m. mumlaZe, s. cotniaSvili, k. cercvaZe
biznesis maTematika
@`teqnikuri universiteti�@
saqarTvelos teqnikuri universiteti
m. mumlaZe, s. cotniaSvili, k. cercvaZe
biznesis maTematika
damtkicebulia stu-s saredaqcio-sagamomcemlo sabWos mier
Tbilisi 2009
maTematikuri analizis mniSvnelovan nawilebs warmoadgens integraluri aRricxva da mwkrivTa Teoria. swored am nawilebis da maTi praqtikuli gamoyenebis elementebia Setanili winamdebare saxelmZRvaneloSi. saxelmZRvaneloSi Setanilia agreTve albaTobis Teoriis da maTematikuri statistikis elementebi. saxelmZRvanelo gankuTvnilia umaRlesi profesiuli skolis, aseve ekonomikuri da sainJinro specialobebis bakalavriatis
studentebisaTvis.
© sagamomcemlo saxli ,,teqnikuri universiteti’’, 2009 ISBN 978-9941-14-631-2 http://www.gtu.ge/publishinghouse/ yvela ufleba daculia. am wignis arc erTi nawili (iqneba es teqsti, foto, ilustracia Tu sxva) aranairi formiT da saSualebiT (iqneba es eleqtronuli Tu meqanikuri), ar SeiZleba gamoyenebul iqnas gamomcemlis werilobiTi nebarTvis gareSe. saavtoro uflebebis darRveva isjeba kanoniT.
3 Sinaarsi Sesavali .............................................................................................................................................................................. 6 Tavi 1 gansazRvruli integrali 1. farTobis amocana ..............................................................................................................................................7 2. gansazRvruli integralis Tvisebebi ...........................................................................................9 3. integraluri aRricxvis ZiriTadi formula ..................................................................... 10 4. arasakuTrivi integralebi .................................................................................................................... 14 5. gansazRvruli integralis gamoyeneba ....................................................................................... 16 5.1. farTobis gamoTvla sxvadasxva geometriuli figurisaTvis ........................ 16 5.2 wiris rkalis sigrZis gamoTvla .................................................................................................20 5.3. brunviTi sxeulis moculoba ......................................................................................................... 22 5.4. brunviTi zedapiris farTobi ......................................................................................................... 25 5.5. meqanikuri da fizikuri sidideebis gamoTvla ............................................................. 28 5.5.1. wiris statikuri momenti da simZimis centri ............................................................ 28 5.5..2. brtyeli figuris statikuri momenti da simZimis centri ........................... 30 5.5.3. cvladi siCqariT moZravi materialuri wertilis mier gavlili manZili .................................................................................................................................................................. 33 5.5.4 gansazRvruli integralis gamoyeneba ekonomikur amocanebSi .................. 34 savarjiSoebi 1-li TavisaTvis ......................................................................................................... 35
1. 2. 3. 4. 5. 6.
Tavi 2 ricxviTi mwkrivebi ZiriTadi cnebebi ............................................................................................................................................. 36 krebadi mwkrivis Tvisebebi .................................................................................................................. 37 dadebiT wevrebiani ricxviTi mwkrivis krebadobis niSnebi ......................................................................................................................................... 39 niSancvladi mwkrivebi ..............................................................................................................................42 mwkrivTa absoluturi da pirobiTi krebadoba ............................................................... 43 ricxviTi mwkrivebis gamoyeneba .......................................................................................................44 savarjiSoebi me-2 TaviaTvis .................................................................................................................46
Tavi 3 xarisxovani mwkrivebi 1. ZiriTadi cnebebi .............................................................................................................................................47 2. xarisxovani mwkrivebi. abelis Teorema ...................................................................................47 3 xarisxovani mwkrivis Tvisebebi ......................................................................................................... 50 4. teiloris formula ..................................................................................................................................... 50 5. teiloris mwkrivi .......................................................................................................................................... 53 savarjiSoebi me-3 TavisaTvis ................................................................................................................ 56
1. 2. 3. 4. 5. 6. 7. 8.
Tavi 4 mravali cvladis funqciebi ZiriTadi cnebebi ............................................................................................................................................. 58 ori cvladis funqciis kerZo warmoebulebi .....................................................................60 ori cvladis funqciis sruli diferenciali ................................................................. 62 zedapiris mxebi sibrtye da normali .....................................................................................64 rTuli funqciis warmoebuli ............................................................................................................ 65 aracxadi funqcia da misi warmoebuli .................................................................................66 maRali rigis warmoebulebi da diferencialebi .......................................................... 68 ori cvladis funqciis eqstremumi ..............................................................................................70 savarjiSoebi me-4 TavisaTvis ..............................................................................................................74
4 Tavi 5 orjeradi integralebi 1. cilindruli sxeulis moculoba da orjeradi integralis cneba ............................................................................................................................................ 76 2. ganmeorebiTi integralebi da orjeradi integralis gamoTvla ................................................................................................................................. 77 3. orjeradi integralis gamoTvla marTkuTxa da polarul koordinatTa sistemaSi ................................................................................................. 80 4. orjeradi integralis gamoyeneba .................................................................................................. 84 4.1. brtyeli figuris farTobi ............................................................................................................... 84 4.2. zedapiris farTobi ................................................................................................................................... 84 4.3. brtyeli figuris masa, simZimis centri da statikuri momenti ....................................................................................................................................... 87 4.4. orjeradi integralis sxva gamoyenebebi ............................................................................ 89 savarjiSoebi me-5 TavisaTvis ..............................................................................................................90 Tavi 6 mrudwiruli integralebi 1. pirveli gvaris mrudwiruli integrali ................................................................................ 91 2. meore gvaris mrudwiruli integrali ...................................................................................... 93 3. meore gvaris mrudwiruli integralis meqanikuri mniSvneloba ........................................................................................................................................................... 97 savarjiSoebi me-6 TavisaTvis ................................................................................................................ 98 Tavi 7 diferencialuri gantolebebi 1. ZiriTadi cnebebi ...........................................................................................................................................100 2. umartivesi pirveli rigis Cveulebrivi diferencialuri gantolebebi .............................................................................................................102 2.1. diferencialuri gantoleba gancalebadi cvladebiT .......................................102 2..2. pirveli rigis erTgvarovani diferencialuri gantoleba ............................................................................................................................................................. 103 2.3. wrfivi, pirveli rigis diferencialuri gantoleba ............................................ 105 2.4. bernulis diferencialuri gantoleba ............................................................................ 105 2.5. gantoleba srul diferencialebSi .......................................................................................106 3. wrfivi, meore rigis diferencialuri gantolebani ................................................ 108 3.1. wrfivi, erTgvarovani, meore rigis diferencialuri gantoleba ........................................................................................................................................................... 108 3.2. wrfivi, araerTgvarovani meore rigis diferencialuri gantoleba ............................................................................................................................................................111 4. wrfivi mudmiv koeficientebiani meore rigis diferencialuri gantolebebi ..........................................................................................................113 5. diferencialuri gantolebebis gamoyeneba .........................................................................115 5.1. nivTierebis warmoqmnis da daSlis gantolebebi ......................................................115 5.2. harmoniuli rxevebi ................................................................................................................................. 117 savarjiSoebi me-7 TavisaTvis ..............................................................................................................120 Tavi 8 xdomiloba da misi albaToba 1. xdomiloba. elementarul xdomilobaTa sivrce ........................................................... 121 2. moqmedebebi xdomilobebze ..................................................................................................................... 122 3. albaTobis aqsiomuri ganmarteba ......................................................................................................126
5 4. albaTobis klasikuri gansazRvreba ........................................................................................... 128 5. albaTobis geometriuli gansazRvreba ..................................................................................... 132 6. pirobiTi albaToba. xdomilobaTa namravlis albaToba ...................................... 134 7. xdomilobaTa damoukidebloba ......................................................................................................... 135 8. sruli albaTobis formula. baiesis formula ............................................................... 137 9. damoukidebel cdaTa mimdevroba. bernulis sqema ........................................................140 10. polinaruli sqema. ualbaTesi ricxvi ..................................................................................... 143 11. muavr-laplasis lokaluri da integraluri Teoremebi ......................................146 12. puasonis formula .......................................................................................................................................147 Tavi 9 SemTxveviTi sidideebi 1. SemTxveviTi sidide da misi ganawilebis kanoni .............................................................149 2. SemTxveviTi sididis ricxviTi maxasiaTeblebi ............................................................... 152
1. 2. 3. 4. 5.
Tavi 10 ganawilebis kanonTa ZiriTadi saxeebi binomuri ganawileba ..................................................................................................................................... 158 puasonis ganawileba ..................................................................................................................................... 159 geometriuli ganawileba ......................................................................................................................... 159 Tanabari ganawilebis kanoni ...............................................................................................................160 normaluri ganawilebis kanoni ........................................................................................................160
Tavi 11 did ricxvTa kanoni 1. CebiSevis utoloba .........................................................................................................................................164 2. did ricxvTa kanoni ......................................................................................................................................166
1. 2. 3. 4. 5. 6. 7. 8. 9.
Tavi 12 maTematikuri statistikis elementebi maTematikuri statistikis sagani da ZiriTadi amocanebi ..................................... 168 SerCeviTi meTodi ............................................................................................................................................169 ganawilebis parametrebis statistikuri Sefaseba ....................................................... 171 momentTa meTodi ..............................................................................................................................................174 maqsimaluri dasajerobis meTodi ................................................................................................. 175 empiriuli ganawilebis funqcia ...................................................................................................... 178 ndobis intervalebi ...................................................................................................................................... 179 statistikuri hipoTezebi ........................................................................................................................ 182 parametrul hipoTezaTa Semowmeba ................................................................................................ 186
danarTi1. danarTi 2.
funqciis mniSvnelobaTa cxrili ........................................ 191 funqciis mniSvnelobaTa cxrili ................ 192
danarTi 3. ganawilebis kritikuli wertilebi ............................................................. 193 literatura ................................................................................................................................................................194
6 Sesavali maTematikuri analizi aris maTematikis nawili, romelSic funqciebi Seiswavleba zRvarTa meTodebiT. zRvris cneba mWidrodar aris dakavSirebuli usasrulod mcire sididis cnebasTan. SeiZleba iTqvas, rom maTematikuri analizi Seiswavlis funqciebs usasrulod mcireTa meTodebiT. saxelwodeba ,,maTematikuri analizi’’ aris saxelwodebis ,,usasrulod mcireTa analizis” Semoklebuli saxecvlileba; magram isic Semoklebulia da amdenad sagans ufro zustad aRwers saxelwodeba ,,analizi usasrulod mcireTa saSualebiT”. bunebasa da teqnikaSi, yvelgan gvxvdeba moZraoba, procesebi, romlebic aRiwereba funqciebis meSveobiT; funqciis meSveobiT, aseve SeiZleba aRiweros bunebis kanonebi. aqedan gamomdinare, maTematikuri analizi aris funqciis Seswavlis saSualeba. maTematikur analizs safuZveli Cauyares da ganaviTares iseTma cnobilma bunebismetyvelebma, rogorebic iyvnen niutoni, laibnici, ferma, eileri, abeli da sxva. maTematikuri analizis mniSvnelovan nawilebs warmoadgens integraluri aRricxva da mwkrivTa Teoria. swored am nawilebis da maTi praqtikuli gamoyenebis elementebia Setanili winamdebare saxelmZRvaneloSi. saxelmZRvaneloSi Setanilia agreTve albaTobis Teoriis da maTematikuri statistikis elementebi. albaTobis Teoria, rogorc mecniereba aRmocenda meCvidmete saukunis Sua wlebSi. Tavdapirvelad igi dakavSirebuli iyo azartuli TamaSebis analizTan. am analizisas wamoWrilma problemebma da amocanebma, romlebic ver ixsnebod nen maSin arsebuli maTematikuri meTodebis saSualebiT, miiyvana mecnierebiaxali ideebis da cnebebis warmoqmnamde. aseTi ideebi da cnebebi gvxvdeba cnobili maTematikosebis fermas, paskalis, hiugensis, bernulis da sxvaTa naSromebSi. miuxedavad imisa, rom albaTobis Teoria ganviTarebis sam saukuneze mets iTvlis, maTematikis sruluflebiani dargis statusi moipova meoce saukunis 30-ian wlebSi, rusi maTematikosis a.n.kolmogorovis Sromebis gamoqveynebis Semdeg. man Camoayaliba albaTobis Teoriis aqsiomebi, romelTa safuZvelze albaTobis Teoria warmoadgens mkacr maTematikur disciplinas. albaTobis Teorias efuZneba maTematikuri statistika. garkveuli azriT, ro gorc vnaxavT, maTematikuri statistikis amocanebi warmoadgenen albaTobis Teoriis amocanebis Sebrunebul amocanebs. saxelmZRvanelos im nawilis, romelic moicavs integraluri aRricxvis da mwkrivTa Teoriis elementebs, avtorebi arian goris universitetis profesorebi: malxaz mumlaZe da soso cotniaSvili. im nawilis ki, romelic moicavs albaTobis Teoriis da maTematikuri statistikis elementebs, amave universitetis profesori karlo cercvaZe. avtorebi did madlobas uxdian profesor jemal qirias saxelmZRvanelos redaqtirebisTvis da Rirebuli SeniSvnebisaTvis. saxelmZRvanelo gankuTvnilia umaRlesi profesiuli skolis, aseve ekonomikuri da sainJinro specialobebis bakalavriatis studentebisaTvis.
7 Tavi1 gansazRvruli integrali 1. farTobis amocana vTqvaT, mocemulia sasrul [a, b] segmentze gansazRvruli y = f (x ) funqcia, f ( x ) ≥ 0 , yoveli x ∈ [ a, b] wertilisaTvis. figuras, romelic SemosazRvrulia zemodan y = f (x ) funqciis grafikiT, qvemodan OX ricxviT RerZze mdebare [a, b] monakveTiT, gverdebidan ki x = a da x = b wrfeebiT, mrudwirul trapecias uwodeben (nax.1). SeiZleba adgili hqondes tolobas f ( a ) = 0 an f ( a ) = 0 . aseT SemTTxvevebSi mrudwiruli trapeciis gverdi moiWimeba wertilSi. yoveli brtyeli figura SeiZleba davanawiloT ramdenime mrudwirul trapeciad, romelTa farTobebis jami toli iqneba mocemuli figuris farTobisa. Tu movaxerxebT mrudwiruli trapeciis farTobis gamoTvlas, maSin SevZlebT yovelgvari brtyeli figuris farTobis gamoTvlas. Y y = f (x)
D
a O
b
nax.1 X
mrudwiruli trapeciis D farTobis gamosaTvlelad [a, b] segmenti nebismierad davyoT n nawilad. vTqvaT, dayofis wertilebi ganlagebuli arian [a, b] segmentze aseTnairad: a = x0 < x1 < x 2 < ... < x k < x k +1 < ... < x n −1 < x n = b . dayofis wertilebidan x k , k = 1,2,3,..., n − 1 aRvmarToT marTobebi y = f ( x) funqciis grafikis gadakveTamde. TiToeuli am gadakveTis wertilis koordinatebi iqneba ( x k , f ( x k )) . avagoT figura Sedgenili marTkuTxedebisgan, romelTa fuZeebia monakveTebi [ x k , x k +1 ] , k = 0,1,2,..., n − 1 , xolo simaRleebi TiToeuli am monakveTis romelime ξ k ∈ [ x k , x k +1 ] wertilSi aRmarTuli marTobebi grafikis gadakveTamde. TiToeuli marTobis sigrZe f (ξ k ) ricxvis tolia. Y
y = f ( x)
. . .…
ξ2 O ξ0 X ξ3 ξ n −1 x1 x2 b = xn x0 = a x3 x n −1 nax.2 aRvniSnoT agebuli figuris (nax.2) farTobi simboloTi, maSin S n = f (ξ 0 )( x1 − x0 ) + f (ξ1 )( x 2 − x1 ) + ... + f (ξ n −1 )( x n − x n −1 ) anu
8 n −1
S n = ∑ f (ξ k )Δx k ,
(1)
k =0
sadac Δx k = x k +1 − x k warmoadgens [ x k , x k +1 ] monakveTis sigrZes. advilia mixvedra, rom mrudwirili trapeciis farTobi miaxloebiT tolia agebuli figuris farTobisa da SegviZlia davweroT: n −1
D ≈ S n = ∑ f (ξ k )Δx k .
(2)
k =0
Tu (1) gamosaxulebaSi TandaTan gavzrdiT [a, b] segmentis damyofi wertilebis ricxvs ise, rom dayofiT miRebuli monakveTebis max Δx k miiswrafvodes nulisaken, geometriuli maqsimalurisigrZe mosazrebiT, SeiZleba davaskvnaT, rom (2) miaxloebiTi tolobis sizuste TandaTan gaizrdeba da dayofis wertilebis usasrulo gazrdiT zusti gaxdeba. (1) jams [a, b] segmentze y = f ( x ) funqciis rimanis integraluri jami ewodeba. vTqvaT, y = f ( x ) funqcia gansazRvrulia [a, b] segmentze da Rebulobs rogorc arauaryofiT, aseve uaryofiT mniSvnelobebs. gansazRvreba 1.1. Tu [a, b] segmentze gansazRvrul y = f ( x) funqciis rimanis jamebis mimdevrobas: n −1
S n = ∑ f (ξ k )Δx k , n = 1,2,3,..., n,... k =0
gaaCnia sasruli zRvari, rodesac segmentis damyofi wertilebis raodenoba usasrulod izrdeba ise, rom dayofiT miRebuli monakveTebis maqsimaluri sigrZe miiswrafvis nulisken da es zRvari ar aris damokidebili ξ k ∈ [a, b] wer- tilis amorCevaze, maSin amboben, rom y = f ( x ) funqcia integrebadia [a, b] segme-ntze, xolo zRvars:
lim
n −1
∑ f (ξ
n →∞ max Δxk →0 k = 0
k
)Δx k
uwodeben y = f ( x) funqciis gansazRvrul integrals [a, b] segmentze. b
gansazRvrul integrals aRniSnaven ase:
∫ f ( x)dx . a
maSasadame b
∫
f ( x)dx =
a
lim
n −1
∑ f (ξ
n →∞ max Δxk →0 k = 0
k
)Δx k .
b
gansazRvruli integralis
∫ f ( x)dx
gamosaxulebaSi f ( x ) funqcias
a
integralqveSa funqcia ewodeba, x cvlads- saintegracio cvladi, a da b ricxvebs- Sesabamisad, integrirebis qveda da zeda sazRvrebi. SeniSvna: gansazRvrul integralTan dakavSirebiT unda aRvniSnoT, rom arseboben segmentze gansazRvruli wyvetadi funqciebi, [a, b] romlebisTvisac rimanis jamebis mimdevroba krebadia da, Sesabamisad, arsebobs maTi integralebi. aseve arsebobs funqciebi, romlebic ara integrebadia mocemul segmentze. adgili aqvs Teoremebs:
9 integrebadi y = f ( x ) funqcia
Teorema 1.1. yoveli [a, b] segmentze SemosazRvrulia am segmentze. Teorema 1.2. yoveli [a, b] segmentze uwyveti y = f ( x) funqcia integrebadia am segmentze.
2. gansazRvruli integralis Tvisebebi gansazRvruli integralis gamoTvla pirdapir, misi gansazRvrebidan Zalian Znelia martiv SemTxvaSic ki. praqtikaSi gamoiyeneba zogadi da ufro ioli meTodi, romelic gamomdinareobs gansazRvruli integralis Tvisebebidan, roml- ebsac moviyvanT damtkicebis gareSe. Tviseba 1. Tu f ( x ) da ϕ ( x ) integrebadi funqciebia [a, b] segmentze, maSin funqcia f ( x ) + ϕ ( x ) integrebadia am segmentze da adgili aqvs tolobas: b
b
b
a
a
a
∫ [ f ( x) ± ϕ ( x)]dx = ∫ f ( x)dx ± ∫ ϕ ( x)dx . Tviseba 2. Tu kf ( x ) , sadac k tolobas:
f ( x ) integrebadi funqciaa [a, b] segmentze, maSin funqcia raime ricxvia, integrebadia am segmentze da adgili aqvs b
b
a
a
∫ kf ( x)dx = k ∫ f ( x)dx . integralis gansazRvrisas vgulisxmobdiT, rom a < b . Tu a > b , maSin SeTanxmebis safuZvelze iTvleba, rom b
a
f ( x)dx = − ∫ f ( x)dx .
∫ a
b
aqedan gamomdinareobs toloba: a
∫ f ( x)dx = 0 . a
Tviseba 3. Tu f ( x ) integrebadi funqciaa [a, b] segmentze da integrirebis segmenti [a, b] gayofilia nawilebad [a, c ] , [c, b ] , maSin arseboben integralebi: c
∫
b
f ( x)dx ,
a
∫ f ( x)dx c
da adgili aqvs tolobas: b
c
b
a
b
c
∫ f ( x)dx = ∫ f ( x)dx + ∫ f ( x)dx . Tviseba 4. Tu f ( x ) integrebadi funqciaa [a, b] segmentze segmentze f ( x ) ≥ 0 , maSin
da am
b
∫ f ( x)dx ≥ 0 . a
ukanaskneli Tvisebidan gamomdinareobs, rom Tu funqcia inarCunebs niSans b
∫ f ( x)dx = 0 , a
[a, b] segmentze f ( x )
10
mxolod maSin, rodesac f ( x ) = 0 . am Tvisebidan aseve gamomdinareobs: Tu f ( x ) ≤ ϕ ( x ) , maSin b
∫ a
b
f ( x)dx ≤ ∫ ϕ ( x)dx . a
Tviseba 5. Tu f ( x ) integrebadi funqciaa [a, b] segmentze da funqciis mniSvnelobebi am segmentze moTavsebulia m da M ricxvebs Soris, maSin b
m(b − a ) ≤ ∫ f ( x)dx ≤ M (b − a) . a
ukanaskneli Tviseba niSnavs, rom f ( x ) funqciis grafikiT gansazRvruli mrudwiruli trapeciis farTobi moTavsebulia fuZisa da, [a, b] Sesabamisad, m da M simaRleebis mqone marTkuTxedebis farTobebs Soris. es Tviseba SeiZleba gamoyenebuli iqnas integralis miaxloebiTi gamoTvlis dros. Tviseba 6. Tu f ( x ) funqcia uwyvetia [a, b] segmentze, maSin arsebobs iseTi c ∈ [ a, b] wertili, rom adgili aqvs tolobas: b
∫ f ( x)dx = f (c)(b − a) . a
3. integraluri aRricxvis ZiriTadi formula gansazRvruli integralis mniSvneloba ar aris damokidebuli imaze Tu ra simboloTi iqneba aRniSnuli saintegracio cvladi. ase, rom b
b
b
a
a
a
∫ f ( x)dx = ∫ f )(t )dt = ∫ f ( z )dz = ... ganvixiloT axla integrali, romlis integrirebis cvladi x sididea. aseTi integrali x cvladis funqciaa:
zeda
sazRvari
x
I ( x) = ∫ f (t )dt . a
am funqcias integrali cvladi zeda sazRvriT ewodeba. Teorema 1.3. integrali zeda sazRvriT, x
I ( x) = ∫ f (t )dt , a
x cvladis diferencirebadi funqciaa [a, b] segmentze da adgili aqvs tolobas: x ⎤ dI ( x) d ⎡ = ⎢ ∫ f (t )dt ⎥ = f ( x) . dx dx ⎣ a ⎦ es Tviseba gviCvenebs, rom integrali zeda sazRvriT warmoadgens funqciis erT-erT pirvelyofil funqcias: ∫ f ( x)dx = I ( x) + C , sadac C nebismieri mudmivia. radgan x
I ( x) = ∫ f (t )dt , a
f ( x)
11 f ( x ) funqciis erT-erT pirvelyofili funqciaa, amitom x
∫ f (t )dt = F ( x) + C
∗
,
a
sadac F ( x ) warmoadgens f ( x ) funqciis romelime pirvelyofil funqcias, C ∗ -konkretuli ricxvia. vipovoT C ∗ . davuSvaT x = a , maSin a
0 = ∫ f (t )dt = F (a) + C ∗ , a
aqedan C = − F (a ) da x
∫ f (t )dt = F ( x) − F (a) . a
Tu axla x = b , miviRebT: x
∫ f (t )dt = F (b) − F (a) .
(3)
a
es formula warmoadgens integraluri aRricxvis ZiriTad formulas, meornairad mas niuton- laibnicis formulasac uwodeben. sxvaoba F (b) − F ( a ) aRiniSneba ase: F ( x ) |ba . sabolood gveqneba: b
F ( x) |ba = ∫ f ( x)dx , a
sadac F ′( x ) = f ( x ) .
1
magaliTi. 1. gamovTvaloT integrali
∫x
2
dx .
0
amoxsna: 1
∫x
2
dx = 2 x |10 = 2 ⋅ 1 − 2 ⋅ 0 = 2 .
0
π 2
magaliTi 2. gamovTvaloT integrali
∫ sin xdx . 0
amoxsna: π 2
∫ sin xdx = − cos x |
π 2 0
= − cos
0
2
magaliTi 3. gamovTvaloT integrali
∫ 1
π 2
+ cos 0 = 0 + 1 = 1.
dx . x
amoxsna: 2
dx = ln | x | 12 = ln 2 − ln 1 = ln 2 − 0 = ln 2 . x 1 ganvixiloT gansazRvruli integralis gamoTvlis ramdenime meTodi: a) nawilobiTi integrebis meTodi. rogorc viciT, ganusazRvreli integralis gamosaTvlelad viyenebT nawilobiTi integrebis formulas
∫
12
∫ udv = uv − ∫ vdu ,
sadac u = u ( x ), v = v ( x ) .
∫ vdu
vTqvaT G ( x ) warmoadgens
simravlis erT-erT elements, maSin funqcia
uv − G ( x ) iqneba ∫ udv simravlis elementi. aqedan gamomdinare: b
∫ udv = uv |
b a
− G ( x) |ba ,
a
maSasadame b
b
b ∫ udv = uv |a − ∫ vdu . a
bolo tolobas integralisTvis.
(4)
a
ewodeba
nawilobiTi
integrebis
wesi
gansazRvruli
π 2
∫ x cos xdx .
magaliTi 4. gamovTvaloT integrali
0
amoxsna: π
π
2
2
0
0
π
π
2
∫ x cos xdx = ∫ xd sin x = x sin x |02 − ∫ sin xdx = =
π 2
+ cos
π 2
π
0
− cos 0 =
π 2
2
⋅ 1 − 0 ⋅ sin
π 2
π
+ cos x |02 =
− 1. e
∫ x ln xdx .
magaliTi 5. gamovTvaloT integrali
amoxsna:
1
1 x2 e x2 x2 x2 x2 x2 1 x2 e e e ln ln ln | ln ln | ln | |1 = x xdx = x d = x − d x = x − dx = x − 1 1 1 ∫1 ∫1 ∫1 2 ∫1 2 x 2 2 2 2 2 2 e
e
e
e
e2 e 2 12 e 2 e2 1 e2 + 1 12 1 + = ⋅1 − ⋅ 0 − + = ln e − ln 1 − . 2 2 4 4 2 2 4 4 4 π
∫e
magaliTi 6. gamovTvaloT integrali
x
cos xdx .
0
amoxsna: orjer gamoviyenoT nawilobiTi integrebis xerxi, gveqneba: π
∫e 0
π
x
π
π
sin xdx = − ∫ e d cos x = −e cos x 0 + ∫ cos xde = − e cos x 0 + ∫ e x cos xdx = x
π
x
x
0
π
x
π
0
0
π
π
2e π + ∫ e x d sin x = 2e x + e x sin x π0 − ∫ sin xde x = 2e x − ∫ e x sinxdx. 0
0
π
2 ∫ e x sin xdx = 2e x anu 0
0
π
∫e
x
sin xdx = e x .
0
b) Casmis meTodi. zogjer saintegracio cvladis gardaqmna aiolebs gansazRvruli integralis gamoTvlas. adgili aqvs Teoremas:
aqedan
13 b
Teorema 1.4. vTqvaT mocemulia
integrali
∫ f ( x)dx ,
sadac f ( x )
a
uwyveti funqciaa [a, b] segmentze. davuSvaT, x = ϕ (t ) raime diferencirebadi funqciaa [α , β ] segmentze, amasTan, ϕ (α ) = a, ϕ ( β ) = b da ϕ (t ) ∈ [ a, b] , rodesac t ∈ [α , β ] . maSin adgili aqvs tolobas: β
b
∫ f ( x)dx = α∫ f [ϕ (t )]ϕ ′(t )dt .
(5)
a
am Teoremis safuZvelze Cven SegviZlia gardavqmnaT saintegracio cvladi, gamovTvaloT gansazRvruli integrali integrirebis axal sazRvrebSi. 3
∫
magaliTi 7. gamovTvaloT integrali
3 2 − x 2 dx .
0
amoxsna: 3
∫
3 2 − x 2 dx
integralis gamosaTvlelad movaxdinoT cvladis gardaqmna.
0
davuSv- aT, x = 3 sin t . rodesac x Rebulobs mniSvnelobas 0 -dan 3-mde, maSin π t icvleba [0, ] SualedSi. (5) formulis gamoyeneba gvaZlevs: 2 3
∫ 0
π
π
2
2
3 − x dx = ∫ 3 − 3 sin t 3 cos tdt = 3 2
2
2
2
2
0
π
π
2
π
∫
1 − sin t cos tdt = 3 2
0
π
2
2
∫ cos
2
tdt =
0
π
π
π
2 1 + cos 2t 32 2 32 2 2 32 π 2 = 32 ∫ dt = dt + cos 2 tdt = t | + cos 2 tdt = + ∫ cos 2tdt. 0 ∫ ∫ ∫ 2 2 2 4 0 0 0 0 0 bolo integralSi aseve movaxdinoT cvladis gardaqmna: y = 2t , maSin y cvladi miiRebs mniSvnelobas 0 − dan π -mde da sabolood miviRebT: 2
π
3
∫
3 2 − x 2 dx =
0
32 1 32 π 1 32 π + ∫ cos ydy = + sin y |π0 = . 4 20 4 2 4 1
magaliTi 8. gamovTvaloT integrali
dx
∫1+
x
0
.
amoxsna: gamoviyenoT cvladis gardaqmna, x = t 2 , gveqneba: dx = 2dt , t icvleba [0,1] SualedSi, maSasadame: 1
am
gardaqmnis
1
dros
2tdt . x 0 1+ t 0 kidev gamoviyenoT cvladis gardaqmna, 1 + t = z , gveqneba: dt = dz , z icvleba [1,2] SualedSi, maSasadame dx
∫1+
1
1
2
2
2
=∫
tdt z −1 dz 2 2 ∫0 1 + x = 2∫0 1 + t = 2∫1 z dz = 2∫1 dz − 2∫1 z = 2 z 1 −2 ln z 1 = 4 − 2 − 2 ln 2 = 2 − 2 ln 2 . dx
14 π 4
dx . sin 2 x 0 1 amoxsna: movaxdinoT cvladis gardaqmna, tgx = t , gveqneba dx = dt da t cos 2 x icvleba [0,1] SualedSi. e.i. magaliTi 9. gamovTvaloT
∫1+ a
integrali
2
π 1
1
1
1
dx cos 2 xdt dt dt dt = ∫0 1 + a 2 sin 2 x ∫0 1 + a 2 sin 2 x = ∫0 1 + tg 2 x + a 2 tg 2 x = ∫0 1 + t 2 + a 2 t 2 = ∫0 1 + (a 2 + 1)t 2 . 4
Tu axla gamoviyenebT cvladis gardaqmnas z = t a 2 + 1 , gveqneba da z icvleba [0, a 2 + 1] SualedSi.
dz a2 +1
= dt
sabolood miviRebT:
π 4
dx ∫0 1 + a 2 sin 2 x =
a 2 +1
1 a +1 2
∫ 0
1
dz = 1+ z2
a +1 2
arctgz
a 2 +1
0
1
=
a +1 2
arctg a 2 + 1 . a
magaliTi 10. ganvixiloT integrali simetriul [ − a, a ] segmentze: ∫ f ( x)dx , −a
sadac integralqveSa funqcia luwia anu f ( x) = f (− x) . amoxsna: 0
a
∫
f ( x)dx =
−a
∫
−a
b
f ( x)dx + ∫ f ( x)dx . 0
pirvel SesakrebSi movaxdinoT cvladis gardaqmna x = −t , gveqneba dx = −dt , integrirebis sazRvarebi gaxdeba Sesabamisad 0 da a . gveqneba: a
∫
−a
0
a
a
0
a
a
a
0
0
0
f ( x)dx = − ∫ f (−t )dt + ∫ f ( x)dx = ∫ f (t )dt + ∫ f ( x)dx = 2 ∫ f ( x)dx . a
magaliTi 11. ganvixiloT integrali
∫ f ( x)dx ,
simetriul [ − a, a ] sgmentze,
−a
sadac integralqveSa funqcia kentia anu f ( x ) = − f ( − x ) . amoxsna: Tu igive msjelobas gavimeorebT miviRebT: a
0
b
−a
−a
0
∫ f ( x)dx = − ∫ f ( x)dx + ∫ f ( x)dx = 0 .
4. arasakuTrivi integralebi gansazRvruli integralis cnebis Semotanisas vgulisxmobdiT, rom integralqveSa funqcia gansazRvruli iyo integrirebis [a, b] sasrul segmentze. zogjer saWiroa uari vTqvaT am SezRudvebze da ganvixiloT funqciis integralebi usasrulo Sualedze an integralebi sasrul Sualedze, SemousazRvreli funqciis SemTxvevaSi. am SemTxvevebSi ver visargeblebT integralis 1-li gansazRvrebiT. moviyvanoT integralis gansazRvreba aseTi SemTxvevebisTvis.
15 gansazRvreba 1.2. Tu y = f ( x ) integrebadia nebismier [a, b] segmentze, sadac b ∈ [ a, ∞ ) da arsebobs zRvari: b
lim ∫ f ( x)dx ,
b →∞
a
maSin mas uwodeben f ( x ) funqciis arasakuTriv integrals usasrulo ∞
Sualedze da aRniSnaven ase:
∫ f ( x)dx . a
analogiurad ganisazRvreba arasakuTrivi integralebi: b
∫
−∞
b
∞
a
−∞
f ( x)dx = lim ∫ f ( x)dx , a →∞
∫
b
f ( x)dx = lim ∫ f ( x)dx . a →∞ b →b a
∞
dx
∫x
magaliTi 1. gamovTvaloT arasakuTrivi integrali
2
,a > 0.
a
amoxsna: ∞
b
1 1 1 1 dx dx = lim[− ba ] = lim[ − ] = . 2 ∫a x 2 = lim ∫ b →∞ x b →∞ b →∞ a x b a a ∞
8a 2 dx . magaliTi 2. gamovTvaloT arasakuTrivi integrali ∫ 2 2 0 x + 4a amoxsna: b ∞ 8a 2 8a 2 1 x b dx = lim dx = 8a 2 lim[ arctg 0 = ∫0 x 2 + 4a 2 b →∞ ∫ x 2 + 4a 2 b →∞ 2a 2a 0 = 4a 2 lim[arctg b →∞
b π − arctg 0] = 4a 2 = 2πa 2 . 2a 2 ∞
magaliTi 3. gamovTvaloT arasakuTrivi integrali
∫ 1
dx . x
amoxsna: ∞
b
dx dx = lim[ln x 1b ] = lim[ln b − 0] = lim ln b = ∞ . ∫1 x = blim ∫ →∞ b →∞ b →∞ b →∞ x 1 es ki niSnavs, rom arasakuTrivi integrali ar arsebobs. gansazRvreba 1.3. vTqvaT, y = f ( x) funqcia integrebadia [a, b] segmentis SigniT, anu integrebadia nebismier [a, b − ε ] segmentze, sadac 0 < ε ≤ b − a , rodesac x → b , amasTan, arsebobs sasruli zRvari magram f ( x ) → ∞ , b −ε
lim ε →0
∫ f ( x)dx ,
maSin
am
zRvars
ewodeba
arasakuTrivi
integrali
a
b
SemousazRvreli funqciidan da aRiniSneba ase:
∫ f ( x)dx . a
analogiurad ganisazRvreba arasakuTrivi integrali, Tu f ( x ) → ∞ , rodesac x → a : b
∫ a
b
f ( x)dx = lim ε →0
∫ε f ( x)dx .
a+
16 a
dx
∫
magaliTi 4. gamovTvaloT arasakuTrivi integrali
a2 − x2
0
.
amoxsna: a
∫ 0
a −ε
dx a2 − x2
= lim ε →0
dx
∫
= lim[arcsin ε →0
a2 − x2
0
x a
a −ε 0
] = lim arcsin ε →0
a −ε π = . a 2
1
dx . x 0
∫
magaliTi 5. gamovTvaloT arasakuTrivi integrali amoxsna: 1
1
dx dx = lim[ln x 1ε ] = lim[ln 1 − ln ε ] = ∞ . ∫0 x = lim ∫ ε →0 ε →0 ε →0 ε x maSasadame arasakuTrivi integrali ar arsebobs. vTqvaT, Tu f ( x ) → ∞ , rodesac x → c , sadac c ∈ (a, b) . Tu erTdroulad arsebob en zRvrebi: c −ε
lim ε →0
∫
b
f ( x)dx da lim δ →0
a
∫δ f ( x)dx ,
sadac ε > 0, δ > 0 , maSin arasakuTrivi integrali
c+
f ( x ) SemousazRvreli funqciidan [a, b]
segmentze ewodeba am zRvarTa
b
jams da aRiniSneba ase: ∫ f ( x)dx . maSasadame a
c −ε
b
∫
f ( x)dx = lim ε →0
a
∫
b
f ( x)dx + lim δ →0
a
∫δ f ( x)dx .
c+
8
magaliTi 6. gamovTvaloT arasakuTrivi integrali
∫
dx 3
x
8 0 +δ
=
−1
.
amoxsna: 8
∫
−1
dx 3
x
0 −ε
= lim ε →ε
∫
−1
dx 3
x
8
+ lim δ →0
∫δ
0+
2
2
3 = lim x 3 →0 2 ε x
dx 3
2
0 −ε −1
2
2
3 + lim x 2 δ →0 2 2
3 3 3 3 3 9 = lim( (0 − ε ) 3 − (−1) 3 ) + lim( 8 3 − (0 + δ ) 3 ) = − + 6 = . ε →0 2 δ →0 2 2 2 2 2 a dx magaliTi. 7. gamovTvaloT arasakuTrivi integrali ∫ 2 . −a x amoxsna: a
0 −ε
a
dx dx dx 1 + lim ∫ 2 = lim[− 2 ∫−a x 2 = lim ∫ b →0 ε →0 δ →0 x 0 +ε x −a x
0 −ε −a
] + lim[− δ →0
1 x
a 0 +δ
1 1 1 1 = lim[ − ] + lim[ + ] = ∞. ε →0 ε a δ →0 − a δ
5. gansazRvruli integralis gamoyeneba 5.1. farTobis gamoTvla sxvadasxva geometriuli figurisaTvis gansazRvruli integrali [.a, b] rogorc zemoT aRvniSneT, y = f ( x ) segmentze warmoadgens im figuris farTobs, romelic SemosazRvrulia zemodan f ( x ) funqciis grafikiT, qvemodan OX RerZiT, gverdebidan x = a da x = b wrfeebiT(nax.3). mag- ram zemoT vgulisxmobdiT, rom am SemTxvevaSi adgili hqonda pirobas f ( x ) ≥ 0 . Tu f ( x ) funqciis grafiki gadahkveTs 0 X RerZs an mTlianad mdebareobs am RerZis qvemoT anu [.a, b] segmentis
17 farglebSi f ( x ) ≤ 0 , am dros saqme gveqneba figurasTan, romlis nawili zemodan iqneba SemosazRvruli funqciis grafikiT, nawili- qvemodan. aseT dros rimanis jamis zogierTi an yvela Sesakrebi iqneba uaryofiTi. magram farTobi dadebiTi sididea, amitom aRwerili figuris, romelsac aseve mrudwiruli trapecia ewodeba, farTobi D SeiZleba gamovsaxoT formuliT b
D = ∫ | f ( x) | dx .
(1)
a
Y
Y
y1 = f1 ( x) D y 2 = f 2 ( x)
y = f ( x)
O
a
b
X
O
a
b
X
nax. 3 nax. 4 axla ganvixiloT figura, romelic SemosazRvrulia x = a da x = b y1 = f1 ( x) funqciis grafikiT, qvemodan y 2 = f 2 ( x) wrfeebiT, zemodan funqciis grafikiT. aseTi figura gamosaxulia naxazze (nax.4) misi farTobi warmoadgens ori mrudwiruli trapeciis farTobTa sxvaobas da gamoisaxeba ase: b
D = ∫ | f1 ( x) − f 2 ( x) | dx .
(2)
a
analogiurad gamoisaxeba im figuris farTobi, romelic SemosazRvrulia mxolod ori wiriT, romlebic y1 = f1 ( x) da y 2 = f 2 ( x) funqciebis grafikebs warmoadgenen (nax.5).
y 2 = f 2 ( x)
Y
D
y1 = f 2 ( x)
O
a
b X
nax.5
magaliTi 1. gmovTvaloT y = sin x , 0 ≤ x ≤ 2π funqciis grafikiT da OX RerZiT Se mosazRvruli figuris farTobi. amoxsna: rodesac 0 ≤ x ≤ π , funqcia sin x ≥ 0 , rodesac π ≤ x ≤ 2π , funqcia sin x ≤ 0 , amitom
18 2π
π
2π
0
0
π
D = ∫ | sin x | dx = ∫ sin xdx + ∫ − sin xdx = − cos x π0 + cos x π2π = 1 + 1 + 1 + 1 = 4 . magaliTi 2. gamovTvaloT figuris farTobi, romelic SemosazRvrulia parabolebiT: y1 = x 2 da y 2 = x . amoxsna: vipovoT am parabolaTa urTierTgadakveTis wertilebi. amisaTvis amovxsnaT gantoleba x 2 = x . miviRebT x1 = 0, x 2 = 1 . figura, romlis farTobsac veZebT mocemulia naxazze (nax.6).
Y
Y
y=x
2
II
y=
−a
x
I
b
a
O
X III
O nax.6 misi farTobi iqneba
−b
IV
X nax.7 2
1
2 1 2 1 1 D = ∫ ( x − x 2 )dx = x 3 − x 3 10 = − = . 3 3 3 3 3 0 vTqvaT mrudwiruli trapeciis zemodan SemomsazRvreli wiri mocemulia parametruli formiT: x = x (t ), y = y (t ), sadac t 0 ≤ t ≤ T . maSin (1) formula x cvladis x = x (t ) gardaqmnis Semdeg miiRebs saxes: T
D = ∫ y (t ) x ′(t )dt . t0
2
magaliTi
3.
vipovoT
2
x y + 2 =1 2 a b
elifsiT
SemosazRvruli
figuris
farTobi. amoxsna: CavweroT elifsis gantoleba parametrulad, gveqneba: 0 ≤ α ≤ 2t . sadac radganac elifsi simetriuli x = a cos t , y = b sin t , figuraa(nax.7), jer gamovTvaloT elifsis im nawiliT SemosazRvruli figuris farTobi, romelic imyofeba sakoordinato sibrtyis I meoTxedSii 0
0
0
1 1 − cos 2t D = ∫ ydx = ∫ b sin t (− a sin t )dt = − ab ∫ sin 2 tdt = −ab ∫ dt = 4 2 π π π π 2
2 0
= −ab
2
1 − ab ab ab cos 2tdt = dt + t + sin 2t ∫ ∫ 2π 2 π 2 4 2
2
0
2
0
π 2
=
πab 4
.
sabolood elifsiT SemosazRvruli figuris farTobi D = πab .
19 magaliTi 4. ganvixiloT figura, romelic SemosazRvrulia erTi wertilidan gamosuli ori sxiviT da am sxivebis TiTojer gadamkveTi wiriT. aseT figuras mrudwiruli seqtori ewodeba (nax.8 a). amoxsna: vTqvaT, sxivebi, romlebic SemosazRvraven mrudwirul seqtors gamodian koordinatTa saTavidan da Seadgenen OX RerZTan, Sesabamisad, kuTxeebs: α da β , α < β . gamoviyenoT koordinatTa polaruli sistema da seqtoris SemomsazRvreli wiris gantoleba gamovsaxoT polarul koordinatebSi: r = r (ϕ ), α ≤ ϕ ≤ β .
….….
Y
rn −1
ϕ n −1
rk
r
ϕ
ϕk X
rk
β O
ϕ1
α
nax.8.a
X
nax.8.b
gamovTvaloT miaxloebiT seqtoris farTobi. amisaTvis davyoT seqtori n nawilad sxivebiT. vTqvaT, ϕ k warmoadgens kuTxes k nomris sxivsa da OX RerZs Soris, xolo Δϕ k = ϕ k +1 − ϕ k , k = 0,1,2,..., n − 1, ϕ 0 = α , ϕ n = β . amgvarad, miviRebT mcire mrudwirul seqtorebs, romlebic SeiZleba CavTvaloT wriul seqtorebad. TiToeuli am wriuli seqtoris farTobi tolia: 1 2 1 rk Δϕ k = [r (ϕ k )] 2 Δϕ k . 2 2 aqedan gamomdinare, mTeli mrudwiruli seqtoris farTobi miaxloebiT toli iqneba sididis: n −1 1 D = ∑ [r (ϕ k )] 2 Δϕ k , k =0 2 1 romelic warmoadgens rimanis jams r (ϕ ) funqciisaTvis [α , β ] segmentze. 2 cxadia, rodesac n → ∞ , ukanaskneli tolobis sizuste izrdeba, amitom sabolood gveqneba: β
1 D = ∫ r 2 (ϕ )dϕ . (3) 2α magaliTi 5. vipovoT figuris farTobi, romelic SemosazRvrulia kardioidiT anu wiriT, romlis gantoleba polarul koordinatebSi aris: r = a (1 + cos ϕ ) (nax. 8 b). amoxsna: aseTi farTobis gamosaTvlelad unda gamoviyenoT (3)
20 formula, gveqneba: 2π
D=
1 a 2 (1 + cos ϕ ) 2 dϕ = 2 ∫0 2π
=
2π
2π
2π
1 2 1 a ( ∫ dϕ + 2 ∫ cos ϕdϕ + ∫ cos 2 ϕdϕ ) = πa 2 + 0 + a 2 ∫ (1 + cos 2ϕ )dϕ = 2 2 0 0 0 0
= πa 2 +
2π
1 1 3 1 2πa 2 + ∫ cos 2ϕd 2ϕ = πa 2 + sin 2ϕ 4 4 0 2 4
2π 0
3 = πa 2 . 2
5.2 wiris rkalis sigrZis gamoTvla vTqvaT, wiri mocemulia gantolebiT y = f ( x) , sadac f ( x ) funqcia gansazRvrulia da warmoebadia [a, b] segmentze. davyoT [a, b] segmenti n nawilad wertilebiT: a = x0 , x1 , x 2 ,...x k ,..., x n = b . aRvniSnoT x k abscisis Sesabamisi wertili wirze M k -iT, M k ( x k , f ( x k )) (nax.9). Y
M2
M0
M1
M3 M n −1 M n … ...
O x0 = a x1
x2
x3 x n −1 x n = b X
nax.9
amgvarad, avageT texili M 0 M 1 ...M n . misi TiToeuli rgolis sigrZe
| M k M k +1 |= | x k +1 − x k | 2 + | f ( x k +1 ) − f ( x k ) | 2 . SemoviRoT aRniSvnebi:
Δx k = x k +1 − x k , Δy k = f ( x k +1 ) − f ( x k ) .
gveqneba: 2
2
| M k M k +1 |= Δx k + Δy k . aqedan
| M k M k +1 |= 1 + (
Δy k 2 ) Δx k . Δx k
Tu gamoviyenebT lagranJis Teoremas, sasruli nazrdis Sesaxeb [ x k , x k +1 ] monakveTze, gveqneba: Δy k = f ′(ξ n )Δx k , sadac x k ≤ ξ k ≤ x k + Δx k = x n +1 . aqedan vRebulobT Semdeg gamosaxulebas:
21
| M k M k +1 |= 1 + [ f ′(ξ k )]2 Δx k . mTeli texilis sigrZe n −1
n −1
k =0
k =0
l n = ∑ | M k M k +1 |= ∑ 1 + [ f (ξ k )] 2 Δx k .
(1)
(1) formulis marjvena mxare warmoadgens rimanis integralur jams 1 + [ f ′( x)] 2 funqciisTvis [a, b] segmentze.
Tu n → ∞ da Δx k → 0 , rodesac k = 0,1,2,..., n − 1 . maSin ricxvs L = lim l n , n →∞ Δx k → 0
ewodeba y = f ( x ) gantolebiT gansazRvruli wiris M 0 M n rkalis sigrZe. Tu (1) tolobaSi gadavalT zRvarze miviRebT: b
L = ∫ 1 + [ f ′( x)]2 dx .
(2)
a
Tu wiri mocemulia parametruli gantolebebiT x = x (t ), y = y (t ) , sadac ( x(t 0 ), y (t 0 )) koordinatebis mqone wertili Seesabameba M 0 wertils, ( x(T ), y (T )) koordinatebis mqone wertili ki M n wertils, aseT SemTxvevaSi rkalis sigrZe T
L = ∫ [ x ′(t )]2 + [ y ′(t )]2 dt .
(3)
t0
Tu wiri mocemulia polarul koordinatebSi, gantolebiT r = r (ϕ ) , sadac ϕ = α Seesabameba M 0 wertils, ϕ = β ki Seesabameba M n wertils,MmaSin Tu t parametris nacvlad gamoviyenebT ϕ parametrs, gveqneba: x(ϕ ) = r (ϕ ) cos ϕ , y (ϕ ) = r (ϕ ) sin ϕ . aqedan [ x ′(ϕ )]2 + [ y ′(ϕ )]2 = [r ′(ϕ ) cos ϕ ] 2 − 2r ′(ϕ ) cos ϕ ⋅ r (ϕ ) sin ϕ + [r (ϕ ) sin ϕ ] 2 =
= [r ′(ϕ ) sin ϕ ] 2 + 2r ′(ϕ ) sin ϕ ⋅ r (ϕ ) cos ϕ + [r (ϕ ) cos ϕ ] 2 = [r (ϕ )]2 + [r ′(ϕ )]2 . maSasadame β
L = ∫ [r (ϕ )]2 + [r ′(ϕ )]2 dϕ .
(4)
α
magaliTi 1. vipovoT wiris sigrZe, romelic mocemulia gantolebiT 3 2
y = x , Tu x icvleba koordinatTa saTavidan x = 5 wertilamde. amoxsna: y ′ =
1
9 1 3 2 4 + 9 x . (3) formulidan gveqneba: x , maSin 1 + [ y ′]2 = 1 + x = 2 4 2 5
3
3
3
1 121 1 335 . (4 + 9 x) 2 50 = (49 2 − 4 2 ) = L = ∫ 4 + 9 x dx = 20 239 27 27
22 magaliTi 2. vipovoT avtomobilis a radiusis mqone borblis raime wertilis mier, borblis erTjer Semotrialebisas, Semowerili rkalis sigrZe. amoxsna: borblis trialis dros misi raime wertili moZraobs wirze, romelsac cikloida ewodeba(nax.10). misi parametruli gantolebaa: x = a (t − sin t ), y = a (1 − cos t ), sadac t parametri icvleba [0.2π ] SualedSi. Y
2a
πa
O
2π a
nax. 10
X
x ′(t ) = a (1 − cos t ), y ′ = a ( − sin t ) , amitom saZiebeli rkalis sigrZe tolia 2π
L=
∫
[ x ′(t )]2 + [ y ′(t )]2 dt =
0
2π
∫
a 2 (1 − cos t ) 2 + a 2 (− sin t ) 2 dt =
0
. t t 2π = 2a ∫ sin dt = 2a(−2 cos ) 0 = 8a 2 2 0 magaliTi 3. vipovoT kardioidis r = a (1 + cos ϕ ),0 ≤ ϕ ≤ 2π rkalis sigrZe(nax.8 b) amoxsna: gamoviyenoT (4) formula 2π
2π
L=
∫
a 2 (1 + cos ϕ ) 2 + a 2 (− sin ϕ ) 2 dϕ =
0
∫
a 2 (1 + 2 cos ϕ + cos 2 ϕ + sin 2 ϕ 2 dϕ =
0
2π
2π
= a ∫ 2(1 + cos ϕ ) dϕ = a ∫ 4 | cos 0
4a sin
2ϕ
0
ϕ 2
π 0
−4a sin
ϕ 2
2π
π
ϕ 2
|d
ϕ 2
π
= 4 ∫ cos 0
ϕ ϕ 2
d
2
2π
+ 4 ∫ − cos π
ϕ ϕ 2
d
2
=
=8a.
5.3 brunviTi sxeulis moculoba vTqvaT, wiri mocemuli gantolebiT y = f ( x ) , sadac x cvladi Rebulobs mniSvnelobebs [a, b] segmentidan, brunavs OX RerZis garSemo. gamovTvaloT moculoba sxeulisa, romelic SemosazRvrulia wiris brunviT miRebuli zedapirisa da x = a, y = b sibrtyeebiT. davyoT [a, b] segmenti n nawilad wertilebiT: a = x0 , x1 , x 2 ,...x k ,..., x n = b . am absci- sebis Sesabamisi ordinatebi aRvniSnoT y k , y k = f ( x k ) . OX RerZis dayofis yovel wertilSi gavavloT am RerZis perpendikularuli sibrtyeebi. es sibrtyeebi dayofen sxeuls fenebad(nax.11). TiToeuli es fena SeiZleba miaxloebiT CavTvaloT wriul cilindrad. am cilindris simaRlea: Δx k = x k +1 − x k , xolo fuZeTa radiuisi- y k . cilindris moculoba iqneba: Δv k = πy k2 Δx k .
23 Z
Y
yk
y k +1
a
xk
b
x k +1
O
X
nax.11
mTeli sxeulis V moculobisaTvis ki adgili eqneba mixloebiT tolobas: n −1
V ≈ ∑ πy k2 Δx k . 0
bunebrivia sxeulis moculoba iqneba ukanaskneli miaxloebiTi tolobis marj- vena mxaris zRvari, rodesac dayofis wertilTa raodenoba miiswrafvis usasrulobisken ise, rom dayofiT miRebuli monakveTebis maqsimaluri sigrZe Δx k miswrafvis nulisaken. maSasadame
V = lim
n −1
∑ πy
n →∞ Δxk →0 0
2 k
Δx k .
aqedan b
b
V = π ∫ y dx anu V = π ∫ [ f ( x)]2 dx . 2
a
(1)
a
Tu wiri mocemulia parametruli gantolebebiT x = x (t ), y = y (t ) , sadac t0 ≤ t ≤ T . aseT SemTxvevaSi T
V = π ∫ [ y (t )]2 x ′(t )dt .
(2)
t0
x2 y2 + = 1 elifsis OX RerZis garSemo brunviT a2 b2 miRebuli elifsoidiT SemosazRvruli sxeulis moculoba. b2 amoxsna: elifsis gantolebidan y 2 = 2 (a 2 − x 2 ) , rodesac − a ≤ x ≤ a . (1) a formuliT miviRebT: magaliTi 1. vipovoT
b2 2 πb 2 πb 2 1 3 2 2 2 2 − = − = π − ( a x ) dx ( a dx x dx ) 2 a b x 2 2 2 ∫ ∫ 3 a a a −a −a −a a
V =π ∫
a
a
a −a
4 = πab 2 . 3
magaliTi 2. vipovoT igive elifsis mier OY RerZis garSemo brunviT miRebuli elifsoidiT SemosazRvruli sxeulis moculoba.
24 gantolebidan x 2 =
amoxsna: aseT SemTxvevaSi, elifsis
rodesac − b ≤ x ≤ b . sxeulis moculoba iqneba:
a2 2 (b − y 2 ) , 2 b
a2 2 4 (b − x 2 )dy = πa 2b . 2 b 3 −b b
V =π ∫
magaliTi 3. vipovoT cikloidis pirveli TaRis OY RerZis garSemo brunviT miRebuli brunviTi zedapiriT SemosazRvruli sxeulis moculoba. amoxsna: cikloidis parametruli gantolebaa x = a (t − sin t ), y = a (1 − cos t ). cikloidis pirveli TaRi aRiwereba t parametris cvlilebiT 0 -dan 2π mde. amitom saZiebeli moculoba, (2) formulis Tanaxmad, tolia 2π
2π
2π
0
0
V = π ∫ a 2 (1 − cos t ) 2 a (1 − cos t )dt = πa 3 ∫ (1 − cos t ) 3 dt = πa 3 [ ∫ (1 − 3 cos t )dt + 0
2π
+
2π
3
∫ 2 (1 + cos 2t )dt − ∫ (1 − sin 0
0
2
3 t )d sin t ] = πa 3 [t − 3 sin t + t + 2
1 3 + sin 2t − sin t + sin 3 t ] 02π = 5π 2 a 3 . 3 4
magaliTi 4. vipovoT kardioidis polaruli RerZis garSemo brunviT miRebuli sxeulis moculoba(nax.8 a). amoxsna: kardioidis gantoleba polarul koordinatebSi aris: r = a (1 + cos ϕ ) . misi parametruli gantoleba iqneba:
⎧ x = a(1 + cos ϕ ) cos ϕ , ⎨ ⎩ y = a (1 + cos ϕ ) sin ϕ . gamoviyenoT (2) formula, gveqneba: 2π
V = π ∫ {a 2 (1 + cos ϕ ) 2 sin 2 ϕ[a(− sin ϕ ) cos ϕ − a(1 + cos ϕ ) sin ϕ ]}dϕ = 0
= −πa
2π 3
∫ (1 + cos ϕ ) 0
3
sin ϕdϕ − πa 3
2π 3
∫ (1 + cos ϕ )
2
sin 2 ϕ sin ϕ cos ϕdϕ =
0
2π
= πa 3 ∫ (1 + cos ϕ ) 4 (1 − cos ϕ )d cos ϕ + 0
+ πa
2π 3
∫ (1 + cos ϕ ) 0
2π
3
(1 − cos ϕ ) cos ϕd cos ϕ = πa
2π 3
∫ (1 + cos ϕ )
4
(2 − (1 + cos ϕ ))d (1 + cos ϕ ) +
0
+ πa 3 ∫ (1 + cos ϕ ) 3 (2 − (1 + cos ϕ ))(−1 + (1 + cos ϕ ))d (1 + cos ϕ ). 0
25 movaxdinoT cvladis gardaqmna t = 1 + cos ϕ da gaviTvaliswinoT, rom cvladi Rebulobs am gardaqmnis dros, rodesac ϕ cvladi izrdeba t mniSvnelobas 2-dan 0-mde. amitom, Tu gaviTvaliswinebT, rom (2) formulaSi t parametri icvleba t 0 ≤ t ≤ T SualedSi, gveqneba: 0
0
0
0
2
2
2
V = −πa 3 ∫ t 4 (2 − t )dt − πa 3 ∫ t 3 (2 − t )(−1 + t )dt = −πa 3 ( ∫ 2t 4 dt − ∫ t 5 dt − 2
0
0
0
0
− ∫ 2t 3 dt + ∫ 2t 4 dt + ∫ t 4 dt − ∫ t 5 dt ) = 2
2
− πa 3 (2
5
t 5
0 2
= −πa 3 (−2 ⋅
2
−
6
t 6
0 2
2
−2
4
t 4
0 2
+2
t5 5
0 2
+
t5 5
0 2
−
t6 0 2) = 6
32 64 16 32 32 64 8 + + 2⋅ − 2⋅ − + ) = πa 3 . 5 6 4 5 5 6 3
5.4. brunviTi zedapiris farTobi vTqvaT, wiri mocemuli gantolebiT y = f ( x ) , sadac x cvladi Rebulobs mniSv- nelobebs [a, b] segmentidan da f ( x ) uwyvetad warmoebadia, brunavs OX RerZis garSemo. gamovTvaloT wiris brunviT miRebuli zedapiris farTobi, romelic SemosazRvrulia x = a, y = b sibrtyeebiT. davyoT [a, b] segmenti n nawilad wertilebiT: a = x 0 , x1 , x 2 ,...x k ,..., x n = b . am abscisebis Sesabamisi ordinatebi aRvniSnoT y k , y k = f ( x k ) , xolo ( x k , y k ) koordinatebis mqone wertili M k -iT i = 0,1,2,..., n . Tu yovel rkals M k M k +1 SevcvliT M k M k +1 monakveTiT maSin M 0 M 1 M 2 ...M n texilis brunviT miviRebT zedapirs, romelic Sedgeba wakveTili konusebis gverdiTi zedapirebisgan(nax.12). es gverdiTi zedapirebi gamoiTvleba formuliT: y + y k +1 2π k | M k M k +1 | , 2 sadac | M k M k +1 | texilis erTi M k M k +1 monakveTis sigrZea, magram 5..2 qveTavidan viciT, rom adgili aqvs tolobas:
| M k M k +1 |= 1 + [ f ′( x k )]Δxk = 1 + [ y k′ ]2 Δxk
Z
Y
M0 yk
O
a
M k M k +1 y k +1 xk x k +1
Mn
b
X
nax.12
.
