Quaternary Science Journal - Patterns of Late Glacial vegetation in The Netherlands

Page 1

Eiszeitalter

u.

Gegenwart

78 — 88

47

Hannover

8 Abbildungen

1997

Patterns o f Late Glacial vegetation in The Netherlands WIM Z. HOEK*) W e i c h s e l i a n Late Glacial, v e g e t a t i o n a l d e v e l o p m e n t , climate, T h e N e t h e r l a n d s

A b s t r a c t : T h e W e i c h s e l i a n Late G l a c i a l ( c a . 1 3 , 0 0 0 - 1 0 , 0 0 0

v e r s c h i e d e n e n Instituten untersucht. Z u r K o m p i l a t i o n v o n

y e a r s B P ) m a r k s t h e transition from t h e c o l d W e i c h s e l Late

m e h r als 2 5 0 P o l l e n d i a g r a m m e n w u r d e d i e E t i r o p e a n P o l ­

Pleniglacial t o t h e w a r m e r H o l o c e n e .

During this p e r i o d

len D a t a b a s e s t r u k t u r g e n u t z t . Datierte V e r ä n d e r u n g e n im

t h e c l i m a t e rapidly c h a n g e d a s d i d t h e v e g e t a t i o n a n d t h e

a r b o r e a l e n P o l l e n b e s t a n d b i l d e n die G r u n d l a g e d e s r e g i o ­

abiotic landscape. T h e vegetational development o f the

n a l e n Z o n i e n i n g s s c h e m a s . Mit Hilfe d i e s e r D a t e n w u r d e n

W e i c h s e l i a n Late G l a c i a l in T h e N e t h e r l a n d s is d e t e r m i n e d

I s o - P o l l e n - K a r t e n d e r w i c h t i g s t e n T a x a für v e r s c h i e d e n e

firstly b y t h e l a r g e - s c a l e c h a n g e s in climate a n d in t h e s e ­

Zeitfenster d e s Weichsel-Spätglazials konstruiert. D i e h o h e

c o n d p l a c e b y l o c a l v a r i a t i o n s in lithology, g e o m o r p h o l o g y

B e o b a c h t u n g s d i c h t e p a l y n o l o g i s c h e r D a t e n in d e n N i e d e r ­

a n d h y d r o l o g y . P o l l e n d i a g r a m s from different a r e a s , e m ­

landen

b r a c i n g t h e s a m e time-stratigraphical interval, often s h o w

P o l l e n - K a r t e n für d e n b e t r a c h t e t e n Zeitraum. E s g i b t e i n e

c l e a r variations in v e g e t a t i o n history, w h i c h c a n n o t b e e x ­

klare B e z i e h u n g zwischen d e n b e o b a c h t e t e n Iso-Pollen-

plained on climatological grounds alone.

M u s t e r n u n d d e m Landschaftstyp. E s s o l l t e n u n m ö g l i c h

In T h e N e t h e r l a n d s o v e r 4 0 0 p a l y n o l o g i c a l s e c t i o n s , c o v e r ­

sein, k l a r e r z w i s c h e n k l i m a t i s c h e n u n d a b i o t i s c h e n F a k t o ­

ing a part o r t h e w h o l e o f t h e W e i c h s e l i a n Late Glacial,

ren

h a v e b e e n investigated b y s e v e r a l institutes. F o r t h e c o m p i ­

steuern.

erlaubte die Konstntktion hoch auflösender

zu

unterscheiden,

Iso­

d i e die V e g e t a t i o n s e n t w i c k l u n g

lation o f t h e data from o v e r 2 5 0 p o l l e n diagrams, u s e w a s m a d e o f t h e E u r o p e a n P o l l e n D a t a b a s e structure.

Dated

Introdution

shifts in t h e a r b o r e a l p o l l e n c o n t e n t constitute t h e basis o f a regional z o n a t i o n s c h e m e . W i t h t h e h e l p o f this, iso-pol­

The

l e n m a p s o f m a i n taxa w e r e c o n s t r u c t e d for different t i m e -

b e t w e e n t h e c o l d W e i c h s e l i a n Late P l e n i g l a c i a l a n d

w i n d o w s within t h e W e i c h s e l i a n Late Glacial. T h e d e n s e

t h e w a r m e r H o l o c e n e . T h e climate c h a n g e

n e t w o r k o f p a l y n o l o g i c a l o b s e r v a t i o n sites in T h e Nether­ lands p e r m i t t e d t h e drafting o f h i g h - r e s o l u t i o n i s o - p o l l e n m a p s o f the period considered. A clear relationship c a n b e r e c o g n i z e d b e t w e e n t h e i s o - p o l l e n patterns a n d t h e land­ s c a p e type. T h u s , it s h o u l d b e p o s s i b l e t o distinguish m o r e

W e i c h s e l i a n Late Glacial m a r k s t h e

transition

during

this transition c a u s e d t h e vegetation a n d t h e a b i o t i c c o m p o n e n t o f the l a n d s c a p e to c h a n g e rapidly.

