indeks

Page 1

INDICES Concept of Indices Repeated Multiplication

Example:

1) 5 3 =

2) 25 =

3) 8 6 =

23 = 2 × 2 × 2 b4 = b × b × b × b

4) a 2 =

5) k 5 =

6) m 4 =

Example : Write the following integers in index notation. 8 = 2 × 2 × 2 = 23

1) 125=

2) 32=

a0 = 1

1) 30 =

2) (−5)0 =

2 3)  ÷ = 5

4) a −3 =

5) 4− m =

2 6)  ÷ = 3

7) 22 × 20 =

8) (−4)3 × (−4) 2 =

10) −4a 3 × 2a 5 =

11) 4a 3 × a 5 =

13) 7 8 ÷ 7 5 =

14) k 8 ÷ k −2 =

16) 3m6 ÷ 27 m3 =

17) −22n3 ÷ 4n3 =

18) 18m2 ÷ 27 m3 =

19) (9 3 ) =

20) ( r 4 ) =

21) ( m −4 ) =

Index notation

3)

25 = 49

Laws of Indices

Example 40=1 a−m =

1 am

−3

Example 1 23 a m × a n = a m+ n

0

2−3 =

Example 2 3 × 2 4 = 23 + 4 = 2 7

Example 4

5

4 +5

2a × 3a = 6a = 6a 9

a m ÷ a n = a m −n

Example 23 ÷ 2 2 = 23− 2 = 21 = 2 Example 8a 5 8a 5 ÷ 2 a3 = 3 2a = 4 a 5 − 3 = 4a 2

(a ) m

n

Indices

= a mn

1 2

5

4

1

2

3

 2

2

9)  ÷ ×  ÷ =  3  3

12)

1 4 2 5 a × a = 2 3

2

4

2

2

15)  ÷ ÷  ÷ = 5 5

3


Example

(2 )

2 3

= 2 2×3 = 2 6

22) ( 3m 4 ) =

Example

( 2r ) 4

3

3

(m n )

= 23 r12

4 2

= 8r12 3

25) ( r 4 n 2 )

= m12 n6

−2

2

=

n

am = (

n

5

1

1

27) ( a −4b 2 ) 4 =

2

28) 8 3 =

a )m

24) ( 2m 4 n3 ) =

2

26) ( m 4 n 2 ) 2 =

=

5

m an

23)  m 2 ÷ = 3 

2

29) 125 3 =

30) 64 3 =

Example : 3

42 = (

2

4)3

= 23 = 8 Example: 1 (4m −1n 2 ) 2

2

1

2 −2 1 = (4 m n )

31) (3m −2 n 4 )2 =

32) (2m 3 n −2 )3 =

1

33) (27 a 3b −6 ) 3 =

= 16m −2 n

A.

Questions Based on Examination Format

1. m

3 4

C. -

can also be written as

A. 4 m 3 C. ( m 4 )3

B. a6 D. a27

3. 76 ÷ 72 = A. 72 C. 74

B. 73 D. 75

1 9

D. -9

7. 3 x 32 x 23 = A. 24 B. 144 C. 216 D. 648 8. Simplify (m3)2 ÷ m4. A. m B. m2 9 C. m D. m10 9. 52 x 5 x 54 = A. 56 B. 57 C. 58 D. 59

4. Simplify (r4)2 ÷ r3 = A. r B. r3 5 C. r D. r13 3

5. 81 2 x 9-2 =

Indices

B. 9

6. Given that 3125 = 5n, find the value of n. A. 4 B. 6 C. 5 D. 7

B. 3 m 4 D. ( m 3 ) 4

2. a9 ÷ a3 = A. a3 C. a12

1 9

10. Simplify a3 x a4

2

÷

a5 =


A. a2 C. a7

B. a4 D. a 12

C. 48

11. Given that y4 = 81, find the value of y

1 1 1 1 1 x x x x = 2 2 2 2 2 1 1 A. B. 32 16 5 5 C. D. 16 32

19.

1 3 1 D. 9

A. 3

B.

C. 9 c8 = c2 A. c2 C. c6

D. 415

12.

20. The value of 5-3 = A. 125 B. -125

B. c4 D c7

C.

1 125

D. -

1 125

13. 2 x 23 = p, find the value of p A. 4 B. 8 C. 12 D. 16 14. (a4b2)2 = A. a6b2 C. a8b2

Past Year SPM questions November 2003

B. a6b4 D. a8b4

1

15. The value of ( -0.3)3 is = A. 0.27 B. - 0.27 C. 0. 027 D. – 0.027 1

1

A B

1 p

3 C. ( )

17. 5 a2 x a4 x 4a2 = A. 5a8 C. 20a6

B. p

2

C

4mn p3

D

16mn 2 p6

3

Find the value of 1

1

D. ( p )6

B. 4a6 D. 20a8

3 5

Indices

m2 p3 p6

(8 × 3 −6 ) 3 ÷ (2 3 × 3 −4 ) 1 A C 4 4 9 1 B D 9 9 4 July 2004 3 Simplify (mp 2 )3 × p −4 . A mp C m3p 4 B mp D m3p2

3

4 18. (4 ) = A. 43

4n p3 16n

p

1

16. p x p x p , expressed in index notation is 3 A. p

1

Simplify (4m −1 n 2 ) 2 ×

B. 45 3

4 3

2 4 Evaluate 27 × (3 ) . 812


A B

3 27

C D

9 81

November 2004

5

Simplify

m 6 × (9e 2 ) 3 6

A B

C

B

1

C

(m e ) C

9m 2 e 9m 3 e

1 1

D

.

1 2

3m 5 e

3m 5 e4

1  12  4 −5  mn ÷ ÷ m n 2 =   A mn C m-1n4 4 B mn D m-3n4

(

)

November 2005 9 Simplify (m 2 ) 4 ÷ m 5

A B

m m3

C D

m11 m13

9 3 x = 2 x , find the value Given that 10 3 of x.

Indices

3

3p 3p2

C D

4p 4p2

November 2006

Which of the following is equivalent to 2-3 ? A C 1 1 3 2 32 B D 1 1 − 3 − 2 2 3 3

Simplify p × ( 2 p −1 ) ÷ ( 2 p −4 ) . A B

1 2

1 3

2 3 1 2

July 2006

July 2005

8

2

3

r 4 can also be written as A 4 r3 C ( r 4 )3 B 3 r4 D ( r 3 )4

6

7

A

4

 2 13 8 ×7 Simplify  2  14  A 24 × 7 −3 B 26 × 7 −2

3

 ÷. ÷ ÷  C 212 × 7 −5 D 216 × 7 −1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.