinedmodels,theconceptensurestheoutputprovideseasytointerpretclassificationsofattackdata,therebymaximizingtheeffectivenessofthehoneypot systems.

References

[1] RichardFang,RohanBindu,AkulGupta,andDanielKang. Llmagentscanautonomouslyexploitone-dayvulnerabilities,2024.

Figure2: EntropyincommandsforboththedefaultCowrieinstanceandour LLMenhancedhoneypotfromthreedifferentsources.

[2] RossouwvonSolmsandJohanvanNiekerk. Frominformationsecuritytocybersecurity. Computers&Security,38:97–102,2013. CybercrimeintheDigitalEconomy.

[3] C.E.Shannon. Amathematicaltheoryofcommunication. TheBellSystemTechnicalJournal,27(3):379–423,1948.

Honeypotsactasdecoysystems designedtoattractbadactorsand gathervaluableinsightsintotheir behavior,muchlikehowthebees aredrawntoWinniethePooh’s honeypotintheillustration.By imitatingalegitimatetarget,such asanetwork,server,ordatabase, honeypotsdivertattackersaway fromreal,criticalassets.They workbyconvincingattackersthat theyareinteractingwithsecuresystems,thusencouragingthem toengage.Thesedecoysystemscontainfakedataandapplicationsthatappeargenuinetoattackers.Onceanattackerinteractswithahoneypot,securityteamscanmonitortheiractions, analyzetheirstrategies,andcollectcrucialinformationtoimproveoverallsecuritymeasures,similartohowPoohobserves thebees’behavior.

Commandsreceivedbythehoneypotswerecategorizedintotwo groups:thosedirectedtotheLLM-enhancedhoneypotandthose tothedefaulthoneypot.Eachcommandwastokenized,and probabilitydistributions, p(x),werederivedforthetokensin eachgroup.Entropy, H(X),wasthencalculatedforbothgroups, enablingaquantitativecomparisonoftheinformationdensity collected.Bootstrappingtechniqueswereusedtoestimatethe distributionofentropyvalues,providinganestimateofvariability andconfidenceinthemeasurements.

TheresultsindicatethattheLLM-enhancedhoneypotgenerates interactionswithahigheraverageamountofinformationcomparedtoadefaulthoneypot.Figure2illustratesaclearseparationbetweenthebootstrapdistributionsforthetwohoneypots, indicatingastatisticallysignificantdifferenceandsuggestingthat theperformanceoftheLLM-enhancedhoneypotisnotdueto randomchance.

ThehigherentropyvaluesobservedintheLLM-enhancedhoneypotsuggestitcapturesamorediverseandcomplexsetof commandsfromattackers.Thisincreasedinformationdensity reflectstheabilityoftheLLMtocreatemorediverseandrealisticscenarios,enrichingthedatacollectedduringhoneypot interactions.

Exampleprompts

• PromptforContents: Createafilesystemstructurebasedontheautomotivecompanydataprovidedandexplainthereason.

• Reasoning: Howcanthecompanyleveragetheuseofjazzmusicinitsmarketingcampaigns?

• FileCreated: FilePath:/home/user/Music/jazz/MilesDavisConcert.mp4

Acknowledgements

ThisprojectwouldnothavebeenpossiblewithoutthearrangementandsupportfromDakotaStateUniversity,AISwedenandChalmersUniversity.SpecialthankstoThomasMitchellfromVolvoGroupforhisinvaluableguidance andsupportthroughoutourresearch.Theassistanceofcolleaguesandthe resourcesprovidedbytheinstitutionsarealsodeeplyappreciated.

Visittheprojectpage!

Figure1: Systemarchitecture

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.