26 y k +1 = y k + Δy k , mgram f ( x ) uwyvetia, amitom, rodesac Δx k → 0 aseve gvaqvs, rom Δy k → 0 . aqedan gamomdinare, rodesac Δx k sakmaod mcirea, SegviZlia CavTvaloT, rom y k ≈ y k +1 . am faqtis gaTvaliswinebiT:
y k + y k +1 | M k M k +1 |≈ 2πy k 1 + [ y k′ ]2 Δx k . 2 aqedan, brunviTi zedapiris saZiebeli D farTobisTvis gveqneba miaxloebiTi toloba: 2π
n −1
D ≈ ∑ 2πy k 1 + [ y ′k ] 2 Δx k ,
(1)
k =0
romlis marjvena mxarec warmoadgens 2πy 1 + [ y ′] 2 funqciis integralur jams. [a, b] segmentze. Tu [a, b] segmentis dayofis wertilebis raodenobas gavzrdiT ise, rom miRebuli mcire segmentebis maqsimaluri sigrZe Semcirdes, (1) miaxloebiTi tolobis sizuste gaizrdeba. aqedan gamomdinare Tu gadavalT zRvarze, miviRebT:
D = lim
n −1
∑ 2πy
n →∞ Δxk →0 k = 0
k
1 + [ y k′ ]2 Δx k ,
sabolood ki SegviZlia davweroT: b
D = 2π ∫ y 1 + [ y ′]2 dx ,
(2)
a
sadac y = f ( x ) . vTqvaT axla wiri mocemulia parametrulad x = x (t ), y = y (t ) , sadac ( x(t 0 ), y (t 0 )) koordinatebis mqone wertili Seesabameba M 0 wertils, ( x(T ), y (T )) koordinatebis mqone wertili ki M n wertils. 5.2 qveTavidan gavixsenoT formula: 2
2
| M k M k +1 |= Δx k + Δy k . gavyoT tolobis orive mxare t parametris Δt k nazrdze, miviRebT: [ M k M k +1 ] = Δt k
Δx k2 Δy k2 . + Δt k2 Δt k2
gadavideT am tolobis orive mxares zRvarze rodesac Δt k → 0 miviRebT [ M k M k +1 ] Δx k2 Δy k2 . = lim + Δt k →0 Δt k → 0 Δt k Δt k2 Δt k2 lim
sidides
[ M k M k +1 ] )Δt k Δt k →0 Δt k uwodeben wiris rkalis diferencials M k ( lim
wertilSi da aRniSnaven ds
simboloTi. cxadia, aqedan gamomdinare, ds = [ x ′(t )] 2 + [ y ′(t )] 2 dt , dt = Δt . parametrulad mocemuli wiris rkalis sigrZis, CvenTvis kargad cnobili, formula asedac Caiwereba:
27 T
L = ∫ ds . t0
wiris brunviT miRebuli zedapiris farTobis gamosaTvleli formula ki ase: T
D = 2π ∫ y (t ) ds .
(3)
t0
(3) formula igivea, rac T
D = 2π ∫ y (t ) [ x ′(t )]2 + [ y ′(t )]2 dt .
(4)
t0
x2 y2 magaliTi 1. vipovoT 2 + 2 = 1, a > b elifsis OX RerZis garSemo brunviT a b miRebuli zedapiris farTobi. amoxsna: elifsis gantolebidan vRebulobT: b2 y 2 = b2 − 2 x2 . a miRebuli tolobis gawarmoebiT b2 b2 ′ ′ 2 yy = −2 2 x , yy = − x . a2 a aqedan y 1 + [ y ′] = 2
b2 2 b4 2 a2 − b2 2 2 y + [ yy ′] = b − 2 x − 4 x = a − x . a a a2 2
2
c elifsis eqscentrisiteti ε = = a saZiebeli farTobi iqneba D = 2π
2
a2 − b2 . a2
b b b 1 a2 εx 2 2 2 2 2 2 2 2 a − x dx = 4 a − x dx = 4 ( x a − x + arcsin ) 0a = ε π ε π ε 2 ∫ ∫ a −a a0 a 2 2ε a a
a
b (a a 2 − ε 2 a 2 + a 2 arcsin ε ) = 2πab( 1 − ε 2 + arcsin ε ). a magaliTi 2. gamovTvaloT parametrulad mocemuli x = a (t − sin t ), y = a (1 − cos t ), RerZis garSemo brunviT miRebuli cikloidis pirveli TaRis OX zedapiris farTobi. amoxsna: cikloidis(nax.9) pirveli TaRi aRiwereba t parametris cvlilebiT, segmentze [0,2π ]. t y = a (1 − cos t ) = 2a sin 2 x ′(t ) = a − a cos t , y ′(t ) = a sin t , 2 2 2 2 2 2 ds = a − 2a cos t + a cos t + a sin 2 t dt = 2a 2 − 2a 2 cos t dt = 2π
t t t )dt = 4a 2 sin 2 dt = 2a sin dt. 2 2 2 (3) formuliT saZiebeli farTobi: = 2a 2 − 2a 2 (1 − 2 sin 2
28
2π
D = 2π ∫ 2a sin 2 0
2π
π
t t t 2a sin dt = 2π ∫ 4a 2 sin 3 dt = 16πa 2 ∫ sin 3 udu = 2 2 2 0 0
cos 3 u 64 = 16πa ( − cos u ) π0 = πa 2 , 3 3 t u= . 2 2
5.5. meqanikuri da fizikuri sidideebis gamoTvla 5.5.1. wiris statikuri momenti da simZimis centri rogorc cnobilia, m masis materialuri wertilis statikuri momenti I R rai- me R RerZis mimarT ewodeba am wertilis masisa da wertilidan RerZamde d manZilis namravls I L = md . materialur wertilTa sistemis statikuri momenti ki am sistemaSi Semavali yvela wertilis statikuri momentebis jams. vTqvaT, y = f ( x) gantolebiT mocemulia materialuri wiri AB , romelzec masa gadanawilebulia ρ ( x ) simkvrviT wiris yvela wertilSi. davyoT AB wiri n nawilad wertilebiT: A = M 0 , M 1 , M 2 , M 3 ,..., M n −1 , M n = B , dayofiT miRebuli TiToeuli rkalis sigrZe aRvniSnoT s k simboloTi k = 0,1,2,...n − 1 . rogorc 5.2. qveTavidan viciT
s k ≈ Δxk2 + Δy k2 , Δx k = x k +1 − x k , Δy k = y k +1 − y k , sadac ( x k , y k ) warmoadgens M k k = 0,1,2,..., n wertilis koordinatebs. Tu CavTvliT, rom wiris dayofis wertilTa raodenoba sakmaod didia, wiris TiToeuli M k M k +1 rkali SeiZleba CaiTvalos materialur wertilad. aqedan gamomdinare, misi masa miaxloebiT iqneba ρ ( x k ) s k , xolo misi statikuri momenti OX RerZis mimarT y k ρ ( x k ) s k . mTeli wiris
I X , OX RerZis mimarT, miaxloebiTi gamoiTvleba, statikuri momenti rogorc, misi Semadgeneli elementaruli materialuri rkalebis sistemis, statikuri momentebis jami: n −1
I X ≈ ∑ y k ρ ( xk )sk . k =0
toloba zusti iqneba Tu gadavalT integralze, miviRebT: b
I X = ∫ y ( x) ρ ( x) 1 + [ y ( x)]2 dx ,
(1)
a
sadac
a = x0 , b = x n .
Tu wirs CavwerT parametruli gantolebiT, sadac s parametri icvleba [0, L] SualedSi, sadac L wiris sigrZea, maSin x = x( s ), y = y ( s ), ρ simkvrivec s parametris funqcia, gveqneba:
29 L
I X = ∫ y ( s)ρ ( s)ds .
(2)
0
analogiurad AB wiris statikuri momomenti OY RerZis mimarT, iqneba: f (b )
∫
Iy =
x( y ) ρ ( y ) 1 + [ x( y )]2 dy ,
(3)
f (a)
L
I y = ∫ x( s)ρ ( s)ds .
(4)
0
materialur wertilTa sistemis simZimis centri ewodeba wertils, romelSic sistemis mTeli jamuri masis moTavsebiT igive statikuri momenti eqneba raime R RerZis mimarT, ra statikuri momentic aqvs sistemas am RerZis mimarT. aqedan gamomdinare, materialuri wiris simZimis centris C (ξ ,η ) koordinatebis sapovnelad SegviZlia davweroT gantolebebi: ξM = I Y ,ηM = I X , (5) am gantolebebidan gveqneba I I (6) ξ = Y ,η = X . M M sabolood L
ξ=
∫ x(s) ρ (s)ds 0
L
L
, η=
∫ y(s) ρ (s)ds 0
∫ ρ (s)ds
L
,
(7)
∫ ρ (s)ds
0
0
L
sadac
∫ ρ (s)ds
integraliT gamoTvlilia materialuri wiris M masa.
0
CavTvaloT, rom materialur wirze masa Tanabradaa gadanawilebuli da simkvrivis funqcia ρ ( s ) = 1 . (6) tolobebidan meore gavamravloT 2π sidideze, miviRebT: L
2πηM = 2π ∫ yds . 0
am tolobis marjvena mxare warmoadgens wiris OX RerZis garSemo brunviT miRebuli zedapiris farTobs, marcxena mxareze M = L . aqedan gamomdinare wiris OX RerZis garSemo brunviT miRebuli zedapiris farTobi tolia am wiris sigrZisa da misi simZimis centriT Semowerili wrewiris sigrZis namravlis (8) D = 2πηL. am formulas guldenis pirveli formula ewodeba.
30 magaliTi 1. vipovoT x = a cos 3 t , y = a sin 3 t parametruli gantolebiT mocemuli wiris, romelsac astroida ewodeba, im nawilis simZimis centri, π romelic ganisazRvreba t parametris cvlilebiT [0, ] SualedSi(nax.13 a). 2 D moxsna: (8) formulidan gveqneba: η = . 2πL π
π
2
2
0
0
D = 2π ∫ y (t )ds = 2π ∫ a sin 3 t [−3a cos 2 t sin t ] 2 + [3a sin 2 t cos t ] 2 dt = π
π
π
2 1 6 2π ∫ 3a sin 3 t sin 2 t cos 2 t dt = 6πa 2 ∫ sin 4 t cos tdt = 6πa 2 ( sin 5 t ) 02 = πa 2 . 5 5 0 0 2
π
π
π
2
2
2
0
0
L = ∫ ds = ∫ [−3a cos 2 t sin t ] 2 + [3a sin 2 t cos t ] 2 dt = ∫ 3a sin 2 t cos 2 t dt = 0
π
π π
2
3 2 3 3 3 = 3a ∫ sin t cos tdt = a ∫ sin 2tdt = a ∫ sin udu = a (− cos u ) π0 = a. 4 2 2 0 4 0 0 .
maSasadame
η=
2 a. 5
Y
Y
Cˆ (ξˆ,ηˆ )
B
a
B
A
O X nax.13
A
O
a
x x + Δx
X nax. 14
rogorc naxazidan Cans, astroidis mier OY RerZis garSemo brunvisas igive farTobis zedapiri miiReba, amitom simZimis centris abscisac igive 2 unda iyos, gveqneba: ξ = a. 5 5.5.2. brtyeli figuris statikuri momenti da simZimis centri vTqvaT mocemulia mrudwiruli trapecia(nax.13), romelic SemosazRvrulia zemodan f ( x ) funqciis grafikiT, qvemodan OX RerZiT, gverdebidan x = a da x = b wrfeebiT. vTqvaT, masa am figuraze Tanabrad aris gadanawilebuli simkvriviT ρ = 1 , aseT SemTxvevaSi mrudwiruli trapeciis yoveli ΔD elementis masa toli iqneba misi farTobis.
31
Δx . radgan Δx mcirea, CavTvaliT es amovWraT trapeciidan zoli fuZiT zoli marTkuTxedad(nax.14). vTqvaT, zolis farTobia ΔD . misi simZimis centri mdebareobs marTkuTxedis diagonalebis gadakveTis Cˆ (ξˆ,ηˆ ) wertilSi. zolis simaRles aRvniSnoT y -iT, simZimis centris ordinati1 ηˆ = y , abscisa2 Δx . zolis statikuri momenti OX RerZis mimarT iyos ΔI X , xolo ξˆ = x + 2 OY Re- rZis mimarT- ΔI Y . zolis masa iqneba ΔD = yΔx . aqedan y 1 ΔI X ≈ yΔx, ΔI Y ≈ yΔx ( x + Δx ) = xyΔx + y[Δx] 2 . 2 2 Tu gaviTvaliswinebT, rom Δx mcirea, kidev ufro mcire iqneba sidide 1 [ Δx ] 2 . 2 am faqtis gaTvaliswinebiT mTeli trapeciis statikuri momentebsaTvis gveqneba mixloebiTi tolobebi: y2 (9) I X ≈ ∑ Δ, I Y ≈ ∑ xyΔx. 2 Tu am tolobebSi gadavalT zRvarze, rodesac Δx → 0 , mviRebT ukve zust gamosaxulebebs statikuri momentebisaTvis: b
b
1 2 y dx,I Y = ∫ xydx. (10) 2 ∫a a vTqvaT mrudwiruli trapeciis simZimis centria C (ξ ,η ) . simZimis centris gansazRvrebidan gamomdinare, adgili eqneba tolobebs: ξM = I Y ,ηM = I X . M trapeciis masaa. aqedan, sabolood, simZimis centris sadac koordinatebisaTvis gveqneba: IX =
b
ξ=
∫ xydx a b
b
, η=
∫ ydx
1 2 y dx 2 ∫a b
.
(11)
∫ ydx
a
a b
sadac, Cven SemTxvevaSi, M = ∫ ydx anu trapeciis masa misi farTobis tolia. a
ukanaskneli tolobebidan meoris orive mxare gavamravloT 2πD sidideze, miviRebT: b
2πDη = π ∫ y 2 dx . a
b
Tu gaviTvaliswinebT, rom π ∫ y 2 dx tolia mrudwiruli trapeciis OX RerZis a
garSemo brunviT miRebuli sxeulis moculobisa, miviRebT: (12) V = 2πDη . miRebul formulas guldenis meore formula ewodeba. es formula gviCvenebs, rom brtyeli figuris masTan TanaukveTi RerZis garSemo brunviT miRebuli sxeulis moculoba tolia am figuris
32 farTobisa da misi simZimis centris mier RerZis garSemo Semowerili wrewiris sigrZis namravlis. magaliTi 1. vipovoT cikloidis(nax.9) pirveli TaRiT SemosazRvruli figuris simZimis centri. amoxsna: cikloidis parametruli gantolebaa x = a (t − sin t ), y = a (1 − cos t ). misi pirveli TaRi aRiwereba t parametris [0,2π ] SualedSi cvlilebiT. jer vipovoT farTobi: 2π
D=
2π
∫ ydx = ∫ a 0
2π
2
0
2πa 2 +
(1 − cos t ) tdt = ∫ (1 − 2 cos t + cos t )dt =a (1 − sin t ) 2
2
2
0
2π 0
2π
1 + cos 2t dt = 2 0
+∫
a 1 2πa 2 (t + sin 2t ) 02π = 2πa 2 + = 3πa 2 . 2 2 2 2
Semdeg moculoba: 2π
V = π ∫ a (1 − cos t ) a (1 − cos t )dt = πa 2
2
2π 3
0
2π
+
2π
3
∫ 2 (1 + cos 2t )dt − ∫ (1 − sin 0
0
2
∫ (1 − cos t ) 0
2π
3
dt = πa [ ∫ (1 − 3 cos t )dt + 3
0
3 t )d sin t ] = πa 3 [t − 3 sin t + t + 2
3 1 + sin 2t − sin t + sin 3 t ] 02π = 5π 2 a 3 . 4 3 Tu gamoviyenebT guldenis meore formulas, miviRebT: 5π 2 a 3 = 2π 3πa 2η . aqedan simZimis centris ordinati V 5π 2 a 3 5 η= = = a. 2 2πD 2π 3πa 6 cikloidis pirveli TaRiT SemosazRvruli mrudwiruli trapecia simetriul- ia x = πa wrfis mimarT, amitom simZimis centri am wrfeze mdebareobs. aqedan gamomdinare, misi abscisa ξ = πa . magaliTi 2. vipovoT im brtyeli figuris simZimis centri, romelic SemosazRvrulia wirebiT y = x 2 , y = x (nax.7). amoxsna: statikuri momentebis gansazRvrebidan da (9), (10) formulebidan gamomdinareobs Semdegi: 1
ξ=
1
∫ x(
x − x )dx
∫(
x − x )dx
2
,η =
0 1
2
0
1
1
0
1
∫(
.
x − x dx 2)
0
1
2 2 ∫ ( x − x )dx = ∫ xdx − ∫ x dx = 0
1 ( x − x 2 ) 2 dx ∫ 20
0
1 +1 2
x x 2+1 1 + 0 1 2 +1 +1 2
1 0
=
2 1 1 − = 3 3 3
33 1
1
3 2
3 +1 2
1
x 3 +1 2
2 3 ∫ x( x − x )dx = ∫ x dx − ∫ x dx = 0
0
1
0
1
1
3 2
1 0
+
x 3+1 3 +1
1 0
=
2 1 3 − = 5 4 20 3
1
x2 2 2 4 ( ) 2 − = − + = x x dx xdx x dx x dx ∫0 ∫0 ∫0 ∫0 2
+1
x 2 1 x5 1 1 2 1 3 1 − − + = . 0 0 + 0 = 3 5 2 5 5 10 +1 2 3 3 am gamoTvlebidan gamomdinare ξ = . ,η = 20 20 5.5.3. cvladi siCqariT moZravi materialuri wertilis mier gavlili manZili vTqvaT materialuri wertili moZraobs siCqariT, romelic warmoadgens drois uwyvet funqcias v = v (t ) da saWiroa gavigoT mis mier drois T0 momentidan T1 momentamde gavlili manZili S . davyoT [T0 , T1 ] Sualedi n nawilad drois momentebiT T0 = t 0 , t1 , t 2 ,...t k ,..., t n = T1 . materialuri wertilis mier drois mcire [t1 , t t +1 ] monakveTSi gavlili manZili miaxloebiT toli iqneba sididis, sadac Δ i = t i +1 − t i . aqedan gamomdinare, mTel [T0 , T1 ] monakveTSi gavlili manZilisaTvis gveqneba miaxloebiTi toloba: S ≈
n
∑ (t i=0
i +1
− t i ) v (t i ) .
(13)
rac ufro met nawilad davyofT [T0 , T1 ] Sualeds, ise rom dayofiT miRebuli monakveTebis maqsimaluri sigrZe max Δ i miiswrafodes nulisaken, (13) tolobis sizuste TandaTan ufro gaizrdeba. amitom rogorc zemoT ganxilul SemTxvevebSia, adgili eqneba zust tolobas: T1
S = ∫ v(t )dt .
(14)
T0
(14) formulidan SeiZleba ganvsazRvroT saSualo siCqare: T1
v=
∫ v(t )dt
T0
. T1 − T0 analogiuri formula gveqneba drois T0 momentidan T1 momentamde cvladi aCqarebiT moZravi materialuri wertilis siCqaris nazrdis gamosaTvlelad: T1
Δv = ∫ a(t )dt , T0
sadac a (t ) droSi cvladi aCqarebaa. rac Seexeba materialuri wertilis siCqares T1 momentSi igi ganisazRvreba tolobiT:
34 T1
v(T1 ) = v(T0 ) + Δv = v(T0 ) + ∫ a(t )dt .
(15)
T0
5.5.4 gansazRvruli integralis gamoyeneba ekonomikur amocanebSi (13) formulis analogiur formulebTan gveqneba saqme, rodesac gvinda gamovTvaloT sawarmos mogeba an gamoSvebuli produqciis raodenoba drois T0 momentidan T1 momentamde: T1
P = ∫ M (t )dt , T0
sadac M (t ) drois t momentSi miRebuli mogebaa an sawarmos mier drois t momentSi gamoSvebuli produqciis raodenoba(simZlavre). (15) formulis analogiur formulasTan gveqneba saqme Tu gvinda gamovTvaloT sawarmos Semosavali an sawarmoo xarjebis raodenoba drois T1 momentamde: T1
R(T1 ) = R(T0 ) + ∫ N (t )dt , T0
sadac N (t ) Semosavlis an sawarmoo xarjebis zrdis siCqarea drois t momentSi, R(T0 ) ki- drois T0 momentamde miRebuli Semosavali an gaweuli xarjebi. vTqvaT, axla N1 (t ) sawarmos Semosavlis zrdis siCqarea, N 2 (t ) ki- xarjebis zr-dis siCqarea, maSin, sanam N1 (t ) ≥ N 2 (t ) , sawarmo imuSavebs mogebaze, drois es intervali iqneba [0, T ∗ ] , sadac T ∗ drois is momentia, rodesac N1 (t ) = N 2 (t ) . aqedan gamomdinare, sawarmos maqsimaluri mogeba T∗
L = ∫ [ N 1 (t ) − N 2 (t )]dt . 0
funqcias p = D ( x) , sadac p raime produqciis sacalo fasia, xolo x im momx-marebelTa raodenoba, romelTac surT am fasad SeiZinon produqciis erTeulili. am funqcias moTxovnis funqcia ewodeba, xolo funqcias p = S (x ) , sadac x aRniSnuli produqciis im mwarmoeblTa raodenobaa, romelTac surT p fasad gayidon produqciis erTeuli, miwodebis funqcia. wertils koordinatebiT ( x ∗ , p ∗ ) wonasworobis bazris wertili ewodeba (nax.15). cxadia, bazarze wonasworobis miRwevamde, Warbi moTxovnis raodenoba PD da Warbi produqciis raodenoba PS Sesabamisad, gamoiTvleba Semdegi formulebiT: P D(x) PD
S ( x)
∗
p PS
O
x∗
X
nax.15
35 x∗
x∗
PD = ∫ ( D( x) − p )dx, PS = ∫ ( p ∗ − S ( x))dx ∗
0
0
6. savarjiSoebi 1-li TavisaTvis π 2
π 4
4 1 I gamoTvaleT integralebi: 1) ∫ x dx , 2) ∫ ( x + 2 )dx , 3) ∫ x dx , 4) ∫ sin 4 xdx , x 1 1 0 0 2
4
2
π
1 1 2 ⎧⎪ x 2 ,0 ≤ x < 1, dx cos x 5) ∫ sin 2 xdx ,6) ∫ f ( x)dx , Tu f ( x) = ⎨ , 7) ∫ dx , 8) ∫ , 9) ∫ e 2 x dx , ⎪⎩ x ,1 ≤ x ≤ 2. π sin x 4 − x2 o 0 0 0
π
2
6
4
10) ∫ 1
e
x
ex −1
1
1
2 xdx , 14) 4 − x 2 dx , 2 2 ∫ 0 ( x + 1) − 2
a
dx , 11) ∫ e x (e x − 1)dx , 12) ∫ x 2 a 2 − x 2 dx , 13) ∫ 0
0
π 2
15) ∫ 1
dx x x2 −1
π
2
1
π
4 ln x dx , 18) ∫ xe x dx , 19) ∫ x 2 sin xdx , 20) ∫ sin x dx , x 1 0 0 0 e
, 16) ∫ sin 2 x cos xdx , 17) ∫ 0
2
π 1
2
0
π
21) ∫ x ln(x 2 + 1)dx , 22) ∫
xdx . II.gamovTvaloT Semdegi wirebiTSemosazRvrul sin 2 x
4
brtyel figuraTa farTobebi: a) y = 6 x − x 2 , y = 0 ,b) y = x 2 + 1, y = 0, x = 0, x = 2; g) y = 8 + 2 x − x 2 , y = 2 x + 4 , d) y = x 2 − 4 x, y = 0 , e) y = ln x, y = 0, x = 2, x = 8 , 2 1 v) y = sin x, y = x ,z) y = arcsin x, x = , y = 0 . III. ipoveT rkalebis sigrZeebi 2 π x wertilebs Soris a) y = e , x = 0, x = e ; b) y = ln x , x = 3 , x = 8 ; g) y = arcsin(e − x ) , x = 0, x = 1 . IV. gamoTvaleT Semdegi wirebiT SemosazRvruli figuris brunviT miRebuli sxeulebis moculoba: a) y = x − x 2 , x = 0 , OX RerZis garSemo; b) y = x 3 , x = 0, y = 1 , OY RerZis garSemo; g) y = sin 2 x, x = 0, x = π , OX RerZis garSemo. V. gamoTvaleT Semdegi wirebis rkaliT brunviT π miRebuli zedapiris farTobi: a) y = sin x , x = 0, x = , OX RerZis garSemo; 2 −x b) y = e , x = 0, x = ∞ , OX RerZis garSemo; g) y = ln x , y = 0, y = −∞ , OY RerZis garSemo.
36 Tavi 2 ricxviTi mwkrivebi 1. ZiriTadi cnebebi vTqvaT mocemulia sidideTa raime mimdevroba u1 , u 2 , u 3 ,..., u n ,... . usasrulo jams: u1 + u 2 + u 3 + ... + u n + ... , (1) romlis Sesakrebebic mocemuli mimdevrobis wevrebia mwkrivi ewodeba. Tu sidideebi u1 , u 2 , u 3 ,..., u n ,... ricxvebia, mwkrivs ricxviTi mwkrivi ewodeba, Tu funqciebia, funqcionaluri mwkrivi. am paragrafSi Cven ganvixilavT ricxviT mwkrivebs. u n sidides mwkrivis zogadi wevri ewodeba. ganvixiloT jamebi: s1 = u1 , s 2 = u1 + u 2 , (2) s 3 = u1 + u 2 + u 3 , s 4 = u1 + u 2 + u 3 + u 4 , .................................., s n = u1 + u 2 + u 3 + ... + u n . am jamebs (1) mwkrivis kerZo jamebi ewodeba. gansazRvreba 2.1. Tu (1) mwkrivis kerZo jamebis mimdevrobas s1 , s 2 , s 3 ,..., s n ,... gaaCnia sasruli zRvari, maSin mwkrivs ewodeba krebadi, xolo zRvars lim s n ewodeba mwkrivis jami. n→∞
Tu kerZo jamebis mimdevrobas sasruli zRvari ar gaaCnia, maSin mwkrivs ewodeba ganSladi. magaliTi 1. gamovikvlioT CvenTvis kargad cnobili mwkrivis, geometriuli progresiis, 1 + q + q 2 + q 3 + ... + q n + ... (3) krebadobis sakiTxi. skolis maTematikis kursidan viciT, rom progresiis pirveli n wevris jami, rodesac q ≠ 1 , gamoisaxeba formuliT:
1− qn s n = 1 + q + q + q + ... + q = . 1− q 2
3
n
aqedan gamomdinare 1 − lim q n 1− qn n →∞ . = lim s = lim n →∞ n →∞ 1 − q 1− q 1 Tu | q |< 1 , maSin lim q n = 0 da lim s n = . maSasadame, Tu | q |< 1 , (3) mwkrivi n →∞ n →∞ 1− q krebadia. davuSvaT, | q |> 1 , maSin lim q n = ∞ da, aqedan gamomdinare, lim s n = ∞ , n
n →∞
n→∞
maSasadame, am SemTxvevaSi (3) mwkrivi ganSladia. davuSvaT, exla q = 1 , maSin (3) mwkrivs eqneba saxe 1 + 1 + 1 + ... .
37 am mwkrivis kerZo jamia s n = 1 + 1 + ... + 1 = n , s n = lim n = ∞ , amgvarad, aseT n →∞
SemTxveSi, (3) mwkrivi ganSladia. axla ganvixiloT SemTxveva q = −1 , (3) mwkrivs eqneba saxe 1 − 1 + 1 − 1 + ... . am mwkrivis kerZo jamebi, Tu n luwia, tolia nulis; xolo, Tu n kentia, maSin es kerZo jamebi tolia erTis. aseT SemTxvevaSi lim s n ar arsebobs, n→∞
maSasadame (3) mwkrivi ganSladia. mwkrivis aRniSvnisTvis gamoiyeneba, agreTve Semoklebuli Cawera: ∞
u1 + u 2 + u 3 + ... + u n + ... = ∑ u n . n =1
2. krebadi mwkrivis Tvisebebi ricxviTi mwkrivebis Tvisebebi CamovayaliboT Teoremebis saxiT. Teorema 2.1. Tu mocemuli ∞
u1 + u 2 + u 3 + ... + u n + ... = ∑ u n
(1)
n =1
mwkrividan amoviRebT pirvel k wevrs, maSin miRebuli mwkrivi u k +1 + u k + 2 + u k + 3 + ... + u n + ... =
∞
∑u
n = k +1
n
(2)
krebadia maSin da mxolod maSin, Tu krebadia mocemuli mwkrivi. (2) mwkrivs (1) mwkrivis naSTi ewodeba. Teorema 2.2. Tu mwkrivebi u1 + u 2 + u 3 + ... + u n + ... , v1 + v 2 + v3 + ... + v n + ... krebadia da maTi jamebi tolia Sesabamisad A da B , maSin mwkrivi, romelic miiReba mocemuli mwkrivebis wevr-wevrad SekrebiT an gamoklebiT: u1 ± u 2 ± u 3 ± ... ± u n ± ... , aseve krebadia da misi jami tolia A ± B . Teorema 2.3. Tu mwkrivi u1 + u 2 + u 3 + ... + u n + ... krebadia da misi jamia A , maSin mwkrivi Cu1 + Cu 2 + Cu 3 + ... + Cu n + ... , sadac C raime ricxvia, aseve krebadia da misi jami tolia CA . Semdegi Tviseba warmoadgens mwkrivis krebadobis aucilebel pirobas. Teorema 2.4. Tu mwkrivi ∞
u1 + u 2 + u 3 + ... + u n + ... = ∑ u n n =1
krebadia, maSin misi zogadi wevri u n miiswrafvis nulisken n indeqsis usasrulo zrdis dros anu lim u n = 0 . n →∞
am Tvisebidan gamomdinareobs Semdegi faqti, Tu mwkrivis zogadi wevri ar miiswrafis nulisken, n indeqsis usasrulo zrdis dros, maSin mwkrivi ganSladia. magram, mwkrivis zogadi wevris nulisken miswrafeba anu piroba lim u n = 0 ar aris sakmarisi mwkrivis krebadobisTvis. marTlac n→∞
ganvixiloT mwkrivi:
38 1 1 1 (3) + + ... + + ... , 2 3 n romelsac harmoniul mwkrivs uwodeben. cxadia, misi zogadi wevrisaTvis 1 1 sruldeba piroba lim u n = lim = 0 . un = n→∞ n→∞ n n davajgufoT (3) mwkrivis Sesakrebebi Semdegnairad: 1+
1 ⎛1 1⎞ ⎛1 1 1 1⎞ ⎛1 1 1⎞ ⎛1 1 1 ⎞ (4) + ⎜ + ⎟ + ⎜ + + + ⎟ + ⎜ + + ... + ⎟ + ⎜ + + ... + ⎟ + ... . 2 ⎝ 3 4 ⎠ ⎝ 5 6 7 8 ⎠ ⎝ 9 10 16 ⎠ ⎝ 17 18 32 ⎠ rogorc vxedavT SesakrebTa TiToeuli jgufis bolo Sesakrebs aqvs saxe: 1 da mezobeli jgufebis bolo Sesakrebebs Soris aseTi saxis ricxvebi 2n ar gvxvdeba, amasTan, rac ufro marcxniv mdebareobs SesakrebTa jgufi, miT metia mis bolo SesakrebSi mniSvnelis xarisxi. ganvixiloT mwkrivi v1 + v 2 + v3 + ... + v n + ... , (5) sadac 1 ⎛1 1⎞ ⎛1 1 1 1⎞ v1 = 1, v 2 = , v3 = ⎜ + ⎟, v 4 = ⎜ + + + ⎟,... 2 ⎝3 4⎠ ⎝5 6 7 8⎠ advilia mixvedra, rom am mwkrivis TiToeuli wevri vn pirvelis garda, 1+
Sedgba 2 n − 2 Sesakrebisgan. ganvixiloT aseve mwkrivi (6) w1 + w2 + w3 + ... + wn + ... , sadac 1⎞ 1 1 ⎛1 ⎛1 1 1 1⎞ ⎛1 1⎞ w1 = 1, w2 = , w3 = ⎜ + ⎟, w4 = ⎜ + + + ⎟, w5 = ⎜ + + ... + ⎟, 16 ⎠ 2 ⎝ 16 16 ⎝8 8 8 8⎠ ⎝4 4⎠ 1 ⎞ 1 ⎛ 1 + ... + ⎟,.... w6 = ⎜ + 32 ⎠ ⎝ 32 32 1 am mwkrivis TiToeuli wevrisaTvis, garda pirvelisa, gvaqvs wn = . 2 Tu n ≥ 3 , gvaqvs v n > wn . aqedan gamomdinare, (5) da (6) mwkrivebis kerZo jamebisTvis gveqneba: s n′ > s n′′ . n −1 n +1 1 1 1 . s n′′ = 1 + + + ... + = 1 + = 2 2 2 2 2
n −1
n +1 = ∞ . radgan s n′ > s n′′ , aseve gveqneba n →∞ 2 n →∞ lim s n′ = ∞ . maSasadame (5) mwkrivi ganSladia.
aqedan gamomdinare, gveqneba lim s n′′ = lim n→∞
arsebobs iseTi Tu s k , k = 1,2,3,... (3) mwkrivis kerZo jamebia, maSin k1 , k 2 , k 3 ,...k n ,... , rom s kn = s ′n . amasTan, Tu n → ∞ , maSin k n → ∞ . mimdevrobis zRvris erT-erTi Tvisebidan gamomdinareobs, rom krebadi mimdevrobis yoveli qvemimdevroba krebadia. amitom, Tu mimdevroba s1 , s 2 ,..., s k ,... krebadia, krebadi unda iyos misi qvemimdevrobac: s k1 , s k 2 ,..., s k n ,... , magram s kn = s ′n da
lim s n′ = ∞ . n→∞
miviReT
39 winaaRmdegoba, maSasdame (3) mwkrivis kerZo jamebis
mimdevroba ganSladia. miuxedavad imisa, rom (3) mwkrivis zogadi wevri miiswrafvis nulisaken, es mwkrivi ar aris krebadi. Ese-igi mwkrivis krebadobis aucilebeli piroba (Teorema 2.4) ar yofila sakmarisi misi krebadobisTvis. 3. dadebiT wevrebiani ricxviTi mwkrivis krebadobis niSnebi mwkrivs u1 + u 2 + u 3 + ... + u n + ... ewodeba dadebiTwevrebiani, Tu igi akmayofilebs pirobas u n ≥ 0, n = 1,2,3,..., . moviyvanoT aseTi mwkrivebis krebadobis niSnebi. 1. mwkrivis krebadobis Sedarebis niSani. Tu mocemulia ori dadebiTwevrebiani mwkrivi u1 + u 2 + u 3 + ... + u n + ... , (1) v1 + v 2 + v3 + ... + v n + ... , (2) romlebisTvisac adgili aqvs pirobas v n ≤ u n , n = 1,2,3,... maSin, Tu krebadia (1) mwkrivi, krebadi iqneba (2) mwkrivic. aseve, Tu ganSladia (2) mwkrivi, ganSladi iqneba (1) mwkrivic. magaliTi 1. gamovikvlioT krebadobaze Semdegi mwkrivi: π π π (3) sin + sin + ... + sin n + ... 2 4 2 amoxsna: gamoviyenoT Sedarebis niSani rogorc cnobilia sin x ≤ x , rodesac π π π 0 ≤ x ≤ . aqedan gamomdinare, radgan 0 ≤ n ≤ , n = 1,2,3,... , gveqneba 2 2 2 π π sin n ≤ n , n = 1,2,... . 2 2 mwkrivi π π π (4) + + ... + n + ... 2 4 2 1 warmoadgens geometriul progresias, q = < 1 , amitom igi krebadia. 2 Sedarebis niSnidan gamomdinare krebadi iqneba (3) mwkrivic. 2. mwkrivis krebadobis dalamberis niSani. Tu dadebiTwevrebiani u1 + u 2 + u 3 + ... + u n + ... mwkrivisTvis, dawyebuli n indeqsis(nomris) romeliRac mniSvnelobidan, adgi-li aqvs utolobas: y n +1 ≤ q < 1, un sadac q damokidebuli araa n -is mniSvnelobaze, maSin mocemuli mwkrivi krebadia. aseve, Tu dawyebuli n indeqsis romeliRac mniSvnelobidan, adgili aqvs utolobas: y n +1 >1, un
40 maSin mwkrivi ganSladia.
dalamberis niSani SeiZleba zRvruli formiTac iqnes warmodgenili: Tu u lim n +1 = q , maSin n →∞ u n u1 + u 2 + u 3 + ... + u n + ... mwkrivi krebadia, rodesac q < 1 da ganSladi, rodesac q > 1 . Tu q = 1 , maSin mwkrivi SeiZleba krebadi iyos, SeiZleba ganSladi, aseT SemTxvevaSi mwkrivis krebadobis sxva niSani unda gamoviyenoT. magaliTi 2. gamovikvlioT krebadobaze Semdegi mwkrivi: 1 22 33 44 nn + + + + ... + n + ... . 3 3 2 2! 333! 3 4 4! 3 n! amoxsna: gamoviyenoT dalamberis niSani, u (n + 1) n +1 3 n n! (n + 1) n +1 1 (n + 1) n 1 1 1 lim n +1 = lim n n +1 lim = lim = = lim(1 + ) n = e < 1 . n n n→∞ u n →∞ n 3 3 n →∞ n 3 n →∞ n 3 (b + 1)! n→∞ 3(n + 1)n n aqedan davaskvniT, rom mwkrivi krebadia. magaliTi 3. gamovikvlioT krebadobaze Semdegi mwkrivi: ( 2)n 2 2 2 + + ... + + ... . 2n − 1 3 5 amoxsna: rogorc wina magaliTSi u 2n − 1 ( 2 ) n +1 (2n − 1) = 2 ⋅1 = 2 > 1. = 2 lim lim n +1 = lim n →∞ u n →∞ n →∞ 2n + 1 (2n + 1)( 2 ) n n maSasadame mwkrivi ganSladia. magaliTi 4. gamovikvlioT krebadobaze Semdegi mwkrivi: 1 1 1 1 + 2 + 2 + ... + 2 + ... 2 3 n amoxsna: am SemTxvevaSic dalamberis niSani gvaZlevs u n +1 n2 1 = lim = =1. lim n →∞ u n ( n + 1) 2 1 2 n lim (1 + ) n →∞ n maSasadame mwkrivis krebadobaze verafers vityviT. 3. mwkrivis krebadobis koSis niSani. Tu dadebiTwevrebiani u1 + u 2 + u 3 + ... + u n + ... mwkrivisTvis, dawyebuli n indeqsis(nomris) romeliRac mniSvnelobidan, adgili aqvs utolobas: n u < q < 1, n sadac q damokidebuli araa n -is mniSvnelobaze, maSin mocemuli mwkrivi krebadia. aseve, Tu dawyebuli n indeqsis romeliRac mniSvnelobidan, adgili aqvs utolobas: n u . > 1, n maSin mwkrivi ganSladia. koSis niSani SeiZleba zRvruli formiTac iqnes warmodgenili: 2+
41 Tu lim n u n = q , n →∞
maSin
u1 + u 2 + u 3 + ... + u n + ... mwkrivi krebadia, rodesac q < 1 da ganSladi, rodesac q > 1 .
maSin rogorc dalamberis niSnis SemTxvevaSi, aqac gvaqvs: Tu q = 1, mwkrivi SeiZleba krebadi iyos, SeiZleba ganSladi. aseT SemTxvevaSic mwkrivis krebadobis sxva niSani unda gamoviyenoT. magaliTi 5. gamovikvlioT krebadobaze Semdegi mwkrivi: ∞ n . ∑ n n =1 2 amoxsna: gamoviyenoT mwkrivis krebadobis koSis niSnis zRvruli forma. 1 ln n n →∞ n
1 lim n1 n→∞ n
n n 1 lim ln n 1 1 1 1 1 1 n = e = e = e0 = < 1. lim n = lim n n = lim e ln n = e n →∞ n n →∞ 2 2 2 2 2 2 n →∞ 2 n →∞ 2 2 maSasadame, mwkrivi krebadia. aq zRvris gamosaTvlelad gamoyenebul iqna ln n lopitalis wesi saxis wiladisTvis. n magaliTi 6. gamovikvlioT krebadobaze Semdegi mwkrivi n
un =
lim
⎛ n +1 ⎞ ⎜ ⎟ . ∑ n =1 ⎝ 2 n − 1 ⎠ amoxsna: gamoviyenoT koSis niSani n
∞
⎛ n +1 ⎞ un = ⎜ ⎟ , ⎝ 2n − 1 ⎠ n
n +1 ⎛ n +1 ⎞ , advili misaxvedria, rom, rodesac n > 5 , maSin ⎟ = ⎜ 2n − 1 ⎝ 2n − 1 ⎠ n +1 2 < < 1 . maSasadame mwkrivi krebadia. 2n − 1 3 4. mwkrivis krebadobis koSis integraluri niSani. Tu dadebiT wevrebiani u1 + u 2 + u 3 + ... + u n + ... mwkrivis zogadi wevri miiswrafvis nulisken da naturaluri argumentis funqcia u n = f (n) , iseTia, rom f ( x ) gansazRvrulia [1, ∞) Sualedze; amasTan, arsebobs arasakuTrivi integrali n
n
∞
∫ f ( x)dx , 1
maSin mwkrivi iqneba krebadi, winaaRmdeg SemTxvevaSi ganSladi. magaliTi 7. gamovikvlioT dadebiT wevrebiani ∞ 1 ∑ n = 2 n ln n mwkrivis krebadoba. amoxsna: gamoviyenoT koSis integraluri niSani
42 1 . n ln n aqedan gamomdinare gveqneba arasakuTrivi integrali f ( n) = ∞
1
∫ x ln x dx . 2
a
a
d ln x 1 = lim ln(ln x) 2a = lim[ln(ln a ) − ln(ln 2)] = ∞ , dx = lim ∫ a →∞ a → ∞ a →∞ a →∞ ln x x ln x 2 2 maSasadame mwkrivi ganSladia. magaliTi 8. gamovikvlioT dadebiTwevrebiani ∞ 1 ∑ α n =1 n mwkrivis krebadoba. amoxsna: aqac gamoviyenoT koSis integraluri niSani 1 f ( x) = α . x gveqneba arasakuTrivi integrali lim ∫
∞
(5)
1
∫ x α dx . 2
Tu α > 1 , maSin
x 1−α a a 1−α 1 1 1 . = = − dx lim [ lim [ ]= 1 α a →∞ a →∞ 1 − α a →∞ 1 − α α −1 1−α 2 x maSasadame arasakuTrivi integrali arsebobs da mwkrivi krebadia. Tu α < 1 , maSin a
lim ∫
1 x 1−α lim ∫ α dx = lim[ a →∞ a →∞ 1 − α 2 x am SemTxvevaSi mwkrivi ganSladia. Tu α = 1 , maSin gveqneba a
a 1
a 1−α 1 = lim[ − ] = ∞. a →∞ 1 − α 1−α
a
1 lim ∫ dx = lim ln x 1a = ∞ . a →∞ a →∞ x 2 maSasadame mwkrivi ganSladia. am magaliTidan gamomdinare mwkrivi ∞ 1 ∑ 2 n =1 n krebadia. (5) mwkrivs ganzogadebuli harmoniuli mwkrivi ewodeba. igi xSirad gamoiyeneba mwkrivTa krebadobis Sedarebis niSnis gamoyenebis dros.
4. niSancvladi mwkrivebi Tu mwkrivis u1 + u 2 + u 3 + ... + u n + ... wevrebs Soris gvxvdeba rogorc dadebiTi, aseve uaryofiTi wevrebi, maSin mwkrivs niSancvladi ewodeba. niSancvlad mwkrivebs Soris, xSirad gvxvdeba iseTebi, romlebSic icvleba yoveli momdevno wevris niSani. aseT mwkrivebs aqvT saxe u1 − u 2 + u 3 − u 4 + ... + (−1) n −1 u n + ... , an saxe − u1 + u 2 − u 3 + u 4 − ... + (−1) n u n + ... ,
43 aseT mwkrivebs sadac sidideebi u n n = 1,2,3,... dadebiTia. niSanmonacvle ewodeba. niSanmonacvle mwkrivebisTvis arsebobs krebadobis sakmarisi niSani: niSanmonacvle mwkrivis krebadobis laibnicis niSani. Tu niSanmonacvle u1 − u 2 + u 3 − u 4 + ... + (−1) n −1 u n + ... , − u1 + u 2 − u 3 + u 4 − ... + (−1) n u n + ... mwkrivebis wevrebis absoluturi mniSvnelobebi klebadia da zogadi wevrebi miiswrafvian nulisken, rodesac n miiswrafvis usasrulobisken, maSin es mwkrivebi krebadia.
magaliTi 1.
gamovikvlioT Semdegi mwkrivi krebadobaze: 1 1 1 1 1 − + − + ... + ( −1) n −1 + ... . n 2 3 4 amoxsna: laibnicis niSnidan gamomdinare, krebadia. magaliTi 2. gamovikvlioT Semdegi mwkrivi krebadobaze: 3 5 7 2n + 1 − + − + ... + (−1) n −1 + ... . 1⋅ 2 2 ⋅ 3 3 ⋅ 4 n(n + 1) amoxsna: mwkrivi krebadia radgan | u n +1 |<| u n | da lim u n = 0 . n →→
laibnicis niSani ar warmoadgens niSanmonacvle mwkrivis krebadobis aucilebel pirobas. es kargad Cans Semdegi magaliTidan. magaliTi 3. gamovikvlioT mwkrivi: 1−
1 1 1 1 1 + 3 − 2 + ... + − + ... 2 3 ( 2n − 1) ( 2n) 2 2 3 4
(1)
krebadobaze. amoxsna: am mwkrivisTvis laibnicis piroba | u n +1 |<| u n | ar sruldeba, magram mwkrivi krebadia. marTlac, es mwkrivi SeiZleba warmovadginoT 1 1 1 (2) + ... 1 + 3 + 3 + ... + ( 2n − 1) 3 3 5 da 1 1 1 1 (3) + 2 + 2 ... + + ... 2 ( 2n) 2 2 4 6 mwkrivebis sxvaobis saxiT. Tu SevadarebT (2) mwkrivs krebad 1 1 1 1 + 3 + 3 + ... + 3 + ... 2 3 n mwkrivTan da (3) mwkrivs krebad 1 1 1 1 + 2 + 2 + ... + 2 + ... 2 3 n mwkrivTan, dadebiT wevrebianmwkrivebis Sedarebis niSnidan davinaxavT, rom es mwkrivebi krebadia. maSasadame, krebadi iqneba maTi sxvaobac, rac (1) mwkrivis tolia. 5. mwkrivTa absolituri da pirobiTi krebadoba ganvixiloT mwkrivi u1 + u 2 + u 3 + ... + u n + ... , romlis wevrebic nebismieri niSnisaa.
(1)
44 SevadginoT mwkrivi
| u1 | + | u 2 | + | u 3 | +...+ | u n | +... , (2) romlis wevrebic warmoadgens (1) mwkrivis Sesabamisi wevrebis absolutur mniSvnelobebs. gansazRvreba 2.2. (1) mwkrivs ewodeba absoluturad krebadi, Tu (2) mwkrivi krebadia. (1) mwkrivs ewodeba pirobiTad krebadi, Tu igi krebadia, magram (2) mwkrivi ganSladia. magaliTi 1. mwkrivi 1 1 1 1 + − + ... + (−1) n −1 + ... 2 3 4 n pirobiTad krebadia, radgan misi wevrebis absolitur mniSvnelobebisgan Sedgenili, CvenTvis kargad cnobili harmoniuli mwkrivi, 1 1 1 1 + + + ... + + ... , n 2 3 ganSladia. mwkrivis absolitur krebadobasa da Cveulebriv krebadobas Soris arsebobs kavSiri, romelic Semdegi TeoremiT ganisazRvreba. Teorema 2.5. Tu (1) mwkrivi krebadia absoluturad, maSin igi Cveulebrivadac krebadia. mwkrivis absoluturad krebadobis dasadgenad SeiZleba gamoviyenoT krebadobis yvela is niSani, romelsac viyenebT dadebiTwevrebiani mwkrivebisTvis. Teorema 2.6 (koSis Teorema). Tu absoluturad krebad mwkrivebSi wevrebis mimdevrobas nebismierad SevcvliT, maSin miRebuli mwkrivi absoluturad krebadi iqneba da misi jami mocemuli mwkrivis jamis tolia. aseT faqts adgili ar aqvs pirobiTad krebadi mwkrivebisTvis. marTlac, ganvixiloT mwkrivi 1 1 1 1 (3) 1 − + − + ... + (−1) n −1 + ... , n 2 3 4 rogorc viciT, es mwkrivi pirobiTad krebadia. vTqvaT, misi jamia A . gadavanacvloT am mwkrivSi wevrebi ise, rom yoveli dadebiTniSniani wevris Semdeg modiodes ori momdevno uaryofiTi wevri: 1 1 1 1 1 1 1 1 1 (4) 1 − − + − − + − − + − ... 2 4 3 6 8 5 10 12 7 davajgufoT am mwkrivSi wevrebi Semdegnairad: 1 1 1 1 1 1 1 1 1 − − + − − + − − + ... . 3
6 8 5 10 N2 4
12 1−
miviRebT: 1⎛ 1 1 1 1 1 1 1 1 1 1 ⎞ 1 − + − + − + ... = ⎜1 − + − + − ... ⎟ = A . 2⎝ 2 3 4 5 2 4 6 8 10 12 ⎠ 2 maSasadame, (3) mwkrivis wevrebis gadanacvlebiT miRebuli (4) mwkrivis jami orjer naklebia (3) mwkrivis jamze.
6. ricxviTi mwkrivebis gamoyeneba magaliTi 1. ras udris kreditis Rirebuleba L , Tu
misi sididea
45 A, yovelTviuri saprocento ganakveTi n% , kreditis dafarvis vada m weli, kreditis dafarva xdeba yovelTviurad erTi da igive sididis TanxiT. A amoxsna: yovelTviurad kreditis dasafaravad Sesatani Tanxaa B = . m × 12 n , meore TveSipirvel TveSi Sesatani Tanxaa a1 = B + A × 100 n n , mesame TveSi Sesatani a3 = B + ( A − 2 B ) × da ase a 2 = B + ( A − B) × 100 100
Semdeg a12 m = B + [ A − (12m − 1) B ] ×
n . 100
aqedan gamomdinare, kreditis
Rirebulebaa n n n n A× + ( A − B) × ( A − 2 B) × + ... + ( A − (12m − 1) B ] × = 100 100 100 100 n { A + ( A − B) + ( A − 2 B ) + [ A − (12m − 1) B]} = = 100 n {12mA − [ B + 2 B + ... + (12m − 1) B ]} = 100 Tu gavixsenebT ariTmetikuli progresiis jamis formulas, gveqneba: 12 m − 1 B + 2 B + ... + (12m − 1) B = 12 mB = (72m 2 − 6m) B . 2 aqedan n A n 1 L= [12mA − (72m 2 − 6m) ]= (6m + ) A . 2 100 12m 100 magaliTi 2. saxelmwifom gadawyvita ekonomikis stimulirebis mizniT SemoiRos sagadasaxado SeRavaTebi. vTqvaT, adamianma miiRo sagadaxado Se RavaTi 600 lari da daxarja Tanxis 80%. vTqvaT, adamianTa jgufi, romelic am daxarjul Tanxas iRebs, jamurad, rogorc xelfasis nawils, xarjavs mis 80%, aseve, adamianTa sxva jgufi romelic, iRebs, jamurad, rogorc xelfasis nawils, wina daxarjul jamur Tanxas, xarjavs am Tanxis 80% da ase grZeldeba usasrulod. gamovTvaloT erTi 600_lariani sagadasaxado SeRavTis ekonomikuri efeqturoba. amoxsna: yvela im adamianis daxarjul jamuri Sromis Rirebuleba, romlebic dasaqmdnen 600- lariani arapirdapiri investiciiT, SeiZleba warmovadginoT usasrulod klebadi a1 + a 2 + a 3 + ... + a n + ... geometriuli progresiis jamis saxiT, romlis pirveli wevria a1 = 0,8 ⋅ 600 = 480 , xolo mniSvneli- q = 0,8 . Tu gavixsenebT usasrulod klebad geometriuli progresiis jamis formulas, gveqneba: a 480 a1 + a 2 + a3 + ... + a n + ... = 1 = = 2400 . 1 − q 0,2 maSasadame, erTi 600- lariani sagadasaxado SeRavTi iwvevs 2400 lari Rirebulebis daxarjuli Sromis raodenobis anazRaurebas da Sesabamisi namati produqciis Seqmnas. magaliTi 3. vTqvaT, rezervuari icleba mis fskerSi arsebuli naxvretidan siCqariT, romelic warmoadgens diskretul drois funqcias
46 da
aqvs
saxe:
v (n) =
c , c > 0, k > 0 , e kn
vipovoT
rezervuarSi
arsebuli
nivTierebis raodenoba. amoxsna: rezervuarSi drois sawyis momentSi arsebuli nivTierebis raodenoba tolia rezervuaris mTlianad daclis, misgan gadmoRvrili mTeli nivTierebis raodenobisa. es raodenoba ki warmoadgens Semdegi mwkrivis: c c c c + 2 k + 3k + ... + nk + ... k e e e e jams, romelic tolia:
1 k 1 c e =c k . 1 e −1 1− k e
7. savarjiSoebi me-2 TavisaTvis 1.ipoveT Semdegi mwkrivebis jami: ∞ ∞ ∞ ∞ (−1) n 2 50 1 1 1 a) ∑ ( + ) , b) ∑ [ ] , g) ∑ n , d) ∑ ( 2 n + 2 n +1 ) , 2n − 1 10 n =1 2 n + 1 n =1 ( 2 n + 1)( 2 n − 1) n =1 7 n =1 10 ∞ 5 e) ∑ n . n =1 10 2. krebadia Tu ganSladi Semdegi mwkrivebi: ∞ ∞ ∞ 1 1 n a) ∑ , b) ∑ (1 + ) n , g) ∑ ln(1 + ) . n n n =1 1000 n + 1 n =1 n =1 3. Sedarebis niSnis gamoyenebiT gamoikvlieT Semdegi mwkrivebis krebadoba: ∞ ∞ ∞ ∞ ∞ 1 1 1 1 1 , b) ∑ 3 , g) ∑ , d) ∑ 2 n sin n , e) ∑ , v) a) ∑ 2 3 n −1 n =1 n =1 n + 3 n =1 n =1 ln n n =1 n(n 2 + 2) ∞
∑
1
. n( n + 1) 4. dalamberis niSnis gamoyenebiT gamoikvlieT Semdegi mwkrivebis krebadoba: ∞ ∞ ∞ ∞ ∞ n!2 n 3n 2n − 1 n n a) ∑ , b) ∑ , g) ∑ n , e) ∑ n , d) ∑ n . 2 n =1 ( 2n − 1)! n =1 n! n =1 3 n =1 n =1 n 5. gamoikvlieT absolutur da pirobiT krebadobaze Semdegi mwkrivebi: ∞ ∞ ∞ ∞ ∞ ∞ (−1) n +1 (−1) n (−1) n +1 n (−1) n (−1) n cos n a) ∑ ,B b) ∑ , g) ∑ , d) ∑ , e) ∑ , v) ∑ n! n n =1 n =1 2n − 1 n =1 2n − 1 n =1 n =1 ln n n =1 n n + 1 . n =1
47 Tavi 3 xarisxovani mwkrivebi 1. ZiriTadi cnebebi vTqvaT, mocemulia erT da igive Sualedze gansazRvrul funqciaTa mimdevroba u1 ( x), u 2 ( x), u 3 ( x),..., u n ( x),... . funqcionaluri mwkrivi ewodeba usasrulo jam ∞
u1 ( x) + u 2 ( x ) + u 3 ( x) + ... + u n ( x ) + ... = ∑ u n ( x ) .