A

g r e a t n u m b e r o f p a l y n o l o g i c a l data c o n s i d e r i n g the Late G l a c i a l have b e e n c o l l e c t e d in N W - E u r o p e a n d

clearly b e t w e e n climate a n d other abiotic a g e n c i e s o f the

e s p e c i a l l y T h e N e t h e r l a n d s during t h e last d e c a d e s .

environment which affected vegetational development,

T h e r e f o r e , the g e n e r a l v e g e t a t i o n d e v e l o p m e n t for this p e r i o d is well k n o w n .

[Spätglaziale Vegetationsverteilung

At t h e e n d o f the W e i c h s e l i a n Late P l e n i g l a c i a l t h e r e

in d e n Niederlanden]

w a s in T h e N e t h e r l a n d s a sparse v e g e t a t i o n c o v e r comprising

Gramineae,

Cyperaceae

and

Betula

K u r z f a s s u n g : Das Weichsel-Spätglazial (ca. 13.000-10.000

nana,

J a h r e v o r h e u t e ) markiert d e n Übergang v o m kalten späten

r o u n d 1 3 , 0 0 0 years B P h e r b a c e o u s plant c o m m u n i t i e s

Weichsel-Pleniglazial z u m wärmeren dieser Periode änderten

Holozän.

Während

s i c h Klima, V e g e t a t i o n u n d d i e

a b i o t i s c h e Landschaft s e h r r a s c h . D i e V e g e t a t i o n s e n t w i c k lung i m W e i c h s e l - S p ä t g l a z i a l d e r N i e d e r l a n d e w i r d in e r s t e r

and

m a n y p l a c e s w e r e altogether b a r e . F r o m a-

dwarf bushes

developed due

to

temperature

rise. D u r i n g the A l l e r i 0 d interstadial r a t h e r o p e n tula

a n d later o n Pinus

Be­

w o o d s occurred. T h e colder

Linie d u r c h langfristige K l i m a ä n d e r u n g e n u n d a n z w e i t e r

Late D r y a s stadial interrupted a r o u n d 1 0 , 9 5 0 B P the

Stelle d u r c h V e r ä n d e r u n g e n d e r Lithologie, G e o m o r p h o l o ­

development to a m o r e dense vegetation cover. T h e

gie u n d Hydrologie gesteuert. Pollendiagramme aus ver­

Pinus

s c h i e d e n e n R e g i o n e n , d i e d a s g l e i c h e stratigraphische In­

b a c e o u s plant c o m m u n i t i e s c o m p r i s i n g

tervall u m f a s s e n , z e i g e n oft d e u t l i c h e V a r i a t i o n e n in d e r

nigrum,

V e g e t a t i o n s g e s c h i c h t e , d i e n i c h t allein mit k l i m a t i s c h e n

( 1 0 , 1 5 0 years B P ) Betula

V e r ä n d e r u n g e n erklärt w e r d e n k ö n n e n . Ü b e r 4 0 0 Profile, d i e T e i l e o d e r d a s g e s a m t e W e i c h s e l Spätglazial u m f a s s e n , w u r d e n in d e n N i e d e r l a n d e n v o n

a n d Betula

w o o d s d i m i n i s h e d in s i z e a n d her­

d e v e l o p e d . At t h e start o f t h e

Empetrum Holocene

a n d later o n Pinus

woods

e x p a n d e d again a n d b e c a m e m o r e d e n s e a s a result o f t e m p e r a t u r e rise. T h e r m o p h i l o u s t r e e s a s Quercus,

Tilia,

Ulmus

a n d Alnus

Corylus,

a p p e a r e d later in

the H o l o c e n e a n d are s u p p o s e d to h a v e b e e n a b s e n t *) Anschrift d e s V e r f a s s e r s : D r . W . Z. H o e k , T h e Nether­ lands C e n t r e for G e o e c o l o g i c a l R e s e a r c h ( I C G ) , F a c u l t y o f Earth S c i e n c e s , Vrije Universiteit A m s t e r d a m , D e B o e l e l a a n 1 0 8 5 , 1 0 8 1 H V A m s t e r d a m , T h e Netherlands.

during the Late Glacial in T h e Netherlands. T h i s g e n ­ eral v e g e t a t i o n d e v e l o p m e n t c a n b e r e c o g n i z e d in m o s t o f t h e p o l l e n d i a g r a m s from T h e N e t h e r l a n d s .


