Manual de anestesia inhalatoria

Page 1

Anestesia inhalatoria: De la teoría a la práctica

Dr. Gustavo Reyes Duque Dra. Luz Maria Gómez Buitrago Universidad de Caldas, Colombia 2007.


Libro elaborado para aspirar a escalafón de profesor asociado. Anestesia Inhalatoria: de la teoría a la práctica. © Dr. Gustavo Reyes Duque- Dra. Luz Maria Gómez Buitrago. Universidad de Caldas, Colombia 2007 Diseño de imágenes por Dr. Gustavo Reyes.

Anestesia Inhalatoria: de la teoría a la práctica.

2


PRÓLOGO

Anestesia Inhalatoria: de la teoría a la práctica.

3


CONTENIDO GENERAL

1. INTRODUCCIÓN. 2. FARMACOCINÉTICA. 2.1. INTRODUCCIÓN. 2.2. INDUCCIÓN DE LA ANESTESIA. 2.2.1. Concentración del agente anestésico en el gas inspirado. 2.2.2. Paso del agente desde la vía aérea hacia al alvéolo y concentración alveolar. 2.3. CAPTACIÓN DEL ANESTÉSICO. 2.3.1. Paso del agente anestésico inhalado desde los alvéolos hacia la sangre y transporte desde allí hacia el cerebro. 2.3.2. Paso del agente desde la sangre arterial hacia todos los tejidos del organismo. 2.4. ELIMINACIÓN DEL ANESTESICO. 2.4.1. Eliminación de los anestésicos y recuperación de la anestesia. 2.5. LA RECUPERACIÓN POSTANESTÉSICA 3. FARMACODINAMIA. 3.1. MECANISMO DE ACCIÓN. 3.1.1. Acciones a nivel macroscópico. 3.1.2. Acciones a nivel microscópico. 2.3.3. Acciones a nivel molecular. 3.2. EFECTOS ANALGÉSICOS (EFECTOS MEDULARES) DEL SEVOFLUORANO. 3.3. CARDIOPROTECCIÓN Y NEUROPROTECCIÓN DE LOS AGENTES ANESTÉSICOS INHALADOS. 3.3.1. Efectos de neuroprotección del Sevofluorano. 4. POTENCIA DE LOS AGENTES INHALADOS 4.1. CONCENTRACIÓN ALVEOLAR MÍNIMA. 4.1.1. C.A.M.95, C.A.M. DESPERTAR, C.A.M. INTUBACIÓN, C.A.M. B.A.R., C.A.M. EXTUBACIÓN. 4.1.2. La C.A.M. y la presión barométrica. 5.EFECTOS ADVERSOS DE LOS ANESTÉSICOS INHALADOS 5.1. AGITACIÓN PSICOMOTORA. 5.2. NAUSEAS Y VÓMITO POSTOPERATORIOS (N.V.P.O.). 5.3. ANORMALIDADES ELECTROENCEFALOGRÁFICAS Y MOVIMIENTOS ANORMALES. 5.4. OTROS. 6. TÉCNICAS ANESTESICAS 6.1. INDUCCIÓN, INTUBACIÓN Y MANTENIMIENTO CON BAJOS FLUJOS CON SEVOFLURANE EN ADULTOS 6.1.1 Introducción. 6.1.2. Técnica de inducción, intubación, mantenimiento con sevoflurane en paciente adulto.

Anestesia Inhalatoria: de la teoría a la práctica.

Pág. 6 11 11 14 15 16 22 23 24 29 30 32 38 38 39 39 40 44 49 54 56 56 58 60 62 64 67 68 74 77 77 77 81

4


6.2. ANESTESIA INHALATORIA EN PEDIATRÍA 6.2.1. ¿En pacientes pediátricos, cuál es el circuito anestésico más seguro y costo eficiente? ¿Cuál circuito anestésico se debe emplear?. 6.2.2. ¿En pacientes pediátricos, cuál anestésico inhalatoria es mejor para la inducción? 6.2.3. ¿En pacientes pediátricos, cuál es la técnica anestésica más eficiente? 6.2.4. ¿En pacientes pediátricos, la intubación es mejor con Sevoflurano que con relajantes neuromusculares? 6.2.5. ¿Para el mantenimiento anestésico en pacientes pediátricos, cuál es el medicamento coadyuvante más costo-eficiente? 6.2.6. ¿Cuál es el valor del flujo de gas fresco más indicado para el mantenimiento de la anestesia general inhalatoria? 7. BIBLIOGRAFIA

Anestesia Inhalatoria: de la teoría a la práctica.

95 95 95 97 98 99 99 100

5


INDICE DE IMÁGENES

Pág. Figura 1. Compartimientos extracorporales y corporales por donde deben pasar los anestésicos inhalatorios.

12

Figura 2. Estructura química de los anestésicos inhalados.

13

Figura 3. Factores que condicionan el paso del anestésico desde la vía aérea hacia el alvéolo.

17

Figura 4. Componentes de la curva FA/FI.

19

Figura 5. Gradiente boca-alvéolo

20

Figura 6. Solubilidad del Sevofluorano en la interfase sangre:gas.

25

Figura 7. Curvas FA/FI de los diferentes anestésicos.

27

Figura 8. Tiempo de disminución en la concentración de los anestésicos.

36

Figura 9. Un ejemplo de mecanismo de acción de los anestésicos.

42

Figura 10. Mecanismos sistémicos y moleculares de la anestesia general.

48

Figura 11. Representación simplificada de los mecanismos de precondicionamiento.

53

Figura 12. Concentración alveolar mínima-50 (C.A.M.50)

57

Figura 13. Espectro de las ondas con su respectiva frecuencia (parte superior) y registro de los cambios que suceden bajo anestesia general y durante la inducción anestésica con Sevofluorano en altas

70

concentraciones. Figura 14. La técnica es el resultado de integrar los nuevos conocimientos y técnicas descritas en la literatura

82

Figura 15. Componentes del conector SIBI.

83

Figura 16. Monte el conector en el circuito anestésico.

83

Figura 17. Fije la bolsa reservorio de oxígeno y el tubo a la sección de pre-oxigenación del conector.

83

Figura 18 y 19. Fijación de la tapa de seguridad a la válvula.

84

Figura 20. Ajuste del flujometro para iniciar la técnica de inducción inhalatoria en adultos.

85

Figura 21. Pre-oxigenación del paciente.

85

Figura 22. Mezcla de anestésicos en el circuito.

85

Figura 23. Cambios en la concentración de sevoflurano en el circuito al finalizar la saturación del circuito. Figuras 24-25-26. Manejo de la llave de seguridad del conector SIBI. Figura 27. Cambios en la concentración de sevoflurano en el circuito y compartimientos corporales al finalizar la inducción con capacidad vital retenida.

86 87 89

Figuras 28, 29,30. Manejo de la válvula SIBI cuando se permeabiliza la vía aérea del paciente.

90

Figura 30, 31. Ajuste final de la válvula SIBI.

91

Figura 32. Cambios en la concentración de sevoflurano en el circuito y compartimientos corporales a los

92

Anestesia Inhalatoria: de la teoría a la práctica.

6


treinta (30) minutos de haber iniciado con la preoxigenación. Figura 33. Anestesia inhalatoria en niños.

Anestesia Inhalatoria: de la teoría a la práctica.

97

7


INDICE DE TABLAS Pág. Tabla 1. Gradientes de concentración boca–alvéolo de diferentes anestésicos inhalados.

22

Tabla 2. Coeficientes de partición sangre/gas de los anestésicos inhalados.

26

Tabla 3. Características del flujo sanguíneo en los diferentes grupos de tejidos.

29

Tabla 4. Coeficiente de partición sangres: gas y tejido: sangre de los anestésicos inhalados en tejidos diferentes.

29

Tabla 5. Valores de la C.A.M. según la edad en mayores de 1 año.

57

Tabla 6. Factores que modifican la Concentración Alveolar mínima (C.A.M.).

57

Tabla 7. Valores de la Concentración Alveolar Mínima (C.A.M.) de los anestésicos que se utilizan actualmente. Tabla 8. C.A.M.Despertar, C.A.M.Intubación y C.A.M.B.A.R. de los diferentes anestésicos inhalatorios. Tabla 9. C.A.M. de los anestésicos expresados en porcentajes, en atmósferas y en mm Hg. Tabla 10. Probabilidad de no detectar eventos adversos, de acuerdo con el número de pacientes tratados con un medicamento.

