2 minute read
Why the Future will be Written in DNA
Why the Future will be Written in DNA
BY KEVIN A. COSTA
Advertisement
How do we preserve our most important memories and how do we protect them from the ravages of war, nature, and time? Can we build everlasting stories of our shared human experience? What is the modern-day equivalent of the pyramids?
A diverse group of historians, investors, and thinkers gathered in Switzerland this September to explore these questions. They were part of UNESCO’s Memory of the World Programme, an effort to safeguard our human heritage by preserving and making accessible the most valuable archives across the world. It helps protect documents, photos, paintings, and movies.
A biotechnologist might seem an unlikely participant. But here was Bill Peck, PhD, co-founder and CTO of Twist Bioscience, who has spent most of his career upscaling complex biological manufacturing processes. What does he bring to this conversation?
Dr. Peck believes that DNA is nature’s preferred storage medium. “There will be no new technology to replace DNA,” he says. “Nature already optimized the format.”
Dr. Peck is part of a collaboration among Twist Bioscience, Microsoft, the University of Washington, EPFL, and the Montreux Jazz Digital Project to store two iconic musical pieces in DNA. The musical pieces will become part of UNESCO’s permanent archive. It’s the first time DNA has been used as a long-term, archival-quality storage medium.
Twist’s blog tells the story behind the two songs selected for archiving and their Swiss debut. One can’t help but imagine a room of vaguely cool historians listening to the opening guitar riff on “Smoke on the Water,” Deep Purple’s account of the Casino Barrière burning to the ground during ‘71 Montreux Jazz Festival. Or
think of UNESCO archivists coolly considering the backand-forth between Miles Davis and his keytarist on Tutu from Montreux ‘86, transformed into an acoustic sea of As, Cs, Ts and Gs.
I ask if our iPhones will be playing music directly from DNA anytime soon. “A music file would still be expensive to encode, write in DNA, decode, sequence, and convert back into a digital music file,” Dr. Peck says. As DNA reading and writing gets cheaper and cheaper, though, he speculates it may take just a matter of minutes to access huge amounts of data from DNA. For now, Twist is in the business of writing DNA. Peck feels that massive increases in DNA writing capacity matched by massive decreases in synthesis cost will be the catalyst for the DNA data storage market. Once the cost makes this technology accessible to the long-term digital storage market, other markets requiring less latency will follow.
In a typical data center, there are several layers of storage. Flash memory is on top, which provides instantaneous access to information. Hard disks live underneath that. At the bottom are tape drives, which have high latency but store data cheaply with few errors for the longest time. These layers are joined together by machine intelligence that determines the best ways to allocate memory in the immediate, short, and mid- to long-term needs. Digital tapes are now the mainstay of long-term data storage. But as the world’s need for storage grows, a more stable, cost-effective, and long-term layer of storage will be needed, one that extends memory read-write systems into the biological realm.
“Your ‘golden backup’ will be in DNA,” Dr. Peck thinks. Unlike flash memory and hard drives, DNA data storage is passive, meaning it doesn’t need a lot of electricity or love to keep it going for centuries, even millennia.
8