Patterns o f Late Glacial v e g e t a t i o n in T h e N e t h e r l a n d s

79

figure 1. I lie continental position of The Netherlands during die Weichselian Late Glacial (modified after JELGERSMA, 1 9 7 9 and LANG, 1 9 9 4 ) .

Abb. 1: Die kontinentale Lage der Niederlande während des Weichsel Spätglazials (modifiziert nach JELGERSMA 1979 und LANG 1994)

H o w e v e r , pollen diagrams from different areas in T h e Netherlands s h o w clear variations in pollen c o m p o s i t i o n during t h e Late Glacial. Palaeogeographical approach For T h e Netherlands it is to b e e x p e c t e d that there w e r e o n l y small spatial differences in climate during the W e i c h s e l i a n Late Glacial due to the small area a n d relatively large distance to the f o r m e r coastline. As s e a l e v e l w a s b e t w e e n 9 0 and 65 m e t e r s b e l o w the p r e s e n t date level (JELGERSMA, 1 9 7 9 ) , the coastline w a s m o r e than 2 0 0 kilometers away a n d any climate gradient induced b y the sea can b e n e g l e c t e d for T h e Netherlands during the time under investigation. Fig­ ure 1 s h o w s the relative continental position o f T h e Netherlands during the Weichselian Late Glacial (modified after JELGERSMA, 1979 and LANG, 1994). In t h e classical a p p r o a c h , single l o c a t i o n s are the m a i n basis for p a l a e o c l i m a t e reconstructions. It is o b v i o u s that climate parameters derived from single pollen diagrams will represent certain local influen­ ces. T h e main reason for this is the fact that not o n l y the large scale c h a n g e s in climate determined the v e ­ getation d e v e l o p m e n t in for instance t h e W e i c h s e ­ lian Late Glacial. Also m o r e local variations in lithology, g e o m o r p h o l o g y and geo-hydrological c o n d i ­ tions h a v e influenced the vegetation d e v e l o p m e n t

a n d patterns. P a l a e o c l i m a t e reconstructions b a s e d o n single pollen diagrams will therefore give a w r o n g picture o f the regional climate. With a p a l a e o g e o g r a p h i c a l a p p r o a c h the vegetation patterns and c h a n g e s in the patterns c a n b e compar­ e d with g e o l o g i c a l / g e o m o r p h o l o g i c a l maps. As s o o n as the relations b e t w e e n the palaeovegetation a n d the abiotic c o m p o n e n t s o f the landscape are k n o w n , the relations b e t w e e n vegetation and cli­ m a t e will be m o r e clear. This a p p r o a c h requires a d e n s e network o f palynological s e c t i o n s in an area with a well k n o w n g e o l o g y a n d g e o m o r p h o l o g y . The

Late Glacial abiotic l a n d s c a p e o f The Netherlands

T h e Late Glacial landscape is a landscape with chang­ ing g e o m o r p h o l o g y a n d vegetation. During the W e i c h s e l i a n Late Glacial g e o m o r p h o l o g i c a l p r o c e s ­ ses w e r e active, but the abiotic c h a n g e s w h e r e not as large as during the preceding Pleniglacial. Morpholo­ gical features related to permafrost that had existed at the e n d o f the Pleniglacial d i s a p p e a r e d due to the c h a n g e s in climate towards t h e H o l o c e n e . Per­ mafrost disappeared, although d e e p seasonal frost m a y have occurred during the Late Glacial (VANDENBERGHE, 1 9 9 2 ) . T h e vegetation d e v e l o p m e n t initiated soil formation a n d stabilized the substratum. T h e


80

WIM Z. HOEK

Figure 2. R e c o n s t r u c t i o n o f t h e l a n d s c a p e t y p e s in T h e N e t h e r l a n d s d u r i n g t h e W e i c h s e l i a n Late Glacial ( m o d i f i e d

after

Zagwijn, 1986). Abb. 2: Rekonstruktion der Landschaftstypen in den Niederlanden während des Weichsel Spätglazials (modifiziert nach ZAGWIJN 1986) main landscape types that existed during the Late Glacial in T h e Netherlands are formed b y glacial, flu­ vial a n d aeolian p r o c e s s e s . F o r T h e Netherlands in general five larger l a n d s c a p e regions existed during the Late Glacial. 1 T h e till region in the northern Netherlands w a s form­ e d as a result o f the Saalian glaciation. Glacial tills

form the substratum in a gently undulating scape. In this region hundreds o f Pleniglacial remnants o c c u r ( D E GANS, 1 9 8 1 ) . From t h e s e remnants, formed after melting o f the p i n g o s e n d o f the Pleniglacial, m a n y pollendiagrams been obtained.