58

59 61 62

Tabla 11. Escala para evaluar el estado de agitación.

65

Tabla 12. Ondas cerebrales y frecuencias en Hertz.

69

Tabla 13. Rango de los flujos utilizados en anestesia.

79

Anestesia Inhalatoria: de la teoría a la práctica.

8


Capítulo uno Introducción Los anestésicos inhalados son moléculas de hidrocarburos halogenados, entre los cuales se encuentran el halotano, el enfluorano, el isofluorano, el sevofluorano y el desfluorano y en su forma comercial se presentan como líquidos volátiles para ser administrados en forma de gas o vapor por las vías respiratorias, a través de las cuales pasan a la sangre y luego al cerebro con el fin de producir anestesia general a los pacientes sometidos a procedimientos quirúrgicos. Hoy en día, muchos anestesiólogos utilizan con mayor frecuencia la anestesia general inhalatoria; esto se debe a su simplicidad, pues con un sólo medicamento y con una técnica de administración única se satisfacen todas las necesidades. En efecto, con cualquiera de los agentes anestésicos halogenados se puede obtener analgesia, amnesia, hipnosis, inmovilidad y protección neurovegetativa; La anestesia inhalatoria es casi perfecta porque la droga entra al organismo por el pulmón, junto con el oxígeno, luego pasa a la sangre y al cerebro, donde produce su efecto clínico, y finalmente vuelve y sale por pulmón, junto con el dióxido de carbono, prácticamente sin haber sufrido ninguna transformación dentro del organismo y sin dejar residuos dentro de él. No obstante, la anestesia inhalatoria tiene dos problemas que han disminuido su uso en los últimos años: ocasiona muchos efectos indeseables y contamina el medio ambiente. Los halogenados modernos (sevoflurano y desflurano) son menos solubles en los tejidos, motivo por el cual entran y salen muy rápidamente del cuerpo, y esto les concede tiempos de inducción y de recuperación breves y un cambio del plano anestésico más veloz. Por otra parte, su baja solubilidad los convierte en agentes ideales para ser utilizados de manera segura con flujos bajos, en técnicas cuantitativas, aun con los vaporizadores convencionales, lo cual reduce enormemente su consumo y, en consecuencia, los costos. Por ultimo, pero no menos importante, la exclusión de los átomos de cloro es una ventaja ecológica, porque los nuevos halogenados no interactúan con la capa de ozono (1,2, 3). Anestesia Inhalatoria: de la teoría a la práctica.

9


Este libro describe inicialmente los aspectos farmacocinéticos, farmacodinámicos y potencia anestesia para facilitar la comprensión de las técnicas más usadas por los anestesiólogos. En cierta forma, los capítulos iniciales facilitan la aplicación de las técnicas en forma correcta y costoeficiente. Además, los conceptos y teorías facilitan las bases de conocimiento para realizar simulación con el software GASMAN®.

Anestesia Inhalatoria: de la teoría a la práctica.

10


Capítulo dos Farmacocinética 2.1. INTRODUCCIÓN.

El estudio de la farmacología se divide en dos grandes campos: la farmacocinética y la farmacodinamia. La primera estudia el comportamiento cinético de un medicamento dentro del organismo. Ella estudia la forma como el medicamento se absorbe, se distribuye, se transforma y se elimina; dicho en otras palabras, la farmacocinética trata sobre “lo que le hace el cuerpo al medicamento”. La farmacodinamia estudia los cambios que provoca el medicamento en el organismo; es decir, que trata sobre “lo que el medicamento le hace al organismo”.

Los agentes anestésicos inhalados son vapores que se administran por la vía inhalatoria, y su dosificación se regula mediante un vaporizador. Después, el agente pasa desde la máquina de anestesia hacia el circuito respiratorio, y en virtud del movimiento de gases que genera la ventilación pulmonar, el caudal de gases en el cual ha sido diluido el vapor anestésico se moviliza hasta el alvéolo pulmonar; luego, por un movimiento de difusión pasiva, atraviesa la membrana alvéolo-capilar para llegar al circuito pulmonar, donde se diluye en la sangre. El movimiento de la sangre que origina la bomba cardiaca lo conduce hasta la circulación sistémica; y, por último, es llevado al cerebro, donde es captado por el tejido para ejercer su acción (Ver figura 1).

Anestesia Inhalatoria: de la teoría a la práctica.

11


En

consecuencia,

farmacocinética

para

de

estudiar

los

la

anestésicos

inhalados, los hechos más importantes son los siguientes: concentración del agente anestésico en el gas inspirado; ventilación pulmonar; difusión del agente anestésico inhalado desde los alvéolos hacia la sangre; paso del agente de la sangre arterial hacia todos los tejidos del organismo, incluyendo el cerebro, que es sitio de acción u órgano blanco; y los procesos inversos a los anteriores (cerebro – sangre – pulmones – eliminación).

Desde el punto de vista químico, los anestésicos

inhalados

modernos

se

denominan hidrocarburos halogenados. Los nombres genéricos de estas moléculas son Halotano,

Enfluorano,

Isofluorano,

Figura 1. Compartimientos extracorporales y

Sevofluorano y Desfluorano (Ver figura 2).

corporales

En su forma comercial, los anestésicos

por

donde

deben

pasar

los

anestésicos inhalatorios. El agente anestésico debe pasar del equipo con el cual se dosifica hacia

inhalados se presentan como

la máquina de anestesia y de allí hasta los

volátiles, y por tanto en la práctica clínica se

pulmones; luego, debe pasar a la circulación

líquidos

administran en forma de vapores que deben

pulmonar y sistémica; por último, debe ser llevado al tejido cerebral, en donde es captado para ejercer

ingresar

al

organismo

por

las

vías

su acción.

respiratorias, a través de ellas deben pasar a la sangre y luego al cerebro. Para que un

paciente pueda ser sometido a un procedimiento quirúrgico sin que haya respuesta al dolor, movimientos de defensa, reflejos peligrosos o memoria del hecho, el vapor debe producir un efecto clínico que ha sido denominado anestesia general. Anestesia Inhalatoria: de la teoría a la práctica.

12


Figura 2. Estructura química de los anestésicos inhalados.

Hoy en día, la mayoría de los anestesiólogos utilizan la vía inhalatoria para lograr este efecto clínico. Esto se debe a su simplicidad, pues con un sólo medicamento y con una técnica única de administración se satisfacen todas las necesidades mencionadas. En efecto, con cualquiera de los agentes anestésicos halogenados se puede obtener analgesia, inmovilidad, protección neurovegetativa, amnesia e hipnosis. La anestesia inhalatoria es casi perfecta porque el medicamento entra al organismo por el pulmón, junto con el oxígeno, luego pasa a la sangre y al cerebro, donde produce su efecto clínico, y finalmente vuelve y sale por pulmón, junto con el dióxido de carbono, prácticamente sin haber sufrido ninguna transformación dentro del organismo y sin dejar residuos dentro de él.

Los anestésicos halogenados más modernos (Sevofluorano y Desfluorano) son menos solubles en la sangre y en los tejidos. Por este motivo, entran y salen muy rápidamente del cuerpo, y ello se refleja en la práctica clínica en tiempos de inducción y de recuperación más breves y en un cambio del plano anestésico más veloz. Por otra parte, la baja solubilidad convierte a estos agentes anestésicos en

Anestesia Inhalatoria: de la teoría a la práctica.

13


moléculas ideales para ser utilizadas de manera segura con un flujo bajo de gas diluyente o en circuito cerrado, aún con los vaporizadores convencionales, o con técnicas cuantitativas, lo cual reduce enormemente su consumo y, en consecuencia, su precio de compra. Por ultimo, pero no menos importante, la exclusión de los átomos de cloro en las moléculas de los nuevos hidrocarburos halogenados constituye una ventaja desde el punto de vista ecológico, porque ellos no interactúan con la capa de ozono.