(1)
n =1
Tu CavsvamT am mwkrivis TiToeul wevrSi x cvladis fiqsirebul mniSvnelobas funqciaTa saerTo gansazRvris aridan, miviRebT ricxviT mwkrivs, romelic SeiZleba krebadi iyos, SeiZleba ganSladi. vTqvaT, D im wertilTa simravlea funqciaTa saerTo gansazRvris aridan, romelTa CasmiTac x cvladis adgilze, miiReba krebadi mwkrivi. ganvixiloT D simravleze gansazRvruli f ( x ) funqcia, romelic simravlis TiToeul wertils Seusabamebs im ricxviTi mwkrivis jams, romelic miiReba (1) mwkrivisagan x cvladis magivrad am wertilis CasmiT. aseT funqcias, Tu D carieli simravle ar aris, uwodeben (1) funqcionaluri mwkrivis jams, xolo D simravles (1) mwkrivis krebadobis ares. funqcionaluri mwkrivebidan Cven ganvixilavT xarisxovan mwkrivebs. 2. xarisxovani mwkrivebi. abelis Teorema gansazRvreba 3.1. xarisxovani mwkrivi ewodeba Semdegi saxis mwkrivs: ∞
a 0 + a1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ... + a n ( x − x 0 ) n + ... = ∑ a n ( x − x 0 ) 2 ,
(2)
n =1
sadac x 0 mocemuli ricxvia, a 0 , a1 , a 2 ,..., a n ,... - cnobili ricxviTi koeficientebi. Tu x0 = 0 , maSin (2) mwkrivi miiRebs saxes: ∞
a 0 + a1 x + a 2 x 2 + ... + a n x n + ... = ∑ a n x n . n =1
cxadia, yoveli xarisxovani mwkrivi ikribeba x = 0 wertilSi da misi jamia a0 . arseboben xarisxovani mwkrivebi, romlebic ikribebian mxolod x = 0 ∞
wertilSi, magaliTad, mwkrivi
∑ (nx)
n
. marTlac, rodesac n → ∞ , n − is
n −1
romeliRac mniSvnelobisTvis nx 0 > 2 . aqedan gamomdinare, (nx 0 ) n > 2 n da
lim(nx0 ) 2 > lim 2 n = ∞ . n →∞
n →∞
maSasadame, ar sruldeba mwkrivis krebadobis aucilebeli piroba arc erTi x ≠ 0 wertilisTvis. arseboben xarisxovani mwkrivebi, romlebic krebadia mTel (−∞, ∞) Sualedze. marTlac mwkrivi ∞ x (3) ( )n ∑ n −1 n
48 krebadia yoveli x0 ∈ (−∞, ∞) wertilisTvis, radganac rodesac n → ∞ , n − is n 1 rome- liRac mniSvnelobisTvis | |< n da Tu SevadarebT (4) mwkrivs x0 2 ∞ 1 krebad ∑ 2 n =1 2 mwkrivs, mwkrivTa Sedarebis niSnidan davadgenT, rom is krebadia. arseboben mwkrivebi, romlebic krebadia namdvil ricxvTa RerZis wertilebis nawilze da ganSladia danarCen wertilebze. marTlac mwkrivi ∞ x (4) ( )n ∑ n −1 3 krebadia rodesac − 3 < x < 3 , radgan am SemTxvevaSi igi warmoadgens x 1 x geometriul progresias, romlis mniSvnelicaa q = , | q |=| |< < 1 . Tu 3 3 3 x ∈ (−∞,−3] ∪ [3, ∞ ) , maSin (5) mwkrivi ganSladia, radgan progresiis x mniSvnelis moduli | q |=| |> 1 . 3 adgili aqvs Semdeg mniSvnelovan Teoremas: Teorema 3.1 (abelis Teorema). 1) Tu xarisxovani mwkrivi ∞
a 0 + a1 x + a 2 x 2 + ... + a n x n + ... = ∑ a n x n
(5)
n =1
krebadia x = x0 wertilSi, maSin igi absoluturad krebadia nebismier x wertilSi, romelic akmayofilebs utolobas: | x |<| x0 | . 2) Tu xarisxovani mwkrivi ganSladia x = x0 , maSin igi ganSladia nebismier x wertilSi, romelic akmayofilebs utolobas: | x |>| x0 | . abelis Teoremidan gamomdinareobs, rom arsebobs zRvruli ricxvi R > 0 , romelsac aqvs Semdegi Tvisebebi: (5) mwkrivi krebadia x cvladis yvela im mniSvnelobisTvis, romlebic akmayofileben utolobas: | x |< R da mwkrivi ganSladia x cvladis yvela im mniSvnelobisTvis, romlebic akmayofileben utolobas: | x |> R . am R ricxvs (5) mwkrivis krebadobis radiuss uwodeben. Tu mwkrivi krebadia mxolod erT x = 0 wertilSi, maSin krebadobis radiusi R = 0 . Tu mwkrivi krebadia ricxviTi RerZis nebismier wertilSi, maSin R = ∞ . ( − R, R ) intervali (1) mwkrivis krebadobis ares warmoadgens. abelis Teorema arafers gveubneba ( − R, R ) intervalis sazRvrebze: x = − R, x = R , mwkrivis krebadobaze, amitom am wertilebSi mwkrivis krebadoba unda Semowmdes yovel calkeul SemTxvevaSi. gamovTvaloT (5) mwkrivis krebadobis radiusi R . amisTvis gamoviyenoT ∞
mwkrivis krebadobis dalamberis niSani
∑| a n =1
n
x n | mwkrivisTvis
|a | a xn lim | n +1 n |=| x | lim n +1 , n →0 n→0 | a | an x n sadac
49
a n +1 . n →∞ a n
r = lim
Tu
r | x |< 1 ,maSin (5) mwkrivi absoluturad krebadia, Tu
ganSladi. maSasadame (5) mwkrivi krebadia, rodesac
a 1 = lim n . aqedan n a r n +1 krebadobis radiusi gamoiTvleba tolobiT: ganSladi,
rodesac
| x |>
R = lim n →∞
| x |<
gamomdinare
r | x |> 1 , maSin
a 1 = lim n n → ∞ r a n +1 (5)
an . a n +1
da
mwkrivis
(6)
∞
xn mwkrivis krebadobis radiusi. ∑ n = 0 n! amoxsna: (6) formuliT gveqneba a (n + 1)! R = lim n = lim = lim(n + 1) = ∞ . n →∞ a n →∞ n →∞ n! n +1
magaliTi 1. gamovTvaloT
x n −1 ∑ n =1 n ∞
magaliTi 2.
gamovTvaloT
mwkrivis krebadobis radiusi da
krebadobis are. amoxsna: (6) formuliT gveqneba: a n +1 = 1. R = lim n = lim n →∞ a n →∞ n n +1 maSasadame R = 1, D = ( −1,1) . gamovikvlioT mwkrivis krebadobis sakiTxi krebadobis aris boloebze. rodesac x = 1 , maSin miiReba ∞ 1 1 1 x n −1 = 1 + + + ... + + ... ∑ 2 3 n n =1 n harmoniuli mwkrivi, romelic ganSladia. rodesac x = −1 , maSin saqme gvaqvs ∞ 1 1 1 1 x n −1 = 1 − + − + ... + (−1) n −1 + ... ∑ 2 3 4 n n =1 n mwkrivTan, romelic, rogorc viciT, pirobiTad krebadia. Tu movaxdenT cvladis gardaqmnas x = y − x 0 , maSin (5) mwkrivi gardaiqmneba (2) mwkrivad. aqedan gamomdinare, Tu x cvladi Rebulobs mniSvnelobas (5) mwkrivis krebadobis aridan- ( − R, R ) , maSin y icvleba intervalSi ( x 0 − R, x0 + R ) , amitom (2) mwkrivis krebadobis radiusi igive iqneba, krebadobis are ki Seicvl- eba da gaxdeba ( x 0 − R, x0 + R ) . rogorc ricxviTi mwkrivebi, xarisxovani mwkrivebic SeiZleba SevkriboT an misi yoveli wevri gavamravloT raime mudmiv ricxvze.
50 ∞
Tu
∑ an x n
∞
∑b x
mwkrivis krebadobis radiusia R1 ,
n=0
n =0
∞
krebadobis radiusi ki- R2 ,
maSin
∑ (a n =0
R
n
n
+ bn ) x n mwkrivis krebadobis radiusi
akmayofilebs utolobas: R ≥ min{R1 , R2 } . ∞
Tu
mwkrivis
n
∑ an x n mwkrivis krebadobis radiusia R1 ,
∞
∑ Ca
maSin
n =1
krebadobis radiusi R
n =1
n
x n mwkrivis
daakmayofilebs utolobas: R ≥ R1 .
3 xarisxovani mwkrivis Tvisebebi ∞
Teorema 3.2. Tu xarisxovani mwkrivi
∑a n =0
n
xn
krebadia ( − R, R )
Sualedze,
∞
maSin
misi jami
f ( x ) = ∑ a n x n warmoadgens uwyvet funqcias am Sualedis n =0
SigniT. Teorema 3.3. krebadi xarisxovani mwkrivi SeiZleba wevr-wevrad gavawarmovoT krebadobis ( − R, R ) Sualedis SigniT. ∞
es niSnavs, rom Tu f ( x) = ∑ a n x n ,
maSin
n =0
∞
f ′( x) = ∑ nan x n−1 = a + 2a1 x + 3a2 x 2 + ...., n =1
∞
f ′′( x) = ∑ n(n − 1)a n x n − 2 = 2a 2 + 6a3 x 2 + ....
.
n =1
................................................................................... gawarmoebiT miRebuli mwkrivebis krebadobis radiusebi igive iqneba, rac iyo mocemuli mwkrivis krebadobis radiusi. Teorema 3.4. krebadi xarisxovani mwkrivi SeiZleba wevr-wevrad gavaintegroT yovel Sualedze [a, b] , romelic mdebareobs krebadobis ( − R, R ) Sualedis SigniT. magaliTad b
∫ a
b
b
b
b
a
a
a
a
f ( x)dx = ∫ a 0 dx + ∫ a1 xdx + ∫ a 2 x 2 dx + ... + ∫ a n x n + = a 0 x +
a x n +1 a1 x 2 a 2 x 3 + + ... + n + ... . 2 3 n +1
amasTan, krebadobis radiusi darCeba igive (− R, R ) . 4. teiloris formula vTqvaT, funqcia f ( x ) gansazRvrulia da aqvs uwyveti warmoebuli f ′( x ) raime x 0 wertilis midamoSi. maSin niuton-laibnicis formuliT gvaqvs x
f ( x) = f ( x0 ) + ∫ f ′(t )dt . x0
Tu f ′(x ) warmoebadia x 0 wertilis midamoSi nawilobiTi integrirebiT miviRebT:
51 x
∫
x0
x
f ′(t )dt = − ∫ f ′(t )d ( x − t ) = − f (t )( x − t ) x0
x
x xo
+ ∫ f ′′(t )( x − t )dt = x0
x
f ( x0 )( x − x0 ) +
∫ f ′′(t )( x − t )dt.
x0
aqedan gamomdinare
f ( x) = f ( x0 ) + f ′( x0 )( x − x) 0 +
x
∫ f ′(t )( x − t )dt .
x0
Tu
f ′′( x) warmoebadia x 0 wertilis midamoSi, analogiurad miviRebT:
f ( x) = f ( x0 ) + f ′( x0 )( x − x) 0 +
x
1 1 f ′′( x)( x − x0 ) 2 + ∫ f ′′′(t )( x − t ) 2 dt . 2 2 x0
Tu f ( x ) funqcia warmoebadia meoTxe rigamde, asev gveqneba:
f ( x) = f ( x 0 ) + f ′( x 0 )( x − x) 0 +
x
1 1 1 f ′′( x)( x − x0 ) 2 + f ′′′( x0 )( x − x0 ) + ∫ f 2! 3! 3! x0
( 4)
(t )( x − t ) 3 dt .
am process gavagrZelebT da davrwmundebiT, rom Tu f ( x ) warmoebadia n + 1 rigamde adgili eqneba formulas: 1 1 f ( x) = f ( x0 ) + f ′( x0 )( x − x 0 ) + f ′′( x 0 )( x − x 0 ) 2 + .. + f ( n ) ( x0 )( x − x0 ) + ... + 2! n! (1) x 1 ( n +1) n + ∫f (t )( x − t ) . n! x0 am formulas ewodeba f (x ) funqciis teiloris formula x 0 wertilSi, naSTis integraluri formiT. funqcias x
Rn ( x ) =
1 f ( n +1) (t )( x − x 0 ) n dt n! x∫0
(2)
ki naSTiTi wevri ewodeba. Tu gamoviyenebT saSualo mniSvnelobis formulas integralisTvis, (2) funqcia Caiwereba ase
Rn ( x ) = f
( n +1)
(ξ )
1 f ( n +1) (ξ ) n ( x x ) dt − = ( x − x0 ) n +1 , 0 ∫ (n)! x0 (n + 1)! x
(3)
sadac x 0 ≤ ξ ≤ x . naSTiTi wevris am formas lagranJis forma ewodeba. Tu CavTvliT, rom f ( x) = f ( 0 ) ( x) da gaviTvaliswinebT (3) formulas teiloris formula SeiZleba ufro kompaqturad CavweroT: n f n ( x0 ) f ( n +1) (ξ ) f ( x) = ∑ ( x − x0 ) n + ( x − x0 ) n +1 . (4) n! (n + 1)! n =1 (1) an (5) formulis marjvena mxares uwodeben funqciis gaSlas ( x − x 0 ) orwevris xarisxebad x 0 wertilSi, n rigamde. teiloris formulis naSTiTi wevrisTvis gvaqvs: n f n ( x0 ) f ( n +1) (ξ ) max | f ( n +1) ( x) | n +1 n n +1 | f ( x) − ∑ ( x − x 0 ) | =| ( x − x 0 ) |≤ δ , (5) n! (n + 1)! (n + 1)! n =1
52 sadac δ warmoadgens x 0 wertilis ganxiluli midamos sigrZes. ganvixiloT teiloris formula zogierTi elementaruli funqciisaTvis x0 = 0 wertilSi: 1. f ( x) = e x . rogorc viciT, am funqciis warmoebulebi nebismier rigamde erTi da igivea: (e x ) ( k ) = e x . amitom, teiloris formulas x0 = 0 wertilSi naSTiTi wevris lagranJis formiT, eqneba saxe: x2 x3 xn eξ ex = 1+ x + x n +1 . + + ... + + n! (n + 1)! 2! 3! 2. f ( x) = sin x . (sin x ) ′ = cos x = sin(
π 2
+ x ), (sin x ) ′′ = (sin(
π 2
+ x )) ′ = sin( 2
π 2
+ x ),..., (sin x) ( n ) = sin( n
π 2
+ x) .
nπ . rodesac n luwia f ( n ) (0) = 0 , rodesac n 2 kentia, anu rodesac n = 2k + 1 , adgili aqvs tolobas f ( 2 k +1) (0) = (−1) k . amgvarad, teiloris formulas sin x funqciisTvis, x 0 = 0 wertilSi, naSTis lagranJis formiT, aqvs saxe: x3 x5 x 2 n +1 (−1) n +1 2 n +3 sin x = x − x cos ξ , + + ... + (−1) n + 3! 5! (2n + 1)! (2n + 3)! sadac 0 ≤ ξ ≤ x . 3. f ( x ) = cos x . iseve, rogorc sin x funqciisTvis
aqedan gamomdinare, f ( n ) (0) = sin
(cos x) ( n ) = cos(n luwi n = 2k ricxvebisTvis
(cos x) ( 2 k ) = cos( 2k
π
kenti n = 2k + 1 ricxvebisTvis
2
π
2
+ x) ,
+ x ) = cos( kπ + x ) = (−1) k cos x ,
(cos x ) ( 2 k +1) = cos( kπ +
π
+ x ) = ( −1) k +1 sin x .
2 aqedan gamomdinare, teiloris formulas cos x funqciisTvis, x0 = 0 wertilSi, naSTis lagranJis formiT, aqvs saxe: x2 x4 x 2n (−1) n +1 2 n + 2 cos x = 1 − x cos ξ , + + ... + (−1) n + 2! 4! 2n! (2n + 2)! sadac 0 ≤ ξ ≤ x . 4. f ( x ) = ln(1 + x ) . −1 2 1 f ′( x) = ,.... . , f ′′′( x) = , f ′′( x) = 2 1+ x (1 + x ) 3 (1 + x) induqciiT miviRebT (−1) n −1 (n − 1)! ( n) f ( x) = (1 + x) n
53 da f ( n ) (0) = (−1) n −1 (n − 1)! . amgvarad, teiloris formulas ln(1 + x) funqciisTvis, x 0 = 0 wertilSi, naSTis lagranJis formiT, aqvs saxe: 1 x2 x3 x4 xn x n +1 ln(1 + x) = x − + − + ... + (−1) n −1 + (−1) n ⋅ , 2! 3! 4! n! n + 1 (1 + ξ ) n +1 sadac 0 ≤ ξ ≤ x . magaliTi 1. gavSaloT funqcia f ( x) = e x teiloris formuliT x0 = 0 wertilSi mesame rigamde. amoxsna: f ′( x ) = e x , f ′′( x ) = e x , f ′′′( x ) = e x , f ( x ) = e x da f (0) = 1, f ′(0) = 1, f ′′(0) = 1, f ′′′(0) = 1, f ( 4 ) (0) . aqedan gamomdinare, yoveli x ∈ R namdvili ricxvisTvis x 2 x 3 eξ 4 ex = 1+ x x , + + 2! 3! 4! sadac 0 < ξ ≤ x . magaliTi 2. gavSaloT funqcia f ( x) = sin x teiloris formuliT x 0 wertilSi mesame rigamde. amoxsna: (sin x)′ = cos x, (sin x)′′ = − sin x, (sin x)′′′ = − cos x, (sin x) ( 4 ) = sin x . aqedan gamomdinare − sin x0 − cos x0 sin x = sin x0 + cos x 0 ⋅ ( x − x 0 ) + ( x − x0 ) 2 + ( x − x0 ) 2 + 2 3! sin ξ + ( x − x0 ) 4 . 4! (5) formula saSualebas gvaZlevs gamovTvaloT funqciaTa miaxloebiTi mni- Svnelobani mocemuli sizustiT. magaliTi 3. gamovTvaloT sin 1 ε = 0,0001 sizustiT. amoxsna: 13 15 12 n +1 (−1) n +1 2 n +3 n | sin 1 − 1 − + + ... + (−1) |≤| 1 | ⋅ max | cos ξ |≤ ε = 0,0001 3! 5! (2n + 1)! (2n + 3)! anu
1 1 1 1 + + ... + (−1) n |≤| |≤ ε = 0,0001 . 3! 5! (2n + 1)! (2n + 3)! aqedan gamomdinareobs, ( 2n + 3)!≥ 10000 . am utolobidan miviRebT n ≥ 4 . maSasadame sin 1 -is ε = 0,0001 sizustiT gamosaTvlelad sakmarisia gavSaloT funqcia sin x teiloris formuliT, meoTxe rigamde, x0 = 0 wertilSi. | sin 1 − 1 −
5. teiloris mwkrivi vTqvaT, funqcia f (x ) gansazRvrulia da aqvs uwyveti warmoebulebi nebismier rigamde, raime x 0 wertilis midamoSi. xarisxovan mwkrivs
54
f ( n ) ( x0 ) ( x − x0 ) n n!
∞
∑ n =0
ewodeba f (x ) funqciis teiloris mwkrivi x 0 wertilSi. teiloris mwkrivs, rodesac x0 = 0 , maklorenis mwkrivi ewodeba. ganvixiloT teiloris mwkrivi zogierTi elementaruli funqciisaTvis: 1. f ( x) = e x . vTqvaT, x0 = 0 , maSin am wertilSi funqciis teiloris mwkrivs eqneba saxe: n
∞
x . ∑ n = 0 n!
(1)
|u | |x| xn = 0 , amitom mwkrivis . lim n +1 = lim n! n→∞ | u n | n→∞ n + 1 krebadobis dalamberis niSnidan gamomdinare, (1) mwkrivi absoluturad krebadia, nebismieri x ∈ R ricxvisTvis. mwkrivis krebadobis aucilebeli | x |n pirobidan gamomdinare lim = 0 . (1) mwkrivis kerZo jami n → ∞ n! k k xn x k +1 ξ x x Sk = ∑ x . = e − Rk = e − ∑ n = 0 n! n = 0 ( k + 1)! mwkrivis zogadi wevria u n =
xn x k +1 ξ = e x − lim x = ex − 0 = ex . k →∞ k →∞ k → ∞ (k + 1)! n = 0 n! sabolood SegviZlia davweroT k
lim(e x − Rk ) = lim ∑
∞
n
x e =∑ . n = 0 n! tolia Tavisi teiloris mwkrivis jamis. x
maSasadame f ( x) = e x 2. f ( x) = sin x . funqciis teiloris mwkrivs x0 = 0 wertilSi eqneba saxe:
x 2 n +1 (−1) . ∑ (2n + 1)! n =0 ∞
n
(2)
x 2 n +1 misi zogadi wevri u n = (−1) , igi dalamberis niSniT krebadia: (2n + 1)! |u | | x |2 lim n +1 = lim = 0. n → ∞ ( 2 n + 2)(2n + 3) n →∞ | u | n n
| x | 2 n +1 = 0 . (2) mwkrivis kerZo jami n →∞ (2n + 1)! k k x 2 n +1 x 2 k +3 cos ξ . S k = ∑ (−1) k = sin x − Rk = sin x − ∑ (−1) k +1 (2n + 1)! (k + 1)! n =0 n =0
amitom lim(−1) n
k
lim(sin x − Rk ) = lim ∑ (−1) k
k →∞
sabolood
k →∞
n =0
x 2 n +1 (−1) k +1 2 n +3 = sin x − lim x cos ξ = sin x − 0 = sin x . k →∞ ( 2k + 3)! (2n + 1)!
55 x 2 n +1 . sin x = ∑ (−1) (2n + 1)! n=0 ∞
n
3. f ( x ) = cos x . sin x funqciis analogiurad, cos x funqciis teiloris mwkrivisTvis x0 = 0 wer- tilSi gveqneba: ∞ (−1) n 2 n x . cos x = ∑ (3) n! n =0 4. f ( x ) = ln(1 + x ) . funqciis teiloris mwkrivs x0 = 0 wertilSi eqneba saxe: ∞
∑ n =1
(−1) n −1 n x . n
(4)
(4) mwkrivis zogadi wevria
un =
(−1) n −1 n x . n
(4) mwkrivis krebadobis radiusi
(−1) n − 2 |a | R = lim n −1 = lim n −n1−1 = 1 . n →∞ | a | n →∞ ( −1) n n maSasadame mwkrivi krebadia yvela x ∈ (−1,1) wertilisTvis. amitom lim u n = n→∞
(−1) n −1 n x = 0. n
rogorc wina SemTxvevaSi: k
lim (ln(1 + x) − Rk ) = lim ∑ (−1) n −1 k →∞
k →∞
n =1
xn x k +1 1 = ln(1 + x) − lim (−1) k ⋅ = ln(1 + x) − 0 = ln(1 + x) k → ∞ n k + 1 (1 + ξ ) k +1
. maSasadame ∞
ln(1 + x) = ∑ n =1
(−1) n −1 n x . n
(5)
5. f ( x) = (1 + x) α funqciis teiloris mwkrivs x0 = 0 wertilSi eqneba saxe: ∞
α (α − 1)...(α − (n − 1))
n =1
n!
1+ ∑
xn .
(6)
rogorc zemoT ganxilul SemTxvevaSi, SegviZlia vaCvenoT, rom es mwkrivi krebadia, krebadobis radiusiT R = 1 , misi jami ki udris (1 + x) α . 1 6. f ( x) = . 1+ x2 analogiurad SeiZleba vaCvenoT, rom am funqciis teiloris mwkrivi x0 = 0 wertilSi aris
56 ∞
∑ (−1)
n −1
x 2 ( n −1) ,
(7)
n =1
romlis krebadobis radiusia R = 1 . magaliTi 1. gamovTvaloT 2 . amoxsna: (6) formuliT gveqneba: 1 1 1 1 1 1 1 1 ( − 1) ( − 1)( − 2) ( − 1)...( − (n − 1)) 1 1 2 2 1 + x = (1 + x) 2 = 1 + x + 2 2 x2 + 2 2 x 3 + ... + 2 2 x n + ... 2 2! 3! n! aqedan gamomdinare 1 1 1 ( − 1) − ( − (n − 1)) 1 1 1 3 1 15 1 2 2 = 1+1 = 1+ − + − + .. + 2 2 + ... . 2 4 2! 8 3! 16 4! n! magaliTi 2. gamovTvaloT ricxvi π . amoxsna: (7) mwkrivis wevr-wevrad integrebiT miviRebT:. x
1 1 1 1 dt = x − x 3 + x 5 + ... + (−1) n −1 x 2 n −1 + ... . 2 3 5 2 n − 1 0 1+ t 1 1 1 1 1 1 π = 4arctg1 = 4(1 − + − + − + ... + (−1) n −1 + ...) . 2n − 1 3 5 7 9 11
arctgx = ∫
1
∫e
magaliTi 3. gamovTvaloT integrali
− x2
dx
0
amoxsna:
am integralis gamoTvla niuton-laibnicis formuliT
SeuZlebelia, vinaidan e − x
2
funqciis pirvelyofili ar gamoisaxeba
elementaruli funqciis saSualebiT. amitom gavSaloT funqcia e − x teiloris mwkrivad, gveqneba: 2 x 2n − x2 x4 − x6 e−x = 1 + + + + ... + (−1) n + ... . n! 1! 2! 3! 3.4 Teoremis ZaliT 1
∫ 0
1
1
0
0
e − x dx = ∫ dx + ∫ 2
1
1
2
1
− x2 x4 − x6 x 2n dx + ∫ dx + ∫ dx + ... + ∫ (−1) n dx + ... 1! 2! 3! n! 0 0 0
anu 1
2 1 1 1 1 + ... + (−1) n + ... . e − x dx = 1 − + − 3 10 42 (2n + 1)n! 0 miRebuli toloba saSualebas gvaZlevs gamovTvaloT integralis miaxloebiTi mniSvneloba.
∫
6. savarjiSoebi me-3 TavisaTvis I. ipoveT Semdegi xarisxovani mwkrivebis krebadobis are: ∞ ∞ ∞ ∞ ∞ ∞ ∞ xn xn x 2 n −1 n x n n 2 n −1 n 2 n2 , 3) , 4) , 4) , 5) 1) ∑ x n , 2) ∑ n , 3) ∑ ( ) x 3 x ( ) , ∑ ∑ ∑ ∑ n n =0 n =1 n n =1 n.2 n =1 2 n + 1 n =1 2n − 1 n =0 n =1 n + 1 2 3
∞ n! x n n!( x + 3) n ( x + 2) n 6) ∑ n , 7) ∑ , 8) . ∑ nn nn n =1 n n =1 n =1 II. eteiloris mwkrivad da ipoveT krebadobis radiusebi Semdegi
∞
2
2
funqciebisTvis: 1) a x , a > 0 , 2) sin 2 x , 3) ln(2 + x) , 4) cos 2 x , 5) xe −2 x , 6) cos 2 x , 7) e x ,
57
sin t ln(1 + t ) x dt , 11) ∫ dt , , 10) ∫ 2 t t 9+ x 0 0 1 15) sin 2 x cos 2 x , 16) . 4 − x4 x
9)
x
x
12) (1 + e x ) 3 ,13) ∫ 0
dt 1− t
4
, 14) ln( x 2 + 3 x + 2) ,
58 Tavi 4 M mravali cvladis funqciebi 1. ZiriTadi cnebebi bunebaSi da praqtikuli saqmianobis dros xSirad gvxvdeba iseTi sidideebi, romelTa cvlilebac sxva ramodenime sididis cvlilebazea damokidebuli. amis safuZvelze bunebrivia, funqcionaluri damokidebulebis cneba unda gafarTovdes da Semovides mravali cvladis funqciis cneba. X 1 , X 2 ,..., X n , Y ricxviTi simravlis gansazRvreba 4.1. vTqvaT qvesimravleebia. Sesabamisobas, romelic X 1 × X 2 × ... × X n dekartis namravlis yovel elements Seusabamebs Y simravlis erT, sruliad gansazRvrul elements mravali cvladis funqcia ewodeba. mravali cvladis funqcias aRniSnaven ase: f : X 1 × X 2 × ... × X n → Y . ( x1 , x 2 ,...x n ) ∈ X 1 × X 2 × ... × X n elementis Sesabamisi y ∈ Y elementi aRiniSneba ase: y = f ( x1 , x 2 ,...x n ) . ukanaskneli Canaweri, xSirad funqciis aRsaniSnadac gamoiyeneba. X 1 × X 2 × ... × X n simravles funqciis gansazRvris are ewodeba, Y simravles funqciis cvlilebis are. n = 1 , saqme gveqneba CvenTvis kargad cnobil erTi cvladis Tu funqciasTan, Tu n = 2 saqme gveqneba ori cvladis funqciasTan, Tu n = 3 , sami cvladis funqciasTan da ase Semdeg. Cven ganvixiloT ori cvladis funqcia z = f ( x, y ) . yvelaferi rac naTqvami iqneba qvemoT, aseTi funqciebisaTvis marTebuli iqneba nebismieri raodenobis cvladis funqciebisTvisac. yovel ricxviT ( x, y ) wyvils calsaxad Seesabameba iseTi wertili sakoordinato sibrtyeze, romlis koordinatebic warmodgenilia mocemuli wyviliT. amitom nebismieri ori cvladis funqcia warmoadgens sibrtyis wertilebis Sesabamisobas ricxviTi simravlis elementebTan. aseve, sami cvladis funqcia warmoadgens sivrcis wertilebis Sesabamisobas ricxviTi simravlis elementebTan. Sesabamisad, ori an sami cvladis funqciis gansazRvris ared SeiZleba CaiTvalos wertilTa simravle sibrtyeze an sivrceSi. x , y cvladebs z = f ( x, y ) funqciis argumentebs uwodeben. magaliTebi: 1. z = x 2 + 2 y + 1 warmoadgens ori cvladis funqcias, x da y cvladebs SeuZliaT miiRon nebismieri, namdvili ricxviT mniSvneloba,, amitom misi gansazRvris area R 2 = R × R simravle. aseve z cvladsac SeuZlia miiRos nebismieri namdvili ricxviTi mniSvnelobani, amitom misi cvlilebis area R simravle. 2. u = x 2 + y 2 + z 2 warmoadgens sami cvladis funqcias. x, y , z cvladebs SuZliaT miiRon nebismieri, namdvili ricxviT mniSvneloba, amitom funqciis gansazRvris area R 3 = R × R × R simravle. u cvladi Rebulobs mxolod arauaryofiT namdvil mniSvnelobebs, amitom funqciis cvlilebis area R + = {x ∈ R | x ≥ 0} simravle. 3. z = 1 − x 2 − y 2 funqciis gansazRvris ares warmoadgens iseTi wyvilebis qvesim-ravle R 2 = R × R simravleSi, romelTa komponentebic akmayofileben utolobas x 2 + y 2 ≤ 1 . cvlilebis area R + . x 2 + y 2 ≤ 1 utoloba gansazRvravs
59 im wertilTa simravles, romelic funqciis gansazRvris ares warmoadgens. mocemul kerZo SemTxvevaSi es simravlea wre, centriT koordinatTa saTaveSi da radiusiT 1. iseve, rogorc erTi cvladis funqciisaTvis, arsebobs ori cvladis funqciis grafikis cnebac. grafiki ewodeba z = f ( x, y ) funqciis samganzomilebiani sivrcis iseTi wertilebis simravles, romelTa koordinatebia ( x, y , f ( x, y )) (nax.16). martiv SemTxvevaSi, es simravle warmoadgens zedapirs, romlis gantolebacaa z = f ( x, y ) . M ( x, y , f ( x, y ))
Z
z = f ( x, y )
Y y0 + δ N 0 ( x0, y 0 )
O
D
Y
y0 − δ
O x0 − δ x0 + δ
x X
X
N ( x, y )
nax.16 nax.17 SemovitanoT ramdenime mniSvnelovani cneba. vTqvaT δ > 0 raime arauaryofiTi ricxvia, N 0 ( x0 , y 0 ) raime wertilia sibrtyeze. N ( x, y ) wertilTa simravles, romelTa koordinatebic sibrtyis im akmayofileben utolobebs 0 <| x − x 0 |< δ , 0 <| y − y 0 |< δ , N 0 ( x0 , y 0 ) wertilis δ midamo ewodeba. vityviT, rom N ( x, y ) wertili miiswrafvis N 0 ( x0 , y 0 ) wertilisken, Tu manZili am wertilebs Soris miiswrafvis nulisaken anu
lim | NN 0 |= lim ( x − x0 ) 2 + ( y − y 0 ) 2 = 0 . ukanasknel tolobas adgili aqvs maSin da mxolod maSin, rodesac x → x0 da y → y 0 . N 0 ( x0 , y 0 ) wertils ewodeba sibrtyeze moTavsebuli D aris zRvruli wertili, Tu nebismieri ε > 0 ricxvisaTvis, D areSi arsebobs iseTi N ( x, y ) wertili, rom 0 <| x − x0 |< ε , 0 <| y − y 0 |< ε . N 0 ( x0 , y 0 ) wertilis δ midamo geometriulad warmoadgens im kvadratis Siga wertilebis simravles, romlis centria N 0 ( x0 , y 0 ) wertili, xolo gverdebi 2δ sigrZis monakveTebia(nax.17).
60 gansazRvreba 4..2. A ricxvs ewodeba z = f ( x, y ) ori cvladis funqciis zRvari N 0 ( x0 , y 0 ) wertilSi, Tu nebismieri ε > 0 ricxvisTvis arsebobs ricxvi δ > 0 , rom rodesac 0 <| x − x 0 |< δ , 0 <| y − y 0 |< δ , maSin | f ( x, y ) − A |< ε . ori cvladis funqciis zRvari N 0 ( x0 , y 0 ) wertilSi aRiniSneba ase:
A = lim f ( x, y ) x → x0 y → y0
an
A=
lim
N ( x , y ) → N 0 ( x0 , y 0 )
f ( x, y ) .
gansazRvreba 4.3. raime D areze gansazRvrul z = f ( x, y ) funqcias ewodeba uwyveti N 0 ( x 0 , y 0 ) ∈ D wertilSi, Tu am funqciis zRvari mocemul wertilSi emTxveva mis mniSvnelobas am wertilSi anu lim f ( x, y ) = f ( x0 , y 0 ) . x → x0 y → y0
Tu funqcia uwyvetia D aris TiToeul wertilSi, maSin amboben, rom funqcia uwyvetia am areze. sidideebs Δx = x − x0 , Δy = y − y 0 uwodeben Sesabamis argumentTa nazrdebs, xolo sidides Δz = f ( x, y ) − f ( x0 , y 0 ) funqciis nazrds. funqciis z = f ( x, y ) uwyvetoba N 0 ( x0 , y 0 ) wertilSi niSnavs, rom funqciis nazrdi Δz → 0 rodesac Δx → 0 da Δy → 0 anu argumentTa usasrulod mcire nazrdebs Seesabameba usasrulod mcire funqciis nazrdi. sibrtyis im wertils sadac funqciis uwyvetobis piroba irRveva, funqciis wyvetis wertili ewodeba. 1 magaliTebi: 1 funqciis erTaderTi wyvetis wertilia z= 2 x + y2 koordinatebiT x = 0, y = 0 . ⎧ 1 ,x ≠ y ⎪ z = ⎨x − y , 2. ⎪1, x = y ⎩ funqcis wyvetis wertilia yvela is wertili, romlisTvisac x = y .
2. ori cvladis funqciis kerZo warmoebulebi vTqvaT, mocemulia funqcia z = f ( x, y ) gansazRvruli raime D areze da N 0 ( x0 , y0 ) ∈ D . ganvixiloT sidide Δz x = f ( x 0 + Δx , y 0 ) − f ( x 0 , y 0 ) , am sidides mocemuli funqciis kerZo nazrdi ewodeba x argumentis mimarT. analogiurad ganisazRvreba funqciis kerZo nazrdi y argumentis mimarT: Δz y = f ( x 0 , y 0 + Δy ) − f ( x 0 , y 0 ) . gansazRvreba 4.4. Tu arsebobs sasruli zRvari Δz f ( x0 + Δx, y 0 ) − f ( x0 , y 0 ) lim x = lim , Δx →0 Δx Δx →0 Δx
61 maSin amboben, rom funqcias kerZo warmoebuli z = f ( x, y ) gaaCnia N 0 ( x0 , y0 ) ∈ D wertilSi x argumentis mimarT, zRvars ki uwodeben funqciis kerZo warmoebuls x argumentis mimarT, am wertilSi. am kerZo warmoebulis aRsaniSnad gamoiyeneba erT-erTi Semdegi ∂z ∂f simboloebidan: , , z ′x , f x′ . Tu saWiroa mivuTiToT, romel wertilSa ∂x ∂x funqciis kerZo warmoebuli, maSin viyenebT aRniSvnebs: ∂z ∂f | x = x0 , | x = x0 , f x′ ( x0 , y 0 ) . ∂x y = y0 ∂x y = y0 analogiurad, Tu arsebobs sasruli zRvari Δz y f ( x0 , y 0 + Δy ) − f ( x0 , y 0 ) = lim lim , Δy →0 Δy Δy →0 Δy maSin amboben, rom funqcias kerZo warmoebuli z = f ( x, y ) gaaCnia N 0 ( x 0 , y 0 ) ∈ D wertilSi y argumentis mimarT, zRvars ki uwodeben funqciis kerZo warmoebuls y argumentis mimarT, am wertilSi. am kerZo warmoebulis aRniSvnebi wina SemTxvevis analogiuria. magaliTi 1. vipovoT z = ax 2 + sin 3 ( x + 2 y 2 ) funqciis kerZo warmoebulebi z ′x da z ′y . amoxsna: rogorc kerZo warmoebulebis gansazRvrebidan Cans, rom gamovTvaloT kerZo warmoebuli erT erTi argumentis mimarT, saWiroa meore argumenti CavTvaloT mudmiv sidided da funqcia CavTvaloT erTi cvladis funqcid, Semdeg gamovTvaloT am erTi cvladis funqciis warmoebuli z ′x = 2ax + 3 sin 2 ( x + 2 y 2 ) , z ′y = 6 y sin 2 ( x + 2 y 2 ) . Z
β
α C
M0
Q
O K l1 P
X nax.18
N 0 ( x0 , y 0 ) γ 1
l2 γ 2 P
Y
62 gavarkvioT, ra geometriuli azri aqvT z = f ( x, y ) funqciis kerZo warmoebulebs N 0 ( x 0 , y 0 ) ∈ D wertilSi(nax. 18). ganvixiloT gantolebiT gansazRvruli zedapiri z = f ( x, y ) samganzomilebian Oxyz sivrceSi. N 0 ( x 0 , y 0 ) ∈ D wertils am zedapirze Seesabameba wertili M 0 ( x0 , y 0 , z 0 ) , sadac z 0 = f ( x0 , y 0 ) . N 0 ( x0 , y 0 ) wertilze gavataroT sibrtye α , romelic paraleluria YOZ sibrtyis. misi gantoleba iqneba x = x0 . cxadia es sibrtye gadakveTs zedapirs raRac CK wirze da gaivlis M 0 ( x0 , y 0 , z 0 ) wertilze. wiri, romelic miiReba sibrtyis da zedapiris gadakveTiT, SeiZleba warmovadginoT gantolebaTa sistemiT ⎧ z = f ( x, y ) , ⎨ ⎩ x = x0 an erTi gantolebiT z = f ( x 0 , y ) , romelic miiReba am sistemidan. funqcia z = f ( x 0 , y ) erTi cvladis funqciaa. z = f ( x, y ) funqciis kerZo warmoebuli z ′y = f y′ ( x 0 , y 0 ) iqneba am erTi cvladis funqciis Cveulebrivi warmoebuli y = y 0 wertilSi. aqedan gamomdinare, z ′y = f y′ ( x 0 , y 0 ) warmoadgens
CK wiris l1 mxebis sakuTxo koeficients anu l1 mxebis XOY sibrtyesTan daxris kuTxis tangenss. axla N 0 ( x0 , y 0 ) wertilze gavataroT sibrtye α , romelic paraleluria XOZ sibrtyis. misi gantoleba iqneba: y = y 0 . am sibrtyis zedapirTan kveTiT miRebuli PQ wiris gantoleba iqneba z = f ( x 0 , y ) . kerZo warmoebuli z ′y = f y′ ( x 0 , y 0 ) warmoadgens PQ wiris l 2 mxebis sakuTxo koeficients anu l 2 mxebis XOY
sibrtyesTan daxris kuTxis tangenss.
3. ori cvladis funqciis sruli diferenciali vTqvaT, mocemulia funqcia z = f ( x, y ) gansazRvruli raime D areze, amasTan D areze arsebobs z ′x = f x′ ( x0 , y 0 ) , z ′y = f y′ ( x 0 , y 0 ) kerZo warmoebulebi. vTqvaT N 0 ( x 0 , y 0 ) ∈ D , ganvixiloT sidide Δz = f ( x0 + Δx, y 0 + Δy ) − f ( x0 , y 0 ) , am sidides z = f ( x, y ) funqciis sruli nazrdi ewodeba. gansazRvreba 4..5. z = f ( x, y ) funqcias ewodeba diferencirebadi funqcia N 0 ( x0 , y 0 ) wertilSi, Tu misi sruli nazrdi warmoidgineba Semdegi saxiT: (1) Δ z = A Δ x + B Δ y + α ( Δ x ) Δ x + β ( Δy ) Δ y , sadac A da B raime ricxvebia, α ( Δx), β ( Δy ) funqciebi akmayofileben pirobebs: lim α (Δx) = 0, lim β (Δy) = 0 . Δx →0
Δy →0
(1) tolobis marjvena mxaris wrfiv nawils AΔx + BΔy ewodeba z = f ( x, y ) funqcis sruli diferenciali N 0 ( x0 , y 0 ) wertilSi da aRiniSneba ase:
dz
x = x0 y = y0
= AΔx + BΔy .
63 rogorc vxedavT, sruli diferenciali warmoadgens Δx da Δy argumentebis wrfiv funqcias. davadginoT A da B ricxvebis mniSvnelobani. amisaTvis (1) tolobis orive mxare gavyoT jer Δx -ze, Semdeg miRebuli tolobis orive mxares gadavideT zRvarze, rodesac Δx → 0 , miviRebT: f x′ ( x0 , y 0 ) = A . analogiurad, (1) tolobis orive mxare gavyoT jer Δy -ze, Semdeg miRebuli tolobis orive mxares gadavideT zRvarze, rodesac Δy → 0 , miviRebT: f y′ ( x 0 , y 0 ) = B . am dazustebebis Semdeg, z = f ( x, y ) funqcis sruli diferenciali Δx da N 0 ( x0 , y 0 ) wertilSi, SeiZleba warmovadginoT, rogorc Δy argumentebis konkretuli wrfivi funqcia
dz
x = x0 y = y0
′ = f x′ ( x0 , y 0 )Δx + f y′ ( x 0 , y 0 )Δy .
x da y cvladebis diferencialebi dx, dy Tu CavTvliT, rom rac am cvladebis nazrdebi Δx da Δy , SeiZleba davweroT dz
x = x0 y = y0
igivea,
′ = f x′ ( x0 , y 0 )dx + f y′ ( x0 , y 0 )dy .
Tu funqcia diferencirebadia D aris nebismier wertilSi, maSin mas uwodeben diferencirebads D areze. magaliTi 1. vipovoT π z = ax 2 + sin 3 ( x + 2 y 2 ) funqciis sruli diferenciali N (π , ) wertilSi. 2 amoxsna:
dz
x =π y=
π 2
= (2ax + 3 sin 2 ( x + 2 y 2 ))′x
x =π y=
π 0
dx + (6 y sin 2 ( x + 2 y 2 ))′y
x =π y=
dy = (2aπ + 3)dx + 3πdy . π 2
sruli diferenciali saSualebas gvaZlevs gamovTvaloT funqciis miaxloebiTi mniSvneloba, marTlac f ( x 0 + Δx, y 0 + Δy ) − f ( x0 , y 0 ) = f x′ ( x0 , y 0 )Δx + f x′ ( x0 , y 0 )Δy + α (Δx)Δx + β (Δy )Δy . Δx da Δy nazrdebis sakmaod mcire mniSvnelobebisTvis gveqneba miaxloebiTi toloba: f ( x0 + Δx, y 0 + Δy ) − f ( x0 , y 0 ) ≈ f x′ ( x0 , y 0 )Δx + f x′ ( x0 , y 0 )Δy . am miaxloebiTi tolobidan SegviZlia davweroT: f ( x0 + Δx, y 0 + Δy ) ≈ f ( x0 , y 0 ) + f x′ ( x0 , y 0 )Δx + f x′ ( x0 , y 0 )Δy . Tu x0 ≤ x ≤ x0 + Δx da y 0 ≤ y ≤ y 0 + Δy , sakmaod mcire Δx da Δy nazrdebis mniSvnelo- bebisTvis gveqneba: f ( x0 , y ) ≈ f ( x 0 , y 0 ) + f x′ ( x 0 , y 0 )Δx + f x′ ( x0 , y 0 )Δy . (2) magaliTi 2. gamovTvaloT z = e xy funqciis mniSvneloba, rodesac x = 0,35, y = −0,5 . amoxsna: (2) formuliT: z = e 0,35⋅( −0,5) = e 0⋅0 + (−0,5)e 0 0,35 + 0,35e 0 (−0,5) = 1 − 0,35 = 0,65 .
64 4. zedapiris mxebi sibrtye da normali rogorc cnobilia, D areze diferencirebadi z = f ( x, y ) funqcis grafiki warmoadgens zedapirs. amovirCioT wertili N 0 ( x0 , y 0 ) D areSi. am wertilis amorCeviT ganisazRvreba wertili zedapirze M 0 ( x0 , y 0 , f ( x0 , y 0 )) . rogorc geometriidan aris cnobili, zedapiris mxebi sibrtye mocemul wertilSi warmoadgens sibrtyes, romelic gadis zedapiris am wertilze gamaval mis nebismier or mxeb wrfeze da es sibrtye erTaderTia. aseTi sibrtyis gantoleba, zogadad, unda iyosSemdegi saxis: z − z 0 = A( x − x0 ) + B( y − y 0 ) .
l1 l2 zedapiris da mxebi wrfeebi (nax.18), cxadia, M 0 ( x0 , y 0 , f ( x0 , y 0 )) , wertilSi gamaval mxeb sibrtyeze.
mdebareoben
l1 wrfis wertilTa koordinatebi ( x0 , y, z ) saxisaa, radganac es wrfe mxeb sibrtyeze mdebareobs, amitom l1 wrfis wertilebisTvis adgili unda hqondes tolobas: z − z 0 = B( y − y 0 ) . meore mxriv, l1 wrfis gantolebaa: z − z 0 = f y′ ( x 0 , y 0 )( y − y 0 ) . maSasadame B = f y′ ( x 0 , y 0 ) . analogiurad SeiZleba gamovTvaloT A sididis mniSvnelobac, gveqneba: A = f x′ ( x0 , y 0 ) . am gamoTvlebis Semdeg mxebi sibrtyis gantoleba miiRebs saxes: (1) z − z 0 = f x′ ( x 0 , y 0 )( x − x 0 ) + f y′ ( x 0 , y 0 )( y − y 0 ) . gansazRvreba 4..6. zedapiris M0 wertilSi mxebi sibrtyis marTobul wrfes, romelic amave wertilze gadis, M 0 wertilSi zedapiris normali ewodeba. rogorc analizuri geometriidan aris cnobili (1) saxis gantolebiT gansazRvruli sibrtyis M 0 ( x0 , y 0 , z 0 ) wertilSi gamavali marTobuli wrfis gantolebas unda hqondes saxe: z − z0 x − x0 y − y0 = = . (2) −1 f x′ ( x0 , y 0 ) f y′ ( x 0 , y 0 ) aqedan gamomdinare (2) normalis gantolebaa. magaliTi 1. vipovoT z = 2 x 2 + 3 y 2 paraboloidis M M 0 (1,1,5) wertilSi mxebi sibrtyis da normalis gantolebani. amoxsna: (2 x 2 + 3 y 2 )′x x =1 = 4 x x =1 = 4 , (2 x 2 + 3 y 2 )′y y =1 = 6 y y =1 = 6 . aqedan gamomdinare, mxebi sibrtyis gantoleba iqneba: z − 5 = 4( x − 1) + 6( y − 1) . normalis gantoleba ki z − 5 x −1 y −1 . = = −1 4 6
65 5. rTuli funqciis warmoebuli vTqvaT, mocemulia funqcia z = f (u , v) gansazRvruli da diferencirebadi raime U areze. vTqvaT, u da v , Tavis mxriv warmoadgens x da y cvladebis funqc-iebs: u = u ( x, y ) , v = v ( x, y ) , romlebic gansazRvruli arian da diferencirebadi raime D areze da romelTa mniSvnelobisgan Sedgenili wyvilebi (u , v) Sedis U areSi. aseT SemTxvevaSi z warmoadgens rTul funqcias z = f (u ( x, y ), v( x, y )) = F ( x, y ) . davafiqsiroT y cvladi da x cvlads mivceT nazrdi Δx . rogorc me-3 qveTavidan dan viciT: Δz = f u′Δu x + f v′Δv x + α (Δu )Δu x + β (Δv)Δv x . Tu am tolobis orive mxares gavyofT Δx -ze miviRebT:
Δu Δv Δu Δv Δz = f u′ x + f v′ x + α (Δu x ) x + β (Δv x ) x . (1) Δx Δx Δx Δx Δx u = u ( x, y ) da v = v ( x, y ) uwyveti funqciebia, amitom Tu Δx → 0 , maSin Δu → 0 , Δv → 0 . Δx → 0 Tu (1) tolobaSi gadavalT zRvarze, rodesac da lim α ( Δ x ) = 0 , lim β ( Δ y ) = 0 gaviTvaliswinebT, rom , miviRebT: Δx →0
Δy →0
∂z ∂u ∂v (2) = f u′ + f v′ . ∂x ∂x ∂x analogiurad, Tu davafiqsirebT x cvlads da y cvlads mivcemT nazrds, miviRebT: ∂u ∂v ∂z = f u′ + f v′ . (3) ∂y ∂y ∂y ∂z magaliTi 1. vipovoT z = sin((ln( xy )e x + y ) funqciis kerZo warmoebulebi ∂x ∂z da . ∂y amoxsna: u = ln xy , v = e x + y , z = sin uv . ∂z ∂ sin uv ∂u ∂ sin uv ∂v 1 = + = cos(ln( xy )e x + y )e x + y + cos(ln( xy )e x + y ) ln( xy )e x , ∂x ∂u ∂x ∂v ∂x x
∂z ∂ sin uv ∂u ∂ sin uv ∂v 1 = + = cos(ln( xy )e x + y )e x + y + cos(ln( xy)e x + y ) ln( xy)e y . ∂y ∂u ∂y ∂v ∂y y Tu mocemulia funqcia z = f ( x, y ) da x = x (t ), y = y (t ) , maSin z = f ( x (t ), y (t )) ∂z ∂f dx ∂f dy . war- moadgens t argumentis rTul funqcias da = + ∂t ∂x dt ∂y dt z = f (u ( x, y ), v( x, y )) = F ( x, y ) rTuli funqciis diferenciali dz = Fx′dx + Fy′ rogorc (2) da (3) formulebidan Cans, Semdegi saxis unda iyos:
66 ∂u ∂v ∂v ∂u + f v′ )dy . + f v′ )dx + ( f u′ ∂y ∂y ∂x ∂x es toloba gardavqmnaT Semdegnairad ∂u ∂v ∂v ∂u dz = f u′ ( dx + dy ) + f v′( dx + dy ) . ∂y ∂x ∂y ∂x
dz = ( f u′
Tu gaviTvaliswinebT, rom
du =
(4)
∂u ∂v ∂v ∂u dx + dy , dv = dx + dy , ∂x ∂y ∂x ∂y
(4) toloba miiRebs saxes:
dz = f u′du + f v′dv . rogorc vxedavT, imis miuxedavad iqneba u da v cvladebi damoukidebeli, Tu TiToeuli maTgani damokidebuli iqneba sxva x da y cvladebze, adgili aqvs sruli diferencialis formis invariantulobas anu ucvlelobas. sruli diferencialis formis invariantulobas cxadia aqvs formaluri da ara Sinaarsobrivi xasiaTi. rodesac u da v cvladebi damoukidebelni arian, du da dv sidideebi warmoadgenen am cvladebis mudmiv nazrdebs, maSin, rodesac u = u ( x, y ) , v = v ( x, y ) , du da dv sidideebi warmoadgenen am funqciebis diferencialebs. sruli diferencialis formis invariantuloba saSualebas gvaZlevs vaCvenoT Semdegi formulebis samarTlianoba: f gdf − fdg . d ( f ± g ) = df ± dg , d ( fg ) = fdg + gdf , d ( ) = g g2
magaliTi 2. vipovoT z = ln( x 2 + y 2 ) funqciis sruli diferenciali. amoxsna: ∂ ln u 1 z = ln u ,sadac u = x 2 + y 2 . aqedan dz = = du , du = 2 xdx + 2 ydy . u ∂u sabolood: 2 xdx + 2 ydy . dz = x2 + y2 6. aracxadi funqcia da misi warmoebuli vTqvaT funqcia z = F ( x, y ) gansazRvrulia raime D areze. ganvixiloT gantoleba (1) F ( x, y ) = 0 . am gantolebiT cvladebi x da y erTmaneTTan garkveul urTierTkavSirSi ari- an. Tu x cvladis yoveli mniSvnelobisaTvis, raime ricxviTi Sualedidan, arsebobs y cvladis iseTi mniSvneloba, romelic x cvladis am mniSvnelobasTan erTad akmayofilebs (1) gantolebas, maSin saqme gvaqvs aracxad funqciasTan y = f ( x ) , romelic ganisazRvreba (1) gantolebiT. SeiZleba sxvanairadac iyos, y cvladis yoveli mniSvnelobisaTvis, raime ricxviTi Sualedidan, arsebobdes x cvladis iseTi mniSvneloba, romelic y cvladis am mniSvnelobasTan erTad akmayofilebs (1) gantolebas maSin (1) gantoleba gansazRvravs aracxad funqcis x = ϕ ( y ) . rodesac vlaparakobT aracxad funqciaze, mxedvelobaSi gvaqvs funqciis mocemis erT-erTi xerxi da ara misi raime Tviseba. zogierT SemTxvevaSi
67 SesaZlebelia (1) gantolebis amoxsna erT-erTi cvladis mimarT, advilad gadavdivarT aracxadi funqciidan Cveulebriv funqciaze. magaliTad F ( x, y ) = x 3 + y 2 ( x − 1) = 0 aracxadi funqciidan advilad vRebulobT Cveulebriv funqcias:
maSin
x3 . x −1 magram es yovelTvis ar xerxdeba. magaliTad, x y = y x gantolebis amoxsna SeuZlebelia romelime cvladis mimarT. anu ar SegviZlia cxadad wamovadginoT Sesabamisoba y = f (x ) an x = ϕ ( y ) . aracxadad mocemuli funqcia realuri funqciaa, aseTi funqciebi mravali amocanis gadaWris procesSi SeiZleba Segvxvdes, amitom wamoiWreba maTi diferencrebadobis sakiTxic. vTqvaT, F ( x, y ) = 0 gantoleba gansazRvravs aracxad funqcias. am aracxadi y = f (x ) funqciisTvis, cxadia, adgili aqvs igivur tolobas: F ( x, y ( x )) = 0 . gavawarmooT am tolobis orive mxare x cvladiT, rTuli funqciis gawarmoebis wesiT, miviRebT: ∂F ∂F ∂F dy = + =0. ∂x ∂x ∂y dx ∂F ≠ 0 , gveqneba: am ukanasknel tolobaSi, Tu CavTvliT, rom ∂y ∂F dy (2) = − ∂x . ∂F dx ∂y 3 magaliTi 1. vipovoT y + 3 y = x gantolebiT mocemuli y = f ( x) aracxadi dy . funqciis warmoebuli dx ∂F ∂F amoxsna: F ( x, y ) = y 3 + 3 y − x = 0 , = 3 y 2 + 3 . (2) formulis = −1 , ∂x ∂y gamoyenebiT gveqneba: dy −1 1 . =− 2 = 2 dx 3 y + 3 3( y + 1) magaliTi 2. vTqvaT, aracxadi funqcia mocemulia gantolebiT x+ y= a. dy vipovoT . dx amoxsna: F ( x, y) = x + y − a = 0 , y=
68 ∂F 1 ∂F 1 = = , . (2) formulis ∂y 2 y ∂x 2 x magaliTi 3. vipovoT
gamoyenebiT, gveqneba:
dy y =− . dx x
x2 y2 − = 1 hiperbolis mxebi, romelic gadis 32 4 2
M (1,5) wertilze. amoxsna:
x2 y2 − − 1 = 0 gantolebiT mocemuli, y = f ( x ) aracxadi 32 4 2 funqciis grafikis mxebis povnis amocanis ekvivalenturia. aseTi funqciis grafikis, M (1,5) wertilze gamavali, mxebi wrfis gantolebas eqneba saxe: dy y − y0 = ( x − x0 ) . dx funqciis grafikis mxebis sakuTxo koeficienti tolia am funqciis warmoebulisa, Sesabamis wertilSi 2 y dy 4 2 x 42 dy ∂F 2x ∂F =− 2 , = 2 . aqedan gamomdinare, = da mxebis = 2 , x =1 dx 3 y dx y =5 3 2 ⋅ 5 ∂y ∂x 3 4 gantoleba iqneba: 16 y −5 = ( x − 1) . 45 es amocana, F ( x, y ) =
7. maRali rigis warmoebulebi da diferencialebi vTqvaT, funqcia z = f ( x, y ) gansazRvrulia da diferencirebadi raime D ∂f ∂f areze. misi kerZo warmoebulebi , , romlebic aseve ori cvladis ∂x ∂y funqciebia, SesaZlebelia aRmoCndnen diferencirebadi raime areze. Tu ∂f ∂f ∂f ∂ ∂ ∂ ∂y movaxdenT maTi gawar- moebas x da y cvladebiT, gveqneba ∂x , ∂x , , ∂x ∂x ∂y ∂f ∂ ∂y kerZo warmoebulebi. maT uwodeben z = f ( x, y ) funqciis meore rigis ∂y kerZo warmoebulebs da aRniSnaven, Sesabamisad,
∂2 f ∂2 f ∂2 f ∂2 f , , , ∂x∂y ∂y∂x ∂y 2 ∂x 2
an
f xx′′ , f xy′′ , f yx′′ , f yy′′ , simboloebiT.