land­ pingo pingo at the have

2 T h e ice-pushed region in the central Netherlands


Patterns o f Late Glacial v e g e t a t i o n in T h e N e t h e r l a n d s

includes the e n d m o r a i n e s o f the Saalian ice-sheets. T h e hills rise up to a hundred meters a b o v e the surrounding river deposits a n d are built o f

HI

older river deposits. B e t w e e n the i c e - p u s h e d ridges deposition o f c o v e r s a n d s t o o k p l a c e during the Weichselian Pleniglacial and Late Glacial (MAARLE-


82

WIM Z. HOEK

During t h e Late Dryas stadial a layer o f c o v e r s a n d was d e p o s i t e d over soils a n d peats, indicating the landscape w a s m o r e o p e n than in the p r e c e d i n g A l l e r 0 d interstadial. T h e organic deposits in this area consist o f peats and shallow lacustrine deposits forme d in t h e depressions b e t w e e n coversand ridges. 5 'Ehe c o v e r s a n d region in the southern Netherlands is characterized by a gently undulating t o p o g r a p h y . T h e c o v e r s a n d s are mainly deposited during t h e W e i c h s e l i a n Pleniglacial (SCHWAN, 1988). In t h e w e s ­ tern part, Early P l e i s t o c e n e clayey deposits o c c u r at shallow depth. Like in t h e eastern c o v e r s a n d r e g i o n , organic deposits in this area consist o f p e a t s a n d shallow lacustrine deposits formed in the d e p r e s ­ sions b e t w e e n coversand ridges. S o m e smaller p i n g o remnants o c c u r (KASSE & BOHNCKE, 1992). In figure 2a reconstruction o f the landscape in T h e Netherlands during the W e i c h s e l i a n Late G l a c i a l is given (modified after ZAGWIJN, 1986).

Available palynological data

Figure 4 : Regional Late G l a c i a l p o l l e n diagram o f t h e m a i n taxa for T h e Netherlands.

Abb. 4: Regionale spätglaziale Pollendiagramme der wichtig­ sten Taxa für die Niederlande. VHi.D & VAN DER SCHANS,

1961). As the

ice-pushed

ridges consist mainly o f well-drained gravels and sands, only a few w e t b a s i n s o c c u r w h e r e organic deposits c o u l d b e preserved. 3 T h e river region in t h e central Netherlands is main­ ly formed b y the rivers R h i n e a n d Meuse. As the ri­ vers c h a n g e d their patterns and m o r p h o l o g y b e ­ t w e e n braiding a n d m e a n d e r i n g d u e t o climate c h a n g e , t h e a b a n d o n e d river channels form the basins w h e r e organic deposits could b e preserved. Under dry conditions during t h e s e c o n d p h a s e o f the Late Dryas stadial, sand w a s b l o w n out o f t h e braid­ e d river b e d s , forming riverdunes in the surrounding vegetation c o v e r (BOHNCKE et al. 1993). T h e river l a n d s c a p e during the Late Glacial has b e e n d e ­ s c r i b e d b y KASSE et al. (1995) and BERENDSEN et al.

In T h e Netherlands over 4 0 0 palynological s e c t i o n s have b e e n investigated b y several institutes during the last d e c a d e s , covering part or w h o l e o f the Weichselian Late Glacial. Most o f the investigated sections are unpublished and the original data are stored as counting sheets in archives o f the G e o l o g i ­ cal Survey, Soil Survey a n d different universities. As a first step in this study, t h e pollen countings w e r e gathered a n d inserted into a computer. B y n o w 2 5 0 of these sections are available in digital format. T h e data a r e stored in a relational database, using t h e E u ­ r o p e a n P o l l e n D a t a b a s e structure. T h e spatial d e n s i ­ ty o f available pollen data decreases in w e s t e r y di­ rection, directly related to the depth o f the Late Gla­ cial deposits below the present day surface. I n the most w e s t e r n part o f T h e Netherlands the Late Gla­ cial deposits are c o v e r e d with up to 15 m e t e r s o f H o l o c e n e fluvial sediments, marine s e d i m e n t s a n d peat. T h e r e f o r e , Late Glacial deposits are difficult to collect. Nevertheless, t h e spatial resolution is high, as c a n b e s e e n in figure 3. T h e locations o f t h e pol­ len diagrams which are stored in the d a t a b a s e are p r e s e n t e d as b l a c k dots, while the other l o c a t i o n s are p r e s e n t e d as o p e n circles. With this d e n s e pat­ tern o f palynological investigated locations a r e c o n ­ struction o f the vegetation patterns in different time w i n d o w s during the W e i c h s e l i a n Late Glacial c a n b e made.