Para concluir, vale decir que la solubilidad es el factor que más incide en la velocidad de la inducción anestésica y en el tiempo del despertar. La solubilidad está determinada por la presión parcial que ejerce el vapor cuando se encuentra dentro de una interfase líquida, es decir en la sangre, y dentro de una interfase lipídica, es decir en los tejidos, porque esta solubilidad es la que gobierna el aumento o la disminución de la presión parcial del vapor en la mezcla de gases que se localiza dentro de la interfase gaseosa, es decir en el alvéolo. Otros factores que también influyen en la velocidad de la inducción y de la recuperación son la ventilación pulmonar y el flujo circulatorio. Por último, el olor del anestésico influye de una manera indirecta en la rapidez de la inducción, aunque no incide durante la recuperación, porque los anestésicos que tiene una menor acritud pueden ser dosificados con

mayores

concentraciones en las primeras etapas de la inducción anestésica. Recientemente, se ha comprobado que el tiempo que dura la administración del anestésico es muy importante para predecir el tiempo que va a tardar el paciente en despertarse (ver adelante el concepto de vida sensible al contexto de los anestésicos inhalados).

2.2. INDUCCIÓN DE LA ANESTESIA.

En los párrafos siguientes se analizará con mayor detalle los fenómenos físicos y químicos que van presentando en los diferentes trayectos anatómicos a medida que el anestésico va pasando por ellos hasta llegar finalmente al cerebro y los factores que influyen en la velocidad de inducción y recuperación anestésica. Anestesia Inhalatoria: de la teoría a la práctica.

14


2.2.1. Concentración del agente anestésico en el gas inspirado.

En la anestesia inhalatoria, el primer objetivo es transportar el anestésico desde el vaporizador y el circuito anestésico hasta la vía aérea

del paciente. Como el

movimiento de los gases se debe a un gradiente de presión entre los compartimientos, el primer objetivo se cumple si se alcanza una concentración adecuada del anestésico en la mezcla de gas que se ubica en la rama inspiratoria del circuito respiratorio; es decir, el anestesiólogo debe crear un gradiente de presión entre el compartimiento inicial (circuito de la máquina y la máscara facial, en el caso de una inducción inhalatoria) y el segundo compartimiento (la vía aérea). La concentración inhalada del agente anestésico, que generalmente se expresa en mililitros de vapor anestésico por cada 100 mililitros de gas de la mezcla inspirada (volúmenes por ciento: Vol. %), depende de dos factores: de la dosificación del agente anestésico en el vaporizador (dial del vaporizador) y del flujo de gases frescos que se está administrando (flujómetros). Esto quiere decir que para obtener en un corto periodo de tiempo una concentración alta de anestésico en la mezcla de gases del circuito, el anestesiólogo puede aumentar la concentración de anestésico que agrega al circuito abriendo el dial del vaporizador hasta un valor mayor o elevar el caudal de gases frescos aumentando el volumen de gases diluyentes con los flujómetros.

Un ejemplo de la importancia clínica de este hecho es el prellenado del circuito anestésico, lo cual se utiliza actualmente en los adultos y en los niños (4) con el propósito de lograr un efecto de “sobre-presión” para realizar la inducción en menos tiempo. El efecto de “sobre-presión”, se logra ocluyendo el circuito respiratorio (5) con una válvula o con la palma de la mano, abriendo el dial del vaporizador a 8 Vol. % y ajustando el flujo de gases frescos a 4 litros durante 2 minutos. Esta técnica se describe principalmente con el Sevofluorano porque su baja acritud y su buena tolerancia en la vía aérea lo convierten en el halogenado óptimo para realizarla. Con estas maniobras, a los 2 minutos se alcanza una concentración inspirada de Anestesia Inhalatoria: de la teoría a la práctica.

15


Sevofluorano en el circuito de 5.8 Vol. %. También se puede alcanzar la misma concentración en el circuito ocluido si el dial del vaporizador permanece abierto al 8% y con un flujo de gases frescos a 8 litros durante 1 minuto. De igual forma, cuando se ha realizado una inducción intravenosa y se quiere obtener de manera rápida una concentración adecuada del agente anestésico en el cerebro durante la fase inicial del mantenimiento, se puede mantener la concentración al 8 Vol.% a un flujo de gases frescos de 4 litros por minuto durante 4 minutos, una vez que se haya instalado el dispositivo para mantener permeable la vía aérea del paciente. Con esto, se logra una concentración de Sevofluorano en el cerebro de 1.98 Vol. % 1 , lo cual está muy cerca de su dosis efectiva 50.

Hasta ahora se ha explicado como se puede facilitar la llegada del vapor anestésico hasta la vía aérea del paciente, aumentando la concentración del agente anestésico en los gases inspirados hasta provocar un gradiente de presiones entre el circuito anestésico y la vía aérea. Después, se debe cumplir el segundo objetivo, que es facilitar el paso del agente anestésico desde la vía aérea hacia los alvéolos.

2.2.2. Paso del agente desde la vía aérea hacia al alvéolo y concentración alveolar.

La velocidad con la cual el anestésico pasa desde la vía aérea hacia al alvéolo depende de la fracción inspirada y de la ventilación alveolar (Ver figura 3). La ventilación alveolar es el resultado de restar la ventilación del espacio muerto a la ventilación pulmonar (Va= Vp - Vem), la cual se obtiene multiplicando el volumen corriente (tidal) por la frecuencia respiratoria (Vp= Vt x F). La ventilación alveolar es el determinante fundamental de la velocidad con la cual un agente anestésico ingresa a los alvéolos y cuando ella cambia la velocidad de la inducción anestésica y la velocidad con la cual se puede variar la profundidad anestésica también se aceleran o disminuyen. En efecto, cuando la ventilación alveolar por minuto aumenta, al mismo 1

Concentración alcanzada en el GASMAN, un simulador de anestesia inhalatoria.

Anestesia Inhalatoria: de la teoría a la práctica.

16


tiempo y de manera proporcional se observa una aceleración en la velocidad con la cual se incrementa la concentración alveolar del agente anestésico, que en la práctica clínica se evidencia por el valor de la fracción espirada de agente anestésico que aparece en la pantalla del analizador de gases. Cuando se logra este efecto de “hiperventilación alveolar”, la inducción anestésica tarda menos tiempo.

Para aumentar la ventilación alveolar mientras se realiza la inducción inhalatoria en los adultos, y aún en los niños, se puede utilizar la maniobra de “inducción según capacidad vital”. Los pasos para realizar esta maniobra son los siguientes: primero, se satura el circuito anestésico con el Figura 3. Factores que condicionan el paso del anestésico desde la vía aérea hacia el alvéolo.

anestésico

hasta

inspirada de

lograr

una

fracción

Sevofluorano cercana a 6

Vol. %, lo cual, como ya se explico, se logra ocluyendo la salida del gas fresco desde el circuito hacia el exterior de la máquina para obligarlo a que recircule dentro de las mangueras, abriendo el díal del vaporizador al 8 Vol.% y programando un flujo total de gas fresco de 4 litros por minuto durante 2 minutos; mientras transcurre este tiempo, se le pide al paciente que realice una expiración máxima; una vez se verifica que puede realizar esta maniobra, antes de que el paciente inhale, se aplica firmemente sobre la cara una máscara facial que está conectada al circuito anestésico circular que previamente había sido saturado con el anestésico; a continuación, se le pide que realice una inspiración forzada hasta el máximo (que inspire lo más profundo posible); y, finalmente, se le pide que retenga este volumen inspirado durante la mayor cantidad de tiempo que pueda. Esta serie de maniobras aumentan la ventilación alveolar por minuto del paciente y por este mecanismo aceleran la inducción inhalatoria.

Anestesia Inhalatoria: de la teoría a la práctica.

17


En contraste, si se realiza una inducción inhalatoria en un paciente con compromiso de la ventilación alveolar, el anestésico puede no llegar hasta los alvéolos con la misma celeridad. Por tanto, en aquellas situaciones clínicas que produzcan mucha incertidumbre acerca del comportamiento farmacocinético del agente inhalado, como sucede en la enfermedad pulmonar obstructiva crónica o con un derrame pleural gigante unilateral, se aconseja usar una vía que no esté comprometida, lo cual quiere decir que el anestesiólogo debe preferir la inducción por la vía intravenosa.

Con el propósito de facilitar la comprensión de la forma como se comportan los agentes anestésicos en el circuito, en la vía aérea y en los alvéolos, los farmacólogos han utilizado la relación entre la fracción o el porcentaje de volumen del agente anestésico en el gas alveolar y la fracción o el porcentaje del mismo agente en el gas inspirado (FA/Fi). Kety describió una gráfica que presenta esta relación a través del tiempo, que se ubica sobre le eje X, y el valor de la relación FA/Fi se ubica sobre el eje Y. De esta manera se puede evidenciar la velocidad con la cual se moviliza el vapor anestésico desde la vía aérea hacia el alvéolo por medio de una curva (6,7).

