TRABAJO GRUPAL DE CALCULO DIFERENCIAL TEMA: DETERMINAR LA EXCENTRICIDAD, FORMA DE TRAYECTORIA Y PUNTOS DE COLISIÓN DE DOS ECUACIONES ELÍPTICAS INTEGRANTES: -XAVIER BUSTAMANTE -MARJORIE DIAZ -GERMAN SUAREZ GRUPO: 4160
1) identifique la excentricidad de las ecuaciones de las trayectorias e=c/a Excentricidad de planeta CA a=5
e=c/a
b=4.99
e=0.084/5
c^2=a^2-b^2
e=0.016
c^2=25-24.992 c^2=0.00722 c=0.084 Excentricidad del cometa Halley a=10.24
e=c/a
b=2.57
e=9.91/10.24
c^2=a^2-b^2
e=0.96
c^2=105-6.63104 c^2=98.36 c=9.91
2) De acuerdo a los valores de la excentricidad de cada ecuación ¿Cuál es más aplanada? ¿Cuál se parece más a una circunferencia? En toda eclipse la excentricidad no debe ser mayor igual a 1 Cuando la excentricidad es más próxima a 1 es más aplanada por ende el cometa Halley es más aplanada. Cuando la excentricidad es más alejada de 1 se parece más a una circunferencia por ende el planeta CA se parece más a una circunferencia.
3) Genera una tabla con los valores de la posición de por lo menos 20 puntos de la trayectoria del planeta “CA”
x
-8.46
-9.3 -10.01
-10.55
-11.33
-11.9
y
4
3.81
x
-7.6
y
-0.16
-12.24 -12.01
-10.99
-9.88
3.61
3.42
3.06
2.67
2.06
1.45
0.76
0.35
-4.95
-2.56
0.9
3.23
6.06
7.49
8.25
6.39
2.91
-0.47
-0.57
-0.47
-0.21
0.41
1.03
2
3.48
4.26
4) Genera una tabla con los valores de la posición de por lo menos 20 puntos de la trayectoria del planeta “CA”
x
-1.7
-1.95
-1.95
-1.73
-0.54
0.57
1.42
2.65
4.04
5.43
y
3.71
2.68
1.3
0.38
-1.53
-2.37
-2.74
-2.99
-2.89
-2.37
x
6.34
7.13
7.78
7.79
7.3
6.42
5.22
3.83
2.81
0.78
y
-1.72
-0.82
0.53
3.43
4.55
5.65
6.48
6.93
7
6.48
5) para las tablas genere un gráfico por cada una.
Halley
Planeta “CA”
6) Identifique si existe un punto de colisión entre el planeta CA y el cometa Halley ¿Cuál sería el o los puntos de colisión?
A= (-1.29, 4.57) B= (-1.29,-0.57) C= (7.96, 1.4) D= (7.96, 2.6)