Preparation o f the palynological data

(1995). 4 T h e c o v e r s a n d region in t h e eastern Netherlands is characterized b y thick layers o f c o v e r s a n d formed during t h e Weichselian Pleniglacial (SCHWAN, 1988). In this region Saalian i c e - p u s h e d ridges o c c u r also.

For t h e construction o f the pollen diagrams from the pollen countings a uniformous pollen s u m w a s u s e d to calculate percentages, s o the diagrams c a n b e c o m p a r e d . In the pollen s u m only n o n - t h e r m o -


P a t t e r n s o f Late G l a c i a l v e g e t a t i o n in T h e N e t h e r l a n d s

Mekelermeer

A)

Uddelermeer

E

C)

Daarle

83

Middelbeers

D)

2b

1c

lb

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

F i g u r e 5: P o l l e n d i a g r a m s with s e l e c t e d taxa from 4 s m a l l b a s i n s in different r e g i o n s . a M e k e l e r m e e r (BOHNCKE et al., 1 9 8 8 ) ;

b U d d e l e n n e e r (BOHNCKE et al., 1 9 8 8 ) ; c D a a r l e (BIJLSMA & DE LANGE, 1 9 8 3 ) ;

d M i d d e l b e e r s (KOELBLOED, 1 9 6 9 ) .

Abb. 5: Pollendiagramme ausgewählter Taxa aus vier kleinen Becken in verschiedenen Regionen. a Mekelermeer (BOHNCKE et al., 1988); d Middelbeers (KOELBLOEO. 1969).

b Uddelermeer (BOHNCKF et al,

1988);

c Daarle (BIILSMA & DE LANGE,

1983);

philous trees, s h a i b s and dry h e r b s are included, r e ­ Juniperus in zone Ic reaches the highest values up to gional taxa sensus JANSSEN ( 1 9 7 3 ) . T h e local p o l l e n 3 0 % in the diagram from the eastern coversand region taxa, aquatics a n d riparian h e r b s including C y p e r a (c) and 1 5 % in that from the central Netherlands ( b ) . c e a e , as well as thermophilous tree pollen a n d During the following zone 2a, the highest values for spores w e r e e x c l u d e d from the pollen sum. T h e m a ­ Juniperus, up to 3 0 % are recorded in the diagrams jor shifts in the main pollen taxa, radiocarbon d a t e d from the central Netherlands and 1 0 % in the southern in several pollen diagrams distributed o v e r T h e coversand region (d). Netherlands, a r e used to construct a regional zonatiDuring zone 2 b Pinus has the highest value round on ( H O E K , in prep.). In figure 4 t h e zonation is p r e - 5 0 % in the diagrams from the till region, the central sent-ed as a generalized Late Glacial pollen diagram Netherlands a n d t h e eastern c o v e r s a n d region. T h e for T h e Netherlands o n an uncalibrated r a d i o c a r b o n values for Pinus in the diagram from the southern timescale. B a s e d o n the zonation, a zone c o d e h a s coversand region remain b e l o w 2 0 % . b e e n assigned to t h e analyzed levels from t h e p o l l e n T h e percentages o f Ericales, including Empetrum ni­ diagrams in t h e database. If a n y uncertainties a p ­ grum, during z o n e 3 are the highest in the diagram peared, for instance in the c a s e o f a pollen s u m less from the northern Netherlands till region with values than 100, indications for reworking o r c o n t a m i n a ­ up to 2 5 % . T h e diagrams from t h e central Nether­ tion, n o z o n e c o d e was assigned to that level. I n fig­ lands and the eastern c o v e r s a n d region s h o w values ure 5a-d four pollendiagrams with selected taxa a r e up t o 1 0 % a n d 7 % respectively. F o r e a c h pollen dia­ presented. T h e pollendiagrams are derived from gram in the database the m e a n a n d m a x i m u m values small (former) lakes, pingo remnants from the north­ o f the main taxa h a v e b e e n c o m p u t e d for the distin­ ern Netherlands till region ( a ) , t h e central Nether­ guished z o n e s . lands ice - p u s h e d region ( b ) a n d the eastern ( c ) a n d Construction o f the iso-pollen m a p s southern ( d ) coversand region. In these d i a g r a m s the differences b e t w e e n the percentages o f JunipeFor three z o n e s within the Late Glacial iso-pollen rus, Pinus and Ericales can b e s e e n . T h e higher p e r ­ maps w e r e constructed showing t h e highest percen­ centages o f Pinus and Ericales at the, m i n e r o g e n i c , tages o f the distinctive taxa in that z o n e . Z o n e Ic a n d l o w e r part o f s o m e o f the diagrams are c a u s e d b y the base o f z o n e 2a are characterized b y high values reworking from older deposits. of Juniperus communis (Juniper), a s p e c i e s spread