El gráfico de esta curva se divide en tres fases: la elevación exponencial rápida es seguida por una seudomeseta y termina en una línea o cola ascendente. La primera fase representa de la concentración alveolar del anestésico, y se debe al ingreso del agente anestésico hacia los pulmones del paciente, es decir hacia adentro ó “washing in”; la pendiente de esta curva está determinada por la constante de tiempo (t) de las vías aéreas, que es igual a la relación entre la capacidad funcional residual (CFR) y la ventilación alveolar por minuto (VA), lo cual se puede expresar mediante la fórmula t= CFR/VA, que en un paciente normal es igual a 0,5 minutos (2 litros/4 litros por minuto). La seudomeseta de la segunda fase refleja el equilibrio entre la ventilación alveolar, que lleva el anestésico a los pulmones, y el gasto cardíaco, que provoca la salida de este de la interfase alvéolo-capilar. La cola ascendente de la tercera fase está conformada por tres porciones que tienen tres elevaciones exponenciales y tres constantes de tiempo diferentes (Ver figura 4). Anestesia Inhalatoria: de la teoría a la práctica.

18


La primera constante de tiempo de la cola ascendente refleja la entrada del anestésico al grupo de tejidos que se impregna más rápidamente, también conocido como grupo de tejidos muy irrigados. En este grupo de órganos el agente anestésico ingresa con mayor rapidez porque la constante de tiempo es igual a la relación entre el volumen tisular efectivo y el flujo sanguíneo efectivo hacia este tejido. Para la mayoría de los anestésicos inhalatorios, esta primera constante de tiempo oscila entre 1,5 y 4 minutos.

Figura 4. Componentes de la curva FA/FI. La elevación exponencial rápida representa el ingreso rápido al alvéolo del anestésico, que es favorecido por la ventilación alveolar. La segunda fase o seudomeseta refleja el equilibrio entre la ventilación alveolar que lleva el anestésico a los pulmones y el gasto cardíaco que provoca la salida de la interfase alvéolo-capilar. Finalmente, el retorno venoso convierte la curva en una línea ascendente. A medida que el agente anestésico retorna por vía venosa desde los tejidos orgánicos hacia los pulmones se produce un lento ascenso de la presión alveolar. La sangre que proviene del grupo de tejidos muy irrigados En primer lugar retorna, mucho más tarde la que proviene del tejido muscular y más tarde aún la del tejido graso.

La segunda constante de tiempo representa la entrada del anestésico al grupo tisular que tiene una velocidad de flujo sanguíneo intermedia, que se denomina “grupo muscular” porque este tipo de tejido integra la mayor parte de tejido dentro de este grupo. Para todos los anestésicos inhalatorios, la segunda constante de tiempo oscila Anestesia Inhalatoria: de la teoría a la práctica.

19


entre 1 y 3 horas. La tercera constante de la cola representa el ingreso del agente en los tejidos grasos y en los otros tejidos que tienen la menor irrigación sanguínea. Para la mayoría de los agentes anestésicos inhalatorios la última parte de la cola registra una elevación muy escasa y su constante de tiempo es tan prolongada que se puede considerar como un lavado infinito (8).

A continuación se explicará un concepto importante para la adecuada práctica de la anestesia inhalatoria: el gradiente boca-alvéolo. Al iniciar la administración de una agente anestésico inhalado, los alvéolos no poseen ninguna molécula de anestésico y por tanto el valor de la fracción espirada es igual a 0. Luego, a medida que la concentración alveolar del anestésico va aumentando, la fracción espirada también empieza a ascender con cada ciclo respiratorio, sin llegar a igualar el valor de la fracción inspirada, pero estableciendo una determinada proporcionalidad con la misma (Ver figura 5).

Si se mantienen constantes la fracción

inspirada

ventilación

y

la

alveolar,

aproximadamente

10

minutos

después de haber abierto el vaporizador se habrá alcanzado la máxima concentración posible dentro del alvéolo, concentración que es específica para cada agente anestésico. Por ejemplo, cuando

el

anestesiólogo

administra Sevofluorano a una Figura 5. Gradiente boca-alvéolo

Anestesia Inhalatoria: de la teoría a la práctica.

fracción inspirada constante y

20


mantiene una ventilación alveolar normal, unos

minutos después obtiene una

concentración de anestésico en los alvéolos que corresponde al 85% de la concentración inspirada. Dicha diferencia entre la fracción inspirada y la concentración alveolar máxima alcanzada es lo que se conoce como gradiente boca– alvéolo. Este gradiente se genera y se mantiene porque la mezcla de gases en el alvéolo contiene una presión parcial de vapor de agua y de Dióxido de Carbono muchas veces más alta que la mezcla de gases en la boca y porque el anestésico pasa continuamente desde el alvéolo hacia el torrente sanguíneo. Dado que la concentración alveolar del vapor de agua y del Dióxido de Carbono oscila dentro de unos rangos muy estrechos, el gradiente boca-alvéolo es directamente proporcional a la solubilidad específica de cada agente anestésico inhalado. Esto quiere decir que a mayor solubilidad del anestésico en sangre el gradiente boca-alvéolo es mayor y viceversa. Con fracción inspiratoria y ventilación constantes, el gradiente boca-alvéolo también se mantiene constante durante todo el tiempo que se mantiene la anestesia. Naturalmente, este valor deja de ser constante en los minutos próximos y posteriores a cualquier cambio

en la posición del dial del vaporizador y en la ventilación

alveolar.

El gradiente alvéolo-boca explica el comportamiento de la curva que muestra la relación FA/FI. También ayuda a comprender porqué durante el estado de equilibrio la concentración espirada que registra el analizador de gases anestésicos no es igual a la concentración inspirada del mismo y siempre mantiene una diferencia, que es proporcional al gradiente boca-alvéolo. Por otra parte, la cifra del gradiente permite calcular la concentración que se debe programar en el dial del vaporizador. Así por ejemplo, cuando el anestesiólogo quiere administrar Sevofluorano a una concentración que logre la ausencia de respuesta frente a un estímulo nocivo en el 95% de los pacientes, es decir una D.E. 95% (C.A.M. análisis: en pacientes adultos, la D.E.

50%

(C.A.M.

Anestesia Inhalatoria: de la teoría a la práctica.

95%),

50%)

debe realizar el siguiente

del Sevofluorano es de 2,0

21


Vol. % (Concentración Alveolar Mínima de 2 Vol. %); pero, como quiere lograr la C.A.M. 95%, debe multiplicar esta cifra por una constante, que para el Sevofluorano es de 1,3 veces el valor de la C.A.M.

50%;

esto quiere decir, que la Concentración

Alveolar Mínima necesaria para lograr la D.E. 95% es de 2.6 Vol. %; sin embrago, como en estado de equilibrio la concentración en el alvéolo del Sevofluorano es un 15% más baja que la concentración en la boca (ver tabla 1) se necesita programar el dial del vaporizador en un valor que sea un 15% más alto para aumentar la fracción inspirada hasta obtener ese nueva concentración calculada; es decir, el anestesiólogo debe multiplicar el valor de la C.A.M.

95%,

por 1,15 (2,6 X 1,15), lo cual da una

concentración de 2.99 Vol.%. Lo anterior significa que para tener una alta probabilidad de administrar la C.A.M.

95%

el anestesiólogo debe abrir el dial del

vaporizador de Sevofluorano a 3 Vol %.

Concentración

Agente

Gradiente

Boca

Alvéolo

Halotano

1%

0,50 %

50 %

Enfluorano

1%

0,60 %

40 %

Isofluorano

1%

0,70 %

30 %

Sevofluorano

1%

0,85 %

15 %

Desfluorano

1%

0,90 %

10 %

Tabla 1.

Gradientes de concentración boca–alvéolo de diferentes anestésicos inhalados. Dichos valores se

establecen en pacientes normoventilados con una fracción inspirada constante del agente anestésico durante más de 10 minutos.

2.3. CAPTACIÓN DEL ANESTÉSICO.

Hasta ahora se analizaron los factores que influencian el paso del agente anestésico desde el circuito anestésico hacia el alvéolo. En los párrafos siguientes se analizarán los factores que condicionan el paso del agente desde el alvéolo hacia la sangre y desde ella hacia el cerebro.

Anestesia Inhalatoria: de la teoría a la práctica.

22


2.3.1. Paso del agente anestésico inhalado desde los alvéolos hacia la sangre y transporte desde allí hacia el cerebro.

En condiciones normales, la membrana alvéolo-capilar no representa ninguna limitación para el paso del agente anestésico inhalado.