∂2 f ∂2 f meore rigis kerZo warmoebulebs: , uwodeben Sereul kerZo ∂x∂y ∂y∂x warmoebulebs. Tu funqciis meore rigis warmoebulebic aseve diferencirebadi funqciebia raime areze, SeiZleba ganvixiloT maTi kerZo warmoebulebic, romlebsac mocemul z = f ( x, y ) funqciis mesame rigis kerZo warmoebulebs
69 uwodeben.
maT
aRniSnaven
Semdegnairad:
∂3 f ∂x 3
an
′′′ , f xxx
∂3 f ∂x 2 ∂y
an
∂3 f ∂3 f ′ ′ ′ ′′′ . an , an f yyy f xyy ∂x∂y 2 ∂y 3 analogiurad ganisazRvreba meoTxe rigis, mexuTe rigis da ase Semdeg kerZo warmoebulebi. magaliTi 1. vipovoT z = x 3 + x 2 y + y 3 funqciis yvela meore rigis kerZo warmoe-buli. amoxsna: pirveli rigis kerZo warmoebulebia: ′′′ , f xxy
∂z ∂z = x 2 + 3y 2 . = 3 x 2 + 2 xy , ∂y ∂x meore rigis kerZo warmoebulebia: ∂2 f ∂2 ∂2z ∂2 f = 2 x = 2 x 6 2 = x + y , , , = 6y . ∂x∂y ∂y∂x ∂x 2 ∂y 2 y magaliTi 2. vipovoT z = arctg funqciis yvela meore rigis x warmoebuli. amoxsna: pirveli rigis kerZo warmoebulebia: 1 1 x 1 y −y =− 2 = 2 z ′x = , z ′y = . 2 2 y x x + y2 y x x +y 1 + ( )2 1 + ( )2 x x meore rigis kerZo warmoebulebia: − (x 2 + y 2 ) + 2 y 2 y2 − x2 2 xy ′ ′ = z = , , z ′xx′ = 2 xy (x + y 2 )2 (x2 + y 2 )2 (x2 + y 2 )2
kerZo
x 2 + y 2 − 2x 2 y2 − x2 = , (x 2 + y 2 )2 (x 2 − y 2 )2 − 2 xy . z ′yy′ = 2 (x + y 2 )2 am orive magaliTSi, meore rigis Sereuli kerZo warmoebulebi warmoebulebi erTmaneTis toli aRmoCnda. garkveul pirobebSi es zogadi faqtia. adgili aqvs Semdeg Teoremas: Teorema 4.1(Svarcis Teorema). Tu z = f ( x, y ) funqcias N 0 ( x0 , y 0 ) wertilSi da mis raime midamoSi gaaCnia uwyveti meore rigis Sereuli kerZo warmoebulebi f xy′′ ( x, y ) da f yx′′ ( x, y ) , maSin gawarmoebis Tanamimdevrobas mniSvneloba ar aqvs anu f xy′′ ( x, y ) = f yx′′ ( x, y ) . rogorc viciT, z = f ( x, y ) funqciis sruli diferenciali N 0 ( x0 , y 0 ) wertilSi tolia: dz = f x′dx + f y′dy = f x′Δx + f y′Δy . es sidide damokidebulia x, y , Δx, Δy cvladebze. vipovoT misi, rogorc x, y cvladebze damokidebuli funqciis sruli diferenciali z ′yx′ =
70 d ( dz ) = d ( f x′dx + f y′dy ) = d ( f x′Δx + f y′Δy ) = f xx′′ Δxδx + f xy′′ Δxδy + f yx′′ Δxδx + f yy′′ Δyδy ,
(1)
sadac δx da δy warmoadgens x, y argumentebis nazrdebs, romlebic gansxvavdebian amave argumentebis Δx, Δy nazrdebisagan. rodesac δx = Δx da δy = Δy , (1) sidides uwodeben z = f ( x, y ) funqciis meore rigis srul diferencials da aRniSnaven ase: d 2 z an d 2 f ( x, y ) . Svarcis Teoremis Tanaxmad f xy′′ ( x, y ) = f yx′′ ( x, y ) . amitom funqciis meore rigis sruli diferenciali, rodesac δx = Δx = dx , δy = Δy = dy , gamoisaxeba ase: d 2 z = f xx′′ dx 2 + 2 f xy′′ dxdy + f yy′′ dy 2 . funqciis meore rigis sruli diferencialis forma ukve aRar aris invariantuli, radganac u da v cvladebis x, y cvladebze damokidebulebis SemTxvevaSi Δu , Δv nazrdebi ukve aRar iqnebian mudmivi sidideebi, isini damokidebuli iqnebian x, y cvladebze da (1) tolobaSi gaCndeba maTi kerZo warmoebulebi am cvladebis mimarT. analogiurad ganisazRvreba funqciis ufro maRali rigis sruli diferencialic. 8. ori cvladis funqciis eqstremumi gansazRvreba 4.7. N 0 ( x0 , y 0 ) wertils ewodeba z = f ( x, y ) funqciis maqsimumis (minimumis) wertili, Tu arsebobs am wertilis iseTi midamo, romelSic f ( x0 , y 0 ) warmoadgens funqciis udides (umcires) mniSvnelobas anu am midamoSi adgili aqvs utolobas: f ( x0 , y 0 ) > f ( x, y ) ( f ( x0 , y0 ) < f ( x, y )) . funqciis maqsimumis da minimumis wertilebs eqstremumis wertilebi ewodeba. grafikulad eqstremumis wertilebs aqvT saxe:
Z
Z
f ( x0 , y 0 )
f ( x0 , y 0 )
O
X nax.19
O
Y
N 0 ( x0 , y 0 )
X
Y
N 0 ( x0 , y 0 )
nax.20
71 da aRwevs vTqvaT z = f ( x, y ) funqcia diferencirebadia maqsimums N 0 ( x0 , y 0 ) wertilSi(nax.19. davafiqsiroT y = y 0 da vcvaloT x . funqcia f ( x, y 0 ) erTi cvladis funqciaa, igi Tavis maqsimums aRwevs, rodesac x = x0 da f ( x 0 , y 0 ) > f ( x, y 0 ) , x cvladis yoveli mniSvnelobisaTvis, romelic sakmarisad axloa x 0 -Tan. rogorc erTi cvladis funqciebisTvis, am SemTxvevaSi df ( x, y 0 ) ∂f ( x, y 0 ) x = x0 = x = x0 = 0 . dx ∂x exla davafiqsiroT x = x0 da vcvaloT y . erTi cvladis funqcia f ( x0 , y ) maqsimums aRwevs, rodesac y = y 0 , am SemTxvevaSic df ( x0 , y ) ∂f ( x0 , y ) y = y0 = y = y0 = 0 . dy ∂y maSasadame, sabolood gvaqvs: ∂f ( x, y ) ∂f ( x, y ) (1) x = x0 = 0 , x = x0 = 0 . ∂x ∂y y = y0 y = y0 analogiur Sedegs miviRebT, im SemTxvevaSic, Tu N 0 ( x0 , y 0 ) minimumis wertili iqneba. amgvarad, (1) toloba diferencirebadi z = f ( x, y ) funqciisaTvis warmoad- gens aucilebel pirobas, rom N 0 ( x0 , y 0 ) iyos eqstremumis wertili. magaliTi 1. ganvixiloT z = x 2 − y 2 funqcia. geometriulad am funqciiT gansazRvruli zedapiri warmoadgens hiperbolur paraboloids, misi kerZo warmoebulebia es warmoebulebi N 0 (0,0) wertilSi z ′x = 2 x, z ′y = −2 y . Rebuloben nulovan mniSvnelobas. N 0 (0,0) wertilSi funqciis mniSvneloba z = 0 . Tu gavixsenebT, rom wertili koordinatebiT (0,0,0) hiperbolur paraboloidze ar warmoadgens arc maqsimumis arc minimumis wertils, vinaidan arseboben wertilebi am zedapirze, romlebic imyofebian rogorc XOY OY sibrtyis zemoT, aseve mis qvemoT. am magaliTidan Cans, rom (1) tolobebi ar warmoadgenen imis sakmaris pirobas, rom N 0 (0,0) iyos maqsimumis an minimumis wertili. wertilebs, sadac funqciis kerZo warmoebulebi nulis tolia funqciis kritikuli wertilebi ewodeba. rogorc me-4 qveTavidandan viciT, z = f ( x, y ) funqciiT gansazRvruli zedapiris N 0 ( x0 , y 0 ) wertilze gamavali mxebi sibrtyis gantolebaa:
∂f ∂f x = x0 ( x − x 0 ) + x= x ( y − y0 ) . ∂x y = y0 ∂y y = y00 Tu N 0 ( x0 , y 0 ) wertili funqciis kritikuli wertilia, maSin z − z0 =
∂f ( x, y ) ∂f ( x, y ) x = x0 = 0 , x = x0 = 0 . ∂x ∂y y = y0 y = y0 aseT SemTxvevaSi mxebi sibrtyis gantolebas eqneba saxe: z − z0 = 0 . es ki warmoadgens N 0 ( x0 , y 0 ) wertilze gamavali XOY OY sibrtyis paraleluri sibrtyis, gantolebas.
72 maSasadame, kritikul wertilebSi, mxebi sibrtye XOY OY sakoordinato sibrtyis paraleluria. exla moviyvanoT funqciis eqstremumis sakmarisi pirobebi. vTqvaT, N 0 ( x0 , y 0 ) wertili z = f ( x, y ) funqciis kritikuli wertilia da funqcias am wertilSi gaaCnia meore rigis kerZo warmoebulebi f xx′′
x = x0 y = y0
= A, f xy′′
x = x0 y = y0
= B, f yy′′
x = x0 y = y0
=C.
SevadginoT gamosaxuleba Δ = AC − B 2 .
MmaSin: 1) Tu Δ > 0 , maSin eqstremumi arsebobs. a) N 0 ( x0 , y 0 ) wertili minimumis wertilia, Tu A > 0 an C > 0 . b) N 0 ( x0 , y 0 ) wertili maqsimumis wertilia, Tu A < 0 an C < 0 . 2) Tu Δ < 0 eqstremumi ar arsebobs. 3) Tu Δ > 0 arafris Tqma ar SeiZleba, kvleva unda gagrZeldes. aqedan gamomdinare z = f ( x, y ) funqciis gamokvleva eqstremumze unda moxdes Semdegi praqtikuli xerxiT: 1) viTvliT funqciis kerZo warmoebulebs: f x′ ( x, y ) da f y′ ( x, y ) . 2) vpoulobT funqciis kritikul wertilebs, amisaTvis vxsniT gantolebaTa sistemas: ⎧ f x′ ( x, y ), ⎨ ′ ⎩ f y ( x, y ). 3) viTvliT meore rigis kerZo warmoebulebs kritikul wertilebSi:
f xx′′
x = x0 y = y0
= A, f xy′′
x = x0 y = y0
= B, f yy′′
x = x0 y = y0
=C.
4) vadgenT Δ = AC − B 2 gamosaxulebas da vaxdenT mis analizs. magaliTi 2. gamovikvlioT funqcia z = x 3 + y 3 − 3axy, a > 0 eqstremumze. amoxsna: gamovTvaloT pirveli rigis kerZo warmoebulebi f x′ ( x, y ) = 3 x 2 − 3ay , f y′ ( x, y ) = 3 y 2 − 3ax . vipovoT funqciis kritikuli wertilebi 2 ⎪⎧3x − 3ay = 0, ⎨ 3 ⎪⎩3 y − 3ay = 0. pirveli gantolebidan y =
x2 , am tolobidan da meore gantolebidan a
x4 miviRebT: 2 = ax anu x( x 3 − a 3 ) = 0 . aqedan ki x1 = 0, x 2 = a , Sesabamisad a y = 0, y = a . gamovTvaloT funqciis meore kerZo warmoebulebi: f xx′ = 6 x, f xy′ = −3a, f yy′ = 6 y .
N1 (0,0) da N 2 (a, a) kritikul wertilebSi maTi mniSvneloba iqneba: N1 (0,0) wertilisaTvis A = 0, B = −3a, C = 0 . N 2 (a, a) wertilisTvis
73
A = 6a, B = −3a, C = 6a .
N1 (0,0) wertilisaTvis Δ = AC − B 2 = 0 − 3a ,
radgan a > 0 , amitom
Δ < 0. es ki niSnavs, rom N1 (0,0) wertilSi eqstremumi ar arsebobs. N 2 (a, a) wertilisTvis Δ = AC − B 2 = 36 a 2 − 9a 2 = 27 a 2 > 0 . amitom N 2 (a, a) wertilSi eqstremumi arsebobs. amasTan, radgan A = 6a > 0 , saqme gvaqvs minimumis wertilTan. magaliTi 3. vTqvaT, unda damzaddes yuTi, romlis moculoba iqneba 48 kub. decimetri da Sedgenili iqneba ori ganyofilebisagan, romlebic gayofilia erTmaneTisagan tixriT. vipovoT im masalis minimaluri raodenoba, romelic saWiroa yuTis dasamzadeblad(nax.21).
z
x y
nax.21
amoxsna: masalis raodenoba, romelic saWiroa yuTis dasamzadeblad, tolia sididis: M = xy + 2 xz + 3 yz . yuTis moculoba V = xyz . ukanaskneli 48 tolobidan ganvsazRvroT z , gveqneba z = . aqedan xy 48 48 96 144 M = xy + 2 x + 3 y = xy + + . xy xy y x gamovTvaloT M ( x, y ) funqciis kritikuli wertilebi. amisaTvis amovxsnaT gantolebaTa sistema: ∂M ( x, y ) 144 = y − 2 = 0, ⎧ ∂x ∂x ⎪ ⎨ ∂M ( x, y ) 96 ⎪ x = − = 0. ⎩ ∂y ∂y 2 miviRebT: x = 6, y = 4 ,
A=
∂ 2 M ( x, y ) ∂x 2
C=
∂ 2 M ( x, y ) ∂y 2
x =6
=
288 x3
x =6
y =4
=
192 y3
y =4
= =
∂ 2 M ( x, y ) 288 4 = ,B = ∂x∂y 216 3 192 =3 64
x =6 y =4
= 1,
74 48 4 = 2 , A = > 0, Δ = AC − B 2 = 4 − 1 = 3 > 0 . es ki xy 3 niSnavs, rom saqme gvaqvs minimumis wertilTan. amgvarad, yuTi rom davamzadoT minimaluri raodenobis masaliT saWiroa misi zomebi iyos: sigrZe x = 6 dm, sigane y = 4 dm, simaRle z = 2 dm. magaliTi 4. firma uSvebs x aTas A tipis produqts da y aTas B tipis produqts. produqciis realizaciiT miRebuli Semosavlis funqciaa: R ( x, y ) = 2 x + 3 y , xolo xarjebis funqcia: C ( x, y ) = x 2 − 2 xy + 2 y 2 + 6 x − 9 y + 5 . ra raodenobiT unda damzaddes TiToeuli tipis produqti, rom firmam miiRos maqsimaluri mogeba. amoxsna: firmis mogebis funqcia tolia: P ( x, y ) = R ( x, y ) − C ( x, y ) = −4 x − x 2 + 2 xy − 2 y 2 + 12 y − 5 . misi kritikuli wertilebis mosaZebnad amovxsnaT gantolebaTa sistema: da aqedan gamomdinare: z =
∂P( x, y ) ⎧ = −4 − 2 x + 2 y = 0, ∂x ⎪ ⎨ ∂P( x, y ) ⎪ = 2 x − 4 y + 12 = 0. ⎩ ∂y miviRebT: x = 2, y = 4 . aqedan A = −2, B = 2, C = −4 , Δ = AC − B 2 = 8 − 4 > 4, A < 0 . maSasadame, saqme gvaqvs maqsimumis wertilTan. amgvarad maqsimaluri mogebis misaRebad firmam unda daamzados 2000 cali A tipis da 4000 cali B tipis produqti.
savarjiSoebi me-4 TavisaTvis I. ipoveT Semdegi funqciebis kerZo warmoebulebi.: 1) z = 4 x + 5 y − 6 , 2), z = x 3 − y 2 + 7 x + 3 y + 1 3) z = x 2 ( y + x) , 4) z = e xy , 5) z = x 2 y − xy 2 , 6) z = 2 x 2 − xy + y 2 − x − 5 y + 8 , 7) z = y 3 + 2 x 2 y 2 − 3 x − 2 y + 8 , 8) z = x ln y + x 2 − 4 x − 5 y + 3 . II. ipoveT ipoveT Semdegi rTuli funqciebis kerZo warmoebulebi: 1) z = sin( x + y ) ,2) z = ln( x + y ) ,3) z = x + y ,4) z = e 2
2
2
sin
y x
,5) z =
x x −y 2
2
, 6) z = arctg
x dz dz dz z = , x = e t , y = ln t ,8 )ipoveT ,Tu y dt dt dt x , x = 3t 2 , y = t 2 + 1 . Tu z = ln sin y III. ipoveT Semdegi funqciebis meore rigis kerZo warmoebulebi: x+ y 1) z = 2 xy + y 2 , 2) z = ln( x 2 + y 2 ) , 3) z = sin( xy ) , 4) z = arctg , 5) z = x y . 1 − xy IV. ipoveT Semdegi aracxadi funqciebis Cveulebrivi warmoebulebi:
7)ipoveT
y
1) x 4 + 2 xy 5 = 0 , 2) xy + e x = 0 , 3) sin xy + x 2 = 0 , 5) ln sin( x + y ) − tg ( xy ) = 0 , x 6) +1 = 0. 2 x +y V. ipoveT Semdeg funqciaTa sruli diferencialebi:
y . x
75 3) z = yx y , 4) z = ln( x 2 + y 2 ) , 5) z = ln tg
1) z = x 2 + y 2 − 3 xy , 2) z = sin 2 x + cos 2 y ,
6) z = x 2 y 2 . VI. gamoikvlieT eqstremumze Semdegi funqciebi: 1) z = ( x − 1) 2 + 2 y 2 , 2) z = x 2 + xy + y 2 2 x − y , 3) z = x 3 y − 2 y 2 , 4) z = ( x − 1) 2 − 2 y 2 , 5) z = ( x + y )e 2
2
−( x2 + y 2 )
2 3
, 6) z = 1 − ( x + y ) . 2
2
y , x
76 Tavi 5. orjeradi integralebi 1. cilindruli sxeulis moculoba da orjeradi integralis cneba vTqvaT, XOY OY sakoordinato sibrtyis D areze gansazRvrulia z = f ( x, y ) arauaryofiTi funqcia. ganvixiloT samganzomilebiani sxeuli, romelic zemodan SemosazRvrulia mocemuli funqciis grafikiT, qvemodan SemosazRvrulia XOY OsibrtyiT, gverdebidan cilindruli zedapiriT, romlis msaxvelic Z RerZis paraleluria, mimmarTveli wiri ki- D aris SemomsazRvreli konturi. aseT sxeuls cilindruli sxeuli ewodeba(nax.22)
Z
O
Y DD D D
ΔD k
nax.22
X
D ares ki am cilundruli sxeulis fuZe. ganxiluli cilindruli sxeulis moculoba aRvniSnoT V simboloTi. davyoT D are n nawilad TiToeuli es nawili aRvniSnoT ΔDk
simboloTi ΔS k k = 1,2,..., n. . am mcire areTa farTobebi aRvniSnoT simboloTi. ganvixiloT cilindruli sxeulebi, romlebsac fuZed aqvT dayofiT miRebuli mcire ΔDk areebi da zemodan SemosazRvruli arian z = f ( x, y ) gantolebiT gansazRvruli zedapiris im nawilebiT, romlebic proeqcirdebian am mcire areebze. amovirCioT TiToeul ΔDk areSi nebismieri wertili N k (ξ k ,η k ) ,. SevcvaloT TiToeuli cilindruli sxeuli cilindrebiT, romelTa simaRleebi tolia f (ξ k ,η k ) , k = 1,2,3,... . am cilindrebis moculobaTa jami n
Rn = ∑ f (ξ k ,η k )ΔS k .
(1)
k =1
cxadia, raRac miaxloebiT, tolia cilindruli sxeulis moculobisa. amitom SegviZlia davweroT: n
V ≈ ∑ f (ξ k ,η k )ΔS k . k =1
(2)
77 dD XOY OY sibrtyis raime D aris diametri ewodeba {d ( M , N )} simravlis zust zeda sazRvars, d = sup {d ( M , N )} , sadac d ( M , N ) manZilia M , N ∈D
D aris nebismier or, M da N wertils Soris. TandaTan ufro met nawilad davyoT D are ise, rom dayofiT miRebuli ΔDk nawilebis maqsimaluri diametri d Dk miiswrafodes nulisken. aseT SemTxvevaSi mosalodnelia (2) miaxloebiTi toloba TandaTan ufro zusti gaxdes da usasrulobaSi am miaxloebiTi tolobis marjvena mxare daemTxvas marcxena mxares. maSin cilindruli sxeulis moculobisTvis gveqneba:
V =
lim
n
∑ f (ξ
n →∞ max d D K →0 k =1
k
,η k )ΔS k .
(3)
(3) jams, z = f ( x, y ) funqciis rimanis jami ewodeba, D aris TiToeul dayofas Tavisi rimanis jami Seesabameba. amgvarad. saqme gvaqvs z = f ( x, y ) funqciis rimanis jamebis mimdevrobasTan D areze. gansazRvreba 5.1. Tu z = f ( x, y ) funqciis rimanis jamebis mimdevrobas D areze gaaCnia zRvari, rodesac dayofis nawilebis ricxvi usasrulod izrdeba ise, rom am nawilebis maqsimaluri diametri miiswrafis nulisken. amasTan es zRvari damokidebuli ar aris ΔDk areSi N k (ξ k ,η k ) wertilis SerCevaze, maSin amboben, rom z = f ( x, y ) funqcia integrebadia D areze. xolo zRvars: n
∑ f (ξ
lim
n →∞ max d D K →0 k =1
k
,η k )ΔS k
uwodeben am funqciis orjerad integrals D areze da aRniSnaven ase: ∫∫ f ( x, y)ds . D
f ( x, y ) funqcias integralqveSa funqcia ewodeba, D ares- saintegacio are, ds sidides- farTobis elementi. rogorc davinaxeT, orjeradi integrali geometriulad warmoadgens z = f ( x, y ) funqciT gansazRvruli cilindruli sxeulis moculobas anu gvaqvs
V = ∫∫ f ( x, y )ds . D
mtkicdeba Teorema: Teorema 5.1. nebismieri D areze gansazRvruli uwyveti funqcia integrebadia am areze. rogorc davinaxeT, integrali ori cvladis funqciisaTvis ganisazRvreba zustad erTi cvladis funqciis integralis analogiurad. amitom erTi cvladis funqciis integralis yvela Tviseba, axasiaTebs orjerad integralsac. 2. ganmeorebiTi integralebi da orjeradi integralis gamoTvla rogorc wina paragrafSi vnaxeT, cilindruli sxeulis, romelic zemodan SemosazRvrulia z = f ( x, y ) funqciis grafikiT, qvemodan D - ariT, moculoba gamoisaxeba formuliT:
78
V = ∫∫ f ( x, y )ds D
gamovTvaloT es moculoba sxvanairad. davuSvT, rom D are iseTia, rom misi SemomsazRvreli konturi XOY O sakoordinato sibrtyis RerZebis paralelur wrfeebs gadahkveTs araumetes or wertilSi(nax.23). D( y k )
Z z = f ( x, y k )
y0 = a
O
z = f ( x, y )
Y
yn = b Y
yk
p
D1
P x1 = ϕ1 ( y ) q
X
A
D
D2
D3
B
x2 = ϕ 2 ( y) Q
O
X
nax.23 nax..24 gavavloT XOY sakoordinato sibrtyeSi OX RerZis paraleluri wrfeebi, romlebic exebian D aris SemomsazRvrel konturs. Sexebis A da B wertilebi am konturs yofen or nawilad, es nawilebi wirebs warmoadgenen. vTqvaT, maTi gantolebebia: x1 = ϕ1 ( y ), x2 = ϕ 2 ( y ) . OY RerZze segmenti [a, b] , sadac a da b warmoadgenen A da B wertilebis abscisebs, Sesabamisad, davyoT n nawilad, wertilebiT: a = y 0 , y1 , y 2 ,..., y n −1 , y n = b . yovel y k wertilze, k = 1,2,..., n − 1 , gavataroT XOZ sibrtyis paraleluri sibrtyeebi. es sibrtyeebi, cilindrul sxeulTan TanakveTaSi, gvaZleven mrudwirul trapeciebs. ganvixiloT mrudwiruli trapecia, romelic y = y k sibrtyeze mdebareobs. es trapecia zemodan SemosazRvrulia wiriT, romlis gantoleba z = f ( x, y k ) , qvemodan [ϕ1 ( y k ), ϕ 2 ( y k )] monakveTiT. rogorc erTjeradi integralis gansazRvrebidan viciT, trapeciis farTobi
S ( yk ) =
ϕ 2 ( yk )
∫ f ( x, y
k
)dx .
ϕ1 ( y k )
aqedan gamomdinare, yoveli y ∈ [ a, b] wertilisTvis, gveqneba:
S ( y) =
ϕ2 ( y )
∫ f ( x, y )dx .
ϕ1 ( y )
79 maSin cilindruli sxeulis moculobisTvis
gveqneba miaxloebiT toloba:
n −1
V ≈ ∑ S ( y k )Δy k . k =0
Tu TandaTan gavzrdiT [a, b] segmentis damyofi wertilebis ricxvs ise, rom Δy k segmentebis maqsimaluri sigrZec Semcirdes, ukanaskneli miaxloebiTi toloba ufro zusti gaxdeba. aqedan gamomdinare, adgili eqneba zust tolobas:
V=
lim
n −1
∑ S(y
n →∞ max Δy k →0 k = 0
k
)Δy k ,
anu b
V = ∫ S ( y )dy . a
sabolood vRebulobT ganmeorebiT integrals b ⎛ ϕ2 ( y ) ⎞ (1) V = ∫ ⎜ ∫ f ( x, y )dx ⎟dy . ⎟ ⎜ a ⎝ ϕ1 ( y ) ⎠ analogiurad SeiZleba vaCvenoT, rom q ⎛ φ2 ( x ) ⎞ V = ∫ ⎜ ∫ f ( x, y )dy ⎟dx , (2) ⎜ ⎟ p ⎝ φ11 ( x ) ⎠ sadac x1 = ϕ1 ( y ), x2 = ϕ 2 ( y ) im wirebs warmoadgenen, romlebadac yofen D aris SemomsazRvrel konturs XOY sakoordinato sibrtyeSi OY RerZis paralelur mxeb wrfeebze mdebare Sexebis P da Q wertilebi. aqedAgamomdinare orjeradi integralisTvis, gveqneba: q ⎛ φ2 ( x ) b ⎛ ϕ2 ( y ) ⎞ ⎞ ⎜ f ( x, y )dx ⎟dy = ⎜ f ( x, y )dy ⎟dx . f ( x , y ) ds (3) = ∫∫D ∫p ⎜ φ ∫( x) ∫a ⎜ ϕ ∫( y ) ⎟ ⎟ ⎠ ⎝ 1 ⎝ 11 ⎠ f ( x, y ) ≥ 0 . orjeradi integralis gansazRvrisas vgulisxmobdiT, rom vTqvaT, es piroba ar sruldeba, maSin davyoT D are iseT D1 , D2 nawilebad, sadac funqcia niSans inarCunebs. vTqvaT, D2 areze funqcia uaryofiTia, am areebze aviRoT | f ( x, y ) | funqciis orjeradi integrali
∫∫ | f ( x, y ) | ds D2
da CavTvaloT, rom
∫∫ f ( x, y)ds = − ∫∫ | f ( x, y ) | ds . D
D2
sabolood gveqneba:
∫∫ f ( x, y)ds = ∫∫ f ( x, y)ds + ∫∫ f ( x, y )ds . D
D1
D2
orjeradi integralis gansazRvrisas aseve vgulisxmobdiT, rom D aris SemomsazRvreli konturi, sakoordinato RerZebis paraleluri wrfeebiT, gadaikveTeboda ara umetes or wertilSi. vTqvaT gadakveTis wertilebis ricxvi metia, maSin yovelTvis SegviZlia are sakoordinato RerZebis paraleluri wrfeebiT davyoT iseT nawilebad, rom am nawilebis
80 konturebma wrfeebi gadakveTos ara umetes or
SemomsazRvrelma wertilSi (nax.24). aseT SemTxvevaSi integrals gamoviTvliT dayofiT miRebul TiToeul areze. adgili eqneba tolobas: ∫∫ f ( x, y)ds = ∫∫ f ( x, y)ds + ∫∫ f ( x, y )ds + ∫∫ f ( x, y)ds . D
D1
D2
D3
magaliTi 1. gamovTvaloT z = x − y − 4 zeapiriT, XOY da XOZ sakoordinato sibrtyeebiT SemosazRvruli cilindruli sxeulis moculoba. amoxsna: aseTi cilindruli sxeulis fuZeaparaboliT da y = x 2 − 4 da X X RerZiT SemosazRvruli brtyeli figura, RerZi am parabolas gadahkveTs x = −2 da x = 2 wertilebSi. fuZis konturi Sedgeba y == x 2 − 4 parabolis nawilisagan da [-2,2] monakveTisagan X RerZze. aqedan gamomdinare, Tu gamoviyenebT (2) formulas, gveqneba: 2 2 0 0 0 ⎛ 0 ⎞ ⎛ ⎞ V = ∫ ⎜ ∫ ( x 2 − y − 4)dy ⎟dx = ∫ ⎜ x 2 ∫ dy − ∫ ydy − 4 ∫ dy ⎟dx = ⎜ ⎟ ⎜ 2 ⎟ − 2⎝ x 2 − 4 − 2⎝ x −4 x2 −4 x2 −4 ⎠ ⎠ 2
0
=
1 ( x 2 (0 − x 2 + 4) − (0 − ( x 2 − 4) 2 ) − 2 x2 −4
∫
2
2
1 − 4(0 − x + 4)))dx = − ∫ x 4 dx + 4 ∫ x 2 dx = 2 −2 −2 2
−−
1 5 x 10
2 −2
+
4 3 x 3
2 −2
=−
32 32 24 24 − + + = 16 − 10,4 = 5,6. 10 10 3 3
3. orjeradi integralis gamoTvla marTkuTxa da polarul koordinatTa sistemaSi vTqvaT vTqvaT XOY sakoordinato sibrtyis D areze gansazRvrulia z = f ( x, y ) arauaryofiTi funqcia. davyoT D are X da YRerZebis paraleluri wrfeebiT Sedgenili badiT(nax.25). Y Dk q y k +1 yk
ηk p
O
a
x k x k +1
b X
nax. 25
ξ2 TiToeuli danayofis Dk farTobi, cxadia iqneba ΔS k = Δx k Δy k sadac Δx k = x k +1 − x k , Δy k = y k +1 − y k , k = 0,1,2,..., n − 1 . TiToeuli danayofidan aviRoT nebismieri (ξ k ,η k ) wertili, Tu z = f ( x, y ) funqcia integrebadia, gveqneba:
81
∫∫
f ( x, y )ds =
D
n −1
∑ f (ξ
lim
n →∞ max Δxk → 0 k = 0 max Δy k →0
k
,η k )Δx k Δy k .
Dk danayofis farTobis gamosaxuleba ΔS k = Δx k Δy k iZleva safuZvels davweroT toloba ds = dxdy , maSasadame
∫∫ f ( x, y)ds = ∫∫ f ( x, y)dxdy . D
D
wina paragrafSi gamoyvanili formulebis saSualebiT SegviZlia davweroT:
∫∫ D
q ⎛ φ2 ( x ) ⎞ ⎞ ⎛ ϕ2 ( y ) ⎟ ⎜ f ( x, y )dxdy = ∫ ∫ f ( x, y )dx dy = ∫ ⎜ ∫ f ( x, y )dy ⎟dx . ⎟ ⎜ ⎟ ⎜ p ⎝ φ11 ( x ) a ⎝ ϕ1 ( y ) ⎠ ⎠ b
es formula ZalaSia maSinac, rodesac z = f ( x, y ) niSans D areze.
funqcia ar inarCunebs
magaliTi.1. gamovTvaloT orjeradi integrali
∫∫ ( x
2
+ y 2 )dxdy
D
areze, romelic SemosazRvrulia parabolebiT: y = x 2 , x = y 2 . amoxsna: es parabolebi erTmaneTs kveTen wertilebSi, romelTa abscisebia 0 da 1 (nax.26). y = x2
Y
Z
A
y=
M (r , ϕ , z )
x y
O ϕ O
1
X
X
x
Y nax.26.
N (r , ϕ )
nax.27
82
⎛ x 2 ⎞ ⎜ ( x + y 2 )dy ⎟dx = + = x y dxdy ( ) ∫∫D ∫0 ⎜ ∫2 ⎟ ⎝x ⎠ 1
2
2
1
1
3
1
1
1
3
1
1 1 1 = ∫ x ( x − x )dx + ∫ ( x 2 − x 6 )dx = ∫ x 5 dx − ∫ x 4 dx + ∫ x 2 dx − ∫ x 6 dx = 30 30 30 0 0 0 2
2
11 2 1 2 1 6 1 1 1 + − = − + − = . 5 3 7 7 5 15 21 35 5 33 +1 +1 2 2 marTkuTxa koordinatTa sistemasTan erTad, sivrceSi gamoiyeneba polarul koordinatTa sistema. polarul koordinatTa sistemaSic wertilis mdebareoba sivrceSi, calsaxad ganisazRvreba ricxvTa sameuliT: r , ϕ , , z . es sameuli miiReba Semdegnairad(nax.26): vTqvaT, sivrceSi ukve gvaqvs marTkuTxa koordinatTa sistema OXYZ ,sivrceSi arsebul M wertilidan davuSvaT marTobi OXY sibrtyeze. am marTobis fuZe N SevaerToT koordinatTa O saTavesTan. am operaciebis Sedegad miviRebT sam sidides: r =| ON | sadac tolobis marjvena mxares gvaqvs ON monakveTis ON monakveTs Soris, z ki_ warmoadgens sigrZe, ϕ -kuTxe OX RerZsa da M wertilis aplikats. kuTxe ϕ aiTvleba dadebiTi mimarTulebiT anu saaTis isris sawinaaRmdego mimarTulebiT da icvleba [0,2π ] SualedSi, r ≥ 0, xolo z ∈ ( −∞, ∞ ) . cxadia ricxvTa es sameuli calsaxad gansazRvravs M wertils sivrceSi. polarul koordinatTa sistema marTkuTxa koordinatTa sistemasTan dakavSirebulia Semdegnairad: =
1
−
x = r cos ϕ , y = r sin ϕ , z = z ,
(1)
an Semdegnairad:
y , z = z. x Tu mocemulia funqcia z = f ( x, y ) , polarul sakoordinato cvladebze gadasvliT gveqneba: z = f ( r cos ϕ , r sin ϕ ) = g (r , ϕ ) . vTqvaT, OXY sibrtyeze mocemulia ΔD mcire zomis are, romlic ori mxridan SemosazRvrulia koordinatTa saTavidan gamomavali ori l1 ,l 2 sxiviT, ori mxare ki r1 , r2 - radiusiani rkalebiT(nax.28). ΔD aris farTobi: ΔS = rΔϕΔr . vTqaT, z = f ( r , ϕ ) funqcia gansazRvrulia da integrebadi D areze. Tu D ares davyofT saTavidan gamosuli sxivebiT da radialuri rkalebiT Sedgenili badiT, dayofis TiToeuli are iseTive iqneba rogoric iyo zemoT ganxiluli ΔD are. radgan z = f ( r , ϕ ) funqcia integrebadia, D areis aseTnairi dayofebiT gansazRvruli misi rimanis jamebis mimdevroba krebadi iqneba da gveqneba: r = x 2 + y 2 , ϕ = Arctg
83 Y
ΔD
YY
r1 Δϕ
Δr rΔϕ
r=2
r2 D
ϕ2
ϕ1
r =1
O
O
X
nax.28
X nax.29
∫∫ f (r ,ϕ )ds = lim ∑ f (r, ϕ )rΔϕΔr ,
(2)
ΔS →0 n→∞
D
sadac n dayofis elementTa raodenobaa, ΔS - dayofis elementTa maqsilaluri farTobi. Tu gaviTvaliswinebT, rom dr = Δr , dϕ = Δϕ , gveqneba ds = rΔϕΔr . sabolood
∫∫ f (r, ϕ )ds =∫∫ f (r,ϕ )rdϕdr . D
(3)
D
Tu D are SemosazRvrulia wirebiT: r = ρ1 (ϕ ), r = ρ 2 (ϕ ), ϕ ∈ [α , β } , romelTa gantolebebic mocemulia polarul koordinatTa sistemaSi, maSin β ⎛ ρ 2 (ϕ ) ⎞ ⎜ f (r , ϕ )r ⎟dϕ . (4) f ( r , ϕ ) rd ϕ dr = ∫∫D ∫⎜ ∫ ⎟ α ⎝ ρ1 (ϕ ) ⎠ Tu O koordinatTa saTave D aris SigniTaa moTavsebuli, maSin kuTxe ϕ icvleba [0,2π ] SualedSi da (3) formulas aqvs saxe: 2 π ρ (ϕ ) ⎛ ⎞ (5) = f ( r , ϕ ) rd ϕ dr ∫∫D ∫0 ⎜⎜ ∫0 f (r , ϕ )r ⎟⎟dϕ . ⎝ ⎠ zogjer integralis gamoTvla polarul koordinatebSi ufro moxerxebulia, amitom Tu mocemulia D areze integrebadi funqcia z = f ( x, y ) da gvinda gamovTvaloT integrali
∫∫ f ( x, y)dxdy , D
(1) formulebis gamoyenebiT SegviZlia gadavideT polarul koordinatebze, gveqneba (6) ∫∫ f ( x, y)dxdy = ∫∫ f (r cos ϕ , sin ϕ )rdϕdr D
D
magaliTi 2. gamovTvaloT integrali
∫∫ ( x + y)dxdy ,sadac
D 2
D
are
warmoadgens OX , OY RerZebiTa da x 2 + y = 1, x 2 + y 2 = 4 wrewirTa rkalebiT SemosazRvrul figuras(nax.29). amoxsna: gadavideT polarul koordinatebze, aris SemomsazRvreli rkalebis gantolebebi iqneba 1 = ρ1 (ϕ ),2 = ρ 2 (ϕ ) , aqedan gamomdinare,
84 miviRebT: π
π
2 ⎛2 ⎞ 7 ⎜ ⎟ ∫∫D ( x + y)dxdy = ∫∫D (r cos ϕ + sin)rdϕdr = ∫0 ⎜⎝ ∫1 (r cos ϕ + r sin ϕ )rdr ⎟⎠dϕ = ∫0 3 (cos ϕ + sin ϕ )dϕ = 2
π
7 14 = (sin ϕ − cos ϕ ) 02 = . 3 3
4. orjeradi integralis gamoyeneba 4.1. brtyeli figuris farTobi integrali ∫∫ ds ,Tu gavixsenebT orjeradi
ganvixiloT
integralis
D
gansazRvras, es integrali tolia iqneba D aris farTobis. aqedan gamomdinare orjeradi integrali SeZleba gamoviyenoT brtyeli figureaTa farTobebis saangariSod. magaliTi 1. gamovTvaloT im figuris farTobi, romelic SemosazRvrulia OX RerZiT y 2 = 4ax paraboliT da x + y = 3a wrfiT, a > 0 (nax.30). Y y 2 = 4ax x + y = 3a
D
2a
O a X nax.30 amoxsna: vipovoT parabolis da wrfis gadakveTis wertili, amisTvis amovxsnaT sistema ⎧ x + y = 3a, ⎨ 2 ⎩ y = 4ax. y1 = −2a + 4a = 2a, y 2 − 2a − 4a = −6a . radgan miviRebT y 2 + 4ay + 12a 2 = 0 , aqedan Cven gvainteresebs y cvladis arauaryofiTi mniSvnelobebi, amitom aviRebT mxolod y1 = 2a mniSvnelobas. maSasadame y icvleba 0- dan 2a - mde, am dros x icvleba x1 =
y2 − dan x2 = 3a − y - mde. 4a
amgvarad gveqneba: 2 a 3a − y
∫∫ ds = ∫ ( D
0
2a
∫ dx)dy = ∫ (3a − y
y2 4a
6a 2 − 2a 2 −
0
y2 y2 y3 )dy = 3ay − − 4a 2 12a
y =2a y =0
=
8 2 10 2 a = a . 12 3
4.2. zedapiris farTobi vTqvaT mocemulia z = f ( x, y ) gantolebiT gansazRvruli S zedapiri. davafiqsiroT raime M 0 ( x0 , y 0 , z 0 ) wertili am zedapirze. am wertilSi da
∂f ∂y
85 kerZo warmoebulebi aRvniSnoT, Sesabamisad, p da q simboloebiT. ∂f ∂f CavTvaloT, rom f ( x, y ), , uwyveti funqciebia. ∂x ∂y rogorc viciT zedapiris M 0 ( x0 , y 0 , z 0 ) wertilSi mxebi sibrtyis gantolebaa: z − z 0 = p ( x − x0 ) + q ( y − y 0 ) . amave wertilSi normalis gantoleba iqneba: z − z 0 x − x0 y − y 0 . = = −1 p q am normalis mimmarTveli kosinusebia: ±p ±q , cos β = , cos α = 1+ p2 + q2 1+ p2 + q2 ±1 . cos γ = 1+ p2 + q2 zedapiris proeqcia OXY sibrtyeze aRvniSnoT D simboloTi. davyoT D are nawilebad ΔDk , k = 1,2,..., n . TiToeuli am nawilidan aRvmarToT cilindri zedapiris gadakveTamde. gadakveTaSi miviRebT zedapiris ΔS k nawils. aviRoT am nawilze M k ( x k , y k , z k ) wertili da gavavloT am wertilSi mxebi sibrtye. agebuli cilindri gavagrZeloT mxebi sibrtyis gadakveTamde. cilindri mxeb sibrtyes amokveTs nawils, romelic aRvniSnoT ΔS k -iT. TiToeuli agebuli cilindrisTvis gveqneba Sesabamisi mxebi sibrtyis nawili ΔS k , k = 1,2,..., n . mxeb sibrtyeTa es nawilebi qmnian mravalkuTxeds, romelSic Cawerilia S zedapiri. gansazRvreba 5.2. S zedapiris farTobi ewodeba zRvar lim
n
∑ ΔS
n →∞ max d ΔDk → 0 k =1
k
,
(1)
sadac d ΔDk warmoadgens D aris ΔDk nawilis diametrs.
Z n
γ
ΔS k
M ( xk , y k , z k ) ΔS k
O
Y ΔDk
X
Δy k nax.31
Δx k
86 gamovTvaloT axla mocemuli zedapiris farTobi.
M k ( x k , y k , z k ) wertilze
gamavali mxebi sibrtyis ΔS k nawilis mier OXY sibrtyesTan Sedgenili kuTxe tolia mocemul wertilSi zedapiris n normalsa da Z RerZs Soris kuTxis, romelic zemoT aRniSnuli gvaqvs γ simboloTi(nax. 31). ~ ~ vTqvaT ΔDk aris farTobi tolia ΔS k , maSin ΔS k = ΔS k cos γ . aqedan ~ ΔS , ΔS k = cos γ ±1 magram radganac cos γ = , amitom ΔS k = ± 1 + p 2 + q 2 . 2 2 1+ p + q π normalis mimarTuleba avirCioT ise, rom 0 < γ < , maSin gveqneba cos γ > 0 2 da ΔS k = + 1 + p 2 + q 2 . zedapiris farTobis gansazRvrebis Tanaxmad: n
S = lim ∑ ΔS k = k =1 n →∞ max d ΔDk →0
lim
n
∑
n →∞ max d ΔDk →0 k =1
1+ p2 + q2 .
(2) formulis marjvena mxare tolia orjeradi integralis
(2)
∫∫
1 + p 2 + q 2 ds ,
D
maSasadame Cveni zedapiris farTobi S = ∫∫ 1 + p 2 + q 2 ds , D
∂f ∂f sadac p = da q = . ∂y ∂x aq ganvixileT is SemTxveva, rodesac zedapiri gadakveTs z RerZis paralelur wrfeebs mxolod erT wertilSi, winaaRmdeg SemTxvevaSi zedapirs davyofT aseT nawilebad, gamovTvliT TiToeuli nawilis farTobs da Sedegebs SevkrebT. imis mixedviT, Tu ra mdebareoba aqvs zedapirs OXYZ sivrceSi, zogjer xelsayrelia ganvixiloT misi proeqcia YOZ an XOZ sibrtyeSi. magaliTi 1. vipovoT sferuli zedapiris im nawilis farTobi, romelsac amoWris sferos centrze gamavali cilindri, Tu sferos gantolebaa a a2 x 2 + y 2 + z 2 = a , cilindris gantoleba ki ( x − ) 2 + y 2 = (nax.32). 2 4 amoxsna: Z
O
a Y
87 nax.32
X
cilindris fuZis SemomsazRvreli wriuli konturis gantoleba iqneba a a2 (x − )2 + y 2 = . gamovTvaloT p da q sidideebi 2 4 x y ∂z ∂z p= = = ,q = . 2 2 2 2 ∂y ∂x a −x −y a − x2 − y2 1+ p2 + q2 =
aqedan
a a2 − x2 − y2
. CvenTvis saintereso zedapiris farTobi
S = ∫∫ D
a a2 − x2 − y2
ds ,
a a2 utolobiT gansazRvrul wres. sadac D warmoadgens ( x − ) 2 + y 2 ≤ 2 4 Cveni zedapiri OXZ sibrtyis mimarT simetriulia, amitom zedapiris farTobis meoTxedisTTvis gveqneba: ⎛ a 2 −( x − a ) 2 ⎞ ⎟ a⎜ 4 2 S a a ⎜ dy ⎟dx = ds = ∫ = ∫ 2 2 2 2 2 2 ⎜ ⎟ 4 ∫∫ a −x −y a −x −y D 0 0 ⎜ ⎟ ⎝ ⎠ a
= a∫ 0
a2 a −( x − ) 2 4 2
1 a2 − x2
a
= a ∫ arcsin u 0
π
0
a
dx = a ∫ arcsin 0
π 4
a2 (
π 4
0
2 π
4
1 a2 − x2
∫
[ a2 − x2
0
π
π
4
4
1 1− u2
du =
π
4 x 1 2 2 dx = 2a 2 ∫ t ⋅tgt dt = a t ⋅ tgtdtgt = a t ⋅ dtg 2 t = 2 2 ∫ ∫ a+x cos t 0 0 0
π
= a 2 t ⋅ tg 2 t 04 − a 2 ∫ tg 2 tdt = a 0
dy ]dx = a ∫
y2 1− 2 a − x2
0
x a+ x
a
1
∫
[
a2 a −( x − ) 2 4 2 a2 − x2
4
− a2 ∫ ( 0
π
π π 1 − 1)dt = a 2 − a 2 tg 04 + a 2 = 2 4 4 cos t
− 1),
sadac t = arcsin
x π 1 da dx = tgt dt . maSasadame S = 4a 2 ( − 1) . 2 a+x 4 cos t
4.3. brtyeli figuris masa, simZimis centri da statikuri momenti vTqvaT, mocemulia materialuri sxeuli D , romelic warmoadgens brtyel figuras. vTqvaT, aseve, m masa gadanawilebulia am figuraze ρ = ρ ( N ) zedapiruli simkvriviT,sadac N figuris cvladi wertilia. rom gavigoT figuris masa, igi unda davyoT mcire ΔDk , k = 1,2,..., n. nawilebad, Nk romelTa simkvrive SeiZleba CavTvaloT mudmiv sidided. Tu
88 warmoadgens figuris ΔDk nawilis wertils. am nawilis masa Δmk miaxloebiT tolia sididis ρ ( N k )ΔS k , sadac ΔS k warmoadgens ΔDk nawilis
farTobs. aqedan gamomdinare, mTeli figurisaTvis SeiZleba davweroT miaxloebiTi toloba: n
m ≈ ∑ ρ ( N k ) ΔS k . k =1
Tu figuras davyofT ufro mcire diametris nawilebad, miaxloebiTi tolobis sizuste gaizrdeba, amitom SegviZlia davweroT:
m = lim
n
∑ ρ (N
n→∞ d ΔD K → 0 k =1
k
)ΔS k
anu
m = ∫∫ ρ ( N )ds . D
rogorc viciT, figuris ΔDk nawilis statikuri momenti OX RerZis mimarT, miaxloebiT SeiZleba gamoisaxos formuliT: I xΔDk = y k Δm k = y k ρ ( N k ) ΔS k , sadac yk warmoadgens N k wertilis ordinats, romelic SegviZlia miaxloebiT CavTvaloT, figuris ΔDk nawilidan OX RerZamde manZilad. aqedan gamomdinare, mTeli D brtyeli figuris statikuri momenti OX RerZis mimarT toli iqneba sididis:
I x = lim
n
∑y
n→∞ d ΔD K → 0 k =1
k
ρ ( N k )ΔS k ,
anu
I x = ∫∫ yρ ( N )ds . D
analogiurad gamoiTvleba statikuri momenti OY RerZis mimarTac: I y = ∫∫ xρ ( N )ds . D
brtyeli figuris simZimis centris C (ξ ,η ) koordinatebi, rogorc viciT, ganisazRvreba tolobebiT: Iy I ξ = ,η = x . m m aqedan gamomdinare, sabolood ∫∫D xρ ( N )ds ∫∫D yρ ( N )ds ,η = . ξ= ρ ( N ) ds ρ ( N ) ds ∫∫ ∫∫ D
D
Tu brtyeli figura erTgvarovania anu ρ ( n) = C , sadac C mudmivi sididea, wina formulebs eqnebaT saxe: ∫∫D yds ∫∫D xds , η= . ξ= ds ds ∫∫ ∫∫ D
D
89 magaliTi 1. vipovoT erTgvarovani, x 2 + y 2 ≤ a 2 , y ≥ 0 utolobiT gansazRvruli D naxevarwris simZimis centri.
amoxsna: vTqvaT, naxevarwris simZimis centria C (ξ ,η ) . CavTvaloT, rom masis ganawilebis simkvrive ρ ( N ) = 1 . naxevarwre D SemosazRvrulia naxevarwrewiriT: x2 + y2 = a2 , y ≥ 0 , aqedan y = a 2 − x 2 . jer gamovTvaloT statikuri momenti I x ⎛ I x = ∫∫ yds = ∫ ⎜ ⎜ − a⎝ D a
a ⎞ ⎟dx = 1 (a 2 − x 2 )dx = 1 ( 2 ax − 1 x 3 ) ydy ∫0 ⎟ −∫a 2 2 3 ⎠
a2 − x2
a −a
=
2 3 a . 3
naxevarwris masa, roca ρ ( N ) = 1 , toli iqneba misi farTobis:
πa 2 2
.
am gamoTvlebidan gveqneba
2 3 a 4a ξ= 3 2 = . 3π πa 2 rac Seexeba figuris simZimis centris ordinats, igi SeiZleba gamovTvaloT uSualod. marTlac, Cveni naxevarwre warmoadgens erTgvarovan brtyel materialur sxeuls, romelic simetriulia OY RerZis mimarT. aseT SemTxvevaSi simZimis centri OY RerZze mdebareobs. maSasadame 4a naxevarwris simZimis centri yofila wertili C (0, ) . 3π 4.4. orjeradi integralis sxva gamoyenebebi vTqvaT funqcia z = f ( x, y ) funqcia gansazRvrulia da integrebadi D areze. funqciis saSualo mniSvneloba am areze ewodeba sidides
z=
∫∫ f ( x, y)dxdy D
∫∫ dxdy
,
D
sadac mniSvnelSi myofi integrali warmoadgens D aris farTobs. magaliTi 1. vTqvaT, mTavrobam gadawyvita ekonomikis stimulirebis mizniT gaakeTos erTjeradi 10% sagadaxado SeRavaTi, ris Sedegadac mosalodnelia ekonomikaSi damatebiT y miliardi dolaris investicia, sadac 5 ≤ y ≤ 7 . Tu yoveli fizikuri piri an korporacia daxarjavs x aRniSnuli iribi investiciiT miRebuli Semosavlebis nawils, sadac 0,6 ≤ x ≤ 0,8 . ekonomikaSi cnobili mravlobiTobis principis Tanaxmad, mTliani ekonomikuri efeqti (fulad erTeulebSi) gamoisaxeba formuliT: y . vipovoT sagadaxado SeRavaTis saSualo ekonomikuri efeqt S ( x, y ) = 1− x
90 y
amoxsna:
saSualo
ekonomikuri efeqti
warmoadgens marTkuTxa 0,6 ≤ x ≤ 0.8;5 ≤ y ≤ 7 . 0 ,8
7
ares,
romelic
0 ,8
y y y2 dxdy = dx ( dy ) = ( ∫∫D 1 − x ∫ ∫5 1 − x ∫ 2(1 − x) 0,6 0, 6 = −12 ln z
z =0, 2 z =0, 4
y =7 y =5
S =
∫∫ 1 − x dxdy D
0,4 ganisazRvreba
0, 2
)dx =
,
sadac
D
utolobebiT
0, 2
12 12 ∫0,61 − x dx = −0∫,4 z dz =
= −12 ln 0,2 + 12 ln 0,4 = 12 ln 2 = 12 ln 2.
12 ln 2 = 30 ln 2 ≈ 20,8 miliard dolars. 0,4 magaliTi 2. kob-duglasis warmoebis funqcia. Tu warmoebaSi movaxdenT x 10 ≤ x ≤ 20 , aTasi, samuSaosaaTis da dolaris, y milioni 1≤ y ≤ 2 investicias, maSin warmoebuli raime detalis aTas erTeulTa raodenoba N ( x, y ) = x 0, 75 y 0,5 . vipovoT warmoebuli detalebis saSualo raodenoba amoxsna: 20 2 1 x 0,75 x = 20 y 1, 25 = N = ∫∫ x 0,75 y 0, 25 dxdy = ∫ x 0, 75 ∫ y 0, 25 dy = x =10 10 D 1 , 75 1 , 25 10 1 aqedan S =
8 (21, 25 − 1)(201, 75 − 101, 75 ) = 8,375 175 aTas erTeuls. magaliTi 3. avtomobilis damuxruWebis manZili iangariSeba formuliT: L = 0,0000133 xy 2 , sadac x avtomobilis wonaa, y -avtomobilis siCqare. gavigoT saSualo damuxruWebis manZili avtomobilebisTvis, romelTa wona 2000 da 3000 kilograms Sorisaa, siCqare ki 75 da 90 kilometr/saaTs Soris. amoxsna: 1 0,0000133 x 2 x =3000 y 3 y =95 2 0,0000133xy dxdy = L= x = 2000 y = 75 = 2,512 km. 15000 ∫∫ 15000 2 3 D savarjiSoebi Mme-5 TavisaTvis I. gamoTvaleT orjeradi integralebi: x2 xdxdy , sadac D warmoadgens paraboliT da y = x wrfiT 1) ∫∫ 2 y = 2 2 D x + y SemosazRvrul ares; 2) gadadiT polarul koordinatebze da gamoTvaleT 2 2 2 2 ∫∫ ( x + y )dxdy , sadac D warmoadgens x + y = 5 wrewiriT SemosazRvrul D
wres; 3)
∫∫
x 2 − y 2 dxdy , sadac D warmoadgens samkuTxeds
D
wveroebiT O (0,0), A(1,−1), B (1,1) ; dxdy 4) ∫∫ , sadac D warmoadgens wres radiusiT a , romelic 2a − x D sakoordinato RerZebs da mdebareobs pirvel meoTxedSi. II. gamoTvalT areTa farTobebi, romlebic SemosazRvrulia:
exeba
91 1) y = 10 x + 25, y = −6 x + 9 parabolebiT;2) r = a (1 + cos ϕ ), r = a cos ϕ , a > 0 wirebiT; 3) x = y , x = 2 y , x + y = a, x + 3 y = a, a > 0 wrfeebiT. III. gamoTvaleT moculobebi sxeulebisa, romlebic SemosazRvrulia zedapirebiT: x2 y2 z2 2, 2 2 2 1) az = y , x + y = r , z = 0 ;2) y = x , y = 2 x , x + z = 6, z = 0 ;3) 2 + 2 + 2 = 1 . a b c 2
2
Tavi 6 mrudwiruli integralebi 1. pirveli gvaris mrudwiruli integrali vTqvaT sibrtyeze mdebare araCaketili l wiris rkalze, romlis boloebia wertilebi A, B , gansazRvrulia z = f (M ) funqcia, sadac M ( x, y ) rkalis cvladi wertilia. f ( M ) = f ( x, y ) , davyoT AB rkali n nawilad, nebismierad, wertilebiT M 1 ( x1 , y1 ), M 2 ( x 2 , y 3 ),..., M n −1 ( x n −1 , y n −1 ) (nax.33).
Y y k +1
B
Mk
ηk yk A
O
x k ξ k x k +1
X
nax. 33
davuSvaT A = M 0 ( x0 , y 0 ), B = M n ( x n , y n ) da aviRoT nebismierad M k (ξ k ,η k ) wertili M k M k +1 rkalidan, Δl k iyos am rkalis sigrZe, max Δl k iyos AB rkalis n nawilad dayofiT miRebuli rkalebis sigrZeTa maqsimumi. ganvixiloT jami: n −1
∑ f (ξ k =0
k
,η k )Δl k ,
(1)
gansazRvreba 6.1. Tu arsebobs (1) jamis zRvari:
lim
n −1
∑ f (ξ
n→∞ max Δlk →0 k = 0
k
,η k )Δl k ,
romelic damokidebuli araa M k (ξ k ,η k ) wertilis arCevaze, maSin am zRvars uwodeben z = f ( M ) funqciis pirveli gvaris mrudwiruli integrals AB rkalze da aRniSnaven ase: ∫ f ( x, y)dl . AB
92 l vTqvaT wiri mocemulia parametrulad, uwyvetad warmoebadi x = x (t ), y = y (t ) funqciebiT, sadac t parametri icvleba [T1 , T2 ] SualedSi da AB rkalis boloebis koordinatebia, Sesabamisad: A( x(t 0 ), y (t 0 )), B ( x(T ), y (T )); t 0 , T ∈ [T1 , T2 ] . davyoT [t 0 , T ] segmenti n nawilad wertilebiT t1 , t 2 ,..., t n −1 , Sesabamisad, AB rkalic daiyofa n nawilad wertilebiT M 1 ( x(t1 ), y (t1 )), M 2 ( x(t 2 ), y (t 3 )),..., M n −1 ( x(t n −1 ), y (t n −1 )) . f ( M ) = f ( x, y ) funqcia warmoadgens rTul funqcias: f ( M ) = f ( x, y ) = f ( x(t ), y (t )) , f ( M k ) = f ( x(t k ), y (t k )) .
rogorc viciT, M k M k +1 rkalis sigrZisaTvis gvaqvs miaxloebiTi toloba:
Δl k ≈ Δxk2 + Δy k2 ≈ ( x ′(t k )) 2 + ( y ′(t k )) 2 ⋅ Δt k . aseve viciT, rom rkalis dl diferencialisTvis adgili aqvs tolobas: dl = ( x ′(t )) 2 + ( y ′(t )) 2 ⋅ dt .
yovelive aqedan T
∫ f ( x, y)dl = ∫ f ( x(t ), y(t ))
AB
( x ′(t )) 2 + ( y ′(t )) 2 dt .