84

WIM Z. HOEK

50 _|

100 __]

150

200

!

I

2 5 0 km

Figure 6: Iso-pollen map for the maximum values of Juniperus between 1 2 , 1 0 0 - 1 1 , 5 0 0 BP (zone Ic/2al). Abb. 6: Iso-Pollen-Kaite f端r Maximalwerte von Juniperus zwischen 12.100 und 11.500 BP (Zone Ic/2al). by birds a n d favoured b y the p r e s e n c e o f a b a r e sandy substratum. Z o n e 2 b is characterized b y high values o f Pinus sylvestris ( S c o t s p i n e ) w h i c h migrat-

e d around 1 1 , 2 5 0 B P from the south-east, presumably distributed along the river Rhine course. Z o n e 3 is characterized by high values o f Ericales, e s p e c i a l -


85

P a t t e m s o f Late Glacial v e g e t a t i o n in T h e N e t h e r l a n d s

50

100

150

200

:

!

i

I

250 km I

Figure 7: Iso-pollen m a p for the m a x i m u m values o f P i n u s b e t w e e n 1 1 , 2 5 0 - 1 0 . 9 5 0 B P ( z o n e 2 b ) . Abb. 7: Iso-Pollen-Karte f端r Maximalwerte von Pinus zwischen 11.250 und 10.950 BP (zone 2b).

ly in the s e c o n d part o f this zone. Empetrum nigrum (Crowberrry), the m a i n constituent o f the Ericales during this z o n e is spread by birds. It can b e d e m -

onstrated that the p e r c e n t a g e s o f t h e characteristic pollen taxa o f e a c h z o n e vary with the landscape type, HUNTLEY & BIRKS ( 1 9 8 3 ) presented iso-pollen maps


86

WIM Z. HOEK

ESS O-

50 _j

100

150

200

i

i

i

250 km i

Figure 8: Iso-pollen map for the maximum values of Ericales between 1 0 , 9 5 0 - 1 0 , 1 5 0 BP (zone 3 ) . Abb. 8: Iso-Pollen-Karte f端r Maximalwerte von Ericales zwischen 10.950 und 10.150 BP (zone 3). which show large s c a l e patterns in pollen p e r c e n t a g e over E u r o p e . T h e spatial resolution o f t h e s e maps o f E u r o p e is unavoidably l o w and

these m a p s can not b e u s e d for regional a n a l y s e s , For t h e construction o f the iso-pollen m a p s in this study, t h e locations with their m a x i m u m v a l u e for


Patterns o f Late Glacial v e g e t a t i o n in T h e N e t h e r l a n d s

the specific taxa within their distinct z o n e were re­ trieved from the database. Iso-pollen m a p s w e r e constructed using a squared inverse distance inter­ polation with a search radius o f 2 0 kilometers. T h e search radius is in a c c o r d a n c e with the possible s o u r c e area o f the regional pollen record. In areas w h e r e n o data w e r e available within the search ra­ dius the o u t c o m e has automatically b e e n blanked. T h u s n o extrapolations towards areas without data have b e e n made. T h e data points used in the inter­ polation are displayed as black dots. For z o n e Ic and the b a s e o f z o n e 2a, the time-win­ d o w from 12,100 - 11,500 BP, the highest p e r c e n ­ tages o f Juniperus are plotted in figure 6. T h e p r e s e n c e o f Juniperus pollen during these z o n e s is r e c o r d e d in 8 2 pollen diagrams in the database. For zone 2b, the time-window from 11,250 - 10,950 BP, the ltighest percentages o f Pinus are plotted in figure 7. The presence o f Pinus pollen during pollen z o n e 2 b is r e c o r d e d in 113 pollen diagrams in the database. For z o n e 3, the time-window from 10,950 - 1 0 , 1 5 0 B P , the highest p e r c e n t a g e s o f Ericaes (mainly Empet rum nigrum) are plotted in figure 8. T h e pre­ s e n c e o f Ericales pollen during pollen z o n e 3 is r e c o r d e d in 114 pollen diagrams in the database.