Cuando la relación

ventilación-perfusión es normal, existen tres factores que determinan la velocidad del paso de los agentes anestésicos inhalados desde el alvéolo hacia la sangre: la solubilidad del agente anestésico inhalado, la diferencia o gradiente de concentraciones del agente anestésico inhalado entre el alvéolo y la sangre y la velocidad del flujo sanguíneo pulmonar o el gasto cardíaco.

Los estados de la materia (líquido, sólido, gas) no son más que diferentes grados de cohesión entre las moléculas que la conforman. Los sólidos y los líquidos tienen un menor grado de cohesión y ello permite que una cantidad variable de moléculas pueda ocupar un volumen determinado; en estos casos la cantidad de materia equivale a la suma de los diferentes pesos moleculares de las sustancias que ocupan el recipiente. En cambio, las moléculas de los gases tienen una energía que repele las moléculas entre sí, y en virtud de este hecho la ley de Avogadro establece que a presión y temperatura constantes la cantidad de moléculas gases que puede ocupar un volumen determinado es fija (número de Avogadro), y que por tanto la cantidad de materia que cabe en un volumen constante no depende de su peso molecular sino de la presión y de la temperatura dentro del recipiente. Por otra parte, en virtud de esta falta de cohesión entre las moléculas, los gases y los vapores se pueden mezclar libremente entre sí y también se pueden mezclar fácilmente con un solvente líquido ó sólido. Sin embargo, ésta solubilidad es diferente a la que se observa cuando se mezclan dos líquidos y a la de un soluto sólido mezclado con un solvente líquido, donde la solubilidad se expresa como la masa del soluto, sólido o líquido, que se diluye en un volumen de solvente (por ejemplo solubilidad de cloruro de sodio en agua, que s expresa en mol/L ó gr/L).

Anestesia Inhalatoria: de la teoría a la práctica.

23


Para los anestésicos inhalados la solubilidad se define como la “relación de afinidad del vapor entre dos interfases en estado de equilibrio”. Por ejemplo, la relación entre la concentración del gas en la interfase de gas (alvelo) y la concentración en la interfase del líquido (sangre); o entre las concentraciones en un líquido (sangre) y en un sólido (tejido). Se afirma que las moléculas de un anestésico se encuentran en estado de equilibrio cuando no ocurre transferencia neta del anestésico entre las dos interfases que se analizan, porque la presión parcial del gas es igual en cada una de las dos interfases. Esto se explica con la ley de Henry, que es aplicable al estudio de la forma como se mezclan un gas y un líquido dentro de un recipiente con un volumen fijo y temperatura constante, siempre que ellos no interactúen químicamente y que expresa lo siguiente: “a temperatura y volumen constantes, la concentración de un gas disuelto en un fluido es directamente proporcional a la presión parcial del gas en la superficie del líquido”.

La relación o el “coeficiente” entre las concentraciones del anestésico en cada una de las dos interfases en el momento que se alcanza el equilibrio nos da una idea de la solubilidad del anestésico. A continuación, se explicará con más detalle este concepto: la dirección de la difusión entre las dos interfases está determinada por la diferencia entre las presiones parciales del vapor anestésico en las dos interfases y no por la diferencia en la cantidad de moléculas de vapor que contiene cada una de las interfases. Como el anestésico tiene una presión parcial más alta en el alvéolo que en la sangre, difunde a través de la membrana alvéolo-capilar desde el alvéolo hacia el capilar pulmonar. Cuando se llega al estado de equilibrio, ambas presiones se igualan y el flujo de moléculas cesa; no obstante, así no exista diferencia entre las presiones parciales dentro del alvéolo y dentro de la sangre, puede haber diferencias en la cantidad de moléculas que contiene un volumen determinado de la mezcla en cada interfase; es decir, que la masa o la concentración de moléculas de vapor que contiene cada interfase puede ser diferente, y en este caso se expresa como el volumen de gas anestésico (mL) disuelto en 100 mL de volumen del gas que contiene el alvéolo o

Anestesia Inhalatoria: de la teoría a la práctica.

24


como el volumen de gas disuelto en 100 ml de sangre; en ambas partes, también se puede expresar como un porcentaje del volumen total (Vol. %) (Ver figura 6).

Figura 6. Solubilidad del Sevofluorano en la interfase sangre:gas. Inmediatamente después de que el Sevofluorano entra al alvéolo empieza a desplazarse hacia la sangre, a través de la membrana alvéolo-capilar, y difunde hasta que alcanzar el equilibrio, cuando se igualan las presiones parciales. Al mismo tiempo, el vapor del Sevofluorano se mezcla con la sangre en una proporción que depende de la aceptabilidad que la sangre tenga por él. En estado de equilibrio, la masa de Sevofluorano por unidad de volumen en la sangre es 37% menor que en la fase gaseosa; es decir, cuando la masa de vapor de Sevofluorano en el gas alveolar es de 1, la masa del mismo en la sangre es de 0,63 veces de la masa en el gas. En esta situación, el coeficiente de partición sangre:gas del Sevofluorano es de 0.63.

Entonces, el coeficiente de partición 2 de un agente anestésico, expresa la proporción de un gas que está presente en la fase sanguínea cuando se administra el agente anestésico a una atmósfera de presión y a 37 0C en la fase gaseosa. Por ejemplo, el coeficiente de partición sangre:gas es un coeficiente de distribución y describe la afinidad relativa del anestésico para ambas fases. Como el Enfluorano tiene un

2

También se puede expresar como coeficiente de distribución. Note que el concepto en si mismo exige un numerador y un denominador, de ahí el nombre de coeficiente y demuestra una distribución –o partición- entre dos fases)

Anestesia Inhalatoria: de la teoría a la práctica.

25


coeficiente de partición

sangre:gas de 1,9, durante la fase de

equilibrio la

concentración de Enfluorano en sangre es 1,9 veces la concentración del mismo en el alvéolo (ver tabla 2). En este sentido, un coeficiente sangre:gas más elevado reflejaría una captación mayor del agente anestésico y por este motivo la relación FA/FI va a tener un menor valor. Por otra parte, cuando el agente anestésico es muy soluble, una gran cantidad de este permanece disuelto en la sangre antes de alcanzar el equilibrio entre las presiones parciales del alvéolo y la sangre, y después de que la presión parcial del anestésico en todos los tejidos se encuentre muy cerca del equilibrio con la presión parcial de los alvéolos, se requiere una mayor cantidad de tiempo para alcanzar una presión parcial adecuada del anestésico dentro del tejido cerebral, que en últimas es la responsable el efecto anestésico. En este caso, la inducción de la anestesia se retrasa y durante el mantenimiento de la anestesia se requiere más tiempo para cambiar el nivel hacia otro más profundo. Es decir, a mayor solubilidad del agente anestésico mayor coeficiente de partición y por consiguiente menos velocidad durante la inducción anestésica; por el contrario, si el anestésico es poco soluble, tiene un coeficiente de partición bajo y el organismo capta una menor cantidad de moléculas de vapor para establecer el equilibrio de presiones entre el alvéolo y la sangre; en consecuencia, la inducción anestésica será más rápida. Nótese que todo el tiempo se ha insistido en que el coeficiente de partición (solubilidad o cantidad disuelta) es independiente de la presión parcial del anestésico (dosis ó concentración).

Agente

Coeficiente Sangre: gas

Desfluorano Óxido Nitroso Sevofluorano Isofluorano

0.45

Enfluorano Halotano

1,90

0,46 0,63 1,46

2,54

Tabla 2. Coeficientes de partición sangre /gas de los anestésicos inhalados.

Anestesia Inhalatoria: de la teoría a la práctica.

26


Ahora,

se

explicará

el

gradiente de concentración veno-alveolar.