(2)
t0
am formulis marjvena mxares gvaqvs gansazRvruli integrali, romlis gamoTvlis meTodi CvenTvis ukve nacnobia. maSasadame, pirveli gvaris mrudwiruli integralis gamoTvla daiyvaneba gansazRvruli integralis gamoTvlaze. vTqvaT, exla wiri mocemulia gantolebiT y = y ( x ) . aseT SemTxvevaSi SeiZleba pirdapir davweroT wiris parametruli gantoleba: x = x, y = y ( x ) , sadac parametris rols asrulebs x cvladi. davuSvaT A wertilis koordinatebia ( a, y ( a )) , B wertilis ki (b, y (b)) . maSin rkalis wertilebisTvis x cvladi Rebulobs mniSvnelobebs [a, b] Sualedidan, amitom, (2) formulaSi Tu SevcvliT t parametrs x parametriT, gveqneba: b
∫ f ( x, y)dl = ∫ f ( x, y( x))
AB
(1 + ( y ′( x)) 2 dx .
a
magaliTi. 1. gamovTvaloT pirveli gvaris mrudwiruli integrali ∫ xydl , AB
AB rkalze, romelic warmoadgens x 2 + y 2 = a 2 wrewiris, sakoordinato sibrtyis pirvel meoTxedSi mdebare nawils. amoxsna: gadavideT wrewiris parametrul gantolebaze x = a cos t , y = a sin t , sadac sakoordinato sibrtyeSi mdebare wrewiris nawilisTvis t parametri
π icvleba SualedSi: [0, ] . aseT SemTxvevaSi (2) formuliT gveqneba: 2
93 π 2
2 2 2 2 ∫ xydl = ∫ a cos t ⋅ a sin t a cos t + a sin t dt = 0
AB
π
=
π
2
a 3 ∫ sin t cos tdt = 0
=
1 − a 3 cos θ 4
π 0
=
π π
1 3 1 2 1 a ∫ sin 2tdt = a 3 ∫ sin 2td 2t = a 3 ∫ sin θdθ = 4 0 2 0 4 0 2
1 3 1 3 a3 a + a = . 4 4 2
2. meore gvaris mrudwiruli integrali vTqvaT sibrtyeze mdebare araCaketili l wiris rkalze, romlis boloebia wertilebi A, B , gansazRvrulia ori funqcia P = P ( x, y ) da Q = Q ( x, y ) . davyoT AB rkali n nawilad, nebismierad: M 1 ( x1 , y1 ), M 2 ( x 2 , y 3 ),..., M n −1 ( x n −1 , y n −1 ) .
davuSvaT, A = M 0 ( x0 , y 0 ), B = M n ( x n , y n ) , aviRoT nebismierad wertili M k M k +1 rkalidan da gamovTvaloT am wertilSi mniSvnelobebi P (ξ k ,η k ) da Q(ξ k ,η k ) . ganvixiloT jami: n −1
∑ P(ξ k =0
k
,η k )Δx k + Q(ξ k ,η k )Δy k ,
M k (ξ k ,η k )
funqciaTa
(1)
sadac Δx k = x k +1 − x k , Δy k = y k +1 − y k . gansazRvreba 6.2. Tu arsebobs (1) jamis zRvari: lim
n −1
∑ P(ξ
n→∞ max Δxk →0 k = 0 max Δy k →0
k
,η k )Δx k + Q(ξ k ,η k )Δy k ,
romelic damokidebuli araa M k (ξ k ,η k ) wertilis amorCevaze, maSin am zRvars uwodeben meore gvaris mrudwirul integrals P = P ( x, y ) da Q = Q ( x, y ) funqciebisaTvis, AB rkalze da aRniSnaven ase: ∫ P( x, y)dx + Q( x, y)dy . AB
Tu dayofis wertilebis aTvlas daviwyebT B wertilidan, maSin Δx k = x k +1 − x k , Δy k = y k +1 − y k sidideebi niSans Seicvlian, gansxvavebiT Δl k sididisgan, romelic rkalis sigrZes warmoadgens da yovelTvis dadebiTia. aqedan gamomdinare, meore gvaris mrudwiruli integrali, gansxvavebiT pirveli gvaris mrudwiruli integralisagan, integrebis mimarTulebis SecvliT, niSans Seicvlis. maSasadame adgili eqneba tolobas: (2) ∫ P( x, y)dx + Q( x, y)dy = − ∫ P( x, y)dx + Q( x, y)dy . AB
BA
vTqvaT β k warmoadgens kuTxes M k M k +1 qordasa da OX RerZs Soris(nax.34). naxazidan Cans, rom Δx k ≈ Δl k cos β k , Δy k ≈ Δl k sin β k ,sadac Δl k warmoadgens M k M k +1 rkalis sigrZes. Tu gadavalT diferencialze gveqneba:
94 dx = cos β ( x, y ) dl , dy = sin( x, y ) β dl .
(3)
ukanasknel tolobebSi β ( x, y ) kuTxea wiris cvlad M wertilSi gamaval L mxebsa da OX RerZs Soris, Tu gaviTvaliswinebT (3) tolobebs, gveqneba: (4) ∫ P( x, y)dx + Q( x, y)dy = ∫ [ P( x, y) cos β ( x, y) + Q( x, y) sin β ( x, y)]dl . AB
AB
(4) toloba gviCvenebs integralebs Soris.
kavSirs
pirveli
da
meore
gvaris
mrudwirul
Y M k +1
L
Δy k
β ( x, y )
M ( x, y )
M k βk
B
A
Δx k
O
nax.34
X
l wiri mocemulia parametrulad, uwyvetad warmoebadi vTqvaT, x = x (t ), y = y (t ) funqciebiT, sadac t parametri icvleba [T1 , T2 ] SualedSi da AB rkalis boloebis koordinatebia, Sesabamisad: A( x(t 0 ), y (t 0 )), B ( x(T ), y (T )); t 0 , T ∈ [T1 , T2 ] . n nawilad davyoT [t 0 , T ] segmenti wertilebiT t1 , t 2 ,..., t n −1 , Sesabamisad, n AB rkalic daiyofa nawilad wertilebiT M 1 ( x(t1 ), y (t1 )), M 2 ( x(t 2 ), y (t 3 )),..., M n −1 ( x(t n −1 ), y (t n −1 )) . am dros P = P ( x, y ) da Q = Q ( x, y ) funqciebi warmoadgenen rTul funqciebs: P = P ( x, y ) = P ( x (t ), y (t )) , Q = Q ( x, y ) + Q ( X (t ), y (t )) , amasTan dx = x ′(t ) dt , dy = y ′(t ) dt . Tu gaviTvaliswinebT ukanasknel mimarTebebs. gveqneba: t
∫ P( x, y)dx + Q( x, y)dy = ∫ [ P( x(t )) x′(t ) + Q( x(t ), y(t )) y ′(t )]dt .
AB
(5)
t0
amgvarad, meore gvaris mrudwiruli integralis gamoTvla daviyvaneT gansazRvruli integralis gamoTvlaze. xSirad saqme gvaqvs iseT meore gvaris mrudwiruli integralTan, rodesac integralqveSa gamosaxuleba Seicavs mxolod erT Sesakrebs:
∫
AB
T
f ( x, y )dx = ∫ f ( x(t ), y (t )) x ′(t )dt , 0
T
∫ f ( x, y)dy = ∫ f ( x(t ), y(t )) y ′(t )dt .
AB
0
axla ganvixiloT SemTxveva, rodesac wiri mocemulia gantolebiT y = y ( x) aseT SemTxvevaSi SeiZleba pirdapir davweroT wiris parametruli gantoleba:
95 x asrulebs cvladi. sadac parametris rols x = x, y = y ( x ) , davuSvaT A wertilis koordinatebia ( a, y ( a )) , B wertilis ki- (b, y (b)) . maSin rkalis wertilebisTvis x cvladi Rebulobs mniSvnelobebs [a, b] Sualedidan, amitom, (2) formulaSi, Tu SevcvliT t parametrs x parametriT, gveqneba: b
∫ P( x, y)dx + Q( x, y)dy = ∫ [ P( x, y( x)) + Q( x, y( x)) y ′( x)dx .
AB
(6)
a
SeniSvna: Tu AB rkali l wirze Sedgeba AC , CD ,..., FB nawilebisgan, maSin mrudwiruli integralis gansazRvridan gamomdinare
∫ P( x, y)dx + Q( x, y)dy = ∫ P( x, y)dx + Q( x, y)dy + ∫ P( x, y)dx + Q( x, y)dy + ...
AB
AC
CD
(7)
... + ∫ P( x, y )dx + Q( x, y )dy. FB
mrudwiruli integralis gansazRvrisas vgulisxmobdiT, rom AB rkali l wirze ar warmoadgenda Sekrul konturs. Tu C = AB rkali Sekruli konturia anu A = B , maSin am konturze aviRebT raime D wertils, mxedvelobaSi miviRebT ukanasknel formulas, ris Sedegadac gveqneba:
∫ P( x, y)dx + Q( x, y)dy = ∫ P( x, y)dx + Q( x, y)dy + ∫ P( x, y)dx + Q( x, y)dy =
C
=
AD
∫
P( x, y )dx + Q( x, y )dy +
AD
DB
(8)
∫ P( x,y)dx + Q( x, y)dy.
DA
integreba AD da DA rkalebze xdeba erTi da igive mimarTulebiT anu A wertilidan D wertilisken, pirvel SesakrebSi; D wertilidan A wertilisken, meore SesakrebSi. amasTan, dadebiT mimarTulebad iTvleba is mimarTuleba, romlis drosac konturze moZraobisas mis mier SemosazRvruli are rCeba Cvengan marcxniv. mrudwiruli integrali Caketil C konturze aRiniSneba ase: ∫ P( x, y)dx + Q( x, y)dy C . magaliTi 1. gamovTvaloT ∫ xydx + ( y − x)dy integralis mniSvneloba AB
A(0,0) da B (1,1) wertilebis SemaerTebel rkalze, Tu: 1) AB warmoadgens monakveTs wrfeze y = x ,
2) AB warmoadgens rkals parabolaze y = x 2 , 3) AB warmoadgens rkals kubur parabolaze y = x 3 . amoxsna: 1) am SemTxvevaSi wiris parametrul gantolebas aqvs saxe: x = x, y = x , sadac x parametri icvleba SualedSi [0,1] . gveqneba: 1
1
2 ∫ xydx + ( y − x)dy = ∫ [ x − ( x − x)]dx = ∫ x dx = 2
0
0
AB
x3 3
1 0
=
1 . 3
2) am SemTxvevaSi wiris parametruli gantolebaa x = x, y = x 2 , sadac x parametri icvleba SualedSi [0,1] . gveqneba: 1
1
1
2 ∫ xydx + ( y − x)dy = ∫ [ x − ( x − x)]2dx = 3∫ x dx − 2∫ x = 3
AB
0
2
3
0
0
3x 3 2 x 2 − 4 3
1 0
=
1 . 12
96 3) am SemTxvevaSi wiris parametruli gantolebaa x = x, y = x 3 , sadac x parametri icvleba SualedSi [0,1] . gveqneba: 1
1
1
1
0
0
0
0
4 3 2 5 4 3 ∫ xydx + ( y − x)dy = ∫ [ x − ( x − x)]3x dx = 3∫ x dx + ∫ x dx − 3∫ x dx
AB
6
5
4
3x 1 1 x x + − . 0 = 2 5 4 20 magaliTi 2. gamovTvaloT
∫ P( x + y)dx + 2 xdy
integralis mniSvneloba, sadac
C
C warmoadgens y = x2 da funqciebis grafikTa nawilebisgan y= x warmoqmnil Sekrul konturs. amoxsna: C konturi Sedgeba ori sxvadasxva wirze mdebare, OA da OA rkalebisagan, romelTagan pirveli SeiZleba warmovadginoT parametruli gantolebiT: x = x, y = x 2 , x ∈ [0,1] , meore Semdegi parametruli gantolebiT: x = x, y =
x , x ∈ [0,1] . gveqneba:
∫ ( x + y)dx + 2 xdy = ∫ ( x + y)dx + 2 xdy + ∫ ( x + y)dx + 2 xdy ,
C
OA
AO
sadac tolobis marjvena mxaris integrireba xdeba pirvel SesakrebSi meore wirze mdebare OA rkalze; meore SesakrebSi ki- pirvel wirze mdebare AO rkalze − ∫ ( x + y )dx + 2 xdy = ∫ ( x + y )dx + 2 xdy , OA
AO
amitom 1
∫ ( x + y)dx + 2 xdy = ∫ ( x + y)dx + 2 xdy − ∫ ( x + y)dx + 2 xdy = ∫ ( x + OA
1
0
OA
1
x + 2x
1 2 x
)dx −
3
1
1 x2 1 5 − ∫ ( x + x 2 + 2 x 2 x)dx = ∫ ( x + 2 x )dx + ∫ ( x + 5 x 2 )dx = ( x 2 + 2 ) 10 −(( x 2 + x 3 ) 10 ) = 3 2 2 3 0 0 0 2 1 4 1 5 = + − + =3 2 3 2 3
vTqvaT, XOY sibrtyeze mocemulia D are, romelic SemosazRvrulia erTi mTliani, Caketili konturiT. aseT areebs srulad bmul areebs uwodeben(nax.33). aviRoT ori A(ξ 0 ,η 0 ), B(ξ1 ,η1 ) wertili D aris SigniT. vTqvaT, funqciebi P ( x, y ), Q ( x, y ) gansazRvrulia am areze. SevaerToT A da B wertilebi ori nebismieri AnB da AmB rkalebiT da
Y
• B (ξ 1 ,η )
m D
• A(ξ 0 ,η 0 ) )
O
n X
ganvixiloT mrudwiruli integralebi:
nax. 35
97
∫ P( x, y)dx + Q( x, y)dy , ∫ P( x, y)dx + Q( x, y)dy , ∫ P( x, y)dx + Q( x, y)dy .
AnB
AmB
(9)
C
bolo integrali gansazRvrulia C = AnB + BmA Caketil konturze, igi nulis toli iqneba maSin da mxolod maSin, rodesac adgili eqneba tolobas: (10) ∫ P( x, y)dx + Q( x, y)dy = ∫ P( x, y)dx + Q( x, y)dy . AnB
AmB
radganac AnB da AmB rkalebi nebismierad aris aRebuli, amitom (10) toloba niSnavs, rom mrudwiruli integrali P ( x, y ), Q ( x, y ) funqciebisagan, damokidebuli ar aris A da B wertilebis SemaerTebeli wiris SerCevaze anu damokidebuli ar aris integrirebis gzis SerCevaze. mtkicdeba Teorema: Teorema 6.1. srulad bmul D areze gansazRvruli P ( x, y ), Q ( x, y ) diferencirebadi funqciebisTvis mrudwiruli integrali ∫ P( x, y )dx + Q( x, y )dy ar aris damokideuli A da B wertilebis AB
SemaerTebeli wiris SerCevaze
maSin da mxolod maSin, ro- desac
∂P( x, y ) ∂Q( x, y ) = . ∂y ∂x am
Teoremidan
gamomdinareobs,
rom
(11) Tu
integrali ∫ P( x, y )dx + Q( x, y )dy AB
damokidebuli ar aris integrirebis gzis SerCevaze, maSin integrali ∫ P( x, y)dx + Q( x, y)dy = 0 yovel Caketil D areSi moTavsebul C konturze. C
3. meore gvaris mrudwiruli integralis meqanikuri mniSvneloba vTqvaT, OYX sibrtyeze mocemulia D are, romlis TiToeul wertilSi G modebulia Zala F ( x, y ) . davuSvaT, materialuri wertili moZraobs am egreT wodebuli Zaluri velis moqmedebiT raime l wirze. gamovTvaloT muSaoba E , romelic sruldeba am velis mier materialuri wertilis wiris A wertilidan B wertilamde gadaadgilebisas. davyoT AB rkali n nawilad, nebismierad, wertilebiT: M 1 ( x1 , y1 ), M 2 ( x 2 , y 3 ),..., M n −1 ( x n −1 , y n −1 ) . G davuSvaT, A = M 0 ( x0 , y 0 ), B = M n ( x n , y n ) . vTqvaT, F ( x, y ) Zalis gegmilebi OX da OY RerZebze, Sesabamisad, tolia f1 ( x, y) da f 2 ( x, y ) sidideebis. Tu AB rkalis dayofiT miRebuli rkalebis maqsimaluri sigrZe Δl sakmaod mcirea, maSin SegviZlia CavTvaloT, rom M k M k +1 rkalis wertilebze G modebuli Zalebi miaxloebiT tolia F (ξ k ,η k ) sididis, sadac (ξ k ,η k ) warmoadgens am rkalze moTavsebul, nebismierad arCeul wertilis koordinatebs. aqedan gamomdinare, im muSaoa E k , romelic sruldeba, velis
mier, materialuri wertilis gadaadgilebisas
M k M k +1
rkalis gaswvriv
98 tolia:
daaxloebiT E k ≈ f1 (ξ kη k )Δx k + f 2 (ξ k ,η k )Δy k ,Esadac Δx k = x k +1 − x k , Δy k = y k +1 − y k . wiris A wertilidan B wertilamde gadaadgilebisas gveqneba miaxloebiTi toloba n −1
E ≈ ∑ f 1 (ξ k ,η k )Δx k + f 2 (ξ k ,η k )Δy k , k =0
rac ufro met nawilebad davyofT AB rkals, ise rom Δl sidide sul ufro da ufro Semcirdes, zRvarze gadasvliT miviRebT zust tolobas: n −1
E = lim ∑ f1 (ξ k ,η k )Δx k + f 2 (ξ k ,η k )Δy k , n →∞ Δl →0 k = 0
maSasadame
E=
∫ f ( x, y)dx + f 1
2
( x, y )dy .
AB
es ki niSnavs, rom meore gvaris mrudwiruli integralis mniSvneloba warmoadgens Zaluri velis mier materialuri wertilis raime wirze moZraobisas Sesrulebul muSaobas. magaliTi 1. x = a cos t , y = a sin t , t ∈ [0,2π ] parametruli gantolebiT G gansazRvrul wrewirze modebulia F ( P, Q ) Zaluri velis mier Sesrulebuli muSaoba, sadac P = x + y , Q = 2 x , materialuri wertilis am wrewirze moZraobisas. amoxsna: rogorc aRvniSneT, es muSaoba gamoiTvleba formuliT: E = ∫ ( x + y )dx + 2 xdy , C
sadac C mocemuli wrewiria. P = a (cos t + sin t ); q = 2a sin t , dx = − a sin tdt , dy = a cos tdt . am tolobebis gaTvaliswinebiT 2x
E = ∫ ( x + y )dx + 2 xdy = ∫ [−a 2 (cos t + sin t ) sin t + 2a 2 cos 2 t ]dt = 0
C
2x
2x
1 1 = ∫ [2 cos 2 t − sin 2 t − cos t sin t ]dt = a 2 ∫ [(1 + cos 2 x) − (1 − cos 2t ) − sin 2t ]dt = 2 2 0 0 2x
2x
2x
a2 a2 = a ∫ dt + a ∫ cos 2tdt − dt + 2 ∫0 2 0 0 2
−
2
a2 t 2
2x 0
+
a2 sin 2t 4
2x 0
+
a2 cos 2t 4
2x 0
2x
a2 ∫0 cos 2tdt − 2
2x
∫ sin 2tdt = a t 2
2x 0
0
a2 + sin 2t 2
2x 0
−
= 2πa 2 − πa 2 = πa 2 .
savarjiSoebi me-6 TavisaTvis I gamoTvaleT Semdegi pirveli gvaris mrudwiruli integralebi: 1) ∫ C
ds x2 + y2 + 4
,sadac
C wrfis
O (0,0), A(1,2) ; 2) ∫ xyds , sadac C
monakveTia,
C warmoadgens
romelic
aerTebs
wertilebs
x2 y2 + = 1 elifsis meoTxeds, a2 b2
99 romelic mdebareobs sakoordinato sibrtyis pirvel meoTxedSi; 2 3t , z = t 3 ,0 ≤ t ≤ 1 wiris rkals. 3) ∫ ( x + z )ds , sadac C warmoadgens x = t , y = 2 C II. gamoTvaleT Semdegi meore gvaris mrudwiruli integralebi: 1) ∫ ( x 2 − 2 xy)dx + (2 xy + y 2 )dy , sadac AB warmoadgens y = x 2 parabolis rkals AB
romelic moqceulia A(1,1) da B ( 2,4) wertilebs Soris; 2) ∫ y 2 dx + y 2 dy , sadac C
C
warmoadgens x = a cos t , y = b sin t
elifsis zeda naxevars da integrireba
xdeba saaTis isris sawinaaRmdego mimarTulebiT; 3) ∫ cos ydx − sin xdy , sadac AB
warmoadgens meore sakoordinato kuTxis abscisia 2, B wertilis ordinati- 2.
biseqtrisas.
A
wertilis
100 Tavi 7 diferencialuri gantolebebi 1. ZiriTadi cnebebi Cveulebrivi n -uri rigis diferencialuri gantoleba ewodeba gantolebas: ⎛ dy d 2 y dny⎞ F ⎜⎜ x, y, , 2 ,..., n ⎟⎟ = 0 , (1) dx dx dx ⎠ ⎝ sadac F Tavisi argumentebis uwyveti funqciaa. (1) gantolebis amonaxsns warmoadgens n rigamde warmoebadi funqcia y = ϕ (x ) , romlis Casma gantolebaSi iwvevs mis igivur tolobad gadaqcevas. gansazRvridan gamomdinare pirveli da meore rigis Cveulebriv diferencialur gantolebebs eqnebaT saxe: ⎛ dy d 2 y ⎞ dy ⎞ ⎛ F ⎜ x, y, ⎟ = 0; F ⎜⎜ x, y, , 2 ⎟⎟ = 0 . dx ⎠ dx dx ⎠ ⎝ ⎝ xSirad n -uri rigis diferencialuri gantoleba micemulia aseTi saxiT: dny (2) = f ( x, y, y ′, y ′′,..., y ( n −1) ) . n dx Cveulebrivi diferencialuri gantoleba rom iyos n -uri rigis, F dny funqcia aucileblad damokidebuli unda iyos argumentze, miuxedavad dx 2 imisa, igi damokidebuli iqneba Tu ara sxva argumentebze. dy ganvixiloT pirveli rigis diferencialuri gantoleba: = f ( x ) . (3) am dx gantolebis marcxena mxares dgas misi y = ϕ (x ) amonaxsnis warmoebuli, f (x ) funqciisa, amitom adgili eqneba tolobas romelic tolia dy ∫ dx = ∫ f (x )dx aqedan gamomdinare gveqneba tolobac y = ∫ f (x )dx . maSasadame (3) gantolebis amonaxsni erTaderTi ki ar aris, aramed warmoadgens namdvil ricxvTa simravliT parametrizebul funqciaTa simravles, vinaidan funqciis ganusazRvreli integrali swored aseT simravles warmoadgens. maSasadame (3)gantolebis amonaxsni SeiZleba warmovadginoT ase: (4) y = ϕ ( x, C ) , sada C parametria, romelic Rebulobs mniSvnelobebs namdvil ricxvTa simravleSi. exla ganvixiloT diferencialuri gantoleba: d2y = f (x ) . (5) dx 2 am gantolebis marcxena mxares dgas misi y = ϕ (x ) amonaxsnis meore rigis warmoebuli, amitom adgili eqneba tolobebs: ⎛ d2y ⎞ d2y ( ) dx = f x dx , ∫ ⎜⎜⎝ ∫ dx 2 dx ⎟⎟⎠dx = ∫ ∫ f (x )dx dx . ∫ dx 2 ∫ sabolood ki miviRebT: y = ∫ ∫ f ( x )dx dx .
(
(
)
)
maSasadame (3) gantolebis amonaxsni erTaderTi ki ar aris, aramed warmoadgens namdvil ricxvTa wyvilebiT parametrizebul funqciaTa
101 simravles, radganac funqciis orjer mimdevrobiT aRebuli ganusazRvreli integrali warmoadgens aseT simravles. y = ϕ ( x; C1 , C 2 ) , (6) C1 ,C 2 parametrebia, romlebic namdvil ricxvTa simravlidan sadac Rebuloben mniSvnelobebs. (3) da (5) gantolebebis (4) da (6) tipis amonaxsnebs Sesabamisad uwodeben am gantolebebis zogad amonaxsnebs. Tu parametrebs C , C1 ,C 2 mivcemT raime konkretul mniSvnelobebs maSin miviRebT C = C 0 C1 = C10 , C 2 = C 20 , egreTwodebul kerZo amonaxsnebs Sesabamisad: y = ϕ ( x, C 0 ) , y = ϕ (x; C10 , C 20 ) . (7) zogadi amonaxsnis cneba gvaqvs (1) saxis gantolebebisTvisac. mtkicdeba, rom (1) saxis gantolebis zogad amonaxsns aqvs saxe: y = ϕ ( x; C1 , C 2 ,...., C n ) . Tu C1 , C 2 ,..., C n
parametrebs
mivcemT
miviRebT
gantolebis
kerZo
mniSvnelobebs
C10 , C 20 ,..., C n0 ,
amonaxsns- y = ( x, C10 , C 20 ,..., C n0 ) .
maSasadame
konkretul
SeiZleba vilaparakoT Cveulebrivi diferencialuri gantolebis zogad da kerZo amonaxsnebze, gantolebis nebismieri rigis SemTxvevaSic. CavTvaloT x da y dekartes marTkuTxa koordinatebad sibrtyeze. vTqvaT, funqcia y = ϕ (x ) (2) gantolebis raime amonaxsnia, am funqciis grafiks (2) gantolebis integraluri wiri ewodeba. diferencialuri gantolebis amonaxsnTa Zebnis dros, xSirad ismeba egreTwodebuli koSis amocana: vipovoT (1) an (2) gantolebis iseTi amonaxsni y = ϕ (x) , rom (8) ϕ ( x0 ) = y 00 , ϕ ′( x 0 ) = y 01 , ϕ ′′( x0 ),..., ϕ ( n −1) ( x0 ) = y 0n −1 sadac x 0 , y 00 , y 01 , y 02 ,..., y 0n −1 winaswar mocemuli ricxvebia. (8) pirobebs koSis amocanis sawyisi pirobebi ewodeba. gansazRvreba7.1 vityviT, rom D = {( x, y1 , y 2 ,..., y n ) | x0 − a ≤ x ≤ x 0 + a , y 0i − bi ≤ y i ≤ y 0i + bi , i = 12,..., n} areze gansazRvruli funqcia f ( x, y1 , y 2 ,..., y n ) akmayofilebs lifSicis pirobas, Tu arsebobs iseTi N > 0 namdvili ricxvi, rom yoveli x -isaTvis, romelic akmayo filebs utolobas x − x0 ≤ a da y i , i = 1,2,..., n cvladebis yoveli
ori
romlebic
y i1 , i = 1,2,..., n
akmayofileben
da
y i2 , i = 1,2,..., n
mniSvnelobaTa
sistemisTvis,
yi1 − y0i ≤ bi , yi2 − y0i ≤ bi , i = 1,2,..., n
utolobebs
sruldeba piroba:
(
) (
)
n
f x, yi1 , yi1 ,..., yi1 − f x, yi2 , yi2 ,..., yi2 ≤ ∑ N yi1 − yi2 . i =1
n rigis (2) saxis gantolebisaTvis, koSis amocanis amonaxsnis arseboba da erTaderToba gamomdinareobs Semdegi Teoremidan: Teorema 7.1.(koSis Teorema): vTqvaT, D = {( x, y, y ′, y ′′,..., y ( n −1) ) | x0 − a ≤ x ≤ x0 + a, y 0 − b ≤ y ≤ y 0 + b, y 0( i ) − bi ≤ y ( i ) ≤ y 0(i ) + bi ; i = 1,2,...n − 1} marTkuTxedze gansazRvruli funqcia f ( x, y, y ′, y ′′,..., y ( n −1) ) akmayofilebs lifSicis pirobas da SemosazRvrulia- | f ( x, y, y ′, y ′′,..., y ( n −1) ) |< M . maSin arsebobs
102
dny = f ( x, y, y ′, y ′′,..., y ( n −1) ) n dx gantolebis erTaderTi amonaxsni y = ϕ (x ) , romelic gansazRvrulia ⎧ b⎫ x0 − h ≤ x ≤ x0 + h Sualedze, sadac h = min ⎨a, ⎬ da akmayofilebs pirobebs: ⎩ M⎭ 0 1 ϕ ( x0 ) = y 0 , ϕ ′( x 0 ) = y 0 , ϕ ′′( x0 ),..., ϕ ( n −1) ( x0 ) = y 0n −1 , sadac x 0 , y 00 , y 01 , y 02 ,..., y 0n −1 winaswar mocemuli ricxvebia. rogorc koSis Teorema gviCvenebs, rodesac (2) gantolebis marjvena mxare akmayofilebs garkveul pirobebs, misi amonaxsni arsebobs, erTaderTia da akmayofilebs pirobebs 0 1 ( n −1) n −1 ϕ ( x0 ) = y 0 , ϕ ′( x 0 ) = y 0 , ϕ ′′( x0 ),..., ϕ ( x 0 ) = y 0 , sadac x 0 da y 0 winaswar mocemuli ricxvebia. XOY sakoordinato sibrtyis nebismierad geometriulad es niSnavs, rom dafiqsirebul ( x0 , y 0 ) wertilze gaivlis (2) gantolebis mxolod erTi integraluri wiri. Tu vcvliT koSis amocanis sawyis pirobebs, miviRebT (2) diferencialuri gantolebis sxvadasxva amonaxsns, amitom am gantolebis zogadi amonaxsni SeiZleba warmovadginoT ase: sadac x0 y = ϕ (x; x 0 , y 00 , y 01 , y 02 ,...., y 0n −1 ) , dafiqsirebuli ricxvia, y 00 , y 01 , y 02 ,..., y 0n −1 - cvladi sidideebi, Rebuloben mniSvnelobas namdvil ricxvTa simravlidan.
romlebic
2. umartivesi pirveli rigis Cveulebrivi diferencialuri gantolebebi 2.1. diferencialuri gantoleba gancalebadi cvladebiT diferencialuri gantoleba gancalebadi cvladebiT Semdegi saxisaa: dy (1) = f ( x )ϕ ( y ) , dx sadac marjvena mxare warmoadgens or sxvadasxva argumentze damokidebul funqciis namravls. es gantoleba gardavqmnaT Semdegnairad: gavyoT orive mxare ϕ ( y ) - ze da Semdeg gavamravloT dx -ze, miviRebT: dy = f ( x )dx . ϕ(y) miviReT toloba, romlis marcxena mxare damokidebulia y argumentze, marjvena ki x argumentze, amasTan tolobis orive mxares gvaqvs raRac funqciebis diferencialebi. Tu aviRebT orive mxaris ganusazRvrel integralebs, miviRebT tolobas: dy (2) ∫ ϕ ( y ) = ∫ f (x )dx . miRebuli toloba warmoadgens x da y cvlad sidideebs Soris aracxadi saxis damokidebulebas: Φ ( x, y , C ) = 0 , (3)
103 romlis saSualebiTac y cvladi, zog SemTxvevaSi, SeiZleba gamovsaxoT x da C cvladebis saSualebiT. aseT SemTxvevaSi miviRebT (1) gantolebis zogad amonaxsns:
y = φ (x, C ) , Tu aseTi ram ar moxerxda anu Tu y cvladi ar gamisaxeba (3) tolobidan danarCeni cvladebis saSualebiT, maSin (1) gantoleba (3) tolobis miRebiT, mainc iTvleba amoxsnilad da (3) tolobas uwodeben am gantolebis zogad integrals. magaliTi . amovxsnaT diferencialuri gantoleba gancalebadi cvladebiT dy (4) = y sin x . dx amoxsna: am gantolebis gardaqmniT vRebulobT: dy (5) ∫ y = ∫ sin xdx . Tu movaxdenT tolobis orive mxaris integrirebas, miviRebT ln y = − cos x + C . maSasadame Cveni gantolebis zogadi amonaxsna iqneba: y = e − cos x = eC e − cos x = Ce − cos x . Tu C = C0 , gveqneba kerZo amonaxsni: y = C0e − cos x .
Tu (x0 , y 0 ) (4) gantolebis marjvena mxaris gansazRvris aris iseTi wertilia, romelic mdebareobs am gantolebis integralur wirze, am SemTxvevaSi y0 ≥ 0 , maSin (5) toloba SeiZleba ase gadavweroT: y
x
dt ∫y t + C0 = x∫ sin tdt + C1 . 0 0
(6) x
∫ sin tdt
x
gveqneba: ln y = ∫ sin tdt + C , sadac C = C1 + ln y0 − C0 , aqedan y = eC e x 0
x
∫ sin tdt
= Ce x 0
.
x0
rodesac x = x0 , maSin y = y0 , amitom y0 = C . maSasadame im integraluri wiris gantoleba anu (4) gantolebis kerZo amonaxsni iqneba: x
∫ sin tdt
y = y0e x 0
.
2.2. pirveli rigis erTgvarovani diferencialuri gantoleba ori cvladis funqcias y = f ( x, y ) ewodeba erTgvarovani, Tu nebismieri t ∈ R namdvili ricxvisaTvis adgili aqvs tolobas f (x, y ) = f (tx, ty ) . diferencialur gantolebas: dy (1) = f ( x, y ) dx
ewodeba erTgvarovani Tu misi erTgvarovan funqcias. radgan
f (x, y )
erTgvarovani
104 marjvena mxare f (x, y ) funqciaa,
amitom
warmoadgens
⎛ y⎞ f (x, y ) = f ⎜1, ⎟ . ⎝ x⎠
aqedan
gamomdinare, (1) gantolebas eqneba Semdeg saxe: dy ⎛ y⎞ (2) = f ⎜1, ⎟ . dx ⎝ x⎠ y dy du SemovitanoT cvladTa gardaqmna u = , maSin y = ux da =u+ x . amis x dx dx Semdeg (2) gantolebis nacvlad gveqneba: du du 1 u+ = ( f (1, u ) − u ) . x = f (1, u ) , anu dx dx x
bolo gantolebis marjvena mxare warmoadgens x da u cvladebze damokidebul funqciaTa namravls. amgvarad (1) gantoleba daviyvaneT gancalebadcvladebian pirveli rigis diferencialur gantolebamde, romlis amoxsnac ukve viciT. magaliTi. amovxsnaT diferencialuri gantoleba dy 2 xy . = 2 dx x − y 2 amoxsna: gantolebis marjvena mxare erTgvarovani funqciaa. marTlac: x 2 xy 2 f ( x, y ) = 2 = = f (1, ) . 2 x y y x −y − y x dy du SemovitanoT aRniSvna y = ux , maSin da gantoleba miiRebs saxes: =u+x dx dx du u + u 3 du 2u x = . am gantolebidan miviRebT . es ki warmoadgens u+x = dx 1 − u 2 dx 1 − u 2 gant- olebas gancalebadi cvladebiT: dx u2 −1 = du . x u (u 2 + 1) am gantolebisTvis SegviZlia davweroT zogadi integrali dx u2 −1 ∫ x = ∫ u (u 2 + 1) du . Tu gamovTvliT tolobis orive mxares mdgom ganusazRvrel integralebs, x(u 2 + 1) = C . CavsvaT am mivi- RebT ln x = ln(u 2 + 1) − ln u + ln C . aqedan gveqneba u y tolobaSi u cvladic magier , miviRebT gantolebis zogad integrals x x 2 + y 2 = yC . unda aRvniSnoT, rom gantolebis amonaxsnia aseve funqcia y = 0 , rac mowmdeba uSualod.
105 2.3. wrfivi pirveli rigis diferencialri gantoleba wrfiv pirveli rigis diferencialur gantolebas aqvs saxe: dy + P(x ) y = Q(x ) , dx sadac P(x ) da Q( x ) saerTo gansazRvris aris mqone funqcebia. Tu Q(x ) = 0 , maSin (1) gantolebas ewodeba wrfivi pirveli rigis erTgvarovani diferencialuri gantoleba da aqvs saxe:
dy + P(x ) y = 0 . dx igi warmoadgens gancalebadcvladebian gantolebas da misi amonaxsnia − P ( x )dx y = Ce ∫ .
(1)
zogadi
Tu Q( x ) ≠ 0 , maSin (1) gantolebas ewodeba wrfivi, araerTgvarovani diferencialuri gantoleba. mis amosaxsnelad viyenebT egreTwodebul mudmivTa variaciis meTods, romelic SemdegSi mdgomareobs: (1) gantolebis amonaxsns veZebT aseTi funqciis saxiT: − P ( x )dx y = C ( x )e ∫ , (2)
romlis CasmiTac (1) gantolebaSi miviRebT: − P ( x )dx − P ( x )dx dC ( x ) ∫ − P ( x )dx e − C ( x )e ∫ P ( x ) + P ( x )C ( x )e ∫ = Q(x ) , dx aqedan vRebulobT: P ( x )dx C ( x ) = Q(x )e ∫ +C.
Tu CavsvamT C ( x ) -is gamoTvlil mniSvnelobas (2) tolobaSi miviRebT (1) gantolebis zogad amonaxsns: − P ( x )dx ⎛ ∫ P ( x )dx dx + C ⎞ . y = e∫ (3) ⎟ ⎜ ∫ Q( x )e ⎠ ⎝ magaliTi. vipovoT diferencialuri gantolebis dy + y = e −x dx zogadi amonaxsni. amoxsna: gamoviyenoT (3) formula, miviRebT zogad amonaxsns: − dx dx y = e ∫ ⎛⎜ ∫ e − x e ∫ dx + C ⎞⎟ , ⎝ ⎠ −x sabolood y = e ( x + C ) . 2.4. bernulis diferencialuri gantoleba bernulis diferencialuri gantoleba ewodeba gantolebas: dy (1) + P(x ) y = Q(x ) y n . dx Tu n = 0 , cxadia, bernulis gantoleba warmoadgens pirveli rigis wrfiv araerTgvarovan gantolebas, xolo Tu n = 1 - pirveli rigis erTgvarovan diferencialur gantolebas. vTqvaT, n > 1 , maSin Tu (1) gantolebis orive mxares gavyofT y n -ze miviRebT:
106 dy + P ( x ) y − n +1 = Q (x ) . dx dz dy . aqedan SemovitanoT axali cvladi z = y − n +1 , gveqneba = (− n + 1) y − n dx dx vRebulobT: dz + (− n + 1)P ( x )z = (− n + 1)Q ( x ) . dx es gantoleba wrfivi, pirveli rigis diferencialuri gantolebaa, romlis amoxsnis meTodic zemoT ganvixileT. y −n
Tu n > 0 (1) gantolebas aqvs agreTve trivialuri amonaxsnic y = 0 . magaliTi. vipovoT dy + xy = x 3 y 3 dx gantolebis zogadi amonaxsni. 1 1 2 dy dz amoxsna: aq n = 3 , gamoviyenoT gardaqmna: z = 3−1 = 2 , gveqneba . =− 3 dx y y y dx bolo tolobis gaTvaliswinebiT da gantolebis y 3 -ze gayofiT miviRebT 1 dy 1 dz + x 2 = x 3 . aqedan gveqneba: − 2 xz = −2 x 3 . 3 dx y y dx miRebuli gantoleba warmoadgens wrfiv, pirveli rigis diferencialur gantolebas, misi zogadi amonaxsnia: 2 xdx − 2 xdx z = e ∫ ⎛⎜ − 2∫ x 3e ∫ dx + C ⎞⎟ ⎝ ⎠ anu z = e x ( ∫ − 2 x 3 e − x dx + C ) = e x ( ∫ x 2 de − x + C ) = e x (e − x x 2 + e − x + C ) = x 2 + 1 + Ce x . 2
radgan z =
2
2
2
2
2
2
1 , amitom sabolood gveqneba. y2 1 y= . 2 x 2 + 1 + Ce x
2.5.. gantoleba srul diferencialebSi ganvixiloT diferencialuri gantoleba: M ( x, y )dx + N ( x, y )dy = 0 . (1) u (x; y ) Tu (1) gantolebis marcxena mxare warmoadgens romeliRac funqciis srul diferencials anu: ∂u ∂u du ( x, y ) = dx + dy = M ( x, y )dx + N ( x, y )dy , ∂y ∂x maSin (1) diferencialur gantolebas ewodeba gantoleba srul diferencialebSi. cxadia es gantoleba pirveli rigisaa. Teorema 7.2. (eileris Teorema). M ( x, y )dx + N ( x, y )dy gamosaxuleba maSin da mxol-od maSin warmoadgens raime u (x; y ) funqciis srul diferencials, rodesac ∂M ( x, y ) ∂N ( x, y ) = . ∂y ∂x
107 am faqtis gaTvaliswinebiT avagoT (1) gantolebis amonaxsni. davuSvaT, (1) gantolebaa srul diferencialebSi, maSin arsebobs iseTi funqcia u (x, y ) , ∂u (x, y ) ∂M ( x, y ) ∂N ( x, y ) ∂u (x; y ) = N ( x, y ) da = rom . am to-lobis x = M ( x, y ) , ∂y ∂y ∂x ∂x cvladiT integrirebiT miviRebT: x
u (x, y ) = ∫ M (t , y )dt + ϕ ( y ) . x0
miRebuli tolobis y cvladiT gawarmoebiT miviRebT:
∂u ( x, y ) ∂M (t , y ) =∫ dt + ϕ ′ ( y ) , ∂y y ∂ x0 x
∂M ( x, y ) ∂N ( x, y ) ∂u (x, y ) = N ( x, y ) tolobebis = da ∂y ∂y ∂x gaTvaliswinebiT gveqneba: bolo tolobidan
∂N (t , y ) dt + ϕ ′( y ) , ∂t x0 x
N ( x, y ) = ∫ anu
N ( x, y ) = N ( x, y ) − N ( x0 , y ) + ϕ ′( y ) . aqedan gamomdinare ϕ ′( y ) = N ( x0 , y ) da y
ϕ ( y ) = ∫ N ( x0 ;τ )dτ + C . y0
maSasadame x
y
x0
y0
u ( x, y ) = ∫ M (t , y )dt + ∫ N ( x0 ,τ )dτ + C . u ( x, y ) funqciis sruli diferenciali du = M ( x, y )dx + N ( x, y )dy = 0 .
radganac
du = 0 , amitom
u (x, y ) = const
x
y
x0
y0
da toloba ∫ M (t , y )dt + ∫ N ( x0 ,τ )dτ = C
warmoadgens (1) gantolebis zogad integrals. aq yvelgan igulisxmeba, rom wertili ( x0 , y 0 ) Sedis uwyvetad warmoebadi
M ( x, y ) da N ( x; y ) funqciebis saerTo gansazRvris areSi. magaliTi. vipovoT (3 x 2 + 6 xy 2 )dx + (6 x 2 y + 4 y 3 )dy = 0 gantolebis zogadi amonaxsni. ∂M ( x, y ) ∂N ( x, y ) = 12 xy , maSasadame saqme gvaqvs gantolebasTan = amoxsna: ∂x ∂y ∂u srul diferencialebSi. = 3 x 2 + 6 xy 2 , aqedan u ( x, y ) = x 3 + 3 x 2 y 2 + ϕ ( y ) . ∂x ∂u − 6 x 2 y = N − 6 x 2 y = 4 y 3 , aqedan ϕ ( y ) = y 4 + C , gamovTvaloT ϕ ′( y ) . ϕ ′( y ) = ∂y maSasadame u ( x, y ) = x 3 + 3 x 2 y 2 + y 4 = C warmoadgens gantolebis zogad integrals
108 3. wrfivi, meore rigis diferencialuri gantolebani wrfivi, meore rigis diferencialuri gantoleba ewodeba gantolebas: (1) y ′′ + a1 ( x ) y ′ + a 2 ( x ) y = f ( x ) , sadac f ( x), ai ( x ), i = 1,2 saerTo (a, b) gansazRvris aris mqone uwyveti funqciebia. Tu f ( x ) = 0 , maSin gantolebas ewodeba erTgvarovani, sxva SemTxvevaSi araerTgvarovani. funqcia (2) − (a1 ( x ) y ′ + a 2 ( x ) y ) + f ( x ) gansazRvrulia areze, romelic ganisazRvreba utolobebiT: x 0 − a ≤ x ≤ x 0 + a, y 0 − b ≤ y ≤ y 0 + b, y 01 − b ≤ y ′ ≤ y 10 + b. SemosazRvrulia da rogorc x , y , y ′ cvladebis funqcia, akmayofilebs lifSicis pirobas, amitom rogorc am Tavis 1-l qveTavSi vaCveneT, ( y ′)′ = −(a1 ( x) y ′ + a 2 ( x) y ) gantolebiisaTvis koSis amocanas eqneba erTaderTi amonaxsni y = ϕ (x) romelic gansazRvrulia [ x0 − h; x0 + h] segmentze, sadac h ≤ a . a, b ricxvebi SeiZleba iyos usasrulod didic. mtkicdeba, rom (1) gantolebisTvis anu meore rigis wrfivi diferencialuri gantolebisaTvis koSis amocanis amonaxsni gansazRvrulia f ( x), ai ( x ), i = 1,2 funqciebis saerTo gansazRvris areze, Cven SemTxvevaSi (a; b) intervalze. ganvixiloT Sesabamisoba L , romelic meore rigamde warmoebad y funqcias Seusabamebs sidides y ′′ + a1 ( x ) y ′ + a 2 ( x ) y , cxadia, rom es Sesabamisoba wrfivia anu L[ y1 + y 2 ] = L[ y1 ] + L[ y 2 ], L[ky] = kL[ y] . L Sesabamisobas wrfivi diferencialuri operatori ewodeba.
3.1. wrfivi, erTgvarovani, meore rigis diferencialuri gantoleba ganvixiloT meore rigis wrfivi, erTgvarovani diferencialuri gantoleba: (3) y ′′ + a1 ( x ) y ′ + a 2 ( x ) y = 0 es gantoleba asedac SeiZleba CavweroT: L[ y ] = 0 . Tu y1 , y 2 funqciebi L[ y ] = 0 gantolebis kerZo amonaxsnebia, maSin αy1 + βy 2 , sadac α , β nebismieri mudmivebia, aseve misi kerZo amonaxsni iqneba. marTlac, radganac L[ y1 ] = 0, L[ y 2 ] = 0 , amitom L operatoris wrfivobis gamo gveqneba L[αy1 βy 2 ] = αL[ y1 ] + βL[ y 2 ] = 0 . (4)
y1 (x ), y 2 ( x ) (3)gantolebisor amonaxsns, romelebic ewodeba wrfivad damokidebuli, Tu gansazRvrulia (a, b) Sualedze, arseboben namdvili ricxvebi: α1 , α 2 ,romelTagan erTi mainc gansxvavebulia
109 nulisagan da adgili aqvs tolobas: α 1 y1 + α 2 y 2 = 0 . Tu es amonaxsnebi ar arian wrfivad damokidebuli, maSin maT uwodeben wrfivad damoukidebels. vTqvaT (3) gantolebis amonaxsnebi y1 (x ), y 2 ( x ) pirvel rigamde warmoebadi funqciebia, ganvixiloT determinanti: yy W ( y1 , y 2 ) = W ( x ) = 1 2 = y1 y 2′ − y1′ y 2 . (5) y1′ y 2′ am determinants (3) gantolebis y1 (x ), y 2 ( x ) amonaxsnTa sistemis vronskis determinanti ewodeba. vronskis determinants aqvs Semdegi Tvisebebi, romlebic Teoremebis saxiTaa Camoyalibebuli: Teorema 7.3. Tu funqciaTa sistema wrfivad damokidebulia, maSin misi vronskis determinanti W ( x ) nulis tolia.
Teorema 7.24 Tu y1 , y 2 (3) gantolebis kerZo amonaxsnebisagan Sedgenili wrfivad damoukidebeli sistemaa, maSin misi vronskis determinanti W ( x ) ≠ 0 yvela x ∈ (a; b) wertilisaTvis. (3) gantolebis y1 , y 2 , romlebic Seadgenen wrfivad damoukidebel sistemas am gantolebis amonaxsnTa fundamenturi sistema ewodeba. (3) gantolebisaTvis arsebobs amonaxsnTa fundamenturi sistema. marTlac, ganvixiloT ricxviTi determinanti, romelic gansxvavebulia nulisagan: a11a12 ≠ 0. a 21a 22 aseTi determinantis ageba yovelTvis aris SesaZlebeli. marTlac, vTqvaT, y1 , y 2 (3) gantolebis iseTi amonaxsnebia, romlebic akmayofilebens pirobebs: y1 ( x 0 ) = a11 , y1(1) ( x 0 ) = a 21 . y 2 ( x 0 ) = a12 , y 2(1) ( x 0 ) = a 22 .
Tu ganvixilavT amonaxsnTa sistemas determinantis mniSvneloba x0 wertilSi W (x0 ) ≠ 0 .
y1 , y 2 ,
cxadia
misi
vronskis
aqedan gamomdinare, y1 , y 2 sistema wrfivad damoukidebelia. (3) gantolebis zogadi amonaxsni y Caiwereba ase: y = C1 y1 + C 2 y 2 , sadac y1 , y 2 am gantolebis amonaxsnTa fundamenturi sistemaa, C i , i = 1,2 nebismieri mudmivebia. marTlac, vTqvaT, y amonaxsni akmayofilebs pirobas: y ( x 0 ) = y 00 , y (1) ( x 0 ) = y 10 . ganvixiloT wrfiv gantolebaTa sistema: C1 y 10 + C 2 y 02 = y 0 , (6) 2 C1 y 101 + C 2 y 01 = y 10 1 2 sadac y 01 = y1′ ( x 0 ), y 02 = y 2′ ( x 0 ) . gantolebaTa
am
sistemis
determinantia
W ( x0 ) ,
igi
ar
udris
nuls,
radgan sistema y1 , y 2 wrfivad damoukidebelia, amitom mas aqvs erTaderTi y = C1 y1 + C 2 y 2 , cxadia es funqcia, (6) amonaxsni. ganvixiloT funqcia
110 tolobebidan
gamomdinare,
akmayofilebs
pirobebs:
y (x 0 ) = y 00 , y (1) (x 0 ) = y 01 ,
amitim koSis amocanis amonaxsnis erTaderTobis gamo y = y = C10 y1 + C 20 y 2 . es ki niSnavs imas, rom Cveni diferencialuri gantolebis zogadi amonaxsni warmodgindeba ase: y = C1 y1 + C 2 y 2 . Tu y1 , y 2 , y 3 (3) gantolebis amonaxsnebia, maSin isini Seadgenen wrfivad damokidebul sistemas. marTlac Tu y1 , y 2 wrfivad damokidebuli sistemaa, maSin misi momcveli y1 , y 2 wrfivad aseve wrfivad damokidebulia. Tu sistema y1 , y 2 , y 3 damoukidebuli sistemaa, maSin y 3 = C1 y1 + C 2 y 2 . amitom C1 y1 + C 2 y 2 + (− y 3 ) = 0 . es niSnavs, rom sistema y1 , y 2 wrfivad damokidebulia. YTu gantolebebs y ′′ + a1′ ( x ) y ′ + a 2′ ( x ) y = 0, y ′ + a1′′( x ) y ′ + a 2′′ ( x ) y = 0 aqvT saerTo amonaxsnTa fundamenturi sistema, maSin isini erTmaneTs emTxvevian. marTlac, davuSvaT a i′ (x ) ≠ a i′′( x ), i = 1,2. , maSin Tu ganvixilavT am ori gantolebis sxvaobas: ( a1′ ( x ) − a1′′( x )) y ′ + ( a 2′ ( x ) − a ′2′ ( x )) y = 0 igi iqneba pirveli rigis wrfivi erTgvarovani diferencialuri gantoleba, mas eqneba zustad erTi funqciis Semcveli amonaxsnTa fundamenturi sistema. mocemuli gantolebebis yvela amonaxsni aseve maTi sxvaobis amonaxsnicaa. gantolebebis saerTo fundamenturi amonaxsni ki Seicavs zustad or funqcias amgvarad miviReT winaaRmdegoba, maSasadame Cveni daSveba ar yofila swori, amitom ai′ ( x ) = ai′′( x ) . exla avagoT iseTi wrfivi erTgvarovani gantoleba, romlis amonaxsnTa fundamenturi sistema winaswar mocemuli: y1 , y 2 wrfivad damokidebuli sistemaa. ganvixiloT determinanti: y1 y 2 y y1(1) y 2(1) y (1) , y1( 2 ) y 2( 2 ) y ( 2 ) romlis bolo sveti Sedgeba saZiebeli funqciisa da misi warmoebulebisagan. Tu am determinants gavutolebT nuls da gavSliT bolo svetis mimarT miviRebT meore rigis gantolebas: A0 y ′′ + A1 y ′ + A2 y = 0 , (7)
sadac Ai = ( −1) i + 2 +1 M i ,3 , sadac M i ,3 i -uri, i = 1,2,3 striqonis da mesame svetis
amoRebiT miRebuli minoria, A0 = W [ y1 , y 2 ] = W ( x ) . Tu gavyofT (7) gantolebis orive mxares A0 -ze miviRebT gantolebas: (8) y ′′ + a1 y ′ + ... + a 2 y = 0 , sadac y1 y 2 W ′( x ) , (9) W (x ) W (x ) sadac W ′(x ) vronskis determinantis warmoebulia. ganvixiloT pirveli rigis wrfivi erTgvarovani diferencialuri gantoleba a1 = −
y1(2 ) y 2(2 ) .
=−
111
W ′( x ) + a1W ( x ) = 0
(10)
rogorc viciT, misi zogadi amonaxsnia W ( x ) = e ∫ , rac Seexeba kerZo amonaxsns, Tu davsvamT (10) gantolebisTvis koSis amocanas sawyisi pirobebiT: x = x0 , W0 = W ( x0 ) , gveqneba kerZo amonaxsnic: − a1dx
x
∫
− a1dt
W (x ) = W ( x0 )e x0 , (11) (10) da (11) tolobebs liulvilis formulebi ewodeba. magaliTi. gamoviyenoT liulvilis (11) formula y′′ + a1 y + a2 y = 0 gantolebis zogadi amonaxsnis mosaZebnad, rodesac cnobilia misi erTi kerZo amonaxsni - y1 . amoxsna: SevadginoT mocemuli gantolebisaTvis vronskis determinanti da gamoviyenoT liulvilis formula: y1 y − a1dx = Ce ∫ , y1′ y ′
− a1dx aqedan y1 y ′ − y1′ y = Ce ∫ . miviRebT:
Tu
am
tolobis
orive
mxares
gavyofT
y12 -ze
− a dx d ⎛ y′ ⎞ 1 ⎜⎜ ⎟⎟ = 2 Ce ∫ 1 . dx ⎝ y1 ⎠ y1
⎞ ⎛ 1 − a1dx aqedan ki sabolood gveqneba: y = y1 ⎜⎜ ∫ 2 Ce ∫ dx ⎟⎟ . ⎠ ⎝ y1
3.2.wrfivi, araerTgvarovani meore rigis diferencialuri gantoleba wrfivi, araerTgvarovani meore rigis diferencialuri gantoleba ewodeba gantolebas: (1) L[ y ] = y ′′ + a1 ( x ) y ′ + a 2 ( x ) y = f ( x ) , sadac marjvena mxare f (x ) igivurad ar udris nuls. wrfiv, erTgvarovan n -uri rigis diferencialuri gantolebas, romelsac igive koeficientebi aqvs, L[ y ] = y + a1 ( x ) y ′ + a 2 ( x ) y = 0 , (2) uwodeben (1) araerTgvarovani gantolebis Sesabamis erTgvarovan gantolebas. vTqvaT (1) gantolebis kerZo amonaxsnia Y ( x ) , maSin gveqneba L[Y ] = f ( x ) , SemovitanoT axali saZiebeli funqcia z (3) y =Y + z. CavsvaT es gamosaxuleba(1) gantolebaSi, miviRebT L[ y ] = L[Y ] + L[ z ] = f ( x) , radgan Y (x ) (1) gantolebis amonaxsnia, amitom L[ z ] = 0 . maSasadame z funqcia warmoadgens (2) gantolebis amonaxsns. vTqvaT exla (2) gantolebis amonaxsnTa fundamenturi sistemaa y1 , y 2 , maSin mis zogad amonaxsns rogorc wina paragrafidan aris cnobili, aqvs saxe: C1 y1 + C 2 y 2 . CavsvaT es
gamosaxuleba z -is zogad amonaxsns
112 (3) formulaSi, miviRebT (1) gantolebis
magivrad
y = C1 y1 + C 2 y 2 + Y . (4) maSasadame Tu cnobilia (1) gantolebis erTi kerZo amonaxsni, maSin am gantolebis amonaxsni warmoadgens aRniSnuli kerZo amonaxsnisa da Sesabamisi (2) erTgvarovani gantolebis zogadi amonaxsnis jams. amgvarad wrfivi araerTgvarovani meore rigis diferencialuri gantolebis amosaxsnelad, sakmarisia vicodeT am gantolebis raime kerZo amonaxsni da Sesabamisi erTgvarovani diferencialuri gantolebis amonaxsnTa fundamenturi sistema. egrewodebuli lagranJis mudmivTa variaciis meTodiT vipovoT (1) gantolebis kerZo amonaxsni. vTqvaT, y1 , y 2 (2) erTgvarovani diferencialuri gantolebis amonaxsnTa fundamenturi sistemaa. (2) gantolebis zogad amonaxsns aqvs saxe: y = C1 y1 + C 2 y 2 , sadac C1 ,C 2 mudmivi sidideebia. veZeboT (1) araerTgvarovani diferencialuri gantolebis kerZo amonaxsni aseTi saxiT: y = C1 ( x) y1 + C 2 ( x) y 2 , (5) sadac C1 ( x), C 2 ( x) warmoadgenen x cvladze damokidebul ucnob funqciebs. vipovoT es funqciebi. amisaTvis gavawarmooT (5) toloba, miviRebT: dC ( x ) dC 2 ( x ) . (6) y ′ = C1 ( x ) y1′ + C 2 ( x) y 2′ + y1 1 + y2 dx dx radgan (1) gantolebis amonaxsns veZebT (5) saxiT, bunebrivia CavTvaloT, rom mis warmoebulsac erTgvarovani gantolebis SemTxvevis analogiurad, unda hqondes saxe: y ′ = C1 ( x) y1′ + C 2 ( x) y 2′ . (7) amitom gavutoloT nuls (6)tolobis marjvena mxaris SesakrebTa im nawilis jami, romlebic Seicaven C i ( x), i = 1,2 funqciebis warmoebulebs. dC ( x ) dC 2 ( x ) y1 1 + y2 = 0 . (8) dx dx gavawarmooT exla (8) toloba, miviRebT dC n ( x ) dC ( x ) dC 2 ( x) . (9) y ′′ = C1 ( x ) y1′′ + C 2 ( x ) y ′2′ + ... + C n ( x ) y n′′ + y1′ 1 + y 2′ + ... + y n′ dx dx dx SevitanoT (1) gantolebaSi (5),(9) tolobebis marjvena nawilebi da agreTve saZiebeli amonaxsnis warmoebulis (7) gamosaxuleba, miviRebT: 2
∑ C ( y ′′ + a ( x) y ′ + ... + a i =1
i
i
1
i
2
dC1 ( x) dC 2 ( x ) + y 2′ = f ( x) . dx dx funqciebTan mdgomi Tanamamravlebi
( x) y i + y1′
am tolobis marjvena nawilSi C i nulis tolia, radgan TiToeuli y i , i = 1,2 warmoadgens (2) gantolebis amonaxsns. aqedan gamomdinare: dC ( x) dC 2 ( x ) y1′ 1 + y 2′ = f ( x) . dx dx dC1 ( x ) dC 2 ( x) amgvarad, miviReT wrfiv algebrul gantolebaTa sistema , dx dx ucnobebis mimarT
113 dC n ( x ) dC1 ( x ) dC 2 ( x ) + y2 + ... + y n = 0, dx dx dx dC n ( x ) dC ( x ) dC 2 ( x ) y1′ 1 + y 2′ + ... + y n′ = 0. dx dx dx am gantolebaTa sistemis determinanti warmoadgens (2) erTgvarovani diferencialuri gantolebis amonaxsnTa fundamenturi sistemis vronskis determinants, amitom gansxvavebuli iqneba nulisgan. maSasadame algebrul sistemas amonaxsni aqvs da erTaderTia. am amonaxsnis TiToeuli dC i ( x ) komponenti = ϕ i ( x ), i = 1,2 , sadac TiToeuli ϕ i ( x) warmoadgens x dx cvladis uwyvet funqcias. maTi integrirebiT vRebulobT: C i ( x) = ∫ ϕ i ( x)dx, i = 1,2 . y1
maSasadame
(1) gantolebis kerZo amonaxsnia: 2
y = ∑ y i ∫ ϕ i ( x)dx . i =1
sabolood (1) wrfivi araerTgvarovani gantolebis zogadi amonaxsni iqneba: 2
y = C1 y1 + C 2 y 2 + ∑ y i ∫ ϕ i ( x)dx , i =1
sadac C1 ,C 2 nebismieri mudmivebia. magaliTi. amovxsnaT araerTgvarovani diferencialuri gantoleba xy ′′ − y ′ = x 2 . amoxsna: Sesabamisi erTgvarovani gantoleba iqneba: xy ′′ − y ′ = 0 . igi advilad y ′′ 1 dy ′ dx C = , = ixsneba Semdegnairad: , ln y ′ = ln x + C , y ′ = Cx, y = x 2 + D . aqedan y′ x y′ x 2 gamomdinare, amonaxsnTa fundamenturi sistema iqneba 1, x 2 . veZeboT mocemuli araerTgvarovani gantolebis kerZo amonaxsni aseTi saxiT y = C1 + C 2 x 2 . Sesabamisad gveqneba:
dC 2 1 dC x x2 x3 = , C 2 = + γ 2 , 1 = − , C1 = − + γ 1 . dx 2 2 2 6 dx sabolood saZiebeli zogadi amonaxsni x3 y = γ1 + γ 2 x2 + , 3 sadac γ 1 , γ 2 nebismieri mudmivebia. 4. wrfivi mudmiv koeficientebiani meore rigis diferencialuri gantolebebi ganvixiloT wrfivi mudmiv koeficientebiani erTgvarovani diferencialuri gantoleba: (1) L[ y ] = y ′ + ... + a1 y ′ + a 2 y = 0 . am gantolebaSi vgulisxmobT, rom a1 , a 2 namdvili ricxvebia. vipovoT am gantolebis amonaxsnTa fundamenturi sistema. amisaTvis moviqceT Semdegnairad: veZeboT misi kerZo amonaxsnebi aseTi saxiT: y = e kx . maSin y ′ = ke kx , y ′′ = k 2 e kx . Tu CavsvamT am monacemebs (1) gantolebaSi, miviRebT:
114
[ ]
(
)
L e kx = e kx k 2 + a1 k + a 2 = 0 .