Relationship between the iso-pollen patterns and the abiotic landscape T h e highest percentages Juniperus during z o n e Ic and 2a with values up to 3 0 percent are related to the ice-pushed ridges in the central and eastern Nether­ lands and the southern Netherlands coversand re­ gion. T h e s e areas consist o f the m o r e sandy welldrained sediments. T h e growth oi Juniperus commu­ nis is favoured by a bare sandy substratum and is therefore likely to have been growing in the coversand areas. Lower percentages are recorded in the river val­ leys and the northern Nedterlands till region, areas with higher groundwater levels and a less sandy substratum. T h e highest values o f Pinus during z o n e 2 b are re­ c o r d e d in the central Netherlands river region. T h e l o w e s t values are recorded in the eastern part o f the southern Netherlands coversand region. T h e r e s e e m s to b e no south-north gradient in the p e r c e n ­ tage o f Pinus as suggested by several authors. As Pi­ nus sylvestris is at present growing on drier l o c a ­ tions, it is s u p p o s e d that Pinus w a s not inhabiting the river valleys but g r e w on the higher parts o f the terraces along the river valleys. T h e high p e r c e n ­ tages o f Pinusin the central Netherlands river region may also b e a result o f a more o p e n h e r b a c e o u s vegetation type, suggesting Pinus is o v e r r e p r e s e n t e d clue to king distance transport. T h e iso-pollen m a p for the m a x i m u m values o f Eri­ cales during z o n e 3 (figure 8 ) , s h o w s the high val­ ues, o v e r 2 0 % , linked to the poorly drainage a n d

8-

l e a c h e d soils in tills situated in the northern Nether­ lands. In the ice-pushed region o f the central Nether­ lands and western part o f the southern Netherlands c o v e r s a n d area p e r c e n t a g e s a b o v e 1 0 % occur, pre­ sumably related to the o c c u r r e n c e o f a clayey sub­ stratum at shallow depth. Pollen diagrams from the c o v e r s a n d area a n d the nutrient rich river area s h o w values b e l o w 5% for Empetrum during z o n e 3. T h e high o c c u r r e n c e o f Empetrum nigrum is often used as an indicator for oceanity, based o n higher preci­ pitation rates. At present, a higher o c c u r r e n c e o f Em­ petrum indicates a l o w nutrient availability o r acid soils, a situation occurring already in the till region during the time u n d e r investigation. Empetrum is a b l e to g r o w in areas with an active aeolian sedimen­ tation, a situation that occurred during the s e c o n d p h a s e o f the Y o u n g e r Dryas (BOHNCKE et al., 1993). Conclusions Not only climatic c h a n g e s (temperature and precipi­ tation) influenced the vegetation d e v e l o p m e n t . Also m o r e local variations in lithology, g e o m o r p h o l o g y a n d geo-hydrological conditions influenced the ve­ getation and especially the vegetation patterns. As the vegetation in T h e Netherlands, a n d other areas, will not have b e e n uniformous during the Late Gla­ cial o n e has to b e careful with deriving the climate signal from single pollen diagrams. As T h e Netherlands o c c u p i e d a relative continental position during the Weichselian Late Glacial, it is not feasible that differences in the pattern o f Ericales dur­ ing the Late Dryas stadial are c a u s e d by a climatic gradient over T h e Netherlands. T h e r e will, h o w e v e r have occurred a climatic event causing the great e x ­ pansion o f Empetrum nigrum in the areas favour­ able for this s p e c i e s . Acknowledgements T h i s study forms part o f the project: P a l a e o g e o g r a phy o f Late Glacial vegetations: analysis in time and space. Aim o f this project is to reconstruct the Late Glacial vegetation in the northwest-european lowland in re­ lation to climate a n d the abiotic c o m p o n e n t s o f the landscape. T h e project is s p o n s o r e d by T h e Netherlands Orga­ nization for Scientific Research ( N . W . O . - G.O.A.) and is incorporated in the research program o f T h e Netherlands Centre for G e o - e c o l o g i c a l Research ( I C G ) . Supervisor o f the project is Prof. Dr. W. H. Zagwijn, w h o is a c k n o w l e d g e d for his valuable c o m m e n t s on the text. T h e palynological data used in this study w e r e kind­ ly provided b y the following institutes; T h e Nether­ lands Geological Survey ( R G D ) , D L O Staring Centre, W a g e n i n g e n , Laboratory for P a l a e o - e c o l o g y and Landscape-evolution (University o f Gent, Belgium),