Cuando

se

empieza a administrar un agente anestésico inhalado, la sangre venosa mixta (sangre que llega a la unión alvéolocapilar

proveniente

del

corazón derecho a través de la

arteria

pulmonar)

no

Figura 7. Curvas FA/FI de los diferentes anestésicos. El aumento en

contiene agente anestésico;

la concentración alveolar del anestésico (FA) y en la concentración

entonces,

se

genera

un

inspirada (FI), hasta llegar al estado de equilibrio, es más rápido con los anestésicos menos solubles y más lento con los anestésicos más

gradiente entre la presión

solubles. En la grafica también se puede observar que el gradiente

parcial del agente en el

boca- alvéolo es menor con los anestésicos menos solubles: observe la

alvéolo y la presión parcial

distancia entre la línea amarilla y la línea punteada que representa la fracción inspirada (concentración en la boca).

en la sangre venosa, y este gradiente favorece

el paso

rápido del anestésico desde el alvéolo hacia el capilar, aumentando la concentración del mismo en la sangre. A medida que pasa el tiempo, el vapor que está diluido en la sangre pasa desde la circulación pulmonar hacia la circulación sistémica y esto hace que los tejidos corporales se vayan saturando con el vapor anestésico que viene disuelto en la sangre arterial, mientras que la sangre venosa que sale de estos órganos se mezcla antes de retornar corazón y desde allí vuelve al capilar pulmonar con cierta cantidad de agente anestésico, lo cual disminuye el gradiente presión alvéolo-capilar. En consecuencia, a medida que el gradiente de concentración entre la sangre venosa y el gas del alvéolo se disminuye también se reduce la velocidad con la cual el anestésico va pasando desde el alvéolo hacia la sangre. Cuando las concentraciones en la sangre venosa mixta y en la sangre arterial se igualan, se puede inferir que los tejidos se encuentren completamente saturados, y que por tanto la captación del agente en los tejidos es mínima o inexistente (Ver figura 7). Anestesia Inhalatoria: de la teoría a la práctica.

27


El gradiente alvéolo-capilar, también es modificado por la velocidad del flujo sanguíneo pulmonar, que a su vez está determinada por el gasto cardíaco. El aumento del flujo sanguíneo por la circulación pulmonar incrementa el paso del anestésico desde los alvéolos hacia la sangre, y el aumento del flujo sanguíneo por la circulación sistémica también aumenta la entrega de este a los tejidos, lo cual mantiene relativamente constante el gradiente alvéolo-capilar.

En síntesis, la velocidad con la cual el vapor anestésico pasa desde el alvéolo hacia la sangre depende: en primer término, de la fracción inspirada y de la ventilación alveolar; y en segundo término, de la solubilidad del anestésico y del gradiente venoalveolar.

2.3.2. Paso del agente desde la sangre arterial hacia todos los tejidos del organismo

El paso del agente anestésico desde la sangre hacia los tejidos depende del riego sanguíneo tisular, del coeficiente de partición del agente anestésico en los tejidos y del gradiente de presiones parciales entre la sangre y los tejidos. El riego sanguíneo que recibe cada tejido está determinado por la proporción del gasto cardiaco que irriga a un grupo determinado de órganos (Ver tabla 3). Los tejidos ricos en vasos sanguíneos y con altos flujos son los órganos que más rápido alcanzan el equilibrio entre la presión parcial del vapor anestésico dentro del tejido y la presión parcial del anestésico dentro del alvéolo. En este grupo de órganos ricamente irrigados se encuentra el cerebro, el corazón, el lecho esplácnico, el riñón y las glándulas endocrinas. En la tabla 4 se listan los coeficientes de partición tejido:sangre para los anestésicos inhalados halogenados en diferentes tejidos.

Anestesia Inhalatoria: de la teoría a la práctica.

28


ALTO FLUJO

MEDIANO

POBRE FLUJO

MÍNIMO FLUJO

Masa muscular

Tejido graso

Hueso

10

50

20

20

75

19

6

0

FLUJO

Cerebro, corazón, Órganos o tejidos

lecho esplácnico, riñón, etc.

% de masa corporal Perfusión ( % del gasto cardíaco)

Tabla 3. Características del flujo sanguíneo en los diferentes grupos de tejidos.

Sangre/gas

Cerebro / sangre

Músculo / sangre

Grasa / sangre

Desfluorano

0.42

1.3

2.0

27

Óxido Nitroso

0.47

1.1

1.2

2.3

Sevofluorano

0.69

1.7

3.1

48

Isofluorano

1.4

1.6

2.9

45

Enfluorano

1.8

1.4

1.7

36

Halotano

2.5

1.9

3.4

51

Tabla 4. Coeficiente de partición sangres: gas y tejido: sangre de los anestésicos inhalados en tejidos diferentes.

2.4. ELIMINACIÓN DEL ANESTESICO.

Cuando se suspende la administración del agente anestésico inhalado, se inicia un proceso que es similar pero inverso al que se ha descrito en los anteriores apartes. El agente anestésico pasa desde los tejidos hacia el torrente sanguíneo; luego, desde la sangre hacia los alvéolos; y por último, es eliminado del organismo hacia el medio ambiente gracias al movimientos de los gases que genera la ventilación pulmonar. Estos procesos, están determinados por los mismos factores que ya fueron explicados en el aparte que describe la captación, que son el gradiente de concentración del agente anestésico, la solubilidad o coeficiente de partición, la velocidad del flujo

Anestesia Inhalatoria: de la teoría a la práctica.

29


sanguíneo sistémico y pulmonar, la ventilación minuto y, por ultimo, el flujo de los gases frescos que se agrega al circuito respiratorio.

2.4.1. Eliminación de los anestésicos y recuperación de la anestesia.

Los anestésicos inhalatorios pueden ser eliminados del organismo por dos mecanismos: mediante la eliminación por la vía pulmonar y la excreción por otras vías (renal, intestinal) después de haber sido metabolizados. La mayoría de los agentes anestésicos inhalados son eliminados por la vía respiratoria sin haber sufrido ninguna modificación dentro del organismo porque ellos tienen una tasa de metabolismo muy baja. El Halotano tiene una tasa de metabolismo que oscila entre el 10% y el 20%, la del Enfluorano varía entre el 2 % y el 2,5%, la del Isofluorano es del 0,2 %, la del Sevofluorano el 3,5 %, la del Desfluorano varía entre 0,2% y 0,02 % y la del óxido nitroso es del 0.004%.

Más del 95% del Sevofluorano que ha ingresado al organismo se elimina sin haber sufrido ninguna transformación por la vía pulmonar. Durante la recuperación de la anestesia, el anestésico pasa desde el tejido donde se había depositado hacia a los pulmones. La solubilidad del agente anestésico es el factor que mayor impacto tiene sobre la velocidad de eliminación, y este factor es independiente de la duración de la cirugía y de la profundidad anestésica. La baja solubilidad permite que todo o casi todo el anestésico presente en la circulación pulmonar pueda ser eliminado. Cuando se ha usado un agente anestésico volátil con un bajo coeficiente de partición sangre:gas, como el Desfluorano y el Sevofluorano, se observa que la disminución en la concentración alveolar luego de cerrar el vaporizador es más rápida, si se compara con la

disminución en la concentración alveolar luego de haber administrado

Isofluorano o Halotano. En esta etapa es recomendable usar un flujo alto de gas fresco (más de 4 litros por minuto), porque su empleo evita la reinhalación del aire exhalado y acelera la eliminación del agente anestésico.

Anestesia Inhalatoria: de la teoría a la práctica.

30


Tan solo un porcentaje menor al 5% del Sevofluorano que ha ingresado al organismo se metaboliza dentro del organismo, principalmente en el hígado. Por otra aparte, el metabolismo de todos los anestésicos halogenados provoca un aumento en la concentración del Flúor en la sangre, que es mayor con el Enfluorano, intermedio con el Sevofluorano y mínimo con el Desfluorano. El Flúor inorgánico que se produce como resultado de este proceso de biodegradación podría actuar como una toxina renal selectiva que sería capaz de originar nefrotoxicidad cuando la concentración de Flúor sérico alcance niveles superiores a 50 Mm. No obstante, en la práctica de la anestesia clínica, sólo se ha documentado una perdida transitoria de la capacidad para concentrar la orina luego de haber utilizado el Sevofluorano en anestesias para procedimientos quirúrgicos prolongados. Además, tampoco se ha reportado nefrotoxicidad asociada con el Sevofluorano, a pesar de haberse detectado concentraciones séricas de Flúor superiores a 50 Mm. Para explicar estos hechos se han postulado dos hipótesis: la primera, conocida como “Hipótesis Modificada del Flúor”, sugiere que la elevación del Flúor sistémico o el área bajo la curva de las concentraciones de Flúor inorgánico/tiempo es el determinante de la nefrotoxicidad, y no la concentración sérica pico del Flúor. Dado que más del 95% del Sevofluorano no se metaboliza y se elimina rápidamente por los pulmones y gracias a que este agente tiene un bajo coeficiente de partición sangre:gas y por ello existe menos halogenado dentro del organismo para ser metabolizado, la concentración de Flúor en la sangre disminuye rápidamente y esto hace que el área bajo la curva de concentración/tiempo sea menor. La segunda hipótesis, conocida como “Hipótesis del Metabolismo Renal de los Anestésicos”, sugiere que los metabolitos tóxicos de los halogenados se forman en el órgano donde se manifiesta su toxicidad, y que la producción de Flúor que se origina en el metabolismo de los halogenados dentro del riñón es el responsable de la nefrotoxicidad. El Sevofluorano tiene un metabolismo renal mínimo y la producción de Flúor dentro del riñón debe ser mínima o inexistente, porque el Sevofluorano es desfluorinado por el isomero 2 del citocromo 0.P450, el cuál no es producido ni se encuentra en el riñón sino en el hígado. Por este motivo, de acuerdo con la segunda teoría, el riesgo de toxicidad renal es inaparente. Anestesia Inhalatoria: de la teoría a la práctica.