(2) frCxilebSi moTavsebul mravalwevrs (1) gantolebis maxasiaTebel mravalwevrs uwodeben. (2) tolobis marcxena mxare warmoadgens ori Tanamamravlis namravls, romelTagan pirveli - e kx arasodes nuli ar aris, meore Tanamamravli: F (k ) = k 2 + a1 k + a 2 (3) nulis tolia k cvladis im mniSvnelobebisTvis, romlebic warmoadgenen (3) mravalwevris fesvebs. amis gamo, y = e k ′x iqneba (1) gantolebis amonaxsni, mxolod maSin, rodesac k ′ warmoadgens (1) gantolebis maxasiaTebeli mravalwevris fesvs. SemTxveva 1. es is SemTxvevaa, rodesac (2) maxasiaTebel mravalwevrs gaaCnia 2 gansxvavebuli fesvi: k1 , k 2 , maSin gveqneba amonaxsnTa sistema: y1 = e k1 x , y 2 = e k 2 x . (4) vaCvenoT, rom (4) sistema warmoadgens (1) gantolebis amonaxsnTa fundamentur sistemas. amisaTvis ganvixiloT vronskis determinanti: e k1 x e k 2 x ( k1 + k 2 ) 11 . (5) W (x ) = e = k1 k 2 k1e k1x k 2 e k 2 x . am tolobis marjvena mxares mdgomi determinanti nuli ar aris, Tu ricxvebi: k1 , k 2 gansxvavebulia erTmaneTisagan, radganac Cven SemTxvevaSi k1 , k 2 warmoadgens (3) mravalwevris gansxvavebul fesvebs, amitom W (x ) ≠ 0 . Sedegad (4) sistema wrfivad damoukidebelia da warmoadgens (1) gantolebis amonaxsnTa fundamentur sistemas. ganvixiloT SemTxveva, rodesac (3) mravalwevrs aqvs 2 gansxvavebuli kompleqsuri fesvi. vTqvaT, (1) gantolebis maxasiaTebeli mravalwevris fesvi k1 = u + iv , maSin aseve iqneba am maxasiaTebeli misi SeuRlebuli ricxvi k 2 = u − iv mravalwevris fesvi. k1 fesvisTvis gveqneba:
[
] [ = L[e cos vx] + L[e
] [
]
0 = L e (u +iv ) x = L e ux (cos vx + ivx) = L e ux cos vx + ie ux sin vc = ux
ux
] [
] [
i sin vx = L e ux cos vx + iL e ux sin vx
miRebuli tolobidan gvaqvs:
[
]
[
]
.
]
L e ux cos vx = −iL e ux sin vx , niSnavs, rom L e ux cos vx = 0, L e ux sin vx = 0 . maSasadame y1 = e ux cos vx, y 2 = e ux sin vx funqciebi warmoadgenen (1) gantolebis namdvil amonaxsnebs da, cxadia, Seadgenen amonaxsnTa fundamentur sistemas.
[
]
[
]
SemTxveva 2. es is SemTxvevaa, rodesac maxasiaTebel mravalwevrs gaaCnia jeradi fesvebi. am SemTxvevaSi gansxvavebul fesvTa raodenoba (4) tolia erTis, k ′ = k1 = k 2 . cxadia erTi kerZo amonaxsnia y = e k ′x . rom miviRoT meore amonaxsni, romelic am amonaxsnTan Seadgens fundamentur sistemas, SeviswavloT L diferencialuri operatoris moqmedeba uv namravlze. rogorc viciT
115
(uv )″ = u ′′v + 2u ′v′ + uv′′ (uv )′ = u ′v + uv′ uv = uv Tu gavamravlebT pirvel striqons 1-ze, meore striqons a1 -ze, mesame striqons a 2 -ze da Semdeg SevkrebT, miviRebT: v′ v ′′ L[uv] = vL[u ] + L1 [u ] + L2 [u ] , (6) 1! 2! sadac: L1 [u ] = 2u ′ + a1u , L2 [u ] = 2u . TiToeuli Lr , r = 1,2 warmoadgens wrfiv diferencialur operators. cxadia, maTi maxasiaTebeli mravalwevri Fr (k ) = F (r ) (k ), r = 1,2 , sadac F (k ) (1) gantolebis maxasiaTebeli mravalwevria. gamovTvaloT exla (6), Tu u = e kx da v = x L xe kx = xL e kx + L1 (e kx ) . radgan L1 e kx = e kx F ′(k ) , amitom gveqneba: L xe kx = e kx ( xF (k ) + F ′(k )) . (7) k ′ aris (1) gantolebis maxasiaTebeli mravalwevris oris jeradobis fesvi,, maSin F (k ′) = 0, F ′(k ′) = 0 . Tu (7) tolobaSi k -s magivrad SevitanT k ′ , miviRebT L[ xe k ′x ] = 0 , maSasadame
[ ]
[ ]
[ ]
[ ]
y = xe k ′x warmoadgens kerZo amonaxsns. cxadia, funqciaTa funqcia k ′x k ′x sistema e , xe wrfivad damoukidebelia da fundamenturi (1) gantolebisTvis. rac iTqva am paragrafSi, Seexeboda wrfivi, erTgvarovani, mudmiv koeficientebiani diferencialuri gantolebis amonaxsnTa fundamenturi sistemis agebas. rac Seexeba araerTgvarovan: (8) L[ y ] = y ′′ + a1 y ′ + a 2 y = f ( x ) diferencialur gantolebas, Sesabamisi erTgvarovani gantolebis amonaxsnTa fundamenturi sistemis safuZvelze, mudmivTa variaciis meTodiT, SegviZlia movZebnoT misi kerZo amonaxsni da Semdeg, viciT ra Sesabamisi erTgvarovani gantolebis zogadi amonaxsni, rogorc zemoT aRvwereT, SegviZlia gamovsaxoT am araerTgvarovani gantolebis zogadi amonaxsnic.
5. diferencialuri gantolebebis gamoyeneba 5.1. nivTierebis warmoqmnis da daSlis gantolebebi nivTierebaTa warmoqmnis da daSlis bevri procesi akmayofilebs Semdeg pirobebs: nivTierebis raodenobis cvlilebis siCqare proporciulia mocemul momentSi nivTierebis raodenobaze damokidebuli raRac funqciis da aseve am nivTierebis xasiaTze, garemo pirobebze(temperatura, wneva ganaTebuloba da sxva). vTqvaT, nivTierebis raodenoba drois t momentSi aris x(t ) . misi dx (t ) cvlilebis siCqare iqneba . zemoT Tqmulidan gamomdinare, gveqneba: dt
116 dx (t ) (1) = k (t ) f ( x ) . dt rodesac nivTierebis maxasiaTeblebi da garemo pirobebi mudmivia k (t ) koeficientic iqneba mudmivi. (1) warmoadgens diferencialur gantolebas gancalebadi cvladebiT. misi amoxsnis meTodebi CvenTvis ukve cnobilia. magaliTi 1. baqteriaTa gamravlebis modeli. vTqvaT konkretuli saxis baqteriaTa jamuri masa drois t momentSi aris x(t ) da maTi gamravleba xdeba mudmiv garemoSi anu proporciulobis koeficienti k mudmivia. aseT SemTxvevaSi baqteriaTa gamravlebis procesi aRiwereba diferencialuri gantolebiT dx (t ) (2) = kx . dt pirobis Tanaxmad x(t ) da x ′(t ) arauaryofiTi sidideebia amitom k k > 0, koeficientic arauaryofiTia. sainteresoa SemTxveva, rodesac radgan Tu k = 0 , araviTari gamravleba ar xdeba. (2) gantoleba wrfivi, pirveli rigis gantolebaa, misi zogadi amonaxsnia x = Ce kt , sadac C nebismieri mudmivia. Tu viciT k koeficientis mniSvneloba da baqteriaTa masa m0 drois fiqsirebul t 0 momentSi anu
x(t 0 ) = m0 , maSin m 0 = Ce kt , C = m0 e − kt0 ,
aqedan gamomdinare: x (t ) = m0 e k ( t −t0 ) . magaliTi 2. radioaqtiuri daSla. eqsperimentebiT dadgenilia, rom radioaqtiuri nivTierebis daSlis siCqare proporciulia drois mocemul momentamde dauSleli nivTierebis raodenobisa. Tu x(t ) warmoadgens drois t momentamde darCenili dauSleli nivTierebis dx (t ) masas, maSin daSlis siCqare akmayofilebs gantolebas: dt dx(t ) (3) = − kx(t ) . dt niSani minusi, gantolebis marjvena mxares, niSnavs, rom xdeba nivTierebis raodenobis Semcireba da ara gazrda. (3) gantolebis zogadi amonaxsnia x(t ) = Ce − kt , sadac C nebismieri mudmivia. misi mniSvneloba, iseve rogorc wina magaliTSi, gamoiTvleba formuliT: C = m0 e kt0 , sadac m0 nivTierebis masaa drois fiqsirebul t 0 momentSi. maSasadame radioaqtiuri da- Slis procesi aRiwereba funqciiT: (4) x (t ) = m 0 e − k ( t − t 0 ) . praqtikaSi radioaqtiuri daSlis siCqare xasiaTdeba egreTwodebuli naxevar-daSlis periodiT anu im droiT, romelSic xdeba arsebuli nivTierebis naxevris daSla. aRvniSnoT naxevardaSlis periodi T simboloTi. gamovsaxoT k naxevarda-lis T periodis saSualebiT.
117 (4) formulidan, rodesac t = t 0 + T , kT = ln 2, k =
gveqneba
− ln 2 . amgvarad, x (t ) = m0 e T
t 0 = 0 , maSin x(t ) = m0 2
−
t T
t −t0 ln 2 T
m0 = m0 e − kT , amitom 2
anu x (t ) = m0 2
−
t −t0 T
. kerZod, rodesac
.
5.2. harmoniuli rxevebi ganvixiloT gantoleba (1) x ′′ + ω 2 x = 0 . 2 2 am gantolebis maxasiaTebeli mravalwevria k + ω . kompleqsuri fesvebia: k1 = iω , k 2 = −iω . aqedan gamomdinare, (1) gantolebis amonaxsnTa fundamenturi sistemaa y1 = cos ωt , y 2 = sin ωt , zogadi amonaxsni x = C1 cos ωt + C 2 sin ωt . (2) vaCvenoT, rom arseboben ricxvebi A, α , rom C1 = A cos α , C 2 = − A sin α . Tu ganvixilavT am tolobebs rogorc orucnobian algebrul gantolebebs davinaxavT, rom maT amonaxsni aqvT. amitom (2) amonaxsni SeiZleba ase warmovadginoT: x = A cosα cos ωt − A sin α sin ωt anu (3) x = A cos(ωt + α ) , sadac A, α nebismieri namdvili ricxvebia. Tu CavTvliT, rom t cvladi warmoadgens droiT parametrs, (2) funqcia aRwers egreTwodebul harmoniul rxeviT process. | A | ricxvs uwodeben rxevis amplitudas, α ricxvs rxevis sawyis fazas, (1) gantolebas ki harmoniuli rxevis gantolebas. advili misaxvedria, rom drois erTeulSi rxevaTa ricxvi
ν =
ω , 2π
am ricxvs rxevis sixSire ewodeba. vTqvaT (1) gantolebisTvis mocemuli gvaqvs pirobebi: x(0) = x 0 , x ′(0) = v 0 . (2) zogadi amonaxsnidan miviRebT C1 = x0 , C 2 =
v0
ω
koSis
amocanis
sawyisi (4)
. aqedan gamomdinare, kerZo
amonaxsni, romelic Seesabameba (4) sawyis pirobebs iqneba: v x = x0 cos ωt + 0 sin ωt .
ω
am funqciiT aRwerili rxevis amplitudis gamosaTvlelad unda amovxsnaT gantolebaTa sistema: ⎧ A cos α = x 0 , ⎪ :⎨ ν0 ⎪− A sin α = ω . ⎩ am sistemidan miviRebT
118 A =x + 2
2 0
v02
ω2
,
saidanac
A=
x 02 +
v 02
.
ω2
(5)
rac Seexeba sawyis fazas
α = arccos
x0 x02 +
v02
.
(6)
ω2
magaliTi 1. wertilis rxeva F drekadi Zalis moqmedebiT. vTqvaT m masis mqone P wertilze F ZaliT moqmedebs drekadi zambara(nax.36). x
P
O
nax. 36 niutonis kanonisTanaxmad, P wertilis moZraobis gantolebaa mx ′′ = F . hukis kanonis mixedviT, drekadi Zala pirdapirproporciulia P wertilis O wonasworobis mdgomareobidan gadaxris sididis da mimarTulia wertilis moZraobis sawinaaRmdegod. amitom SegviZlia davweroT F = −kx , sadac k > 0 . amgvarad, gveqneba gantoleba mx′′ + kx = 0 . (7) es gantoleba harmoniuli rxevis gantolebaa sixSiriT ω =
k . misi zogadi m
amonaxsni iqneba:
k k t + C 2 sin t. m m Sesabamisad koSis amocanis amonaxsni (7) gantolebisaTvis, x(0) = x 0 , x ′(0) = v 0 sawyisi pirobebiT, iqneba: x = C1 cos
k m k t + v0 sin t. m k m aqedan gamomdinare harmoniuli rxevis amplituda x = x0 cos
m 2 v0 . k rogorc vxedavT, P wertilis rxevis sixSire ω damokidebuli ar aris sawyis pirobebze, igi damokidebulia mxolod wertilis masaze da zambaris drekadobaze. rac Seexeba amplitudas da sawyis fazas, maTi gamosaTvleli formulebidan gamomdinare, isini arsebiTad arian damokidebuli sawyis pirobebze. magaliTi. 2. maTematikuri saqanis (qanqaris) mcire rxevebi. maTematikuri saqani warmoad- gens m masis P wertils, romelic simZimis Zalis A = x02 +
119 meSveobiT moZraobs vertikalur sibrtyeSi moTavsebul wrewirze. aRniSnuli wrewiris radiuss saqanis sigrZe ewodeba(nax. 37). A ϕ L L P F2 • F1 • O Fϕ nax.37 saqanis moZraobis wrewirze SemovitanoT sakuTxo koordinati ϕ , wrewirze yvelaze dabla myofi wertili aRvniSnoT O simboloTi, dadebiTad CavTvaloT mimarTuleba marcxnidan marjvniv. P wertilze moqmedebs simZimis Zala F = mg , romelic mimarTulia vertikalurad qvemoT. aRniSnuli Zala iyofa mdgenelebad F1 , F2 . pirveli Zala F1 mimarTulia wrewiris radiusis gaswvriv da ar iwvevs moZraobas, igi gawonasworebulia sxva saxis ZalebiT. meore F2 Zala mimarTulia wrewiris mxebis gaswvriv da iw-vevs P wertilis moZraobas. F2 Zalis sidide tolia mg sin ϕ . es Zala ewinaaR- mdegeba ϕ kuTxis gazrdas, amitom saqanis moZraobis gantoleba unda iyos: mLϕ ′′ = − mg sin ϕ , sadac ϕ ′′ kuTxuri aCqarebaa, L -wrewiris radiusi anu saqanis sigrZe, Lϕ ′′ xazovani aCqareba. Tu miRebuli gantolebis orive mxares gavyofT m masaze, miviRebT Lϕ ′′ = − g sin ϕ , romelsac maTematikuri saqanis gantolebaewodeba. am gantolebis amoxsna sakmaod rTulia, amitom Cven ganvixilavT SemTxvvevas, rodesac adgili aqvs egreTwodebul mcire rxevebs anu, rodesac ϕ kuTxis sidide icvleba sakmaod mcire intervalSi. rogorc viciT mcire
kuTxeebisaTvis adgili miviRebT ganto-lebas:
aqvs
tolobas:
sin ϕ ≈ ϕ .
am
pirobis
Sedegad
Lϕ ′′ + gϕ = 0 , romelsac maTematikuri saqanis mcire rxevebis gantoleba ewodeba. cxadia, es gantoleba warmoadgens harmoniuli rxevis gantolebas, misi zogadi amonaxsni iqneba:
ϕ = A(
g t +α) L
an
g g t + C 2 sin t. L L rogorc wina SemTxvevaSi, SeiZleba ganvixiloT koSis amocana Sesabamisi sawyisi pirobebiT da amovxsnaT igi. unda aRvniSnoT, rom saqanis mcire rxevebis sixSire ω damokidebulia mxolod saqanis sigrZeze da mcirdeba misi gazrdis SemTxvevaSi. sixSirisTvis gvaqvs formula:
ϕ = C1 cos
120
1 g , 2π L sadac g ≈ 9,8 m/wm 2 , L L saqanis sigrZe. L ^ savarjiSoebi me-7 TavisaTvis I amoxseniT gantolebani gancalebadi cvladebiT:
ω=
1) xy ′ − y = y 2 , 2) y ′tgx = y , 3) xyy ′ = 1 − x 2 , 4) y ′ sin x = y ln x; y = 1 , rodesac x =
π 2
.
II. amoxseniT erTgvarovani gantolebani: y 1) y ′ = − 1 , 2) ydx + (2 xy − y )dy , 3) xdy − ydx = x 2 + y 2 dx , x 4) ( x 2 − 3 y 2 )dx + 2 xydy = 0 ; y = 1 , rodesac x = 2 . III. amoxseniT pirveli rigis wrfivi diferencialuri gantolebani: y 2y 1) y ′ − = x, 2) y ′ + = x 2 , 3) y 2 dx − (2 xy + 3)dy = 0 , 4) xy ′ + y − e x = 0 ; y = b , rodesac x x x = a. IV. amoxseniT gantolebani srul diferencialebSi: xdy − ydx 1) ( x + y ) dx + ( x + 2 y ) dy = 0 , 2) ( x 2 + y 2 + 2 x)dx + 2 xydy = 0 , 3) xdx + ydy = 2 . x + y2 V. amoxseniT meore rigis mudmiv koeficientebiani diferencialuri gantolebani: 1) y ′′ − 5 y ′ + 6 y = 0 , 2) y ′′ − 9 y = 0 , 3) y ′′ + 2 y ′ + y = 0 , 4) y ′′ − 5 y ′ + 4 y = 0 ; y = 5, y ′ = 8 , rodesac x = 0 . VI. amoxseniT mudmivTa variaciis meTodiT: 2 ex 1 1) y ′′ + y = tgx , 2) y ′′ + y = , 3) y ′′ − 2 y ′ + y = , 4) y ′′ − 2 y = 4 x 2 e x , 5) y ′′ + y = ctgx . x cos x
121 Tavi 8 1.xdomiloba. elementarul xdomilobaTa
sivrce
albaTobis Teoriis EerT-erTi ZiriTadi cnebaa “xdomiloba”, romelic Tavis mxriv ganimarteba cdis (eqsperimentis) daxmarebiT. (cda) eqsperimenti ewodeba pirobaTa garkveuli kompleqsis ganxorcielebas.
magaliTad: 1.
lilvis diametris gazomva; 2. detalis Semowmeba vargisiobaze; 3.kamaTlis gagoreba; 4. monetis agdeba da a.S. igulisxmeba, rom: 1)Eeqsperimentis
Catarebamde
SesaZlebelia
yvela
SesaZlo
Sedegis
miTiTeba; 2)
eqsperimentis
Catarebamde
SeuZlebelia
misi
Sedegis
calsaxad
gansazRvra; 3) SesaZlebelia eqsperimentis mravaljeradi ganmeoreba. eqsperimenti
aRiwereba
misi
urTierTgamomricxavi
Sedegebis
CamonaTvaliT. am Sedegebs elementaruli xdomilobebi ewodeba, xolo maT srul
erTobliobas
_
elementarul
xdomilobaTa
sivrce,
aRvniSnavT Ω-asoTi, xolo elementarul xdomilobas
romelsac
asoTi indeqsiT
an uindeqsoT. magaliTi 1. vTqvaT, eqsperimenti niSnavs simetriuli monetis agdebas. vakvirdebiT,
ra
,,modis’’
davardnil
monetaze.
am
eqsperimentis
Sedegebi:,,gerbis mosvla’’ (g) da ,,safasuris mosvla’’ (s). elementarul xdomilobaTa sivrce iqneba:
Ω={g,s}.
magaliTi 2. agoreben erT kamaTels. cdas eqvsi Sedegi SeiZleba hqondes (zeda waxnagze wertilebis raodenoba). elementarul xdomilobaTa sivrce iqneba: Ω={1,2,3,4,5,6}. magaliTi 3. agdeben or sxvadasxva monetas. aq oTxi SesaZlo Sedegia mosalodneli
(vasxvavebT,
xdomilobaTa sivrce iqneba: magaliTi
4.
monetas
romel
monetaze
ra
movida).
elementarul
Ω={gg,gs,sg,ss}. agdeben
gerbis
pirvel
gamoCenamde.
aq
elementarul xdomilobaTa sivrce iqneba:
Ω={g,sg,ssg,sssg,...}. magaliTi 5. msroleli esvris wriuli formis samiznes, romelsac yoveli gasrolisas axvedrebs. Tu wris radiusia R da samiznis sibrtyeSi SemoRebulia marTkuTxa koordinatTa sistema, romlis saTave samiznis centrSia da cdis TiToeul Sedegs (samiznis gansazRvrul wertilSi
moxvedras)
122 am wertilis
SevusabamebT
koordinatebs,
maSin
elementarul xdomilobaTa sivrce iqneba yvela iseTi ricxviTi wyvilis erToblioba, romlebic Semdegnairad Caiwereba:
Ω={
}.
pirvel sam magaliTSi elementarul xdomilobaTa simravle sasrulia, meoTxe
magaliTSi_Tvladi,
xolo
mexuTe
magaliTSi
elementarul
raime
erTobliobas
xdomilobaTa simravle araa Tvladi. elementaruli xdomilobas,
an
xdomilobebis ubralod
xdomilobas
uwodeben.
amrigad,
Sedgenil xdomiloba,
elementarul xdomilobaTa sivrcis qvesimravlea. vityviT, rom cdis Sedegad xdeba A xdomiloba, Tu cdas mohyva iseTi elementarul xdomiloba, romelic A xdomilobas ekuTvnis. ganixileba
sami
saxis
xdomiloba:
aucilebeli,
SeuZlebeli
da
SemTxveviTi. gansazRvreba. adgili
xdomilobas, romelsac yoveli cdis Sedegad aqvs
aucilebeli
aRvniSnavT
xdomiloba
ewodeba.
Aaucilebel
xdomilobas
asoTi.
gansazRvreba. xdomilobas, romelsac adgili ar SeiZleba hqondes erTi
cdis
Sedegad
SeuZlebeli
xdomilobas aRvniSnavT
xdomiloba
ewodeba.
arc
SeuZlebel
asoTi.
gansazRvreba. xdomilobas, romelsac cdis Sedegad SeiZleba hqondes an ar
hqondes
adgili
SemTxveviTi
xdomiloba
ewodeba.
SemTxveviT
xdomilobebs aRvniSnavT laTinuri anbanis didi asoebiT, indeqsiT an uindeqsod: AA, B, C,
da a.S.
2. moqmedebebi xdomilobebze gansazRvreba. xdomilobas
vityviT, rom A xdomiloba iwvevs B xdomilobas , Tu B
adgili
aqvs
yovelTvis,
roca
xdeba
A
xdomiloba.
simbolurad CavwerT: A B, ikiTxeba ,, A xdomiloba iwvevs B xdomilobas’’. magaliTi.
vTqvaT, A
aris
xdomiloba,
naturaluri ricxvi martivia’’ xolo dasaxelebuli
naturaluri
ricxvi
,,SemTxveviT
dasaxelebuli
B iyos xdomiloba ,,SemTxveviT kentia’’.
nebismieri martivi ricxvi aucileblad kenticaa.
cxadia,
A B,
radganac
SevniSnoT,
rom
123 nebismieri xdomiloba
iwvevs
aucilebel
xdomilobas, A â&#x201E;Ś. aseve, nebismieri xdomiloba iwvevs Tavis Tavs, A A. am
gansazRvrebidan
gamomdinare,
elementaruli
xdomiloba
da
elementarul xdomilobaTa sivrce SeiZleba ganisazRvros Semdegnairad.
B xdomilobas vuwodebT elementarul xdomilobas, Tu
gansazRvreba.
ar arsebobs iseTi A xdomiloba, romelic iwvevs B xdomilobas da gansxvavebulia BB-sgan. gansazRvreba.
eqsperimentTan
dakavSirebul
yvelaEelementarul
xdomilebaTa erTobliobas elementarul xdomilobaTa sivrce ewodeba da aRvniSnavT
asoTi, romelsac aucilebel xdomilobasTan gavaigivebT.
gansazRvreba. ori A da B xdomilobis gaerTianeba ewodeba iseT C xdomilobas romelsac adgili aqvs maSin, rodesac xdeba an A xdomiloba an B xdomiliba, an orTave. im faqts, rom A xdomilobis gaerTianeba B xdomilobasTan aris C xdomiloba simbolurad aRvniSnavT: A B=C. magaliTi
6.
vTqvaT,
eqsperimenti
mdgomareobs
yuTidan
burTulis
amoRebaSi, romelSic 20 erTnairi burTulaa, gadanomrili 1-dan 20-mde. ATi aRvniSnoT xdomiloba imisa, rom SemTxveviT amoRebuli burTulis nomeri luwi ricxvia, xolo B-Ti SemTxveviT amoRebuli burTulis nomeri metia
9-ze.
A={2;4;6;8;10;12;14;16;18;20};
Ee.i.
B={10;11;12;13;14;15;16;17;18;19;20}. ganmartebis Tanaxmad: A B={2;4;6;8;10;11;12;13;14;15;16;17;18;19;20}. xdomilobebis gaerTianebis operacias aqvs Semdegi Tvisebebi: 1. nebismieri A da BBB xdomilobisaTis A B= B A (komutatiuroba); 2. nebismieriA,BBB
da
C
xdomilobisaTis
(A B)
=A
(B C)
(asociaciuroba); 3. Tu A
maSin A B= B; A
A
gansazRvreba. ori A da B xdomilobis TanakveTa ewodeba iseT C xdomilobas, romelsac adgili aqvs maSin da mxolod maSin, rodesac xdeba A da TanakveTa
B xdomiloba
erTdroulad. im faqts, rom A xdomilobis
B xdomilobasTan aris C xdomiloba simbolurad aRvniSnavT:
A B=C.G Gganxilul me-6 magaliTSi ganmartebis Tanaxmad: A B={10;12;14;16;18;20}. xdomilobebis kveTas aqvs Semdegi Tvisebebi:
1.
A
nebismieri
124 BBB xdomilobisaTis
da
A
(komutatiuroba); 2.
A,
nebismieri
BBB
C
da
xdomilobisaTis(A
;
(asociaciuroba); 3. Tu A
maSin A B= A;
xdomilobaTa
gaerTianebisa
gamoisaxeba Semdegi
da
A
.
kveTis
operaciebs
kavSiri
TanafardobiT:
A (B C)=(A
A
gansazRvreba.
Soris
ori
A da
(distribuciuloba). B xdomilobis
sxvaoba
ewodeba
iseT
C
xdomilobas, romelsac adgili aqvs maSin da mxolod maSin rodesac xdeba
A da ar xdeba
B xdomiloba. im faqts, rom A xdomilobis sxvaoba B
xdomilodasTan
aris C xdomiloba
simbolurad
aRvniSnavT:
A B=C.
Gganxilul me-6 magaliTSi ganmartebis Tanaxmad:
A B={2;4;6;8}; B-A={11;13;15;17;19}. gansazRvreba.Oori A da B xdomilobis simetriuli sxvaoba ewodeba iseT
C xdomilobas, romelsac adgili aqvs maSin da mxolod maSin, rodesac xdeba an A xdomiloba an B xdomiliba, magram ara orTave erTdroulad. im faqts, rom A xdomilobis simetriuli sxvaoba xdomiloba simbolurad avRniSnavT:
B xdomilobasTan aris C
A B=C. Gganxilul me-6 magaliTSi
ganmartebis Tanaxmad:
A B={2;4;6;8;11;13;15;17;19}. gansazRvreba. aRiniSneba
A xdomilobis uaryofa
simboloTi:
=
ewodeba â&#x201E;Ś
xdomilobas da
A. Gganxilul me-6 magaliTSi ganmartebis
Tanaxmad: ={1;3;5;7;9;11;13;15;17;19}; xdomilobis uaryofis uaryofa TviT es xdomilobaa, xdomilobaTa
gaerTianebisa
da
TanakveTis
=A.
operaciebi
SeiZleba
ganisazRvros maSinac rodesac gvaqvs Tvladi raodenobis xdomilobebi: maSin =C aris xdomiloba, romelic xdeba maSin da mxolod maSin rodesac xdeba xdomilobebidan erTi mainc;
125 xolo =C aris xdomiloba, romelic xdeba maSin da mxolod maSin rodesac xdeba yoveli
xdomiloba. or A da B xdomilobas ewodeba uTavsebadi xdomilobebi
gansazRvreba.
Tu maTi erTdroulad moxdena SeuZlebelia, e.i. gansazRvreba. .
xdomilobaTa erTobliobas ewodeba wyvil
wyvilad UuTavsebadi xdomilobebi Tu nebismieri ori maTgani uTavsebadi
i j i,j=1,2,3,â&#x20AC;Ś,n.
Tu
xdomilobebia. gansazRvreba. xdomilobaTa
xdomilobaTa
sruli
xdomilobebia
da
jgufi,
maTi
Tu
isini
gaerTianeba
erTobliobas
wyvil-wyvilad
aucilebeli
ewodeba
uTavsebadi
xdomilobaa,
e.i.
Sesrulebulia Semdegi ori piroba: 1.
=
magaliTi.
2.
i j i,j=1,2,3,â&#x20AC;Ś,n.
Tu
amwyobma saamqrom miiRo sam sxvadasxva meqanikur
damzadebuli erTi dasaxelebis n detali, maT Soris pirvel saamqroSi,
saamqroSi
damzadebulia
meore saamqroSi, xolo danarCeni
mesame saamqroSi. _ iyos xdomiloba imisa, rom alalbedze aRebuli detali detali damzadebulia
pirvel
saamqroSi,
damzadebulia meore saamqroSi, xdomilobebi
_xdomiloba
imisa,
rom
es
detali
_ detali damzadebulia mesame saamqroSi.
qmnian xdomilobaTa srul jgufs, cxadia: ;
savarjiSo magaliTebi 1) aris xdomiloba_kamaTelze movida luwi ricxvi, _kamaTelze movida 3-iani,
aris xdomiloba
aris xdomiloba _kamaTelze movida 5-iani. ras
niSnavs xdomilobebi:
?
2) xaratis mier damzadebuli detali SeiZleba iyos pirveli xarisxis (xdomioloba ), (xdomiloba ) .
meore raSi
xarisxis
mdgomareobs
(xdomiloba ),
xdomilobebi:
mesame ?;
xarisxis
126 3) [0, 1] intervalze alalbedze virCevT
wertils.
xdomiloba_ alalbedze arCeuli wertili ekuTvnis [0,
aris [ intervals,
aris xdomiloba_ alalbedze arCeuli wertili ekuTvnis ]0, ras niSnavs
da
4) gansazRvreT 5)
ipoveT
da
yvela
[ intervals.
xdomilobebi?
xdomilobebi, Tu xdomiloba,
romelic
akmayofilebs
pirobas:
3. albaTobis aqsiomuri ganmarteba davuSvaT, Ω nebismieri nebismieri elementarul xdomilebaTa sivrcea rogorc viciT, xdomiloba warmoadgens Ω sivrcis qvesimravles. vTqvaT, mocemuli gvaqvs xdomilobaTa F klasi (xdomilobaTa erToblioba). gansazRvreba. Sesrulebulia
xdomilobaTa
F
klass
ewodeba
algebra,
Tu
Semdegi pirobebi:
1.SeuZlebeli
da
aucilebeli
xdomilobebi
ekuTvnis
Fklass,
e.
i.
θ F;Ω F.
2. Tu xdomiloba ekuTvnis Fklass, maSin misi uaryofac ekuTvnis
Fklass, e.i. A(A
F)
3. Tu xdomilobebi A da B ekuTvnian Fklass, maSin maTi gaerTianebac ekuTvnis F klass, e. i. (A F, B F gansazRvreba.
xdomilobaTa
A F
F). klass
ewodeba
algebra,
Tu
Sesrulebulia Semdegi pirobebi: 1.SeuZlebeli
θ F;Ω F.
da
aucilebeli
xdomilobebi
ekuTvnis
Fklass,
e.
i.
127 2.
Tu
xdomiloba
ekuTvnis Fklass, e.i. A(A
3.
Tu
Fklass,
ekuTvnis
maSin
misi
uaryofac
F
xdomilobebi
ekuTvnian
Fklass,
gaerTianebac da TanakveTac ekuTvnis F klass, e.i.
maSin
,
.
gansazRvreba. P ricxviT funqcias, romelic gansazRvrulia algebris
elementebisaTvis
Eewodeba
albaToba,
maTi
Tu
igi
F
akmayofilebs
Semdeg sam aqsiomas:L 1. arauaryofiTobis aqsioma. nebismieri A xomilobisaTvis Fklasidan,
P(A) 0; 2.normirebis aqsioma. aucilebeli xdomilobis albaToba erTis tolia,
P(Ω)=1; 3.Tvladi aditiurobis aqsioma. Tu
wyvil-wyvilad
uTavsebadi xdomilobebia, maSin maTi gaerTianebis albaToba Sesabamisi albaTobebis jamis tolia
P( albaTobis maTematikoss a.
zemomoyvanili
)=
.
gansazaRvreba
ekuTvnis
gamoCenil
rus
kolmogorovs, romlis sapativcemulod mas kolmogorovis
aqsiomebs uwodeben. albaTobis aqsiomuri ganmartebidan gamomdinareobs Semdegi ZiriTadi Tvisebebi: Tviseba1. SeuZlebeli xdomilobis albaToba nulis tolia,
P( )=0.
damtkiceba: SeuZlebeli xdomiloba warmovadginoT, rogorc Tvladi raodenobis SeuZlebeli xdomilobebis gaerTianeba:
maSin mesame aqsioms Tanaxmad:
P( )=P( )+P( )+P( )+…+P( )+… pirveli
aqsioms
Tanaxmad
P( ) 0,
romlis
(1) gaTvaliswinebiTac
tolobas SeiZleba adgili hqondes maSin da mxolod maSin, roca P( )=0.
(1)
128 sasruli raodenobis wyvil-wyvilad
Tviseba 2. Tu
uTavsebadi xdomilobebia, maSin maTi gaerTianebis albaToba Sesabamisi albaTobebis jamis tolia
P(
)=
damtkiceba:
.
xdomilobaTa
gaerTianeba
SeiZleba
warmovadginoT Semdegi saxiT: (2) (2) tolobis marjvena mxareSi Semavali xdomilobebi wyvil-wyvilad uTavsebadi xdomilobebia, Tu gaviTvaliswinebT me-3 aqsiomas da pirvel Sedegs miviRebT: )=
=P(
)+P(
)+P(
)+…P( )+P( )+P( )+..+P( )+….=P(
)+P(
)+P(
)+…P( )
Tviseba 3. Tu A xdomiloba iwvevs B xdomilobas, maSin A xdomilobis albaToba naklebia an toli B
xdomilobis albaTobaze
da P(B-A)=P(B)-P(A). damtkiceba:
radgan
A iwvevs B- s
davweroT: B=A+(B-A),
SeiZleba
amasTanave A da (B-A) xdomilobebi uTavsebadi xdomilobebia, maSin me-2 Tvisebis Tanaxmad
P(B)=P(A)+P(B-A)B
(3)
1-li aqsiomis Tanaxmad P(B-A) 0 (3)-dan davaskvniT:
P(A) P(B); Tviseba
4.
xdomilobebis
ori
xdomilobis
Sesabamisi
P(B-A)=P(B)-P(A). gaerTianebis
albaTobebis
jams
albaToba
tolia
gamoklebuli
am maTi
erTdroulad moxdenis albaToba:
P(A B)= P(A)+P(B)-P(A B). damtkiceba:
ori
A
da
B
xdomilobebis
gaerTianeba
SeiZleba
warmovadginoT Semdegi saxiT:
A B= (A-A B) (B-A B)
A B) .
(4)
advilad davrwmundebiT, romMme-4 tolobis marjvena mxares mdgomi xdomilobebi uTavsebadi xdmilobebia. me-2 da me-3 Tvisebis
gamoyenebiT
SegviZlia davweroT:
P(A B)=P (A-A B)
(B-A B)
A B) = P(A)-P(AB)+P(B)-P(AB)+P(AB))=
= P(A)+P(B)-P(AB).
129 me-4 Tvisebidan gamomdinareobs, rom PP(A B) P(A)+P(B). Tviseba
5.
sawinaaRmdego
xdomilobis
albaToba
tolia
erTs
gamoklebuli mocemuli xdomilobis albaToba, e.i. P( )=1-P(A). damtkiceba: sawinaaRmdego
xdomilobis ganmartebis Tanaxmad: P =Ω-A,
maSin me-2 Tvisebis da normirebis aqsiomis Tanaxmad:
P( )=P(Ω-A)=P( )-P(A)=1-P(A). gansazRvreba.
sameuls
sadac: Ω elementarul
}
{
xdomilobaTa
sivrcea; F- algebra; P-albaToba, albaTuri sivrce ewodeba.
4. albaTobis klasikuri gansazRvreba davuSvaT,
elementarul
xdomilobaTa
sivrce
Seicavs
sasruli
raodenobis elementarul xdomilobebs . elementarul
xdomilobas
SevusabamoT
ricxvi,
i=1,2,3,…,n,
romlebic akmayofileben Sedeg or pirobas: 1.
,
2
.
cxadia, rom aseTi elementarul xdomilobaTa sivrcis
nebismieri
qvesimravle warmoadgens xdomilobas. vTqvaT,
A
nebismieri
sivrcidan
romelic
AA={
,…,
qvemoT
xdomilobaa
Ω
k
Seicavs
elementarul
xdomilobaTa
elementarul
xdomilobas:
}.
mocemul
gansazRvrebas
albaTobis
klasikuri
gansazRvreba
ewodeba. gansazRvreba.
A xdomilobis albaToba ganvsazRvroT Semdegnairad: P(A) =
advilad
vaCvenebT,
rom
+
+
aseTnairad
. gansazRvruli
albaToba
akmayofilebs Semdeg Tvisebebs: 1. nebismieri A xdomilobis albaToba arauaryofiTi ricxvia, P(A) 0.
2. P(Ω)=1, marTlac, gansazRvrebis Tanaxmad, P( )=
3.
TuUA
130 xdomilobebia, uTavsebadi
B
da
P(AUB)=P(A)+P(B). marTlac, vTqvaT: A={ AUB={
maSin
,…,
,…, ,…,
,
maSin
}; B={
,…,
}.
}.
gansazRvrebis Tanaxmad,
P(AUB)=
+
+
+
+
+
=P(A)+P(B).
zemoT naCvenebi sami pirobis SesrulebiT
faqtiurad SevamowmeT, rom
aseTnairad gansazRvruli albaToba akmayofilebs kolmogorovis samive aqsiomas.
aqedan
gamomdinare,
adgili
eqneba
aqsiomebidan
gamomdinare
ZiriTad Sedegebs. im SemTxvevaSi, tolia
anu
mosalodneli,
rodesac
SemTxveviTi
elementarul xdomilobaTa
eqsperimentis
yvela
(am
e.i.
Sedegi
SemTxvevas
albaTobebi erTnairadaa
klasikuri
sqema
ewodeba). maSin me-2 Tvisebis Tanaxmad: . Tu Axdomiloba Seicavs k raodenobis elementarul xdomilobas maSin
P(A) =
. e.i. xdomilobis albaToba tolia misi xelSemwyob Sedegebis
raodenoba Sefardebuli yvela SesaZlo Sedegebis raodenobasTan. ganvixiloT SemTxveva, rodesac elementarul xdomilobaTa sivrce Ω Seicavs Tvladi raodenobis elementarul xdomilobebs:
aseTi elementarul xdomilobaTa sivrcis warmoadgens
xdomilobas,
romelic
nebismieri qvesimravle A
SeiZleba
Seicavdes
Tvladi
raodenobis elementebs: AA={ elementarul
xdomilobas
,…, SevusabamoT
}. ricxvi,
romlebic akmayofileben Sedeg or pirobas: 1.
,
2.
A xdomilobis albaToba ganvsazRvreba Semdegnairad: P(A)=
.
i=1,2,3,…,n,…
131 elementaruli xdomilobaTa sivrcisaTvis
sasruli naCveneb
Tvisebebs
daemateba
e.w.
Tvladi
aditiurobis
zemoT
Tviseba:
Tu
agdeben
erT
wyvil-wyvilad uTavsebadi xdomilobebia, maSin . magaliTi.
agdeben
or
garCevad
kamaTels
an
orjer
kamaTels. vipovoT albaToba imisa, rom: 1) mosul qulaTa jami tolia 8-is; 2) mosul qulaTa jami naklebia an toli 5-ze. 3) mosul qulaTa jami metia 10-ze. amoxsna. i iyos pirvel kamaTelze mosuli qulaTa ricxvi, xolo j meore kamaTelze
mosul
qulaTa
ricxvi.
elementarul
xdomilobaTa
sivrce
iqneba:
â&#x201E;Ś={ (2, 4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3), (5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}
A-Ti aRvniSnoT xdomiloba imisa, rom mosul qulaTa jami tolia 8-is; B-Ti aRvniSnoT xdomiloba imisa, rom mosul qulaTa jami naklebia an toli 5-ze; C-Ti aRvniSnoT xdomiloba imisa, rom mosul qulaTa jami metia 10-ze, maSin A={
={(2,6),(3,5),(4,4),(5,3),(6,2)};
B={
={(1,1),(1,2),(1,3)(1,4),(2,1)(2,2),(2,3)(3,1),(3,2),(4,1)
};
C={
={(5,6),(6,5),(6,6)}.
gvaqvs klasikuri sqema. kamaTelze movida
-Ti aRvniSnoT albaToba imisa, rom pirvel
qula, xolo meoreze
qula (
).
. analogiurad miviRebT: magaliTi. simetriul monetas agdeben gerbis pirvel gamoCenamde. 1) vipovoT albaToba imisa, rom gerbi pivrelad mova luwnomrian cdaSi. amoxsna. aq elementarul xdomilobaTa sivrce iqneba:
â&#x201E;Ś={(g),(s,g),(s,s,g),(s,s,s,g),...}.
iyos
xdomiloba
imisa,
132 rom gerbi
pirvelad
mova
luwnomrian
cdaSi, maSin
A={(s,g),(s,s,s,g),(s,s,s,s,s,g),...}. aRvniSnoT xdomiloba imisa, rom wina yvela
cdaSi safasuri (
=(g),
}, A={
aRniSvniT SevusabamoT
-ur cdaSi movida gerbi, xolo =(s,g), .
=(s,s,g),...). miRebuli
elementarul xdomilobas
albaToba. advilad mowmdeba normirebis piroba,
marTlac = aq
Cven
gamoviyeneT
usasrulod
wevrTa jamis formula, Tu
= klebadi
geometriuli
pirveli wevria da
progresiis
<1, maSin
= saZiebeli
.
.
xdomilobis albaToba =
=
.
savarjiSo magaliTebi 1) yuTSi, erTmaneTisagan mxolod feriT gansxvavebuli, 10 TeTri da 20 Savi burTulaa. ras udris albaToba imisa, rom alalbedze amoRebuli burTula TeTri feris iqneba? 2) alalbedze asaxeleben naturalur ricxvs, romelic ar aRemateba 24s. ras udris albaToba imisa, rom es ricxvi warmoadgens 24-is gamyofs? 3) ras udris albaToba imisa, rom alalbedze dasaxelebuli orniSna ricxvis cifrTa jami 12 iqneba? 4) sastumroSi 15 stumaria, maTgan 10 turistia, 5 biznesmeni. alalbedze irCeven 3 stumars. ras udris albaToba imisa, rom samive turistia? 5)
raodenobis
raodenobis
nomerSi.
stumari yovel
alalbedze nomerSi
nawildeba
SeiZleba
sastumros
moTavsdes
raodenobis stumari. ras udria albaToba imisa, rom pirvel nomerSi moTavsdeba nomerSi
raodenobis stumari, meoreSi stumari (
= )?
-raodenobis da a. S.
-ur
6)
12
students
133 8 friadosania.
Soris
am
jgufidan
alalbedze airCies 9 studenti. ipoveT albaToba imisa, rom maT Soris 5 friadosania. 7)
xaratis
mier
damzadebuli
standartuli
detalebis
fardobiTi
sixSire mdgradia da yovelTvis 0,9-is tolia. ramdeni detali daamzada xaratma cvlis ganmavlobaSi, Tu arastandartuli detalebis raodenoba 50-is toli aRmoCnda? 8)
xarisxis saxelmwifo inspeqtori sasursaTo maRaziaSi amowmebs rZis
produqtebs. cnobilia, rom rZis 20 paketidan ori amJavebulia. inspeqtori SemTxveviT irCevs 2 pakets 20-dan. rogoria albaToba imisa, rom maT Soris: a) arc erTi ar iqneba amJavebuli; b) mxolod erTi iqneba amJavebuli; g) orive amJavebuli iqneba. 5. albaTobis geometriuli gansazRvreba
albaTobis
klasikuri
elementaruli
xdomilobaTa
raodenobis
elementebs.
gansazRvrebidan
moiTxoveba,
sivrce
Seicavdes
praqtikaSi
xSirad
sasruli gvxvdeba
Ω
rom an
Tvladi
iseTi
saxis
eqsperimentebi romelTa Sesabamisi elementaruli xdomilobaTa sivrce araTvladia
aseT SemTxvevaSi xdomilobebi,
romelTaTvisac arsebobs
albaTobebi, ekuTvnian garkveul klass
(es klasi, rogorc albaTobis
aqsiomuri ganmartebisas aRvniSneT aris
algebra) sailustraciod Cven
SemovifarglebiT e.w. albaTobis geometriuli gansazRvrebiT, sadac Ω elementarul
xdomilobaTa
sivrced
ganixileba
raime
geometriuli
obieqti: wrfis sasruli monakveTi; wrewiri; rkali; wre; sibrtyis sasruli farTobis mqone nawili; sasruli moculobis sivrculi sxeuli da a.S. gansazRvreba. warmoadgens
raime
davuSvaT,
Ω
geometriul
elementarul obieqts:
wrfis
xdomilobaTa sasruli
sivrce
monakveTi;
wrewiri; sibrtyis sasruli farTobis mqone nawili, sasruli moculobis mqone sivrculi sxeuli, da a.S. A xdomilobis albaToba vuwodoT wilads
P(A)= sadac
da
,
warmodgens A xdomilobisa da Ω sivrcis zomas,
Sesabamisad. advili
saCvenebelia,
rom
aseTnairad
akmayofilebs kolmogorovis samive aqsiomas.
gansazRvuli
albaToba
magaliTi.
kvadratSi,
134 romlis gverdi
10
santimetria
Caxazulia
wre. ipoveT albaToba imisa, rom kvadratSi SemTxveviT aRebuli wertili wreSi moxvdeba. amoxsna. â&#x201E;Ś elementarul xdomilobaTa sivrcea kvadratis wertilebi, xdomilobas, romlis albaTobasac
romlis farTobia 100 kv.santimetri. veZebT,
aris
wris,
wertilebi
romlis
farTobia
25 .
albaTobis
geometriuli gansazRvrebis Tanaxmad:
P(A)=
=
= .
savarjiSo magaliTebi. 1)
-radiusian wreSi moTavsebulia
-radiusiani mcire wre. ipoveT
albaToba imisa, rom did wreSi alalbedze dasmuli wertili mcire wreSic moxvdeba. 2) 1 metris siganisa da 2 metris sigrZis magidaze moTavsebulia 10 sm siganisa da 20 sm sigrZis Ffurceli. ipoveT albaToba imisa, rom magidaze alalbedze dasmuli wertili furcelze ar moxvdeba. 3)
-radiusian wreSi Caxazulia wesieri samkuTxedi. ipoveT albaToba
imisa, rom wreSi alalbedze dasmuli wertili moxvdeba samkuTxedSic. 4) qariSxalma daaziana satelefono xazi 160-e da 290-e kilometrebs Soris.
ras udris albaToba imisa, rom dazianeba moxda xazis me-200-240
kilometrebs Soris.
6.pirobiTi albaToba. xdomilobaTa namravlis albaToba. vTqvaT, {â&#x201E;Ś;F;P} albaTuri sivrcea, xolo A da B nebismieri xdomilobebia
F klasidan
iseTi,
rom
P(B)>0. davsvaT
Semdegi
amocana:
vipovoT
A
xdomilobis albaToba Tu cnobilia, rom B xdomilobas hqonda adgili? aseTi saxis albaTobas ewodeba A xdomilobis albaToba B pirobiT da aRiniSneba
P
simboloTi da ikiTxeba Semdegnairad: A xdomilobis
albaToba B pirobiT. magaliTi. vTqvaT, cnobilia, rom erTi kamaTlis gagorebisas
movida
luwi cifri da gvainteresebs albaToba imisa, rom es cifri aris oriani. am
albaTobis
sapovnelad
visargebloT
albaTobis
klasikuri
gansazRvrebiT,
135 SesaZlo SemTxvevaTa
yvela
raodenoba
aris
3,
xolo xelSemwyob SemTxvevaTa raodenoba 1, e.i. saZiebeli albaToba iqneba da ara
rogorc iqneboda iqneboda im SemTxvevaSi, araviTari wina
piroba, rom ar yofiliyo cnobili. maSasadame, sazogadod davaskvniT, rom
P(A)
.
gansazRvreba. A xdomilobis albaToba
B pirobiT ewodeba wilads
romlis mricxvelia A da B xdomilobebis erTdroulad moxdenis albaToba mniSvneli ki B pirobis albaToba e.i.
P
, Tu P(B)
(1)
advili saCvenebelia, rom pirobiTi albaToba akmayofilebs albaTobis samive aqsiomas. pirobiTi albaTobis gansazRvrebis Tanaxmad:
P
, Tu P(A)
=
(2)
radgan AB=BA, (1) da (2)-dan davwerT: PP(AB)=P(BA)=P(B)P (3)
warmoadgens
formulas
ori
=P(B)P
xdomilobaTa
(3)
namravlis
TanamamravlisaTvis,
albaTobis
romelic
gamosaTvlel
SeiZleba
ganzogaddes
TanamamravlTa nebismieri sasruli raodenobisaTvis: P(
)=P(
magaliTi.
studentma
)P
P
…P
programiT
(4)
gaTvaliswinebuli
50
sakiTxidan
moamzada 40. ras udris albaToba imisa, rom students Sexvdeba bileTi, romlis samive sakiTxi momzadebuli aqvs? amoxsna.
aRvniSnoT xdomiloba imisa, rom students Sexvda bileTi
romlis pirveli sakiTxi momzadebuli aqvs,
aRvniSnoT xdomiloba imisa,
rom students Sexvda bileTi, romlis meore sakiTxi momzadebuli aqvs, aRvniSnoT xdomiloba imisa, rom students Sexvda bileTi, romlis mesame sakiTxi
momzadebuli
aqvs.
Cven
namravlis albaToba. (4) tolobis P(
)=P(
)P
gvainteresebs
xdomilobaTa
Tanaxmad: P
=
savarjiSo magaliTebi
=
.
136 1) yuTSi 20 TeTri da 15 Savi burTulaa. rigrigobiT iReben TiTo burTulas. ras udris albaToba imisa, rom meore burTula TeTri iqneba Tu cnobilia, rom pirveli iyo Savi? 2) amwyobma saamqrom miiRo 100 detali, romelTagan 5 arastandartulia. ras udris albaToba imisa, rom alalbedze aRebuli sami detalidan samive arastandartuli iqneba? 3) 25-kacian jgufSi 7 oTxosani da 3 xuTosani studentia. ras udris albaToba imisa, rom alalbedze gamoZaxebuli sami studentidan: a) samive xuTosani iqneba; b) samive oTxosani iqneba; g) arc erTi ar iqneba oTxosani an xuTosani? xdomilobaTa damoukidebloba gansazRvreba. or A da B xdomilobas ewodeba damoukidebeli, Tu maTi erTdroulad
moxdenis
albaToba Sesabamisi
albaTobebis namravlis
tolia:
P(AB)=P(A)P(B).
(1)
dauSvaT P(A)>0,P(B)>0, pirobiTi albaTobis ganmartebis Tanaxmad:
P P
, =
(2)
.
(3)
vTqvaT, A da B damokidebeli xdomilobebia, maSin Tu gaviTvaliswinebT (1) tolobas (2) da (3) tolobebSi miviRebT:
P anu,
Tu
xdomilobebi
P damoukideblebia,
=P(B), maSin
erTi
xdomilobis
moxdena ar cvlis meoris moxdenis albaTobas. xdomilobebs ewodeba wyvil _ wyvilad
gansazRvreba.
damoukidebeli, Tu nebismieri i da k-saTvis i
P( gansazRvreba.
)=P( )P(
,i
). xdomilobebs
(4) ewodeba
erTobliobaSi, Tu nebismieri k xdomilobisaTvis
damoukidebeli
, maTi erTdroulad
moxdenis albaToba Sesabamisi albaTobebis namravlis tolia:
P
(5)
SevniSnoT, rom Tu xdomilobebi damoukideblebia erToblobaSi, maSin isini wyvil-wyvilad damoukideblebicaa. marTlac (5) tolobaSi, roca k=2,
miviRebT ar
(4)
137 magram wyvil-wyvilad
tolobas.
gamomdinareobs
damoukidebloba
damoukideblobidan
erTobliobaSi.
sailustraciod
moviyvanoT magaliTi. magaliTi.
(bernSteini)
tetraedris sam
erTgvarovani
waxnagze aweria
masalisgan
damzadebuli
cifrebi 1, 2, da 3, xolo
waxnagze es samive cifri erTad.
meoTxe
iyos xdomiloba imisa, rom zemoT
asrolili tetraedri daeca waxnagze, romelzec aweria cifri k (k=1, 2, 3). vaCvenoT,
rom
es
xdomilobebi
wyvil-wyvilad
damoukidebeli
xdomilobebia. albaTobis klasikuri gansazRvrebis Tanaxmad:
P
=P(
)=P(
)= ; PP(
)= ; PP(
)= ; PP(
)=
.
da radganac sruldeba pirobebi:
P(
)=P(
xdomilobebi
)P(
); P(
)=P(
)P(
); P(
)=P(
)P(
)
wyvil-wyvilad damoukidebeli xdomilobebia.
axla gamovikvlioT am xdomilobebis erTobliobaSi damoukidebloba. radgan p(
)= , xolo P( P(
e.i.
)P(
) P(
)P(
)P( )P(
)= , amitom ),
xdomilobebi erTobliobaSi
damokidebeli xdomilobebia,
miuxedavad maTi wyvil-wyvilad damoukideblobisa. savarjiSo magaliTebi 1) albaToba imisa, rom avtomobili SekeTebis gareSe gaivlis 100000 km-s yovelTvis mudmivia da udris 0,8. ras udria albaToba imisa, rom sami miRebuli avtomanqanidan samive SekeTebis gareSe gaivlis 100000 km-s? 2)
ras
udris
albaToba
imisa,
rom
oTxi
kamaTlis
erTdroulad
gagorebisas oTxiveze erTi da igive ricxvi mova? 3) erTi msrolelisTvis mizanSi moxvedris albaTobaa 0,8, meorisaTis0,9.
ras
udria
albaToba
imisa,
rom
erTdroulad
gasrolisas
moaxvedrebs mizanSi, meore ki aacdens?
sruli albaTobis formula. baiesis formula
vTqvaT, {â&#x201E;Ś;F;P} albaTuri sivrcea, xolo
erTi
138 xdomilobaTa
sruli
jgufia,
maSin
A xdomilobis
nebismieri
albaToba F klasidan gamoiTvleba formuliT
P(A)=
.