WIM Z. HOEK

88

H u g o d e Vries Laboratory (University o f Amster­ d a m ) , Laboratory for P a l y n o l o g y a n d P a l e o b o t a n y (University o f Utrecht), Institute for Prehistory (Uni­ versity o f Leiden) a n d t h e Faculty o f Earth S c i e n c e (Vrije Universiteit A m s t e r d a m ) . References BERENDSEN H.J.A., HOEK, WZ. & SCHORN, E.A. (1995): Late Weichse­

lian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). Paliäoklimaforschung Palaeoclimate Research, 14, 151-171. BIJLSMA, S. & DE LANGE, G.W. ( 1 9 8 3 ) . Geology, palynology and age

of a pingo remnant near Daarle, province of Overijssel, The Netherlands. Geologie en Mijnbouw, 62, 563-568. BOHNCKE, S.J.P., WLJMSTRA, L., VAN DER WOUDE, J . & SOHL, H. (1988).

The Late-Glacial infill of three lake successions in The Nether­ lands: Regional vegetational history in relation to NW Euro­ pean vegetational developments. Boreas, 17, 385-402. BOHNCKE, S.J.P., VANDENBERGHE, J.F. & HUIJZER, A.S. ( 1 9 9 3 ) : Perigla­

cial Paleoenvironments during the Late Glacial in the Maas Valley, The Netherlands. Geologie en Mijnbouw, 72, 193-210. DE GANS, W. (1991): Location, age and origin of pingo remnants in the Drentsche Aa valley area (The Netherlands). Geologie en Mijnbouw, 61, 147-158. HUNTLEY, B. & BIRKS, H.J.B. ( 1 9 8 3 ) : An atlas of past and present pol­

len maps for Europe: 0-13,000 years ago. Cambridge Universi­ ty Press, 667 pp. JANSSEN, CR. (1973): Local and regional pollen deposition. In: Birks, H.J.B, and West, R.G. (eds), Quaternary Plant Ecology, pp. 3 1 42, Blackwell Scientific Publications, Oxford.

JELGERSMA, S. (1979): Sea-level changes in the North Sea basin. In: Oele, E., Schüttenhelm, R.T.E. and Wiggers, A.J. (eds), The Quaternary History of the North Sea, pp. 233-248, Acta Universitas Uppsala, 2, Uppsala. 249KASSE, C & BOHNCKE, S.J.P. ( 1 9 9 2 ) : Weichselian Upper Pleniglacial

Aeolian and Ice-cored Morphology in the Southern Nether­ lands (Noord-Brabant, Grootc Peel). Permafrost and Periglacial Processes, 3, 327-342 KASSE C, VANDENBERGHE, J.F. & BOHNCKE, S.J.P. (1995): Climate change

and fluvial dynamics of the Maas during the late Weichselian and early Holocene. Palaoklimaforschung Palaeoclimate Research, 14, 123-150.

KOELBLOED, K.K. (19Ö9): Pollen diagram Middelbeers meerven. In­ tern rapport van de Stichting voor Bodemkartering, afdeling palaeobotanie, 2 pp. LANG, G.H. (1994): Quartäre Vegetationsgeschichte Europas. Gu­ stav Fischer Verlag, Jena. 4 6 2 pp. MAARLEVELD, G.C. & VAN DER SCHANS, R.P.H.P. (1961): De dekzand-

morfologie van de Gelderse Vallei. Tijdschrift van het Koninklijk Nederlands Aardrijkskundig Genootschap, 7 8 , 22-34. SCHWAN, J. (1988). The structure and genesis of Weichselian to Ear­ ly Holocene aeolian sand sheets in Western Europe. Sedimen­ tary Geology, 55, 197-232. VANDENBERGHE, J.F. (1992): Periglacial Phenomena and Pleistocene

Environmental Conditions in the Netherlands - An Overview. Permafrost and Periglacial Processes, 3, 363-374. ZAGWIJN, W.H. (1986): Nederland in het Holoceen. Rijks Geologi­ sche Dienst, Haarlem, The Netherlands, 4 6 pp. Manuskript e i n g e g a n g e n a m 17. 0 5 . 1 9 9 6


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.