31


Por otra aparte, la degradación espontánea del Sevofluorano dentro de la canastilla que contiene el absorbedor del Dióxido de Carbono hace que se acumule dentro del circuito respiratorio una olefina conocida como el compuesto A. En los animales de laboratorio, la exposición a 110 partes por millón de este compuesto induce daño renal, pero en humanos no se ha podido documentar la exposición a más de 60 partes por millón. Luego de haber usado el Sevofluorano en millones de pacientes no se ha mostrado evidencia clara de toxicidad atribuible al compuesto A.

2.5. LA RECUPERACIÓN POSTANESTÉSICA

En realidad la recuperación de la anestesia depende del anestésico utilizado y del tiempo que se administre este. La recuperación es mucho menos predecible y controlable que la inducción. Esto se debe a que durante la recuperación cada tejido tiene una presión parcial del anestésico inhalado que es diferente, y a que el anestésico se va liberando hacia el torrente sanguíneo en tiempos diferentes, de acuerdo con el gasto cardiaco que lo irriga, con la concentración plasmática del agente anestésico inhalado, y con otros factores. El aumento de la ventilación minuto y el uso de un flujo alto del gas fresco durante la fase de recuperación inmediata puede incrementar el gradiente entre la presión parcial del vapor anestésico en el circuito respiratorio y la presión parcial del anestésico en la sangre venosa pulmonar y en el espacio alveolar. De esta forma se incrementa la eliminación del agente anestésico inhalado, con lo cual se disminuye el tiempo de la recuperación.

A pesar de que clásicamente se ha dicho que la recuperación de la anestesia con los inhalatorios depende principalmente de la solubilidad, hoy es claro que también depende del tiempo que duró la administración del medicamento. Por lo anterior, el concepto cinético de la “vida media sensible al contexto”, que se había empleado para explicar el proceso de recuperación luego de la anestesia intravenosa, en la actualidad también se utiliza para describir la recuperación de los agentes anestésicos Anestesia Inhalatoria: de la teoría a la práctica.

32


inhalatorios. En general, el tiempo de vida media, que es el tiempo que tarda la concentración plasmática en disminuir a la mitad después de haber administrado una dosis única, tiene gran valor para todos los medicamentos; no obstante, en anestesia, donde se requiere analizar la cinética de la infusiones continuas de medicamentos, este valor no se corresponde con la recuperación de los efectos clínicos; es decir, después de suspender la perfusión de un anestésico, los pacientes se recuperan antes o después de lo esperado, en un tiempo que no concuerda con la vida media de eliminación que se ha descrito en forma clásica. Por lo anterior, se definió “la vida media sensible al contexto”, una nueva variable farmacocinética para describir la eliminación de los medicamentos en infusión, pues mide el tiempo que tarda la concentración en la biofase para disminuir su concentración al 50% después de suspender dicha infusión. En la práctica clínica corresponde a la desaparición del efecto estudiado; por ejemplo, al usar un medicamento anestésico, si el 100% en la biofase se desconoce, el 50% corresponderá clínicamente

a la aparición de la

conciencia. En la actualidad este concepto también se aplica a la farmacocinética de los anestésicos inhalados que se administran en forma continua por vía pulmonar.

En el caso de los anestésicos inhalados, los modelos farmacocinéticos de tres y de cuatro compartimiento demuestran que el tiempo que dura la administración de la anestesia inhalatoria influye en la velocidad de caída de la concentración del agente después de disminuir o de suspender el aporte del anestésico. Luego de realizar simulaciones con programas de computador y de hacer análisis matemáticos, los investigadores demostraron que el tiempo de disminución o el tiempo requerido para la disminución de un porcentaje dado en la concentración del medicamento, ya sea en el plasma o en la biofase, es una función sensible a la dosis histórica (el contexto de la simulación) que no puede ser predicha por el valor relativo de un parámetro farmacocinético. Estas simulaciones son más confiables para predecir la recuperación del efecto de las drogas que la clásica vida media de eliminación. Este concepto se expresa como “vida media sensible al contexto para los anestésicos inhalados”. Pero existen otros tiempos que también son importantes en la práctica clínica, pues miden Anestesia Inhalatoria: de la teoría a la práctica.

33


no solo la caída en la concentración del medicamento después de suspender la administración del mismo hasta valores iguales al 50% ó hasta el 80% y aún hasta el 90%. En particular,

Stoelting, Carpenter, Eger y Bayle) demostraron que la

farmacocinética de eliminación de los anestésicos inhalados depende del tiempo de administración de estos. A pesar de que desde la perspectiva farmacocinética de los anestésicos inhalados el coeficiente de partición sangre:gas es la variable más importante, la influencia del tiempo de administración y el coeficiente de solubilidad tejido:sangre

a bajas concentraciones, por de bajo de la C.A.M., son muy

importantes (9,10,11,12).

James M Bailey (13) utilizó un modelo de simulación por computador para comparar la vida media de contexto sensible con el tiempo necesario para disminuir en un 80% y en 90% la concentración anestésica después de suspender la administración de Enfluorano, Isofluorano, Sevofluorano y Desfluorano. Encontró que todos los tiempos de vida media sensible de estos anestésicos son cortos (menores de 5 minutos) y que no hubo un incremento significativo al aumentar la duración de la anestesia. El tiempo necesario para disminuir en un 80% la concentración anestésica después de suspender la administración del Sevofluorano y del Desfluorano fue muy similar, menor de 8 minutos, y no hubo un incremento significativo al aumentar la duración de la anestesia. J.M. Bayley también encontró que el tiempo necesario para disminuir en un

80% la concentración anestésica después de suspender la

administración del Isofluorano y del Enfluorano aumento después de los 60 minutos de la anestesia y alcanzó una meseta a los 30-35 minutos. El tiempo para disminuir la concentración del Desfluorano en un 90% se incremento en 5 minutos después de 30 minutos de anestesia, y a 14 minutos después de 6 horas de anestesia. El tiempo para disminuir la concentración en un 90% después de una anestesia de 6 horas con Sevofluorano, Isofluorano y

Enfluorano fue de 65 minutos, 86 minutos, y 100

minutos respectivamente. Esto quiere decir que el Desfluorano permanece menos tiempo dentro del organismo después de 6 horas de anestesia. Entonces, este autor

Anestesia Inhalatoria: de la teoría a la práctica.

34


concluye que las principales diferencias en la eliminación de los cuatro anestésicos estudiados ocurren al final, cuando falta el 20% del medicamento por ser eliminado.

Desde el punto de vista clínico el parámetro más importante es la vida media sensible al contexto (50% de disminución de la concentración en la biofase) y el tiempo necesario para disminuir la concentración en un 80% porque la vida media sensible al contexto representa el nivel de concentración donde hay una adecuada recuperación de la función respiratoria y la disminución del 80% representa en términos generales el tiempo necesario para recuperar la conciencia. En el estudio de Baley (1997) se muestra que para los 4 anestésicos estudiados la vida media sensible al contexto está por debajo de 5 minutos, variable que no cambia mucho entre los anestésicos ni con la duración de la administración de estos.

La C.A.M.

despertar

(M.A.C.

awake)

que han reportado algunos autores equivale al 15 ó

16% de la C.A.M.50%, mientras que otros han informado valores entre el 33 y el 50%. Desde el punto de vista de la vida media del contexto sensible, si se supone que el tiempo del despertar es equivalente al 50% del valor de la C.A.M.50%, se puede inferir que la diferencia entre los cuatro anestésicos en los tiempos de recuperación sería pequeña; pero, desde el punto de vista del efecto esperado, como plantea el estudio de Baley, si la C.A.M.

despertar

es equivalente al 15% del valor de la C.A.M.