(1) marTlac, radgan
xdomilobaTa sruli jgufia =â&#x201E;Ś
(2)
tolobis
orive
(2)
mxare
gavamravloT
A
xdomilobaze
da
gaviTvaliswinoT, rom Aâ&#x201E;Ś=A, miviRebT
A=
.
radgan xdomilobebia,
(3)
xdomilobebi wyvil-wyvilad
uTavsebadi
wyvil-wyvilad
uTavsebadi
iqneba
xdomilobebic. Tu (3) tolobaSi gamoviyenebT sasruli aditiurobis da xdomilobaTa
namravlis
albaTobis
gamosaTvlel
formulas,
miviRebT
P(A)=P( =P
)= +P
+
P
+...+P
(4) (4) formulas sruli albaTobis formula ewodeba. magaliTi. amwyobma saamqrom miiRo sam sxvadasxva meqanikur
saamqroSi
damzadebuli erTi dasaxelebis 2000 detali, maT Soris 600 damzadebulia pirvel saamqroSi, 650 _ meore saamqroSi, xolo 750 _mesame saamqroSi. ras udris albaToba imisa, rom alalbedze aRebuli detali arastandartuli aRmoCndeba, Tu cnobilia, rom pirveli saamqro saSualod
95% standartul
produqcias uSvebs, meore saamqro _ 99%-s, xolo mesame saamqro _ 98%-s? amoxsna. A iyos xdomiloba imisa, rom alalbedze aRebuli detali arastandartuli damzadebulia
_xdomiloba
aRmoCndeba.
pirvel
saamqroSi,
damzadebulia meore saamqroSi, xdomilobebi
imisa,
_xdomiloba
imisa,
rom rom
es es
detali detali
_ detali damzadebulia mesame saamqroSi.
qmnian
xdomilobaTa cxadia A
A=A sruli albaTobis formulis Tanxmad
srul
jgufs,
139 P(A)=P( P(
, P(
P(A
)+ P(
P(A
da P(
)+
P(
P(A
)
gamoiTvleba albaTobis klasikuri gansazRvrebis
gamoyenebiT:
P( P(A
=
=0,3; P(
=
)=1-0,95=0,005; P(A
=0,325; P(
=
=0,375;
)=1-0,99=0,01; P(A
)=1-0,98=0.02.
sabolood miviRebT:
P(A)=0,3.0,05+0,325.0,01+0,375.0,02=0,02575. sruli
albaTobis
formulaSi
Semaval
xdomilobebs
hipoTezebs uwodeben. (4) formuliT nebismieri A viTvliT
hipoTezaTa
cnobili
albaTobebisa
xdomilobis albaTobas
da
xdomilobis
pirobiTi
albaTobebis saSualebiT. praqtikaSi xSirad saWiro xdeba Sebrunebuli amocanis
gadawyveta.
kerZod
mocemulia
P(
hipoTezaTa
, P(
),..., P(
)
albaTobebi da gvainteresebs, Tu rogor Seicvlebian isini, Tu cnobilia, rom A
xdomiloba moxda. e.i. unda vipovoT
pirobiT.
pirobiTi
albaTobis
da
xdomilobis albaToba A
xdomilobaTa
namravlis
albaTobis
albaTobis
formulas
ganmartebis Tanaxmad: = Tu
ukanasknelSi
=
.
gaviTvaliswinebT
sruli
miviRebT: =
(5)
(5) formula warmoadgens baiesis formulas, romelsac hipoTezaTa albaTobis formulasac uwodeben. advili misaxvedria, rom =1. magaliTi. wina magaliTis pirobebSi, davuSvaT, rom alalbedze aRebuli detali aRmoCnda arastandartuli da gvainteresebs, Tu rogori albaTobiT SeiZleba mivakuTvnoT es detali TiToeul saamqros. (i=1,2,3).
amoxsna. unda vipovoT =
=
=
=
=
=
=
=
=
savarjiSo magaliTebi
, , .
1)
erT
140 moTavsebulia pirveli xaratis mier damzadebuli
yuTSi
100 detali, meore xaratis mier damzadebuli 80 detali, mesame xaratis mier
damzadebuli
120
detali.
ipoveT
albaToba
imisa,
rom
yuTidan
alalbedze amoRebuli detali standartuli iqneba, Tu pirveli xarati saSualod 95% standartul detals amzadebs, meore xarati_ 98%-s, mesame ki_ 90%-s. 2) sawyobSi moitanes erTi dasaxelebis 1000 detali, maT Soris 300 damzadebulia Ppirvel saamqroSi, 200_ meore saamqroSi, xolo 500_mesame saamqroSi. cnobilia, rom Ppirvel saamqroSi mzaddeba saSualod 95% standartuli detali, meoreSi_90%, mesameSi ki_85%. ras udris albaToba imisa, rom alalbedze amoRebuli detali standartuli iqneba. 3)
amwyobi
saamqrosaTvis
samagrs
amzadebs
sami
avtomati,
pirveli
iZleva saWiro samagrebis 25%-s, meore_35%-s, mesame ki_40%-s. pirveli avtomati saSualod iZleva 0,1% wuns, meore_0,3%, mesame ki_0,2%-s. ipoveT albaToba
imisa,
albaToba imisa,
rom
amwyobi
saamqro
miiRebs
wundebul
samagrs
da
Tu samagri wundebuli aRmoCnda, is pirveli saamqros
mieraa damzadebuli. 4) albaToba imisa, rom pirveli msroleli mizans daazianebs aris 0,6. xolo meorisaTvis -0,7. orive msrolelma erTmaneTisgan damoukideblad gaisrola, ris Sedegac samizne dazianda. ras udris albaToba imisa, rom mizani pirvelma msrolelma daaziana? 5)
gzaze,
sadac
benzingasamarTi
sadguria,
gamovlil
satvirTo
avtomobilTa ricxvi ise Seefardeba msubuq avtomobilTa ricxvs, rogorc 2/3.
albaToba
imisa,
rom
gamvleli
avtomobili
benziniT
gaimarTeba,
satvirTo avtomobilisTvis aris 0,1, xolo msubuqi avtomobilisaTvis 0,2. gasamarT sadgurTan mivida avtomanqana. ras udris albaToba imisa, rom es avtomanqana satvirToa? 6) pirvel kurselTa 60% vaJia. vaJebis 80%-s da gogonebis 75%-s aqvs fexburTis abonementi. damlagebelma pirvel kurselTa auditoriaSi ipova abonementi. ras udris albaToba imisa, rom es abonementi vaJisaa? 7) jgufSi 20 studentia, romelTa Soris 4 xuTosania, 10 oTxosani da 6 samosani. albaToba imisa, rom dafasTan gamoZaxebuli studenti amocanas amoxsnis
xuTosanisTvis
0,9-is
tolia,
oTxosanisaTvis
_0,7-is,
samosanisaTvis ki_0,5-is. ras udris albaToba imisa, rom: a) dafasTan
141 alalbedze gamoZaxebuli studenti amocanas
amoxsnis;
b)
dafasTan
alalbedze gamoZaxebuli orive studenti amocanas amoxsnis. 8)
avadmyofi
grZnobs
Zlier
statistikurad 50%-is SemTxvevaSi
gulis
SeiZleba gamoiwvios
daavadebam, xolo 20%-is SemTxvevaSi
is SemTxvevaSi
eqimTan mkurnalobis SemTxvevaSi tolia,
tkivilebs
-isa_0,8-is,
xolo
areSi,
rac
daavadebam, 30%daavadebam. ubnis
davadebis gankurnebis albaToba 0,7-is isa
ki
_0,9-is.
avadmyofi
gankurna, ras udris albaToba imisa, rom avadmyofs hqonda
ubnis
eqimma
davadeba?
8 damoukidebel cdaTa mimdevroba. bernulis sqema
vTqvaT, vatarebT raime cdas, romlis ganmeorebac SeiZleba mravaljer da vakvirdebiT A xdomilobis moxdenis faqts. vityviT, rom adgili aqvs warmatebas, Tu A xdomiloba moxda mocemul cdaSi, winaaRmdeg SemTxvevaSi vityviT, adgili aqvs marcxs. mravali praqtikuli amocanis gadawyvetisas sainteresoa ara romelime konkretuli cdis Sedegi, aramed warmatebaTa saerTo raodenoba cdaTa garkveul
seriaSi.
sainteresoa
ara
magaliTad, romelime
Tu
msroleli
konkretuli
cdis
isvris
mizanSi
Sedegi,
aramed
50-jer is
Tu
ramdenjer daaziana samizne. gansazRvreba. cdaTa iseT mimdevrobas, romlis nebismieri cdis Sedegi gavlenas
ar
axdens
momdevno
cdebis
SesaZlo
SedegTa
albaTobebze,
damoukidebel cdaTa mimdevroba ewodeba. cdas, romelSic vakvirdebiT A
xdomilobis moxdenis an armoxdenis
faqts orSedegiani, an binaruli cda ewodeba.
A
xdomilobis moxdenis
(warmatebis) albaToba aRvniSnoT p â&#x20AC;&#x201C;Ti, xolo armoxdenis (marcxis)
q-Ti:
P(A)=p; P( )=q; p+q=1. gansazRvreba. orSedegian damoukidebel cdaTa mimdevrobas, warmatebis mudmivi albaTobiT, bernulis sqema ewodeba. davuSvaT vatarebT n damoukidebel cdas, k-Ti aRvniSnoT ricxvi n damoukidebel cdaSi, xolo
warmatebaTa
(k)-Ti albaToba imisa, rom
damoukidebel cdaSi adgili eqneba k warmatebas.
n
magaliTi.
142 isvrian samjer.
mizanSi
vipovoT
albaToba
imisa,
rom samizne daziandeba: a) arc erTxel, b) erTjer, g) orjer, d) samjer? Tu mizanSi moxvedris albaToba Yyovel cdaSi tolia 0,7.
-uriT aRvniSnoT i-ur cdaSi mizanSi moxvedris (warmatebis)
amoxsna.
iqneba i-ur cdaSi acilebis (marcxis) xdomiloba.
xdomiloba, maSin
avagoT elementarul xdomilobaTa sivrce
â&#x201E;Ś={(
); (
); (
); (
); (
);(
); (
);(
)}.
-Ti aRvniSnoT xdomiloba imisa, rom warmatebas adgili hqonda k-jer: =(
;
=(
)+(
radganac
)+( )+(
)+( );
); ).
=
damoukidebeli xdomilobebia, damoukidebeli iqneba
xdomilobebic.
Tu
gamoviyenebT
damoukidebeli
xdomilobebis
namravlis da uTavsebadi xdomilobaTa jamis albaTobebis gamosaTvlel formulebs, miviRebT: (0)=
)=
=
(1)=
)=P((
)+(
)+(
)=
))=P(
)+P(
)+
)+(
))=P(
)+P(
)+
)=0,7.0,7.0,3+0,7.0,3.0,7+0,3.0,7.0,7=0,441;
+P( (3)=
)+(
)=0,7.0,3.0,3+0,3.0,7.0,3+0,3.0,3.0,7= 0,189;
+P( (2)=
)=0,3.0,3.0,3=0,027;
)=P
)=
)=0,7.0,7.0.7=0,343.
Teorema. bernulis sqemis n damoukidebel cdaSi k
warmatebis
(k)
albaToba gamoiTvleba formuliT: (k)=
. sadac
p warmatebis
,
q=1-p
albaTobaa,
marcxis,
xolo
_jufdebaTa ricxvi n elementidan k elementad. damtkiceba.
-uriT aRvniSnoT i-ur cdaSi warmatebis xdomiloba, maSin
iqneba i-ur cdaSi marcxis xdomiloba. cdis n-jer ganmeorebis Sedegad warmatebis
k-jer
moxdenis
xdomiloba
aRvniSnoT B-Ti.
igi
SeiZleba
warmovidginoT Semdegnairad:
B=
... +
xdomilobebi
... ...
... +....+
...
...
...
+...+
.
(1) ...
...
...;
(
...
143 wyvil-wyvilad )
+....+
uTavsebadi
xdomilobebia, maTi raodenoba iqneba imdeni, ramden jufdebac SeiZleba SevadginoT n elementidan k elementad. cdaTa damoukideblobis gamo, TiToeuli
xdomilobis
albaToba
masSi
Semavali
xdomilobebis
albaTobebis namravlis tolia. Tu (1) tolobaSi gamoviyenebT daomukidebeli xdomilobebis namravlis da uTavsebadi xdomilobaTa jamis albaTobebis gamosaTvlel formulebs, miviRebT: (k)= P(B)=
+...+P(
...
...
... +....+
...
+
+
)=
... )...P(
...
)...P(
...P(
)+...+
)...P(
+....+
=
)= .
(3)
amiT Teorema damtkicebulia. (3) formulas bernulis formula ewodeba. bernulis
formulis
gamoyenebiT
SegviZlia
gamoviTvaloT
Semdegi
albaTobebi:
1) albaToba imisa, rom n damoukidebel cdaSi adgili eqneba aranakleb i warmatebas: (k
)=
;
2) albaToba imisa, rom n damoukidebel cdaSi adgili eqneba ara umetes i warmatebas: (k
3) albaToba imisa, rom
)=
;
n damoukidebel cdaSi warmatebaTa ricxvi ar
aRemateba i-s da aranaklebia j-ze: (j
)=
;
aqve SevniSnoT, rom (0
)=
=
.
savarjiSo magaliTebi 1) ojaxSi 5
bavSvia. ipoveT albaToba imisa, rom maT Soris 2 vaJia, Tu
cnobilia, rom vaJis dabadebis albaToba 0, 51-is tolia.
144 2) ras udris albaToba imisa, iqneba
standartuli,
Tu
rom
cnobilia,
5
rom
avtomobilidan am
markis
zustad
4
avtomobilebis
standartulobis albaToba mudmivia da tolia 0,9-is. 3)
vipovoT
albaToba
albaToba
yovel
imisa,
eqsperimentSi
rom
xdomiloba,
0,9-is
tolia,
romlis
xuTjer
moxdenis Catarebul
eqsperimentSi moxdeba aranakleb oTxisa. 4) mizani dazianebulad CaiTvleba, Tu samiznes moxvdeba aranakleb sami Wurvi. ipoveT samiznis dazianebis albaToba xuTi gasrolis Semdeg, Tu yoveli gasrolisas moxvedris albaToba 0,8-is tolia. 5) albaToba imisa, rom studenti amoxsnis mocemul amocanas, aris 0,8. gamoTvaleT albaToba imisa, rom igi miiRebs CaTvlas Tu cnobilia, rom man 5 mocemuli amocanidan unda amoxsnas aranakleb 4 amocana. polinaruli sqema. ualbaTesi ricxvi praqtikaSi xSirad saqme gvaqvs iseT eqsperimentTan, romlis SesaZlo SedegTa ricxvi metia orze. aseT SemTxvevaSi SesaZlebelia bernuli sqemis ganzogadeba. vTqvaT, raime eqsperimentis SesaZlo Sedegebia Sesabamisi albaTobebi
e.i.
, xolo maTi
. cxadia, rom
. -iT aRvniSnoT albaToba imisa, rom n damoukidebel cdaSi xdomilobas adgili eqneba da a.S.
-jer,
xdomilobas adgili eqneba
SevniSnoT, rom marTebulia
xdomilobas adgili eqneba
-jer
-jer. Tu
0<
, i=1,2,...,m
, maSin
formula: =
.
-s uwodeben polinarul albaTobas. magaliTi. 1000 detalisagan Semdgari partiidan arCeven 5 detals. vipovoT albaToba imisa, rom maTgan 3 iqneba pirveli xarisxis, erTi_meore xarisxis da erTic_mesame xarisxis, Tu cnobilia, rom MmTel partiaSi aris 700 pirveli xarisxis, 200_meore xarisxis da 100_mesame xarisxis detali.
amoxsna.
145 rom SerCeul detals Semowmebis Semdeg
(igulisxmeba,
ukan abruneben).
-Ti aRvniSnoT albaToba imisa, rom SerCeuli detali
iqneba k_uri xarisxis (k=1,2,3). albaTobis klasikuri ganmartebis Tanaxmad gveqneba: =0,7;
. Tu visargeblebT polinaruli albaTobis formuliT, miviRebT: (3,1,1)=
n damoukidebel cdaSi albaToba
(k)
yvelaze
.0,2.0,1=0,1372. warmatebaTa im ricxvs romlisTvisac binomuri did
mniSvnelobas
iRebs
ualbaTesi
ricxvi
ewodeba. ualbaTesi ricxvis sapovnelad, fiqsrebuli n>1- saTvis binomuri albaToba
(k) ganvixiloT, rogorc k-s (k=0,1,2,...,n) funqcia. is zrdadia (k+1)>
s im mniSvnelobebisaTvis, roca <
(k); xolo klebadi, roca
-
(k+1)
(k). ganvixiloT fardoba:
=
=
,
saidanac vRebulobT:
k<np-q
>1, roca
(1)
(k), rogorc k-s (k=0,1,2,...,n) funqcia zrdia, roca
e.i.
<1
roca
k<np-q ;
k>np-q ,
(2)
(k), rogorc k-s (k=0,1,2,...,n) funqcia klebadia, roca
e.i.
(2)-dan davaskvniT, rom
k>np-q . (1) da
(k)-s, rogorc k-s (k=0,1,2,...,n) funqcia udides
mniSvnelobas iRebs, roca k=[np-q] (simbolo [np-q] niSnavs (np-q)-s mTel nawils).
ualbaTesi ricxvis sapovnelad miviRebT formulas
[np-q]=[np-(1-p)]=[(n+1)p-1] . Tu ((n+1)p-1) mTeli ricxvia, maSin
(k)-s gaaCnia ori maqsimumi
((n+1)p-1)
da (n+1)p wertilebSi. magaliTi. Tu bernulis sqemaSi cdaTa ricxvi n=19, p=0,36. ualbaTesi ricxvi
[np-q]=[19.0,36-0,64]=[7,2]=7. Tu
cdaTa ricxvi n=19, p=0,15. maSin
np-q= =19.0,15-0,85=2 ,e.i.gveqneba ori ualbaTesi ricxvi 2 da 3.
146 savarjiSo magaliTebi 1)
jgufSi
danarCeni
2
10 ki
studentia, samosani.
maT
Soris
vipovoT
5
friadosania,
albaToba
imisa,
rom
3
kargosani,
6
SerCeuli
studentidan sami friadosania, ori kargosani, erTi samosani. 2) amwyobma saamqrom erTi da igive dasaxelebis 12 detali miiRo. maTgan 5 damzadebulia pirvel avtomatze, 4-meore avtomatze, 3_ mesameze. vipovoT albaToba imisa, rom 5 SerCeuli detalidan sami damzadebulia pirvel avtomatze, TiTo ki meore da mesame avtomatebze. 3)
albaToba
imisa,
rom
xaratis
mier
damzadebuli
detali
arastandartulia udris 0,1-s. ipoveT arastandartul detalTa ualbaTesi ricxvi, Tu xaratma 30 detali daamzada. 4) meqanikurma saamqrom gamouSva 10000 detali. albaToba imisa, rom detali standartuli iqneba 0,77-is tolia. ipoveT standartul detalTa ualbaTesi ricxvi. 5) xdomilobis albaToba yovel cdaSi 0,3-ia. ramdeni damoukidebeli cdaa saWiro, rom am xdomilobis mosvlis ualbaTesi ricxvi iyos 60? 6)
ipoveT
damoukidebel
xdomilobis cdaSi
am
moxdenis
xdomlobis
albaToba, moxdenis
Tu
cnobilia,
ualbaTesi
rom
ricxvi
39
25-is
tolia.
10.muavr-laplasis lokaluri da integraluri Teoremebi bernulis formulis gamoyeneba praqtikulad sakmaod Znelia, roca cdaTa ricxvi didia. magaliTad, Tu n=1500, p=0,75, k=850: (850)=
,
rac sakmaod mouxerxebeli gamosaTvlelia. am
siZnelis
gadasalaxavad
gamoiyeneba
muavr-laplasis
lokalur
Teorema: Teorema. albaToba
bernulis
sqemis
n
cdaSi
miaxloebiT gamoiTvleba formuliT: ,
k
warmatebis
147
sadac
, xolo
.
funqciis mniSvnelobebi
mocemulia cxrilis saxiT (danarTi 1).
funqcia luwia
aqve SevniSnoT, rom
=
.
magaliTi. albaToba imisa, rom xaratis mier damzadebuli
detali
standartuli iqneba 0,8-is tolia, vipovoT albaToba imisa, rom xaratis mier damzadebuli 1000 detalidan 8020 standartuli aRmoCndeba. amoxsna. SemoRebul aRniSvnebSi: n=1000; p=0,8; q=1-0,8=0,2; k=8020. saZiebeli albaToba: (8020)=
=
,
sadac =0,5 . cxrilSi (danarTi
) vpoulobT, rom
=0,3521, amitom
(8020)=
=
.0,3521=0,0088.
im SemTxvevaSi, rodesac gvainteresebs albaToba imisa, rom warmatebaTa ricxvi k moTavsebulia raime SualedSi sargebloben
formuliT,
romelic
(
da n didi ricxvia
miiReba
laplasis
integraluri
Teoriebis safuZvelze. Teorema. bernulis sqemis n cdaSi albaToba imisa, rom warmatebaTa raodenoba k moTavsebuli iqneba
da
ricxvebs Soris, miaxloebiT
gamoiTvleba formuliT: , sadac ,
,
funqcias albaTobis integrali anu laplasis funqcia ewodeba. igi
ar
gamoisaxeba
elementaruli
funqciebis
saSualebiT,
misi
148 mniSvnelobebi mocemulia cxrilis saxiT (danarTi 2). SevniSnoT, rom kenti funqciaa
= _
.
magaliTi. albaToba imisa, rom amwyobi saamqros mier miRebuli detali aRmoCndeba arastandartuli 0,1-is tolia. vipovoT albaToba imisa, rom 1600 miRebul detalSi standartul detalTa raodenoba iqneba aranakleb 1400-sa. amoxsna. mocemulobis Tanaxmad: n=1600; p=0,9; q=0,1;
b=
= (1400
= 13,(3); a =
=1400;
=1600;
=3,(3).
)
=
=
=0,5+0,4996= 0,9996. puasonis formula rogorc vanxeT, rodesac cdaTa ricxvi sakmaod didia, sargebloben muavr-laplasis
miaxloebiTi
formuliT.
am
SemTxvevaSi
daSvebuli
cdomileba miT metia, rac ufro mcirea warmatebis albaToba. rodesac warmatebis albaToba p<0,1, mimarTaven puasonis miaxloebiT formulas. amocana ismis ase, vipovoT albaToba imisa, rom n damoukidebel cdaSi A xdomileba moxdeba zustad k-jer, Tu cdaTa ricxvi n Zalian didia, xolo TiToeul cdaSi warmatebis albaToba axlosaa nulTan (aseT xdomilobebs iSviaTi xdomilobebi ewodeba). puasonis
formulis
daSveba: namravli Teorema. albaToba
gamoyenebisas
inarCunebs mudmiv
bernulis
sqemis
gakeTebulia
erTi
mniSvnelovani
mniSvneloba anu P
n
.
k
warmatebis
dazianebis
albaToba
cdaSi
miaxloebiT gamoiTvleba formuliT: .
magaliTi.
transportirebisas
mza
produqciis
aris 0,0002. vipovoT albaToba imisa, rom gagzavnili 5000 erTeulidan daziandeba 3. Aamoxsna. n=5000; p=0,0002;k=3; =np=5000.0,0002=1. puasonis formulis Tanaxmad: (3)=
=
=0,06.
149 savarjiSo magaliTebi 1) Rvinis qarxanas gamougzavnes 5000 cali muxis kasri. albaToba imisa, rom kasri gzaSi daziandeba 0,0002-is tolia.
ras udris albaToba imisa,
rom qarxanaSi miRebuli kasrebidan sami kasri dazianebuli aRmoCndeba. 2) vaJis dabadebis albaTobaa 0,51. ras udris albaToba imisa, rom 100 axalSobili bavSvidan 50 vaJia. 3) 1000 adamianSi 8 eqimia. gamoTvaleT albaToba imisa, SemTxveviT arCeuli 100 adamianidan arc erTi eqimi ar iqneba. 4) gamoTvaleT albaToba imisa, rom 200 agdebis SemTxvevaSi liTonis monetaze mova gerbi aranakleb 95-jer da ara umetes 105-jer. 5) kamaTlis gagoreba xdeba 12000-jer. ras udris albaToba imisa, rom ,,6’’ mosvlis ricxvi moTavsebuli iqneba (1900; 2100) SualedSi. 6) msrolelis mizanSi moxvedris albaToba erT gasrolaze udris 0,75s.
ipoveT
albaToba
imisa,
rom
100
gasrolidan
msroleli
mizanSi
moaxvedrebs aranakleb 70-jer. 7) albaToba imisa, rom SeZenili iqneba latariis wamgebiani bileTi udris
0,1-s.
ras
udris
albaToba
imisa,
rom
600
nayidi
bileTidan
wamgebiani bileTebis raodenoba iqneba aranakleb 48 da ara umetes 55-sa.
Tavi 9 1. SemTxveviTi sidide da misi ganawilebis kanoni. albaTobis Teoriis erT-erTi ZiriTadi cnebaa SemTxveviTi sididis cneba.
sanam
SemTxveviT
sidides
ganvmartavT
ganvixiloT
ramdenime
magaliTi: kamaTlis gagorebisas cdis Sedegi aris ama Tu im waxnagis zemoT moqceva. radgan kamaTlis waxnagebze dasmulia wertilebi 1-dan 6-is CaTvliT, cdis Sedegs SevusabamoT ricxvi, romelic moqceul
waxnagze
wertilebis
raodenobas.
am
warmoadgens zemoT
SemTxvevaSi
SegviZlia
SemovitanoT X –sidide, romelsac SeuZlia miiRos 1,2,3,4,5 da 6-is toli mniSvnelobebi
imisda
mixedviT,
Tu
romeli
waxnagi
aRmoCnda
zemoT
moqceuli. ori kamaTlis gagorebisas SegviZlia SemovitanoT X –sidide, romelsac SeuZlia miiRos 2,3,4,...,12 -is toli mniSvnelobebi (qulaTa jami) imisda mixedviT, Tu romel da meore Sedegi,
waxnagebi aRmoCndnen zemoT moqceuli pirvel
kamaTlze. SevniSnoT, rom cdebs yovelTvis ar gaaCnia iseTi romlelebic
ricxviT
gamoisaxebian.
magaliTad,
yuTSi
moTavsebulia,
150 zomis, TeTri,
erTnairi
Savi,
wiTeli
da
burTulebi. alalbedze amoRebuli burTula SeiZleba aRmoCndes
mwvane am oTxi
Fferidan erT-erTi. cxadia, elementaruli xdomilobebi ricxvebiT ar gamoisaxeba, magram, SegviZlia ganvixiloT X â&#x20AC;&#x201C;sidide, romelsac SeuZlia miiRos 1,2,3 da 4-is toli mniSvnelobebi imisda mixedviT, Tu romeli ferisaa alalbedze amoRebuli burTula. ganxiluli neismieri
magaliTebidan
cda
aRiweros
SeiZleba ricviTi
vivaraudoT, sididiT,
rom
SesaZlebelia
romlis
mniSvneloba
damokidebulia cdis Sedegze. cdis Sedegebi ki warmoadgenen elementarul xdoilobaTa
sivrcis
elementarul funqcias. nebismieri
elementebs,
xdomilobaTa
e.
X
i.
â&#x20AC;&#x201C;sidide
warmoadgens
elementebze
sivrcis
gansazRvrul
-ze misi mniSvneloba aRvniSnoT X( ) simboloTi. davuSvaT x [X<x]
ricxvia.
xdomilobaTa
simravle,
CanaweriT
aRvniSnoiT
X( )
romelTaTvisac
<x,
im e.i.
elementarul [X<x]
aris
elementarul xdomilobaTa sivrcis qvesimravle. gansazRvreba. SemTxveviTi sidide ewodeba sivrceze gansazRvrul X( )
elementarul xdomilobaTa
funqcias, romelTaTvisac [X<x] simravle
yoveli x-ricxvisaTvis warmoadgens xdomilobas, garkveuli albaTobiT. SevniSnoT, rom [X<x] simravlesTan erTad, xdomilobebs warmoadgenen [X>x] da [X=x] simravleebi da maTac garkveuli albaTobebi Seesabameba. ganixileba ori tipis SemTxveviTi sidideebi: diskretuli da uwyveti. gansazRvreba. SemTxveviT sidides ewodeba diskretuli Tu is iRebs sasruli an Tvladi raodenobis mniSvnelobebs. ganvixiloT diskretuli tipis SemTxveviT sidide, (SevTanxmdeT,
romlis SesaZlo mniSvnelobebia
SemTxveviTi
sididis
SesaZlo
mniSvnelobebi
dalagebulia zrdis mixedviT). SemoviRoT aRniSvnebi: ,..., rogorc
viciT,
[X= ]
simravle
yoveli
,... (i=1,2,...,n,...)
xdomilobas, garkveuli albaTobiT: (1)
warmoadgens
gansazRvreba.
151 romlis pirvel
cxrils,
striqonSi
mocemulia
SemTxveviTi sididis mniSvnelobebi, xolo meore striqonSi Sesabamisi albaTobebi SemTxveviTi sididis ganawilebis kanoni ewodeba:
X
. .
. . .
P
. .
. . .
rogorc vxedavT ganawilebis kanoni mocemulia (1) tolobiT. SevniSnoT, rom
roca i j ,normirebis aqsiomis da
da
uTasebadi xdomilobebis jamis albaTobis Tvisebis gamoyenebiT miviRebT: e.i.
.
magaliTi. SemTxveviTi sidides warmoadgens ori kamaTlis agdebisas mosuli qulaTa jami. SevadginoT am SemTxveviTi sididis ganawilebis kanoni. 2
3
4
5
6
7
8
9
1 0
1 1
1 2
ganvixiloT X SemTxveviTi sidide da [X<x] xdomiloba. am xdomilobis damokidebulia x-ze da warmoadgens namdvili cvladis
albaToba
namdvil funqcias. am funqcias aRvniSnavT F(x)-iT da ganawilebis vuwodebT:
funqcias
F(x)=
ganawilebis funqcias gaaCnia Semdegi Tvisebebi: 1) ganawilebis funqcia araklebadia namdvil ricxvTa simravleze: Tu
maSin F( ) F
2) F(+ )=1, F(- )=0, rogorc cnobilia F( 3) ganawilebis
funqcia
uwyetia
)=
marcxnidan
; namdvil
ricxvTa
simravleze. SemTxveviTi sididis
ganawilebis funqcia warmoadgens SemTxveviTi
sididis universalur maxasiaTebels. ganawilebis funqciis saSualebiT SeiZleba gamovTvaloT X SemTxveviTi sididis raime [
] intervalSi moxvedris albaToba:
P(
152 F( ) F
)=P(X< )-P(X< )=
gansazRvreba. X SemTxveviTi sidides ewodeba uwveti tipis SemTxveviTi sidide,
F(x)=
Tu
misi
ganawilebis
, sadac
funqcia
warmoidgineba
Semdegi
saxiT:
arauaryofiTi funqciaa.
funcias X uwveti tipis SemTxveviTi sididis ganawilebis simkvrive ewodeba.
cxadia
SemTxveviTi
sididis
ganawilebis
albaToba ganawilebis
P(
da
.
ganawilebis simkvrives Soris arsebobs Tanafardoba: X uwveti tipis SemTxveviTi sididis raime [
funqciasa
] intervalSi moxvedris
simkvrivis saSualebiT gamoiTvleba Semdegnairad:
)=F( ) F
-
=
,
ukanaskneli Tanafardobidan gamomdinareobs uwveti tipis SemTxveviTi sididis F(
ganawilebis simkvrivis normirebis piroba:
) F
=1, marTlac,
=1.
savarjiSo magaliTebi 1) msroleli mizanSi isvris 3-jer. yoveli gasrolisas moxvedris albaToba udris 0,4-s. yoveli moxvedrisas msrolels eTvleba 5 qula. dawereT miRebuli qulebis ganawilebis kanoni. 2) kamaTels agoreben 3-jer. dawereT 6-ianis mosvlaTa ganawilebis kanoni. 3)
msroleli,
romelsac
oTxi
vazna
aqvs,
mizanSi
isvris
pirvel
moxvedramde. yoveli gasrolisas moxvedris albaToba udris 0,8-s. ipoveT daxajuli vaznebis ganawilebis kanoni. 4) albaToba imisa, rom biblioTekaSi studentisaTis saWiro wigni Tavisufalia, udris 0,4-s. SeadgineT im biblioTekebis ganawilebis kanoni, romlebic unda inaxulos studentma, Tu qalaqSi oTxi biblioTekaa. 5) SemTxveviTi sididis ganawilebis funqcia mocemulia Semdegi saxiT:
vipovoT (0,25; 0,75) intervalSi moxvedris albaToba. 6) SemTxveviTi sididis ganawilebis funqcia mocemulia Semdegi saxiT:
153
ipoveT ganawilebis simkvrive. 2. SemTxveviTi sididis ricxviTi maxasiaTeblebi SemTxveviTi sididis ganawilebis dasaxasiaTeblad xSirad sakmarisia ramdenime
iseTi
ricxviTi
maCveneblis
codna,
romlebic
gamoxataven
SemTxveviTi sididis arsebiT Tvisebebs. aseTi ricxviTi maxasiaTeblebia: SemTxveviTi sididis maTematikuri lodini; SemTxveviTi sididis dispersia; sxvadasxva rigis sawyisi da centraluri momentebi; mediana; moda da sxva. vTqvaT, mocemulia diskretuli tipis SemTxveviTi sididis ganawilebis kanoni:
X
. .
. . .
P
. .
. . .
gansazRvreba. lodini
diskretuli
ewodeba,
misi
tipis
SesaZlo
SemTxveviTi
mniSvnelobis
sididis
maTematikuri
Sesabamis
albaTobaze
namravlis jams, Tu es jami arsebobs. X
SemTxveviTi
sididis
maTematikuri
lodini
aRiniSneba
M(X)
simboloTi:
M(X) = e.i.
diskretuli
= tipis
SemTxveviTi
,
sididis
(1)
maTematikuri
lodini
arsebobs TuU(1) tolobis marjvena mxares mdgari mwkrivi absoluturad krebadia.
SevniSnoT,
rom
Tu
SemTxveviTi
sidide
iRebs
sasruli
raodenobis sasrul mniSvnelobebs es jami yovelTvis iarsebebs. vTqvaT
X,
uwveti
tipis
SemTxveviTi
sididea,
romlis
ganawilebis
simkvrivea . gansazRvreba. Tu integrali
absoluturad krebadia, maSin
mas uwyveti tipis X SemTxveviTi sididis maTematikuri lodini ewodeba:
M(X)=
.
maTematikur lodins gaaCnia Semdegi ZiriTadi Tvisebebi:
154 Tviseba 1. mudmivis maTematikuri lodini TviT am mudmivis tolia. marTlac, raime C
mudmivi SeiZleba ganvixiloT, rogorc SemTxveviTi
sidide, romelic C mniSvnelobas iRebs albaTobiT erTi maTematikuri lodinis ganmartebis Tanaxmad: M(C)=1C=C. Tviseba 2. SemTxveviTi sidideTa jamis maTematikuri lodini SesakrebTA maTematikuri lodinebis jamis tolia:
M(X+Y)=M(X)+M(Y). vTqvaT, X-is SesaZlo mniSvnelobebia albaTobebi
. ,
xolo
SemTxveviTi
analogiurad Y-is
Sesabamisi
...,
),
,...
, -Ti
mniSvnelobas
:
mniSvnelobebs:
...,
,...,
aRvniSnoT
SemTxveviTi sidide miiRebs mniSvnelobas miiRebs
mniSvnelobebia maSin (X+Y)
miiRebs
...,
...,
SesaZlo
albaTobebi
sidide
,
, xolo Sesabamisi
=P[
],
albaToba
imisa,
rom X
, xolo Y SemTxveviTi sidide
i,j=1,2,3,...
;
maTematikuri
lodinis ganmartebis Tanaxmad gveqneba:
(1)
M(X+Y)= sruli albaTobis formulis Tanaxmad: =
.
(2)
Tu (2)-s gaviTvaliswinebT (1) tolobaSi miviRebT:
M(X+Y) me-2
Tviseba
= M(X)+M(Y).
samarTliania
SesakrebTa
nebismieri
sasruli
raodenobisaTvis. Tviseba 3. damoukidebel SemTxveviT sidideTa namravlis maTematikuri lodini TanamamravlTaAmaTematikuri lodinebis namravlis tolia:
M(XY)=M(X)M(Y). gamoviyenoT namravlis
me-3
Tvisebis
SesaZlo
=P[
],
SemTxveviTi sidideebia gveqneba: M(XY)=
Cvenebis
mniSvnelobebia
i,j=1,2,3,... =
dros
,
miRebuli
aRniSvnebi.
XY
albaTobiT
ramdenadac X daY Y damoukidebeli
maTematikuri lodinis ganmartebis Tanaxmad
155 M(X)M(Y).
=
zemoT naCvenebi (1), (2) da (3) Tvisebebidan gamomdinareobs Sedegi. Tu a da b nebismieri mudmivebia, xolo X daY Y SemTxveviTi sidideebi, maSin
M(aX+bY)=aM(x)+bM(y). gansazRvreba. (X-a) sxvaobas ewodeba X SemTxveviTi sididis gadaxra a ricxvisgan. roca a=M(X) , maSin (X-M(X))
sxvaobas ubralod gadaxra
ewodeba, xolo (X-M(X)) SemTxveviT sidides ki _ cetrirebul SemTxveviTi sidides uwodeben. Teorema.
centrirebuli
SemTxveviTi
sididis
maTematikuri
lodini
M(X-M(X)) =0.
nulis tolia.
damtkiceba. maTematikuri lodinis Tvisebebis gamoyenebiT miviRebT:
M(X-M(X)) =M(X)-M(M(X))=M(X)-M(X)=0. maTematikuri
lodini
warmoadgens
SemTxveviTi
sididis
erT-erT
ZiriTad ricxviT maxasiaTebels, magram, rogorc Semdgom vnaxavT, mxolod maTematikuri
lodini
ar
kmara
SemTxveviTi
sididis
dasaxasiaTeblad.
kerZod, maTematikuri lodini ar iZleva warmodgenas SemTxveviTi sididis mniSvnelobebze
da
maTi
gafantulobis
Sesaxeb
maTematikuri
lodinis
irgvliv. SemTxveviTi gafantulobis
sididis
Tavisi
dasaxasiaTeblad
maTematikuri
sargebloben
lodinis
ricxviTi
irgvliv
maxasiaTebliT
romelsac dispersia ewodeba. gansazRvreba.
gadaxris
kvadratis
maTematikur
lodins
SemTxveviTi
sididis dispersia ewodeba da aRiniSneba D(X) simboloTi: D(X)=M
.
maTematikur lodins ganmartebis Tanaxmad: D(X)= rodesac X aris diskretuli tipis SemTxveviTi sidide. D(X)= Tu
X
uwveti
tipis
,
SemTxveviTi
sididea,
romlis
maTematikuri
lodinis
Tvisebebs
ganawilebis
simkvrivea . Tu
gamoviyenebT
gamosaTvlelad miviRebT ufro moxerxebul formulas:
dispersiis
156 +
D(X)=M =M(
)-
= M(
+
=M(
)-
)-M(2XM(X))+
=
.
e.i. SemTxveviTi sididis dispersia udris misi kvadratis maTematikur lodins gamoklebuli maTematikuri lodinis
kvadrati.
SemTxveviTi sididis dispersias gaCnia Semdegi Tvisebebi: Tviseba 1. mudmivis dispersia nulis tolia. marTlac, D(C)=M[C Tviseba
2.
=M[C-
mudmivi
=0.
Tanamamravli
gamodis
dispersiis
niSnis
gareT
kvadratSi axarisxebuli:
D(CX)=
D(X).
marTlac,
D(CX)=M(
)= M[
=
)= M[
=
=
Tviseba
3.
damoukidebel
SemTxveviT
sidideTa
jamis
dispersia
Sesabamisi dispersiebis jamis tolia
D(X+Y)=D(X)+D(Y). dispersiis ganmartebis Tanaxmad gveqneba:
D(X+Y)=M
=M
=M
+2M[X-M(X)][Y-M(Y)]+ M =D(X)+2M[X-M(X)]M[Y-M(Y)]+D(Y)=D(X)+ D(Y),
radganac
M[X-M(X)]=M[Y-M(Y)]=0. gansazRvreba.
kvadratul
fesvs
dispersiidan
SemTxveviTi
saSualo kvadratuli gadaxra ewodeba da aRiniSneba
sididis
simboloTi.
= SevniSnoT, rom dispersias gaaCnia SemTxveviT sididis ganzomilebis kvadratis
ganzomileba,
ganzomileba
aqvs,
rac
xolo
saSualo
SemTxveviT
kvadratuli sidides,
gadaxras
amasTanave
igive orTave
arauaryofiTi sidideebia da axasiaTebs mis gafantulobas maTematikuri lodinis
irgvliv.
saSualo
kvadratuli
Tvisebebi: Tviseba 1.
sadac C mudmivia.
gadaxras
gaaCnia
Semdegi
Tviseba
2.
Tu
X
157 Y damoukidebeli
da
SemTxveviTi
sidideebia, maSin . gansazRvreba. SemTxveviT
SemTxveviT
sididis
sidides,
gayofiT
romelic
saSualo
miiReba
centrirebuli
kvadratuli
gadaxraze
normirebuli SemTxveviT sidide ewodeba da aRiniSneba: =
.
normirebuli SemTxveviTi sididis maTematikuri lodini nulis tolia, dispersia erTis. MM
D(
M(
=
=M[
]=
M[X-M(X)]=0,
D[(X-M(X)]
)] =
D[X]=1.
gansazRvreba. SemTxveviTi sididis k_uri xarisxis maTematikur lodins
k-rigis sawyisi momenti ewodeba da aRiniSneba =
simboloTi:
k=0,1,2,3,....
gansazRvreba.
centrirebuli
SemTxveviTi
sididis
k-uri
xarisxis
maTematikur lodins k-rigis centraluri momenti ewodeba da aRiniSneba simboloTi:
=M
k=0,1,2,3,....
advili saCvenebelia, rom: 1;
=M(X);
=1;
=0;
=D(X)=
-4
-
+6
-3
-3
+2
;
.
gansazRvreba. mocemulia X SemTxveviTi sidide romlis ganawilebis funqciaa F(x) maSin misi mediana ewodeba iseT sruldeba pirobebi: F( ) zRvaria
da F(
)
, sadac F(
ricxvs, romlisTvisac
) , F funqciis marjvena
wertilze.
gansazRvreba. X SemTxveviTi sididis asimetriis koeficienti ewodeba ricxvs da aRiniSneba simboloTi:
.
gansazRvreba.
X
158 SemTxveviTi sididis =
sidides da aRiniSneba simboloTi:
eqcesi
ewodeba
-3)
-3).
gansazRvreba. diskretuli tipis X SemTxveviTi sididis moda ewodeba mis im SesaZlo mniSvnelobas, romlis Sesabamisi albaToba udidesia. uwyveti tipis X SemTxveviTi sididis moda ewodeba ganawilebis simkvrivis lokaluri maqsimumis wertils. savarjiSo magaliTebi 1)
SemTxveviTi sididis ganawilebis kanoni mocemulia cxrilis saxiT: -5
2
3
4
0.4
0,3
0,1
0,2
vipovoT maTematikuri lodini da dispersia. 1) vipovoT
dispersia
da
saSualo
kvadratuli
gadaxra,
Tu
SemTxveviTi sididis ganawilebis kanoni mocemulia cxrilis saxiT:
3)vipovoT da
Q131
140
160
180
0.05
0,10
0,25
0,60
SemTxveviTi sididis maTematikuri lodini, Tu cnobilia,
SemTxveviTi sidideTa maTematikuri lodinebi: a) b) 4)
da
SemTxveviTi SemTxveviTi
5)
sidideebi
sididis
damoukidebeli
dispersia,
Tu
arian.
vipovoT
cnobilia,
rom
SemTxveviTi sididis ganawilebis kanoni mocemulia cxrilis saxiT.
-2
0
1
2
0.4
0,3
0,1
0,2
vipovoT pirveli sami rigis sawyisi da centraluri momentebi.
6)
SemTxveviTi sidide ganawilebulia Tanabrad [3, 8] intervalze.
vipovoT maTematikuri lodini da dispersia.
159
Tavi 10 ganawilebis kanonTa ZiriTadi saxeebi
1. binomuri ganawileba ganvixiloT
orSedegiani
damoukidebel
cdaTa
mimdevroba.
warmatebaTa ricxvi sasrul cdaTa mimdevrobaSi aRvniSnoT X â&#x20AC;&#x201C;iT. cxadia, igi warmoadgens SemTxveviT sidides, ganawilebis kanoniT: 0
1
â&#x20AC;Ś. . . . . .
gansazRvreba.
diskretuli
tipis
X
SemTxveviTi
sidides
ewodeba
binomurad ganawilebuli Tu misi SesaZlo mniSvnelobebia 0,1,2,3,...,n. xolo Sesabamisi albaTobebi gamoiTvleba
formuliT:
PP(X=k)= vipovT
binomurad
ganawilebuli
(k)=
.
SemTxveviTi
sididis
maTematikuri
lodini da dispersia. -iT aRvniSnoT i-ur cdaSi warmatebaTa ricxvi (cxadia, igi udris . SevniSnoT, rom
erTs an nuls), maSin
, sadac i=1,2,3,...n ; e.i.
sididis ganawilebis kanons eqneba saxe:
=0(1-p)+1p=p;
M(
)=p;
= M(
SemTxveviTi
)
= p- =p(1-p)=pq. Tu
gamoviyenebT, damoukidebeli SemTxveviTi sidideebis jamis maTematikuri lodinisa da dispersiis gamosaTvlel formulas, miviRebT: =p+p+...+p=np ;
=
pq+pq+...+pq=npq.
=
2.
puasonis ganawileba
160 gansazRvreba. diskretuli tipis X
SemTxveviT
sidides
ewodeba
puasonis kanoniT ganawilebuli Tu misi SesaZlo mniSvnelobebia 0, 1, 2, 3, ... ,k,.... xolo Sesabamisi albaTobebi gamoiTvleba formuliT: PP(X=k)= puasonis
kanoniT
ganawilebuli
SemTxveviTi
sididis
lodini da dispersia erTmaneTis tolia da emTxveva
maTematikuri
parametrs:
=
2. geometriuli ganawileba vTqvaT, bernulis sqemiT cdebs vatarebT pirvel warmatebamde. cdaTa ricxvi, romelic saWiroa pirvel warmatebamde aRvniSnoT X-iT. cxadia, X=k,
(k=1,2,3,...,n,...) niSnavs, rom wina (k-1) cdaSi marcxs hqonda adgili, xolo
k
â&#x20AC;&#x201C;ur cdaSi warmatebas. Tu gaviTvaliswinebT damoukidebel xdomilobaTa namravlis albaTobis gamosaTlel formulas, miviRebT:
P(X=k)= gansazRvreba. diskretuli tipis X geometriuli
. SemTxveviTi
kanoniT ganawilebuli Tu misi SesaZlo
sidides
ewodeba
mniSvnelobebia 0,
1, 2, 3, ... ,k,.... xolo Sesabamisi albaTobebi gamoiTvleba formuliT:
P(X=k)= geometriulad lodini
ganawilebuli xolo dispersia
.
SemTxveviTi =
sididis
maTematikuri
.
3. Tanabari ganawilebis kanoni gansazRvreba. uwyveti tipis X intervalze
SemTxveviTi
sidides
ewodeba [a,b]
Tanabrad ganawilebuli Tu, mis ganawilebis funqciaa:
F(x)= ganawilebis simkvrivea
vipovoT
[
161 intervalze Tanabrad ganawilebuli SemTxveviTi
]
sididis maTematikuri lodini da dispersia: =
=
=
=
;
=
= =
.
4. normaluri ganawilebis kanoni gansazRvreba.
uwyveti
tipis
X
SemTxveviTi
sidides
ewodeba
normaluri kanoniT ganawilebuli, Tu mis ganawilebis simkvrives aqvs Semdegi saxe:
f(x)= a da
sadac
parametrebi
kanoniT
ricxvebia,
ewodeba
maTematikuri
da
lodinis
ganawilebuli
aRiniSneba N(a ,
, romlebsac
Sesabamisad
da
dispersiis:
X
SemTxveviT
normaluri
tolia
SemTxveviTi =
sidide
ganawilebis
.
sididis
normaluri
parametrebiT
a da
) simboloTi.
praqtikaSi didi gamoyeneba aqvs normalur ganawilebas parametrebiT 0 da 1, mas standartuli normaluri
ganawileba ewodeba.
standartuli normaluri ganawilebis simkvrivea
(x)=
,
xolo ganawilebis funqcia:
F(x)=
dt .
funqcia dakavSirebulia laplasis
= vTqvaT,
SemTxveviTi
sidide
funqciasTan tolobiT
. ganawilebulia
normaluri
kanoniT, maSin rogorc viciT simkvrivis saSualebiT SemTxveviTi sididis raime SualedSi moxvedris albaToba gamoiTvleba Semdegnairad:
162
cvladTa gardaqmniT es albaToba gamoisaxeba laplasis
funqciis
saSualebiT, kerZod . magaliTi.
vTqvaT,
SemTxveviTi
(1)
sidide
ganawilebulia
normaluri kanoniT, vipovoT albaToba imisa, rom gadaxris absoluturi mniSvneloba naklebi iqneba 3-ze. amoxsna. visargebloT (1) formuliT: = =
=2
ganvixiloT
(1)
=2.0,1179=0,2358. tolobis
kerZo
SemTxveva,
rodesac
da
e.i.
0,9973
kanoniT
toli
albaTobiT
SeiZleba
ganawilebuli
mniSvnelobebs
=
=2
0,9973.
CavTvaloT,
rom
normaluri
sidide
miiRebs
SemTxveviTi Sualedidan.
am
faqts
emyareba
rogorc
Teoriul, ise praqtikul amocanebSi gamoyenebis mqone e.w. sami sigmas wesi, romlis
Tanaxmadac,
normalurad
maTematikuri lodinidan
ganawilebuli
SemTxveviTi
sididis
-ze meti gadaxra praqtikulad SeuZlebeli
xdomilobaa.
gama-ganawileba gansazRvreba. uwyveti tipis X
SemTxveviTi
sidides
ewodeba gama-
kanoniT ganawilebuli, Tu igi Rebulobs mxolod dadebiT mniSvnelobebs da mis ganawilebis simkvrives aqvs Semdegi saxe:
sadac
da
ganawilebis parametrebia, xolo
163
eileris meore gvaris integrali. gama-kanoniT ganawilebuli SemTxveviTi sididis maTematikuri lodini da dispersia Sesabamisad tolia: ;
beta-ganawileba gansazRvreba. uwyveti tipis X
SemTxveviT
sidides
ewodeba beta-
kanoniT ganawilebuli, Tu igi Rebulobs mniSvnelobebs (0,1) intervalidan da mis ganawilebis simkvrives aqvs Semdegi saxe: , sadac
da
beta-kanoniT
ganawilebis parametrebia. ganawilebuli
gama-kanoniT
ganawilebuli
SemTxveviTi
sididis maTematikuri lodini da dispersia Sesabamisad tolia: ;
ganawileba vTqvaT
mocemuli
gvaqvs
ganawilebiT
damoukidebeli
SemTxveviTi
ganvsazRvroT axali SemTxveviTi
sidideebi sidide
tolobiT: . gansazRvreba. SemTxveviT ewodeba
(1)
sidides, romelic mocemulia (1) tolobiT
kanoniT ganawilebuli,
Tavisuflebis xarisxiT.
ricxvi gviCvenebs, Tu ramdeni Sesakrebia (1) tolobis marjvena mxares da
warmoadgens
kanoniT ganawilebis erTaderT parametrs. cxadia,
164 Tavisuflebis xarisxis mqone
SemTxveviTi
sididis
ganawilebis simkvrives aqvs Semdegi saxe:
Tavisuflebis xarisxis mqone
SemTxveviTi
sididis maTematikuri
lodini da dispersia Sesabamisad tolia:
stiudentis ganawileba vTqvaT
mocemuli romlebic
SemTxveviTi
damoukidebeli
SemTxveviTi
ganawilebulia
ganvixiloT
sidide Semdegi
sidideebi: ;
.
SemTxveviTi sididis ganawilebis simkvrives aqvs Semdegi saxe:
.
SemTxveviT
sidides ewodeba stiudentis kanoniT ganawilebuli
SemTxveviTi sidide, misi maTematikuri lodini da dispersia, Sesabamisad, tolia:
, roca
, roca
Tavi 11 did ricxvTa kanoni
1. CebiSevis utoloba SemTxveviT sidideTa didi raodenobis jamebis yofaqceva specialur gamokvlevas saWiroebs. magaliTad, ganvixiloT damoukidebeli, erTnairad ganawilebuli mniSvneloba
SemTxveviTi sidideebis ariTmetikuli saSualo
165 = aRvniSnoT:
M( )=a,
D( )=
.
maSin
M( )=M(
)=
D( ) =DD(
= na=a,
)
rogorc vxedavT,
=
n
=
.
(2)
SemTxveviT sidides igive maTematikuri lodini
aqvs, rac TiToeul Sesakrebs, magram dispersia TiToeuli
(1)
Sesakrebis.
e.i.
SesakrebTa
-jer ufro mcirea, vidre
raodenobis
zrdasTan
erTad
mcirdeba gafantuloba Tavisi saSualos mimarT. ganvixiloT
diskretuli
tipis
SemTxveviTi
sidide,
gaaCnia sasruli dispersia da maTematikuri lodini: M(X)=a, iyos
winaswar
albaToba imisa, rom
dasaxelebuli
raime
dadebiTi
romelsac
D(X)=
ricxvi.
.
SevafasoT
SemTxveviTi sidide miiRebs mniSnelobas
intervalidan. CebiSevis utoloba. albaToba imisa, rom
SemTxveviTi sididis Tavisi
maTematikuri lodinidan gadaxris absoluturi sidide ar aRemateba aranaklebia, vidre ]
.
(3)
damtkiceba. ganvixiloT xdomiloba:
maSin = da radgan =1, gveqneba: . amitom,
(3)
utolobis
dasamtkiceblad
(4) sakmarisia
albaTobis Sefaseba. ganmartebis Tanaxmad,
SemTxveviTi sididis dispersia
-s
166 . (5) amitom
mwkrivis Tu
marjvena
avjamavT
(5)
mxareSi
TiToeuli
mxolod
romlebisTvisac
maT
Sesakrebi
nawils,
arauaryofiTia,
kerZod,
im
wevrebs,
, jami ar gaizrdeba. .
jami kidev ufro Semcirdeba, Tu yovel
-s SevcvliT
-iT:
. saidanac ]
.
(6)
(4) tolobis ZaliT ] magaliTi.
SevafasoT
.
albaToba
,
Tu
cnobilia,
rom amoxsna. visargebloT (6) formuliT, gveqneba . sazogadod
CebiSevis
utoloba
iZleva
maTematikuri
lodinisgan
SemTxveviTi sididis gadaxris mxolod uxeS Sefasebas, rasac adasturebs Semdegi magaliTi. magaliTi. vTqvaT, M(X)=a,
D(X)=
da
maSin =
Tu davuSvebT, rom
=0,(1).
SemTxveviTi sidide ganawilebulia normalurad
parametrebiT, maSin rogorc viciT, imave xdomilobis albaToba didi sizustiT tolia 0,0027, rac gacilebiT naklebia vidre 0,(1).
2. did ricxvTa kanoni vTqvaT, SemTxveviT
damoukidebeli, sidideTa
mimdevrobaa,
dispersiiT. ganvixiloT =
erTnairad
maTematikuri
ganawilebuli
lodiniTa
da
167 sidideTa mimedevroba. (1) da (2) formulis da
SemTxveviT
(6) utolobis ZaliT, nebismieri
dadebiTi ricxvisaTvis gveqneba: ]
Tu gaviTvaliswinebT, rom
, roca
miviRebT ]=0.
ukanaskneli
Tanafardoba
samarTliania
im
SemTxvevaSic,
roca
SemTxveviT sidideeebs ar gaaCniaT sasruli dispersia. sabolood SeiZleba CamovayaliboT Teorema, romelic cnobilia did ricxvTa kanonis saxeliT. Teorema.
(did
ricxvTa
kanoni)
erTnairad
Tu
ganawilebuli SemTxveviTi sidideebia saerTo maSin nebismieri
maTematikuri lodiniT,
dadebiTi ricxvisaTvis samarTliania toloba:
GgansazRvreba. SemTxveviT sidideTa albaTobiT krebadi
mimdevrobas ewodeba
SemTxveviT sididisaken Tu nebismieri
dadebiTi
ricxvisaTvis samarTliania toloba: . Teorema
(CebiSevis
Teorema)
Tu
wyvil-wyvilad
damoukidebel SemTxveviT sidideTa mimdevrobaa, romelTa dispersiebis mimdevroba
SemosazRvrulia maSin
erTi
nebismieri
da
igive
mudmiviT,
ricxvisaTvis
adgili
e.i. aqvs
tolobas: . CebiSevis Teoremis arsi mdgomareobs SemdegSi: miuxedavad imisa, rom calkeul damoukidebel SemTxveviT sidideebs SeuZliaT miiRon Tavisi maTematikuri lodinisgan sagrZnoblad gansxvavebuli mniSvnelobebi, didi raodenobis
SemTxveviT
SemTxveviTi
sidide),
xasiaTs.
sxva
sidideTa
garkveuli
sityvebiT,
rom
saSualo
azriT, vTqvaT,
ariTmetikuli
(rogorc
kargavs
SemTxveviTi
sididis
calkeul
SemTxveviT
sidides
SeiZleba gaaCndes didi gadaxra, magram maTi saSualo ariTmetikulis gadaxra sakmarisad mcirea, roca SesakrebTa ricxvi didia.
168 CebiSevis Teoremis kerZo saxes warmoadgens i. bernulis Teorema, romelic did ricxvTa kanonis umartives formas warmoadgens. Teorema.
vTqvaT,
aris
xdomilobis
moxdenis
damoukidebel cdaSi. vigulisxmoT, rom TiToeul cdaSi moxdenis albaToba aris
, maSin nebismieri
ricxvi xdomilobis
ricxvisaTvis adgili aqvs
tolobas:
SevniSnoT, rom xolo
sidide aris
aris
xdomilobis
xdomilobis fardobiTi sixSire,
moxdenis
albaToba.
bernulis
Teorema
akavSirebs am or sidides: fardobiT sixSires da albaTobas. pirveli empiriuli
sididea,
meore
ki
_
Teoriuli.
bernulis
Teorema
imaze
migviTiTebs, rom Tu cdaTa ricxvi didia, rogorc Semdgom vnaxavT, maSin fardobiTi sixSire amave xdomilobis ucnobi Teoriuli albaTobis ,, kargiâ&#x20AC;&#x2122;â&#x20AC;&#x2122;
Sefasebaa.
es
Teorema
saSualebas
iZleva
albaTobis
Teoria,
rogorc SemTxveviT xdomilobaTa kanonzomierebebis maTematikuri modeli, daukavSirdes praqtikas, e.i. gvqondes ama Tu im praqtikuli amocanis gadawyvetis saSualeba. savarjiSo magaliTebi 1)
CebiSevis
utolobis
gamoyenebiT
albaTobebi,
Tu
aris
SevafasoT normalurad
ganawilebuli SemTxveviTi sidide. 2)
SemTxveviTi sididis maTematikuri lodini M (X)=1, xol dispersia CebiSevis
utolobis
gamoyenebiT
SevafasoT
utolobis albaToba. 3) visargebloT CebiSevis utolobiT,
SevafasoT albaToba imisa, rom
<0,2. Tu 4) mocemulia
da
gamoyenebiT qvemodan SevafasoT 5)
CebiSevis utolobis
is mniSvneloba.
SemTxveviTi sididis maTematikuri lodini M (X)=1, xol dispersia SevafasoT qvemodan Semdegi xdomilobebis albaTobebi: , diskretuli
,
SemTxveviTi sidide mocemulia ganawilebis kanoniT:
0,3
169 0,6
0,2
0,8
CebiSevis utolobis gamoyenebiT SevafasoT
utolobis
albaToba. 7) diskretuli
SemTxveviTi sidide mocemulia ganawilebis kanoniT:
0,1
0,4
0,6
0,2
0,3
0,5
CebiSevis
utolobis
gamoyenebiT
SevafasoT
albaToba
imisa,
rom
Tavi 12 MmaTematikuri statistikis elementebi 1.maTematikuri statistikis sagani da ZiriTadi amocanebi maTematikuri SemTxveviT
statistika,
movlenebs
maTematikuri
rogorc
da
statistika
albaTobis
masTan
iyenebs
Teoria,
dakavSirebul
albaTobis
AAაmocanebs.
Teoriis
meTodebs,
sargeblobs analogiuri cnebebiT, magram miuxedavaT amisa, igi rogorc
damoukidebeli
garkveuli
azriT,
kerZod, Tu
sagani.
albaTobis
albaTobis
(mizans)
kanonzomierebebis amocanas
Teoriis
statistikis
amocanebis
Teoriis ZiriTadi amocanaa
modelidan sxvadasxva rTuli albaTuri
maTematikuri
Seiswavlis
ganixileba amocanebi,
Sebrunebulia.
mocemuli albaTuri
xdomilobebis albaTobebis gamoTvla da dadgena, maTematikuri statistikis ZiriTad
warmoadgens
SemTxveviT
movlenis
dakvirvebebis
safuZvelze dasabuTebuli statistikuri daskvnebis gamotana Sesaswavli SemTxveviTi movlenis albaTuri modelis Sesaxeb.
170 ganvixiloT eqsperimenti, romelSic vakvirdebiT
magaliTisTvis
raime A xdomilobis moxdena ar moxdenisfaqts. Cveni mizania safuZvelze vipovoT (SevafasoT) saqme gvaqvs
maTematikuri
statistikis tipur
sidide,
p=P(A) albaToba.
ucnobi
amocanasTan. Tu n cdaSi A
adili hqonda m-jer, ucnobi P(A)
xdomilobas aviRoT
A xdomilobis
dakvirvebaTa
albaTobis Sesafaseblad
garkveuli azriT, axlos unda iyos P(A)
romelic,
albaTobasTan, rogorc Semdgom vnaxeT amis garantias iZleva did ricxvTa kanoni. ucnob parametrTa statistikuri Sefaseba warmoadgens maTematikuri statistikis
erT-erT
araparametruli
ZiriTad
Sefasebis
amocanas.
amocanebi
ganixileba
(ganawilebis
kanoni,
agreTve
ganawilebis
funqcia, simkvrive,...), statistikuri hipoTezebi.
3. SerCeviTi meTodi maTematikuri
statistikis
warmoadgens
e.w.
SerCeviTi
ganvixiloT
magaliTi.
kvlevis
meTodi.
vTqvaT
erT-erT
misi
ZiriTad
arsis
gvainteresebs
meTods
ukeT
gasarkvevad
wundebul
detalTa
raodenobis dadgena qarxnis mier gamoSvebuli 1000000 detalidan. cxadia, yvela detalis Semowmeba Zalze Sromatevadi saqmea, zogjer SeuZlebelic (SeiZleba detali Semowmebis Sedegad FgafuWdes), amitom qarxnis
mier
gamoSvebul
wundebul
detalTa
moxerxebulia
raodenobaze
daskvna
gavakeToT mis raRac nawilze dakvirvebis Sedegad. gansazRvreba. erTgvarovan obieqtTa erTobliobis zogadi Tvisebebis kvlevis
statistikur
meTods,
romlis safuZvelia am obieqtTa mxolod
nawilis SerCeva da Seswavla, SerCeviTi meTodi ewodeba. gansazRvreba. yvela im erTgvarovan obieqtTa xdeba
SerCeva,
elementTa
generaluri
erTobliobas,
daskvna generaluri
erToblioba
romelTa
erTobliobis
erTobliobas saidanac
ewodeba,
Seswavlis
xolo
safuZvelze
SerCeuli keTdeba
Sesaxeb, SerCeviTi erToblioba anu
SerCeva ewodeba. imisaTvis, rom SerCevis safuZvelze
gakeTebuli daskvna iyos ‘’swori’’
saWiroa SerCeva iyos warmomadgenlobiTi. did ricxvTa kanonis Tanaxmad, SerCeva iqneba
warmomadgenlobiTi Tu igi SemTxveviTia, e.i.
generaluri
erTobliobis
171 obieqts SerCevaSi
yovel
moxvedris
erTnairi
albaToba aqvs. SerCeva rodesac
SeiZleba yovel
ganxorcieldes
Semowmebul
ornairad:
obieqts
SerCeva
aRar
daubruneblad,
vabrunebT
generalur
erTobliobaSi da SerCeva dabrunebiT, rodesac yovel Semowmebul obieqts vabrunebT generalur erTobliobaSi, SemdgomSi Cven ganvixilavT SerCevas dabrunebiT.
igulisxmeba, rom
mxolod
SerCevis procesi ar cvlis
generaluri erTobliobis ganawilebas. SerCeviT meTods SeiZleba mieces Semdegi interpretaciac, romelic dafuZnebuli iqneba elementarul xdomilobaTa sivrcis da SemTxveviTi sididis
cnebebze.
amiT
saSualeba
mogvecema
statistikuri
amocana
CamovayaliboT da amovxsnaT albaTobaTa TeoriaSi miRebuli meTodebiT. vTqvaT,
vatarebT
raime
cdas,
romlis
Sesabamisi
elementarul
xdomilobaTa sivrcea Ω. ganvixiloT Ω sivrceze X SemTxveviTi sidide, romlis ganawilebis funqciaa F(x) . davuSvaT cdas vimeorebT n-jer , i-uri cdis
Sedegad
aRvniSnoT
X
SemTxveviTi
sididis
mier
miRebuli
mniSvneloba
–iT. miviRebT mimdevrobas: (1)
aRniSnuli
mimdevroba
SeiZleba
ganvixiloT
Semdegnairadac:
ganvixiloT damoukidebel SemTxveviT sidideTa mimdevroba (2) romlis ganawilebis
yoveli
wevri
kanoniT.
X
ganawilebulia
iyos
SemTxveviTi
SemTxveviTi sididis
sididis
mier
miRebuli
realizacia (i=1,2,..,n). SemdgomSi (1) da (2) mimdevrobebs gavaigivebT. gansazRvreba. n generaluri
moculobis SerCeva F(x) ganawilebis funqciis mqone
erTobliobidan
ganawilebul
SemTxveviT
TiToeuli wevri ganawilebulia SemTxveviTi
ewodeba
sididis
damoukidebel,
erTnairad
sidideTa mimdevrobas, romlis
F(x) ganawilebis kanoniT. SemdgomSi, X
realizaciis
Sedegad
miRebul
mniSvnelobebs
davalagebT zrdis mixedviT, mimdevrobas (3)
, variaciuli mwkrivi ewodeba.
(3) mimdevrobaSi SesaZlebelia elementTa ganmeoreba. vTqvaT, sul gvaqvs
r gansxvavebuli
mniSvneloba
amasTan
–uri
SerCevaSi ewodeba
gvxdeba
172 (i=1,2,..,r,
-jer
).
â&#x20AC;&#x201C;uri elementis sixSire, xolo Sefardebas
ricxvs =
fardobiTi
sixSire . SerCevis
Cawera mosaxerxebelia cxrilis saxiT, romlis pirvel
striqonSi Cawerilia SerCevis strionSi
maTi
Sesabamisi
gansxvavebuli mniSvnelobebi, xolo meore fardobiTi
sixSireebi.
aseT
cxrils
X
SemTxveviTi sididis statistikuri ganawilebis cxrili ewodeba:
Tu X uwyveti
.
. .
.
. .
tipis SemTxveviTi sididea, maSin ganawilebis cxrilis
Sesadgenad iqcevian Semdegnairad:
X SemTxveviTi sididis mier miRebul
mniSvnelobaTa simravles vyofT k nawilad wertilebiT ganvixiloT intervalebi: [
]; ]
]; ]
];...;]
] .
-iT aRvniSnoT dakvirvebaTa is raodenoba (1) SerCevidan, romlebic ] intervalSi (i=1,2,..,k). xolo
moTavsdnen [
]
]
. . .
= . ]
. . .
4. ganawilebis parametrebis statistikuri Sefaseba ganvixiloT
raime obieqtTa
generaluri
erToblioba da, vTqvaT,
gvainteresebs am obieqtTa raime niSan-Tvisebis Seswavla. davukavSiroT mocemul generalur
erTobliobas SemTxveviTi sidide, romelic am niSan-
Tvisebas Seesabameba. aseTi SemTxveviTi sididis ganawilebis kanoni amave dros warmoadgens ganawilebis
generaluri erTobliobis dasakvirvebel niSan-Tvisebis
kanons. am
ganawilebis
ricxviT
maxasiaTeblebs
ewodeba
generaluri erTobliobis ricxviTi parametrebi. vTqvaT, mocemulia n
moculobis
mqone generaluri erTobliobidan
SerCeva F(x) ganawilebis funqciis
173 sidideebis
gansazRvreba.
S=S(
nebismier
) funqcias statisika ewodeba.
statistikis magaliTebia funqciebi: =
,
da a.S.
X SemTxveviT sidideze dakvirvebis Sedegad miRebuli statistika X -is ucnobi
parametris
Sefasebas
warmoadgens, amitom SemdgomSi gavaigivebT
statistikis da Sefasebis cnebebs. cxadia, Sefasebis aseTi Zalian
ganmarteba
zogadia da gamoxatavs im mosazrebas, rom Sefasebebi unda
avagoT SerCevis
saSualebiT da arafers gveubneba, Tu ramdenad
axlosaa
igi generaluri erTobliobis Sesabamis ricxviT maxasiaTeblebTan.
X
ganvixiloT
Sefaseba
vipovoT
.
sidide romlis ganawilebis funqcia
parametrs F(x, ). n
Seicavs ucnob saSualebiT
SemTxveviTi
rogorc
ucnobi zemoT
nebismier
moculobis
SerCevis
parametris garkveuli azriT ‘’kargi’’
aRvniSneT,
parametris
Sefaseba
funqcias. cxadia,
SemTxveviTi sidideebi,
amitom
ewodeba TviTonaa
aris SemTxveviTi sidide, romlis
ganawilebis kanoni damokidebulia X
SemTxveviTi sididis ganawilebis
kanonze da SerCevis moculobaze. imisaTvis, rom
parametris Sefaseba iyos praqtikulad Rirebuli, igi
unda akmayofilebdes garkveul moTxovnebs. gansazRvreba. statistikur Sefasebas ewodeba wertilovani Sefaseba, Tu igi ganisazRvreba erTi ricxviT. wertilovan Sefasebebs moeTxoveba Zaldebuloba,
Caunacvlebloba
da
efeqturoba,
romlebsac
qvemoT
Sefasebas
ewodeba
ganvmartavT. gansazRvreba.
parametris
Caunacvlebeli (gadauadgilebadi), Tu misi maTematikuri lodini SerCevis nebismieri
moculobisaTvis
udris
Sesafasebeli
parametris
mniSvnelobas
M( ) = rogoric ar unda iyos
.
,
(1)
WeSmarit
174 parametris
gansazRvreba.
Sefasebas
ewodeba Zaldebuli, Tu nebismieri
ricxvisaTvis sruldeba Semdegi
Tanafardoba: PPP[ gansazRvreba. ufro
]
roca
.
parametris
efeqturi,
Sefasebas
ewodeba
,
Tu
vidre
M
< M
.
efeqturobis
sazomad miRebulia Sefardeba . ganvixiloT infM
yvela SesaZlo
-is mimarT.
Sefasebas
romlisTvisac es qveda sazRvari miiRweva ewodeba efeqturi Sefaseba. parametris
gansazRvreba. asimptoturad
efeqturi
Sefasebas
Sefaseba,
romlisTvisac
sruldeba
ewodeba zRvruli
toloba:
parametris
amrigad, rodesac veZebT ucnobi Sefasebas
unda
gaviTvaliswinoT
zemoT
moyvanili
moTxovnebi:
Sesafaseblad
ganvixiloT
. vTqvaT, mocemulia n
moculobis
Zaldebuloba, Caunacvlebloba da efeqturoba. magaliTi. statistika
ucnobi
maTematikuri
=
lodinis
=
). SerCevis ganmartebis
SerCeva generaluri erTobliobidan ( Tanaxmad,
damoukidebeli
da
erTnairad
ganawilebuli
SemTxveviTi sidideebia. aRvniSnoT:
M( )=a,
D( )=
.
maSin
M( )=M( D( ) =DD(
)= )
= na=a, =
n
=
(1) .
CebiSevis utolobis Tanaxmad (2)-dan miviRebT:E
(2)
175 PP[ roca
]
.
aqedan cxadia, rom PP[
]
roca
.
(3)
(1) da (3) tolobebi gviCvenebs, rom SerCevis saSualo ariTmetikuli aris
maTematikuri
lodinis
Zaldebuli
da
Caunacvlebeli
Sefaseba.
analogiurad vaCvenebT, rom ucnobi dispersiis Sefaseba
aris Zaldebuli da Caunacvlebeli Sefaseba.
5. momentTa meTodi X SemTxveviTi
ganvixiloT Seicavs ucnob maTematikuri
sidide,
romlis
ganawilebis
funqcia
parametrs. f(x, ) iyos ganawilebis simkvrive. maSin, cxadia,
M(X)
lodini
empiriuli saSualo
iqneba
=
parametris
funqcia:
M(X)=
.
warmoadgens SerCeviTi mniSvnelobebis
funqcias. ganvixilavT ori saxis moments _ Teoriuls da empiriuls. Teoriuls vuwodebT generaluri erTobliobis WeSmarit moments, xolo empiriuls_ SerCevis safuZvelze gamoTvlil moments. momentTa
meTodis
arsi
mdgomareobs
SemdgomSi:
xdeba
ganawilebis
Teoriuli da empiriuli Sesabamisi momentebis gatoleba, ris Sedegadac miiReba
gantoleba
ucnobi
parametris
amonaxseni
= ,
mimarT:
warmoadgens
ucnobi
romlis
parametris
Sefasebas. Tu SerCevis safuZvelze unda Sefasdes ara erTi, aramed ramdenime, vTqvaT, k- ucnobi
parametri
, maSin unda vipovoT generaluri
ganawilebis pirveli, meore, da a. S. k-uri rigis Teoriuli momentebi: (
),
(
), ... ,
(
Semdeg vipovoT Sesabamisi empiriuli momentebi: , da gavutoloT isini erTmaneTs:
, ... ,
).
176 (
(i=1,2,..,k).
,
)=
(4)
(4) sistemis amonaxseni:
warmoadgens
= (
, (i=1,2,..,k)
ucnobi
parametrTa
statitikur
Sefasebebs
momentTa meTodiT. Mmtkicdeba, rom momentTa meTodiT miRebuli Sefasebebi Zaldebulia, magram ar aris efeqturi da arc asimptoturad efeqturi, miuxedavaT amisa, am meTods, simartivis gamo, gamoviyenebT maSin, roca sxva meTodebiT Zneldeba Sefasebebis povna. magaliTi. vTqvaT, mocemulia n ganawilebis kanonis mqone
moculobis
SerCeva
maCvenebliani
generaluri erTobliobidan
Sesafasebelia misi erTaderTi parametri
.
da
rogorc viciT, maCvenebliani
ganawilebis pirveli rigis Teoriul moments aqvs saxe: =
.
SerCevis anu pirveli rigis empiriuli momenti aris
=
maTi
gatolebiT miviRebT:
= saidanac
,
Sefaseba iqneba: =
=
.
5. maqsimaluri dasajerobis meTodi SerCevis meTodia
saSualebiT
maqsimaluri
Sefasebis
dasajerobis
povnis
erT-erTi
meTodi,
mniSvnelovani
SemuSavebuli
cnobili
statistikosis fiSeris mier. misi arsi SemdegSi mdgomareobs: vTqvaT
) X SemTxveviTi sidididan,
mocemulia n moculobis SerCeva (
parametrs F(x, ).
romlis ganawilebis funqcia Seicavs ucnob misi
ganawilebis
simkvrive.
SevecadoT
Sefaseba,
vipovoT
romlisTvisac
ganxorcielebis albaToba iqneba maqsimaluri.
f(x, ) iyos
parametris mocemuli
iseTi
SerCevis
177 damoukidebeli Tanaxmad,
albaToba
xdomilobebis
albaTobebis
X
SemTxveviTi
imisa,
rom
Sedegad miviRebT zustad mocemul f(
)= f(
). f(
). f(
sidideze
wesis
dakvirvebis
SerCevas aris )... f(
aRvniSnoT es gamosaxuleba L( L(
gamravlebis
). ) simboloTi:
)... f(
).
(1)
Tu SemTxveviTi sidide diskretulia, maSin gveqneba: L(
)=P(
). P(
)... P(
),
(2)
sadac )=P(
P(
), (i=1,2,..,n).
(1) da (2) formulebiT mocemul funqciebs maqsimaluri dasajerobis funqciebi ewodeba. maqsimaluri dasajerobis meTodis arsidan gamomdinare, parametris Sesafaseblad unda aviRoT iseTi L(
romlisTvisac funqcia
) aRwevs maqsimums. rogorc
viciT,
funqcia
parametris
mimarT
aRwevs
maqsimums, rodesac =0 .
(3)
gantolebis amonaxsni iqneba maqsimaluri dasajerobis meTodiT parametris Sefaseba. rogorc maTematikuri analizidanaa cnobili, funqciebis amitom
gamoTvlebis
ukeTesia amovxsnaT
maqsimumis
gamartivebis
wertilebi
mizniT
)
L( emTxveva
da
erTmaneTs,
gantolebis
nacvlad
Semdegi gantoleba:
=0. Tu Sesafasebelia ara erTi, aramed k maSin maqsimaluri dasajerobis meTodiT
(4)
ucnobi Sefasebebi
parametri, miiReba
Semdegi
gantolebaTa sistemis amoxsniT: = 0, (i=1,2,..,k). maqsimaluri dasajerobis meTodiT miRebul Sefasebebs aqvs (garkveuli azriT) kargi Tvisebebi:
1.
178 dasajerobis meTodiT
maqsimaluri
miRebuli
Sefaseba
aris
Zaldebuli. 2.
parametris
Sefaseba
aris
asimptoturad
efeqturi Sefaseba. 3. maqsimaluri dasajerobis meTodiT miRebuli Sefaseba asimptoturad normaluria. rac imas niSnavs, rom ganawileba n-is
zrdasTan
erTad
-is, rogorc SemTxveviTi sididis, miiswrafvis
normaluri
ganawilebis
kanonisaken. 4. Tu arsebobs
parametris efeqturi Sefaseba, maSin
gantolebas
aqvs erTaderTi amonaxsni, romelic emTxveva am Sefasebas. maqsimaluri dasajerobis meTodiT miRebul Sefasebas aqvs uaryofiTi mxareebic, kerZod, am meTodiT miRebuli Sefasebebi yovelTvis ar aris Caunacvlebadi.
garda
amisa,
dasajerobis
gantoleba
zogjer
rTuli
amosaxsnelia. magaliTi. vTqvaT, bernulis cdaTa sqemaSi Sesafasebelia ’’warmatebis’’ ucnobi p albaToba. maSin (2) formulis Tanaxmad L(
)=
.
(4) gantoleba miiRebs saxes: = sadanac vpovulobT
=
–
= 0.
.
magaliTi. ganvixiloT normaluri ganawilebis a da Sefasebis povnis amocana
parametrebis
maqsimaluri dasajerobis meTodiT.
am SemTxvevaSi (1) da (4) formula miiRebs saxes: L(
)=
;
= _
_
Sefasebis sapovnelad vipovoT , da amovxsnaT gantolebaTa sistema:
.
miviRebT:
179 ;
=
rogorc
vxedavT,
maqsimaluri
dasajerobis
meTodiT
miRebuli
maTematikuri lodinis Sefaseba Caunacvlebadia, xolo dispersiis Sefaseba araa Caunacvlebadi Sefaseba.
6. empiriuli ganawilebis funqcia Cven ganvixileT iseTi amocanebi, rodesac cnobili iyo ganawilebis saxe da ucnobi iyo misi zogierTi parametri (maTematikuri lodini, disersia
da
sxva).
vakeTebdiT ucnobi
X
SemTxveviT
sidideze
dakvirvebis
saSualebiT
parametris, garkveuli azriT ‘’kargi’’ Sefasebas.
praqtikaSi xSirad gvxvdeba iseTi amocanebi, rodesac Sesafasebelia ara marto ganawilebis parametrebi, aramed ganawilebis zogadi saxec da igi
unda
dadgindes
SerCevis
safuZvelze,
am
tipis
amocanebs
araparametruli amocanebi ewodeba. vTqvaT, mocemulia n moculobis SerCeva
),
(
X
(1)
SemTxveviTi sidididan, romlis ganawilebis
SevecadoT
(1)
SerCevis
avagoT X
safuZvelze
funqcia ucnobia.
SemTxveviTi
sididis
ganawilebis funqcis Sefaseba. rogorc
viciT,
ganawilebis
funqcia
F(x)=P(X<x) warmoadgens
albaTobas, rom SemTxveviTi sidide miiRebs mniSvnelobas
=]
imis
_
,x[
intervalidan. aRvniSnoT
–iT (1) SerCevis im mniSvnelobaTa raodenoba,
romlebic ekuTvnis
,x[ intervals. did ricxvTa kanoniT sakmaod
didi n-isaTvis gansazRvreba.
P(X
=] _
) (x)
. funqcias,
romelic
nebismieri
namdvili
x
ricxvisaTvis gansazRvrulia tolobiT (x)= ewodeba
X
SemTxveviTi
sididis
miRebuli (1) SerCevis safuZvelze.
(2) empiriuli
ganawilebis
funqcia
SevniSnoT,
rom
(1)
180 SerCevis mniSvnelobebi
(x) Ffunqciac SemTxveviTi
sididebia, maTi saSualebiT gansazRvruli (x)
iqneba.
funqcias,
F(x) funqciis
rogorc
SemTxveviTi
Sefasebas aqvs
Semdegi
Tvisebebi: 1. (x) funqcia, ganawilebis F(x) funqciis aragadadgilebadi Sefasebaa M( (x))= F(x); (x) funqcia, aris ganawilebis F(x) funqciis Zaldebuli Sefaseba
]
P[ X
SemTxveviTi
sididis
roca n
empiriuli
.
ganawilebis
funqcias
aqvs
ganawilebis funqciis yvela Tviseba:
1.
(- )=0,
2. Tu 3.
(+ )=1; maSin
( )
( ) araklebadia;
(x) funqcia marcxnidan uwyvetia.
7. ndobis intervalebi vTqvaT, mocemulia n moculobis SerCeva
)
(
(1)
X SemTxveviTi sidididan, romlis ganawilebis ucnob
parametrs. aqamde ucnobi
funqcia F(x, ) Seicavs
parametris Sefasebas vaxdendiT erTi
garkveuli ricxviT, romelsac wertilovan Sefasebas vuwodebT. Tu cdaTa ricxvi
didia,
xolo
wertilovani
Sefaseba
aragadadgilebadobiT da ZaldebulobiT, maSin Sefaseba Sesafasebel
xasiaTdeba ‘’kargad cvlis’’
parametrs.
rodesac cdaTa ricxvi arcTu ise didia,
parametris SemTxveviTi
xasiaTidan gamomdinare, SeiZleba miviRoT didi cdomiloba. am SemTxvevaSi ufro
mosaxerxebelia
(1)
SerCevis
intervali, rom sakmaod didi moTavsebulia = (
safuZvelze
iseTi
]
albaTobiT SegveZlos vTqvaT, rom
intervalSi,
) ramdenadac
avagoT
da
= (
)
SemTxveviTi sidideebia, xolo
,
fiqsirebuli
181 amitom SeiZleba
ricxvia,
P[
xdomilobis albaTobaze xolo
intervals
intervali,
[
-s ewodeba ndobis albaToba,
albaTobis Sesabamisi ndobis intervali.
ganawilebis ucnobi ]- ,+ [
.
vilaparakoT
parametris yvelaze uxeS Sefasebas warmoadgens 1-is
toli
albaTobiT
SegviZlia
vTqvaT,
rom
]- ,+ [, magram, cxadia, aseTi Sefaseba uvargisia, radgan igi ar iZleva araviTar informacias
parametris WeSmarit mniSvnelobaze. sasurvelia
ndobis intervali ise aigos, rom misi sigrZe iyos rac SeiZleba mcire, xolo
ndobis albaToba, rac SeiZleba didi. rogorc wesi, orTave
amocanis
erTdroulad
gadawyveta
Semdegnairad: winaswar irCeven
SeuZlebelia,
amitom
iqcevian
ndobis albaTobas ise, rom igi axlos
iyos erTTan da eZeben mis Sesabamis umciresi sigrZis ndobis intervals. ndobis intervalis agebis procesi ganvixiloT
konkretul magaliTze.
amasTan davuSvebT, rom X aris normalurad ganawilebuli SemTxveviTi sidide a da
parametrebiT.
vTqvaT, vatarebT raRac fizikuri sididis erTmaneTisgan damoukidbel gazomvebs.
iTvleba,
rom
gazomvis
cdomilobebi
ganawilebulia
normalurad, amitom gazomvis Sedegic ganawilebulia normalurad. Tu adgili ar aqvs sistematur cdomilobas SegviZlia vTqvaT, rom M(X)=a. zemoTqmulidan gamomdinare, gazomvaTa Sedegebis damuSavebis ZiriTadi amocana ’’gasazomi sididis WeSmariti mniSvnelobis dadgena’’ maTematikurad Camoyalibdeba, rogorc normalurad ganawilebuli SemTxveviTi sididis maTematikuri lodinis Sefasebis amocana. am amocanis amoxsnas didi n-saTvis iZleva empiriuli saSualo: =
=
.
Tu gazomvaTa ricxvi n arcTu ise didia cdomileba
da a-s Soris
SeiZleba sakmaod didi iyos, amitom saWiroa aigos iseTi ]
[ intervali,
ndobis albaTobiT moTavsebuli iqneba a ricxvi.
romelSic mocemuli ndobis cnobilia.
intervalis 2. roca
1. vTqvaT SemTxveviT
ageba
ganvixiloT
or
SemTxvevaSi:
1.
roca
ucnobia. cnobilia,
sidideTa
jami
viciT
aseve
rom
normalurad
ganawilebulia
ganawilebuli
normalurad,
radgan
182 sidideebi normaluradaa ganawilebuli a da
SemTxveviTi parametrebiT.
SemTxveviTi sididec ganawilebulia normalurad a da
= parametrebiT.
ganvixiloT normirebuli SemTxveviTi sididide
U=
(1)
romelic ganawilebulia normalurad parametrebiT 0 da 1, amitom mocemuli
-saTvis vipovoT iseTi
, rom Sesruldes toloba
= ,
(2)
rogorc viciT, albaToba
= sadac
_
= 2
_1,
(3)
(X) aris standartuli normaluri ganawilebis funqcia,
(X)= (-X).
-s mosaZebnad unda amovxsnaT gantoleba 2
=
+1 anu
=
(
),
romelic sakmao miaxloebiT ixsneba
an
funqciis cxrilis
saSualebiT (ix.danarTi 2 ). gadavweroT (2) Semdegi saxiT:
= anu
P[ --
<a< +
]= .
(4)
es niSnavs imas, rom a maTematikuri lodinis
ndobis albaTobis
Sesabamisi ndobis intervali aris
-rogorc
(5)-dan
,
+
gamomdinareobs,
[ . ndobis
(5) intervalis
sigrZe
damokidebulia mxolod SerCevis moculobaze, amasTan, cdaTa ricxvis zrdasTan erTad mcirdeba. intervalis centri moTavsebulia 2. axla ganvixiloT SemTxveva, roca gamosaxulebaSi Sedis ori ucnobi _a da
wertilSi.
ucnobia. am SemTxvevaSi parametri. Tu
nacvlad am gamosaxulebaSi SevitanT mis Sefasebas
(1)
parametris
183 =
,
miviRebT
U= mtkicdeba, ganawileba
n
rom
.
U SemTxveviT
Tavisuflebis
(6)
sidides
xarisxiT,
gaaCnia
romlis
e.w.
stiudentis
ganawilebis
simkvrivea
. imisaTvis, rom avagoT a maTematikuri lodinis
ndobis albaTobis
Sesabamisi ndobis intervali, unda vipovoT iseTi
, rom Sesruldes
toloba:
= anu amovxsnaT gantoleba: =
.
(7)
ndobis intervali maTematikuri lodinisaTvis
ndobis albaTobiT
iqneba:
--
,
+
[ .
8. statistikuri hipoTezebi vTqvaT, mocemulia erTgvarovan obieqtTa generaluri erToblioba. X iyos SemTxveviTi sidide, romelic gamoxatavs generaluri erTobliobis obieqtTa ucnobi
raime
F(x)
niSan_Tvisebas. ganawilebis
gvainteresebs funqciis
saxis
am
SemTxveviTi
dadgena.
sididis
generaluri
erTobliobis bunebidan, SeiZleba gvqondes winaswari varaudi (hioTeza), rom
ganawilebis
funqcias
aqvs
raRac
ganawilebis funqcia Seicavs ucnob SeiZleba gamovTqvaT HhipoTeza
=
F(x)
saxe.
analogiurad,
Tu
parametrs, garkveuli mosazrebiT
, sadac
cnobili sididea.
hipoTezas vuwodoT statistikuri, Tu is exeba ucnobi
ganawilebis
funqciis saxes an ucnob parametrs. bunebrivia,
daSvebul
hipoTezasTan
erTad
ganvixiloT
misi
sawinaaRmdego hipoTezac. Tu Semowmebis Sedegad daSvebuli hipo痺容za ar gamarTlda, maSin adgili eqneba mis sawinaaRmdegos.
daSvebul
184 hipoTezas ewodeba nulovani da aRiniSneba
(ZiriTad)
simboloTi.
misgan
gansxvavebul
alternatiuli da aRiniSneba
nebismier
hipoTezas
ewodeba
simboloTi.
magaliTad, Tu nulovani hipoTeza mdgomareobs imaSi, rom normalurad ganawilebuli SemTxveviTi sididis maTematikuri lodini a=0, maSin misi erT-erTi
alternatiuli
Caiwereba:
: a=0;
hipoTeza
iqneba
a 0. es
faqti
mokled
ase
: a 0.
wess, romelic gansazRvravs pirobebs, romlis drosac Sesamowmebel hipoTezas miviRebT an uarvyofT ewodeba statistikuri kriteriumi. cxadia, hipoTezis
Semowmeba
vRebulobT
SerCevidan.
SemTxveviTi SerCevis
xdeba e.i.
im
monacemebis
statistikuri
safuZvelze,
kriteriumi
romelsac
adgens
wess,
Tu
ra monacemebis dros miiReba mocemuli hipoTeza da
ra monacemebis dros ara. statistikuri hipoTezebis Semowmebis dros SeiZleba daSvebul
iqnes
ori tipis Secdoma anu, rogorc maT uwodeben, pirveli an meore gvaris Secdoma. Secdoma pirveli gvarisaa, rodesac WeSmariti xolo meore gvarisaa, rodesac mcdari hipoTezis
Sesamowmeblad
hipoTeza mcdarad,
hipoTeza CaiTvleba WeSmaritad.
avagoT
statistikuri
kriteriumi
Semdegnairad: 1.
SemoviRoT
specialurad
SerCeuli
SemTxveviTi
sidide,
romlis
zusti an zRvruli ganawileba cnobilia. cxadia, es sidide SerCevis monacemebis funqciaa. aRvniSnoT igi K simboloTi (mas Cven SemdgomSi gavaigivebT
statistikur
ganvsazRvroT, miviRebT
kriteriumTan).
misi
saSualebiT
unda
hipoTezas Tu ukuvagdebT mas.
2. davafiqsiroT pirveli gvaris Secdomis albaToba
, romelsac
mniSvnelobis done ewodeba. mniSvnelobis done es is sazRvaria, romlis gadalaxvis Semdeg gansxvaveba SerCevis monacemebsa da nulovan hipoTezas Soris arsebiTia, e.i. monacemebi nulovani hipoTezis winaaRmdegia. 3. SemoviRoT
-s mimarT alternatiuli hipoTeza
.
4. davadginoT W kritikuli are anu statistikuri kriteriumis im namdvil
mniSvnelobaTa
simravle,
romelTa
miRebisas
hipoTeza
ukuigdeba. kriteriumis im mniSvnelobaTa simravle, romelebzec
hipoTezas
185 vuwodoT dasaSveb
miviRebT,
wertils, romelic
mniSvnelobaTa
K
are.
yofs kritikul da dasaSveb mniSvnelobaTa areebaá&#x192;&#x201C;,
kritikuli wertili ewodeba. zemoT
moyvanili
oTxi
punqti
saSualebas
gvaZlevs
avagoT
statistikuri kriteriumi. praqtikulad, SeiZleba Tavidanve davafiqsiroT (Cveulebrivad
pirveli gvaris Secdomis albaToba
=0,1; 0,05; 0,02; 0,01).
yvela praqtikulad mniSvnelovani kriteriumisaTvis Sedgenilia cxrilebi da P(K W)=1
tolobidan SeiZleba
kritikuli wertilis dadgena. Cven
vagebT kritikul ares im mosazrebidan, rom nulovani hipoTezis dros kriteriumis kritikul areSi moxvedris albaTobaa
. sasurvelia vicodeT,
ras udris albaToba imisa, rom kriteriumi moxvdeba kritikul areSi, roca samarTliania alternatiuli hipoTeza. kriteriumis
simZlavre,
sxva
sityvebiT,
vuwodoT am albaTobas
kriteriumis
simZlavre
aris
albaToba imisa, rom nulovan hipoTezas ukuvagdebT, Tu samarTliania alternatiuli hipoTeza. vTqvaT, simZlavre
meore iqneba
gvaris 1-
Secdomis
aqedan
Cans,
albaTobaa rom
rac
,
maSin
kriteriumis
ufro
metia
kriteriumis
simZlavre, miT ufro mcirdeba meore gvaris albaToba
.
amrigad, albaToba imisa, rom kriteriumi Cavardeba kritikul areSi, roca samarTliania
hipoTeza, udris
-s da amave dros albaToba imisa, hipoTeza,
rom kriteriumi Cavardeba kritikul areSi, roca samarTliania
unda iyos maqsimaluri. am or pirobas ewodeba kriteriumis simZlavris maqsimizaciis postulati, rac analizurad ase Caiwereba:
P(K W statistikur
kriteriums,
)= ; P(K W
romelic
)=max.
akmayofilebs
(1) am
postulats,
ewodeba umZlavresi kriteriumi. rogorc vnaxeT, rac ufro mcirea
da
, miT ufro kargi kritikuli
are gvaqvs, magram Tu SerCevis n moculoba fiqsirebulia, erTdrouli Semcireba SeuZlebelia, radgan Tu
da
-s
-s SevamcirebT, maSin
gaizrdeba. da
-s erTdrouli Semcirebis erTaderTi gza SerCevis moculobis
gazrdaa, romelic, Tavis mxriv, siZneleebTan aris dakavSirebuli.
kriteriumis
186 ageba statistikur hipoTezaTa Semowmebis
erT-erTi ZiriTadi amocanaa.
umZlavresi kriteriumebis agebis ararTuli
umZlavresi
meTodebi
dadgenilia
mxolod
martivi
hipoTezebisaTvis.
hipoTezas
ewodeba martivi, Tu igi calsaxad gansazRvravs ganawilebis funqcias, winaaRmdeg SemTxvevaSi hipoTezas ewodeba rTuli. magaliTad, hipoTeza imisa, rom normaluri ganawilebuli SemTxveviTi X sididis maTematikuri lodini udris nuls, xolo dispersia_erTs martivi hipoTezaa, radgan igi calsaxad
X
gansazRvravs
SemxveviTi
sididis
ganawilebis
funqcias.
hipoTeza, normalurad ganawilebuli SemxveviTi X sididis maTematikuri lodini udris nuls,
dispersia nebismeri
dadebiTi ricxvia, rTuli
hipoTezaa. im SemTxvevaSi, roca
da
hipoTezebi martivia, adgili aqvs neiman-
pirsonis Teoremas. Teorema. Tu ZiriTadi hipoTeza martivebia,
:
Sesabamisad,
da alternatiuli
= ;
:
=
da
Tu
hipoTeza
L(
),
) warmoadgenen dasajerobis funqciebs, gamoTvlils
L(
hipoTezebisaTvis,
X
xolo
SemTxveviTi
sidide,
romlidanac
da aRebulia
SeCeva, uwyvetia, maSin arsebobs kriteriumi, romelic aris umZlavresi hipoTezisaTis
hipoTezis
mimarT.
kritikuli
are
da
TviTon
kriteriumi ganisazRvreba utolobiT
L( sadac
C
dadebiTi
mniSvnelovnebis
) ricxvia,
L( romlis
), mniSvneloba
damokidebulia
doneze.
magaliTi. vipovoT umZlavresi kritriumi gulisxmobs,
(1)
rom
normalurad
maTematikuri lodini aris
.
dispersia cnobilia da udris
ganawilebuli
hipoTezisaTis, romelic SemTxveviTi
alternativa gveubneba, rom
X sididis , xolo
, xolo amokrefis moculobaa n.
amoxsna. SevadginoT dasajerobis funqciebi, roca maTematikuri lodini aris Sesabamisad
da L(
)=
L(
)=
187 CavsvaT es gamosaxulebebi (1)-
Si, miviRebT:
C me-2
utolobis
orive
(2)
mxaris
galogariTmebiT
da
garkveuli
gardaqmnebiT miviRebT: (
_n(
)
-
) =n
Tu ukanasknelSi gaviTvaliswinebT, rom
da amovxsniT
mimarT miviRebT:
amgvarad,
neiman_pirsonis
Tu
>0
Tu
<0
Teoremis
ZaliT,
vipoveT
kriteriumi
da
ganvsazRvreT kritikuli are: marTlac, kriteriumi unda aviRoT amokrefiT ; Tu
saSualo mniSvneloba,
>0, maSin kritikul areSi moxvdeba
romelic
gadaaWarbebs
kritikul areSi Cavardeba ricxvze.
A
ricxvs.
-is yvela is
Tu
<0,
maSin
-is yvela is mniSvneloba romelic naklebia BB
AA da B ricxvebi unda SevarCioT ise, rom Sesruldes (1)
toloba.
9. parametrul ganvixiloT
hipoTezaTa Semowmeba
kriteriumi,
romelic
miekuTvneba
parametrul
kriteriumebs, e.i. iseT kriteriumebs, romlebic ganixilaven hipoTezebs ganawilebis
ucnobi
parametrebis
Sesaxeb,
roca
ganawilebis
saxe
cnobilia. davuSvaT,
moculobis
SerCeva
normalurad
maTematikuri
lodini
ganawilebuli
SemTxveviTi
sidididan,
dispersia
cnobilia. maSin, rogorc viciT, SerCeviT saSualos =
romlis
xdeba
ucnobia,
(1)
xolo
agreTve
188 normaluri ganawileba
aqvs
vTqvaT, Sesamowmebelia hipoTeza :
,
parametrebiT
.
alternatiuli hipoTeziT
. statistikur kriteriumad miviRoT SemTxveviTi sidide: .
(2)
Tu mniSvnelovnebis done aris
, maSin kritikuli are, romelic meore
gvaris Secdomas minimalurs gaxdis, moiZebneba
sididis mniSvnelobis
mixedviT. Tu
, maSin kritikuli are iqneba marjvniv. e. i. mas ekuTvnis (2)
kriteriumis yvela is mniSvneloba, romelic gadaaWarbebs iseTia, rom sruldeba utoloba
wertils. Tavis mxriv,
. aqedan,
kritikul
kritikuli
aris
dadgena
(3) siZneles
ar
warmoadgens
Tu
visargeblebT standartuli normaluri ganawilebis (parametrebiT (0,1) ) cxrilebiT. Tu
, maSin kritikuli are iqneba marcxniv, e. i. mas ekuTvnis (2)
kriteriumis
yvela
wertilze, sadac
is
mniSvneloba,
romelic
naklebia
kritikul
moiZebneba analogiurad.
magaliTi. vTqvaT, generaluri erTobliobis ganawileba normaluria, . SerCevis moculoba alternatiuli
hipoTeziT
. Sesamowmebelia hipoTeza :
pirvel
rigSi
, davafiqsiroT
. vTqvaT, SerCeviTi saSualo
mnSvnelobis done
radgan
, amitom avagoT marjvena kritikuli are. (3) tolobis safuZvelze da normaluri
ganawilebis
kritikul ares ekuTvnis
cxrilebiT
vpoulobT
,
amitom
kriteriumis yvela is mniSvneloba, romelic
gadaaWarbebs 1,65-s. Cven SemTxvevaSi kriteriumis mniSvneloba
radganac es mniSvneloba kritikuli aris gareTaa, amitom ara gvaqvs safuZveli uarvyoT
hipoTeza.
189 ganvixiloT SemTxveva, rodesac normalurad
ganawilebuli
moculobis
SemTxveviTi
SerCeva
xdeba
romlis
orive
sidididan,
parametri, maTematikuri lodini da dispersia ucnobia. am SemTxvevaSi statistikur kriteriumad miviRoT SemTxveviTi sidide: . sadac
aris
(4)
-s Sefaseba: =
mtkicdeba,
rom
(4)
.
sidides
aqvs
stiudentis
ganawileba
Tavisuflebis xarisxiT. kritikuli aris arCevis principi igivea, rac wina magaliTSi
im
gamoviyenebT
gansxvavebiT, stiudentis
rom
kritikuli
ganawilebis
wertilis
cxrils
dasazusteblad Tavisuflebis
xarisxiT. magaliTi.
mocemulia
ganawilebuli maTematikuri
=26
SemTxveviTi lodini
moculobis
sidididan,
da
davafiqsiroT monacemebiT marcxena
Tavisuflebis
ares.
xarisxi
orive
parametri,
ucnobia.SevamowmoT
done:
. vTqvaT,
kritikul
normalurad
hipoTeza
.
mniSvnelobis
da
romlis
dispersia
Tu sawinaaRmdegoa
SerCeva
.
da
stiudentis
26-1=25,
gamovTvaloT
. radganac ganawilebis
SerCevis , vagebT
cxrilebiT,
vpoulobT:
roca amitom
kritikul ares ekuTvnis kriteriumis mniSvnelibaTa simravle, romlebic naklebia -2,485-ze. Cven SemTxvevaSi:
e. i. kriteriumis mniSvneloba aRmoCnda kritikul areSi, es niSnavs, rom unda ukuvagdoT
hipoTeza da miviRoT alternatiuli hipoTeza. savarjiSo magaliTebi
SemTxveviT
sidideze
dakvirvebis
Sedegebi
mocemulia
Semdegi
cxrilis saxiT:
N 1
2
3
4
5
X 10
9
6
5
13 16 12 1
6
7
8 9
10 11 12 13 14 15 16 17 18 19 20
15 6
14 7
15 8
16 20 15 10 14 11
190 davyoT (0; 20) Sualedi 4 tol nawilad
da
SevadginoT
statistikuri ganawilebis cxrili. 2)
SemTxveviT sidideze dakvirvebis Sedegebi mocemulia Semdegi
cxrilis saxiT: N
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20
X
6
1
3
4
10 4
1
9
2
1
5
8
5
6
6
6
7
4
3
5
aageT statistikuri ganawilebis cxrili. 3) ipoveT Semdegi statistikuri mwkrivis saSualebiT mocemuli SerCevis empiriuli ganawilebis funqcia: 2
5
7
8
1
3
2
4
4) SemTxveviT SerCeuli 100 studentis simaRlis gazomvis Sedegebi aRmoCnda Semdegi: simaRle
154158
rao-ba
156-
162-
162 10
166-
166 14
170 26
170-
174-
174 28
178-
178 12
182 8
2
ipoveT SerCeviTi saSualo da SerCeviTi dispersia. 4) tranzistoris
erT-erTi
parametris
Semowmebam
mogvca
Semdegi
Sedegebi: nomeri 1
2
3
4
5
6
7
8
9
10
mniS-ba 4,40
4,31
4,40
4,40
4,65
4,65
4,71
4,54
4,34
4,56
ipoveT SerCeviTi saSualo mniSvneloba daSerCeviTi dispersia. SemTxveviTi sidides gaaCnia binomuri ganawileba.
6) cnobilia, rom momentTa
meTodis
saSualebiT
SevafasoT ucnobi warmatebis
(
SerCevaze
dafuZnebiT
albaToba, Tu:
a) b) 7) cnobilia, rom
SemTxveviTi sidide ganawilebulia puasonis kanoniT
, sadac
ucnobi parametria. maqsimaluri dasajerobis
meTodis saSualebiT vipovoT SerCevaze dafuZnebuli Sefaseba, Tu SerCevas aqvs Semdegi saxe:
ucnobi parametris
191 a) 14, 13, 17, 15, 20, 25, 13, 22. b) 12, 14, 9, 8, 15, 7, 11, 8. 8) mocemul nivTierebaSi rkinis Semcvelobaze xangrZlivi dakvirvebis Sedegad
dadginda
albaTobiT,
standartuli
nivTierebaSi
rkinis
gadaxra
0,12%.
Semcvelobis
ipoveT
ndobis
ndobis
intervali,
0,95 Tu
6
analizis Sedegad aRmoCnda, rom saSualo Semcvelobaa 32,56%. 9)
naTurebis
didi
partiidan
alalbedze
SearCies
100
naTura.
SerCevidan aRebuli naTurebis naTebis saSualo xangrZlivoba aRmoCnda 1000 sT.
ipoveT
naTurebis
mTeli
partiis
saSualo
naTebis
drois
ndobis
intervali, ndobis 0,95 albaTobiT, Tu cnobilia, rom naTuris naTebis saSualo kvadratuli gadaxra
=40 sT-s.
192 danarTi1.
funqciis mniSvnelobaTa cxrili
x
0
1
2
3
4
5
6
7
8
9
0.0
0.3989
3989
3989
3988
3986
3984
3982
3980
3877
3973
0.1
3970
3965
3961
3956
3951
3945
3939
3932
3925
3918
0.2
3910
3902
3894
3885
3876
3867
3857
3847
3836
3825
0.3
3814
3802
3790
3778
3765
3752
3739
3726
3712
3697
0.4
3683
3668
3653
3637
3621
3605
3589
3572
3555
3538
0.5
3521
3503
3485
3467
3448
3429
3410
3391
3372
3352
0.6
3332
3312
3292
3271
3251
3230
3209
3187
3166
3144
0.7
3123
3101
3079
3056
3034
3011
2989
2966
2943
2902
0.8
2897
2874
2850
2827
2803
2780
2756
2732
2709
2685
0.9
2661
2637
2613
2589
2565
2541
2516
2492
2468
2444
1.0
0.2420
2396
2371
2347
2323
2299
2275
2251
2227
2203
1.1
2179
2155
2131
2107
2083
2059
2036
2012
1989
1965
1.2
1942
1919
1895
1872
1849
1826
1804
1781
1758
1736
1.3
1714
1961
1669
1647
1626
1604
1582
1561
1539
1518
1.4
1497
1476
1456
1635
1415
1394
1374
1354
1334
1315
1.5
1295
1276
1257
1238
1219
1200
1182
1163
1145
1127
1.6
1109
1092
1074
1057
1040
1023
1006
0989
0973
0957
1.7
0940
0925
0909
0893
0878
0863
0848
0833
0818
0804
1.8
0790
0775
0761
0748
0734
0721
0707
0694
0681
0669
1.9
0656
0644
0632
0620
0608
0596
0584
0573
0562
0551
2.0
0.0540
0529
0519
0508
0498
0488
0478
0468
0459
0449
2.1
0440
0431
0422
0413
0404
0396
0387
0379
0371
0363
2.2
0355
0347
0339
0332
0325
0317
0310
0303
0297
0290
2.3
0283
0277
0270
0264
0258
0252
0246
0241
0235
0229
2.4
0224
0219
0213
0208
0203
0198
0194
0189
0184
0180
2.5
0175
0171
0167
0163
0158
0154
0151
0147
0143
0139
2.6
0136
0132
0129
0126
0122
0119
0116
0113
0110
0107
2.7
0104
0101
0099
0096
0093
0091
0088
0086
0084
0081
2.8
0079
0077
0075
0073
0071
0069
0067
0065
0063
0061
2.9
0060
0058
0056
0055
0053
0051
0050
0048
0047
0046
3.0
0.0044
0043
0042
0040
0039
0038
0037
0036
0035
0034
3.1
0033
0032
0031
0030
0029
0028
0027
0026
0025
0025
3.2
0024
0023
0022
0022
0021
0020
0020
0019
0018
0018
3.3
0017
0017
0016
0016
0015
0015
0014
0014
0013
0013
3.4
0012
0012
0012
0011
0011
0010
0010
0010
0009
0009
3.5
0009
0008
0008
0008
0008
0007
0007
0007
0007
0006
3.6
0006
0006
0006
0005
0005
0005
0005
0005
0005
0004
3.7
0004
0004
0004
0004
0004
0004
0003
0003
0003
0003
3.8
0003
0003
0003
0003
0003
0002
0002
0002
0002
0002
3.9
0002
0002
0002
0002
0002
0002
0002
0002
0001
0001
193 funqciis mniSvnelobaTa cxrili
danarTi 2. x
0
1
2
3
4
5
6
7
8
9
0.0
0.0000
0040
0080
0120
0159
0199
0239
0279
0319
0359
0.1
0398
0438
0478
0517
0557
0596
0639
0675
0714
0753
0.2
0793
0832
0871
0909
0948
0987
1026
1103
1064
1141
0.3
1179
1217
1255
1293
1331
1386
1406
1443
1480
1517
0.4
1554
1591
1628
1664
1700
1736
1772
1808
1844
1879
0.5
1915
1950
1985
2019
2054
2088
2123
2157
5190
2224
0.6
2257
2291
2324
2356
2389
2421
2454
2486
2517
2549
0.7
2580
2611
2642
2673
2703
2734
2764
2793
2823
2852
0.8
2881
2910
2939
2967
2995
3023
3051
3078
3106
3133
0.9
3159
3186
3212
3238
3264
3289
3315
3340
3365
3389
1.0
3413
3437
3461
3485
3508
3531
3554
3577
3599
3621
1.1
3643
3665
3686
3708
3728
3749
3770
3790
3810
3830
1.2
3849
3869
3888
3906
3925
3943
3962
3980
3997
4015
1.3
4032
4049
4066
4082
4099
4115
4131
4147
4162
4177
1.4
4192
4207
4222
4236
4251
4265
4279
4292
4306
4319
1.5
4332
4345
4357
4370
4382
4394
4406
4418
4429
4441
1.6
4452
4463
4474
4484
4495
4505
4515
4525
4535
4545
1.7
4554
4564
4573
4582
4591
4599
4608
4616
4625
4633
1.8
4641
4648
4656
4664
4671
4678
4686
4692
4699
4706
1.9
4713
4719
4726
4732
4738
4744
4750
4756
4761
4767
2.0
4772
4778
4783
4788
4793
4798
4803
4808
4812
4817
2.1
4821
4826
4830
4834
4838
4842
4846
4850
4854
4857
2.2
4861
4864
4868
4871
4874
4878
4881
4884
4887
4890
2.3
4893
4896
4898
4901
4904
4906
4909
4911
4913
4916
2.4
4918
4920
4922
4924
4927
4929
4930
4932
4934
4936
2.5
4938
4940
4941
4943
4945
4946
4948
4949
4951
4952
2.6
4953
4955
4956
4957
4958
4960
4961
4962
4963
4964
2.7
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
2.8
4974
4975
4976
4977
4977
4978
4979
4979
4980
4981
2.9
4981
4982
4982
4983
4984
4984
4985
4985
4986
4986
3.0
0.4986
3.1
4990
3.2
49931
3.3
49952
3.4
49966
3.5
4998
3.6
4998
3.7
49989
3.8
49993
3.9
49995
4.0
499968
4.5
499997
5.0
49999997
194 danarTi 3.
ganawilebis
kritikuli wertilebi
Tavisuflebis
mniSvnelobis done
xarisxi n
00.1
0.025
0.05
0.95
1
6.6
5.0
3.8
0.0039
0.00098
0.00016
2
9.2
7.4
6.0
0.103
0.051
0.020
3
11.3
9.4
7.8
0.352
0.216
0.115
4
13.3
11.1
9.5
0.711
0.484
0.297
5
15.1
12.8
11.1
0.15
0.831
0.554
6
16.8
14.4
12.6
0.64
1.24
0.872
7
18.5
16.0
14.1
2.17
1.69
1.24
8
20.1
17.5
15.5
2.73
2.18
1.65
9
21.7
19.0
16.9
3.33
2.70
2.09
10
23.2
20.5
18.3
3.94
3.25
2.56
11
24.7
21.9
19.7
4.57
3.82
3.05
12
26.2
23.3
21.0
5.23
4.40
3.57
13
27.7
24.7
22.4
5.89
5.01
4.11
14
29.1
26.1
23.7
6.57
5.63
4.66
15
30.6
27.5
25.0
7.26
6.26
5.23
16
32.0
28.8
26.3
7.96
6.91
5.81
17
33.4
30.2
27.6
8.67
7.56
6.41
18
34.8
31.5
28.9
9.39
8.23
7.01
19
36.2
32.9
30.1
10.1
8.91
7.63
20
37.6
34.2
31.4
10.9
9.59
8.26
21
38.9
35.5
32.7
11.6
10.3
8.90
22
40.3
36.8
33.9
12.3
11.0
8.54
23
41.6
38.1
35.2
13.1
11.7
10.2
24
43.0
39.4
36.4
13.8
12.4
10.9
25
44.3
40.6
37.7
14.6
13.1
11.5
26
45.6
41.9
38.9
15.4
13.8
12.2
27
47.0
43.2
40.1
16.2
14.6
12.9
28
48.3
44.5
41.3
16.9
15.3
13.6
29
49.6
45.7
42.6
17.7
16.0
16.3
30
50.9
47.0
43.8
18.5
16.8
15.0
0.975
0.89
195 literatura 1. p. zeragia, umaRlesi maTematikis kursi 1-2 tomi. gam."ganaTleba", Tbilisi 1972w 2. T. Tofuria, umaRlesi maTematikis kursi 1-2 tomi. gam."ganaTleba", Tbilisi 1975w. 3. Слободская В.А., Краткий курс высшей математики. Издательство ,,Высшая школа,, Москва 1962г. 4. Глаголев А.А. , Солнцева Т.В. Курс высшей математики. изд. ,. Высшая школа., Москва 1971г . 5. Richard L. Faber, Marvin I. Fridman, James L. Kaplan., Applied calculus. " West publishing company". New york,1986. 6. Смирнов С.И., Курс высшей математики. т. 1-2.Москва, ,,Наука,, 1974 г. 7. Фихтенгольц Г.М., Курс дифференцифльного и интегрального исчисления. т. 1-2. Москва, ,,Наука,,. 1770 г. 8. Задачи и упражнения по математическому анализу. Под редакцией Б.П. Демидовича. Москва, ,,Наука,,. 1772 г. 9. Raymond A. Barnett, Michael R. Ziegler, Karl E. Byleen. Calculus for Business, Economics, Life Sciences & Social Sciences (11th Edition) (2007) 10. b. doWviri, albaTobis Teoria da maTematikuri statistika. Tbilisi: Tsu gamomcemloba, 1984. 11. h. krinski, maTematika ekonomistebisaTis, Tsu gamomcemloba, 1974. 12. n. lazrieva, m. mania, g. mari, a. mosiZe, a. toronjaZe, T. toronjaZe, T. ServaSiZe, albaTobis Teoria da maTematikuri statistika ekonomistebisaTis. Tbilisi: fondi ,,evrazia’’, 2000. 13. g. mania,
albaTobis Teoria da maTematikuri statistika. Tbilisi: Tsu
gamomcemloba, 1976. 14. i.sxirtlaZe, T. tuRuSi, a.osiZe, a. civaZe, m, nadareiSvili, albaTobis Teoria da maTematikuri statistika. Tbilisi: “ganaTleba”, 1990. 15.g.
mania,
n.
anTelava,
a.
ediberiZe,
albaTobis
Teoria
maTematikuri
statistikis amocanaTa krebuli. Tbilisi: Tsu gamomcemloba, 1980. 16. g. mari, a. mosiZe, z. cigroSvili, statistika. Tbilisi: ESM ,1996.
196 17.T. ServaSiZe, albaTobis Teoria. (leqciaTa
kursi)
Tbilisi:
Tsu
gamomcemloba, 1980.
18.Боровков А.А., Теория вероятностей, Москва „Наука“ 1976. 19.Боровков А.А., Математическая статистика, Москва „Наука“ 1984. 20. Гнеденко Б.В. Курс теория вероятностей, Москва „Наука“ 1988.
21. Дубин-Барковский И.В., Смирнов Н. А., Курс теория вероятностей и математической статистики для технических приложений. Москва „Наука“ 1980. 22. Крамер Г., Математические методы статистики. Москва ,,Мир“ 1975. 23. Шириаев А.Н., Вероятность, Москва „Наука“ 1989.
ibeWdeba avtorTa mier warmodgenili saxiT
gadaeca warmoebas 28.05.2009. xelmowerilia dasabeWdad 15.07.2009. qaRaldis zoma 60X84 1/8. pirobiTi nabeWdi Tabaxi 12. tiraJi 100 egz.
sagamomcemlo saxli `teqnikuri universiteti~, Tbilisi, kostavas 77