50%

se

encuentra diferencia significativa en la recuperación con los diferentes anestésicos (ver gráficas B y C de la figura 8).

No obstante, la mayoría de autores no han reportado valores tan bajos para la C.A.M.Despertar.

Algunos autores han reportado que la C.A.M.Despertar para el

Desfluorano, el Sevofluorano y el Isofluorano es de 2,6%, 0.67%, 0.37% respectivamente; es decir, el 40%, 33% y 33% de la C.A.M. 50% de cada uno de ellos.

Anestesia Inhalatoria: de la teoría a la práctica.

35


Figura 8. Tiempo de disminución en la concentración de los anestésicos. En A, disminución de la concentración en un 50%(vida media sensible al contexto) de los 4 anestésicos. B, disminución de la concentración en un 80% y en C disminución del 90%.

Anestesia Inhalatoria: de la teoría a la práctica.

36


En este contexto, habría pocas diferencias entre los anestésicos estudiados en el tiempo para recuperar la conciencia. Aunque varios estudios han mostrado diferencias en minutos que son estadísticamente significativas, estas diferencias carecen de relevancia clínica. Por ejemplo, Philippe y colaboradores(14), en un ensayo clínico con 36 pacientes obesos, administraron anestesia inhalatorio con Isofluorano o Desfluorano o Intravenosa con Propofol y la combinaron con Alfentanilo. En este ensayo, el tiempo para apertura de los ojos fue de 10.3 +/- 4.9 minutos para el Isofluorano y de 4.2+/-1.3 para el Desfluorano. Shahbaz y colaboradores (15) realizaron otro ensayo clínico con asignación de grupos de estudio al azar en pacientes con obesidad mórbida que enunciaba la siguiente hipótesis: “por su coeficiente de partición tejido:grasa y sangre:gas, el Desfluorano tiene un efecto clínico más favorable y está mejor indicado en el paciente obeso”. Sin embargo, ellos encontraron que no hubo diferencias significativas entre ambos en el perfil de la recuperación y en el despertar de la anestesia. Los tiempos de anestesia fueron de 216 (115-398) minutos para el Desfluorano y de

211 (137-348) minutos para el

Sevofluorano; el tiempo de respuesta a las órdenes verbales fue de 5.1 +/- 0.7 minutos para el Desfluorano y de 4.6 +/- 0.7 minutos para el Sevofluorano, diferencias que no fueron estadísticamente significativas.

Finalmente, como en la práctica no se administra anestesia inhalatoria pura sino que habitualmente se agregan narcóticos, las concentraciones de los anestésicos están incluso por debajo de 1 C.A.M.50%, lo cual los hace todavía más similares en su perfil de recuperación.

Anestesia Inhalatoria: de la teoría a la práctica.

37


Capítulo tres. Farmacodinamia 3.1. MECANISMO DE ACCIÓN.

Todavía no se comprende a cabalidad el mecanismo de acción de los agentes anestésicos inhalados. Este hecho puede ser explicado, en primer lugar, por la variedad de efectos que ellos producen (hipnosis, analgesia, relajación muscular, protección neurovegetativa, inmovilidad) y por su estructura química diversa, que hace difícil explicar su acción a través de un mecanismo único, como sucede en el caso de otras drogas. En segundo lugar, tienen una afinidad baja por los sitios de unión, y en algunos casos la nomenclatura en el orden de los milimoles por litro ha complicado o incluso ha imposibilitado los estudios de sus interacciones con receptores específicos. Finalmente, el hecho de que en concentraciones superiores a las terapéuticas afecten un gran número de funciones celulares ha dado la falsa impresión de que su acción es inespecífica.

Hoy se sabe que los agentes anestésicos inhalados no actúan por un mecanismo simple e idéntico, como planteaba la “hipótesis unitaria” que estuvo vigente por mucho tiempo, pero que hoy ha perdido validez. De acuerdo con esta hipótesis, el estado anestésico corresponda a la acción de una droga sobre un sitio de acción único. Los estudios farmacológicos y moleculares mostraron que los efectos clínicos de los anestésicos generales surgen de una variedad de interacciones con estructuras tales como los receptores que son sensibles a neurotransmisores, los canales iónicos que son voltaje-dependientes, y los sistemas de segundos mensajeros. Por lo anterior, la “hipótesis molecular” es más apropiada para explicar los efectos de los agentes anestésicos inhalados en el organismo.

Anestesia Inhalatoria: de la teoría a la práctica.

38


De acuerdo con los postulados actuales, se puede inferir que los agentes anestésicos inhalados actúan a nivel macroscópico, microscópico, y molecular. 3.1.1. Acciones a nivel macroscópico. A nivel

macroscópico, los anestésicos volátiles actúan en el sistema

nervioso

central (S.N.C) y sus sitios de acción son el cerebro y la medula espinal. Los anestésicos inhalados tienen efectos presinápticos y postsinápticos en estos dos sitios. La amnesia y la inconsciencia se deben a un efecto cerebral, pero la capacidad del agente anestésico inhalado para prevenir una respuesta motora ante un estímulo nocivo, así como el bloqueo de la respuesta adrenérgica al dolor, se deben a su acción sobre la medula espinal, tanto en las neuronas de los cordones posteriores como en las neuronas motoras. Además, la acción cerebral de los anestésicos inhalatorios puede estar modulada por la acción espinal que modifica la información sensitiva ascendente. 3.1.2. Acciones a nivel microscópico. A nivel microscópico, actúan sobre los axones y las sinapsis. Una concentración alta del agente anestésico inhalado altera los axones y la transmisión sináptica. También se ha visto que ellos actúan sobre las sinapsis excitatorias e inhibitorias, bloqueando la transmisión excitatoria y

estimulando la transmisión inhibitoria. Muchos

neurotransmisores tienen funciones tanto excitatorias como inhibitorias y sus receptores ejercen una influencia sobre los requerimientos anestésicos. No obstante, los efectos predominantes de los agentes anestésicos inhalados no pueden ser explicados por la depleción, la producción o la liberación de un neuromodulador único en el S.N.C. Antes de explicar el efecto de los anestésicos sobre los receptores, vale la pena caracterizar en forma breve los neurotransmisores del S.N.C. Según su naturaleza química, se pueden clasificar en aminoácidos, como el Ácido Glutámico, el Aspártico, el G.A.B.A, la Glicina y la Taurina; en monoaminas, como la Dopamina, Anestesia Inhalatoria: de la teoría a la práctica.

39


la Noradrenalina y la Serotonina; en aminas cuaternarias, como la Acetilcolina; en gases, como el Oxido Nítrico; y en neuropéptidos, como la Sustancia P. Los aminoácidos son los neurotransmisores más utilizados por las sinapsis del S.N.C. y probablemente están presentes en el 80% de estas sinapsis. Pueden ser divididos en un grupo con acciones excitatorias, entre los que se incluyen el Ácido glutámico y el Ácido aspártico; y otro grupo con acciones inhibitorias, como el Ácido Gamma Amino Butírico (GABA), la Glicina y la Taurina. Estas acciones las ejercen tanto en su carácter de neurotransmisores principales como de moduladores sinápticos. El efecto que ejercen los agentes anestésicos inhalados sobre los neurotransmisores puede ser explicado por uno o por más de los siguientes mecanismos: a) Bloquean el impulso nervioso en los axones. b) Interfieren con la liberación del neurotransmisor en las sinapsis, o modifican las propiedades del receptor (agonista/antagonista y moduladores alostéricos) y de los segundos mensajeros. c) Afectan los mecanismos de síntesis y de recaptación, y el metabolismo de los neurotransmisores. d) Inhiben la liberación presináptica de Glutamato. e) Estimulan la actividad inhibitoria de los canales postsináticos en los receptores G.A.B.A. y de Glicina. También inhiben la actividad excitatoria de los canales sinápticos y de los receptores nicotínicos de la Acetilcolina, de la Serotonina y del Glutamato. 2.3.3. Acciones a nivel molecular. A nivel molecular los agentes anestésicos inhalados actúan en la membrana presináptica y postsináptica, pues son capaces de alterar la liberación de

Anestesia Inhalatoria: de la teoría a la práctica.

40


neurotransmisores presinápticos, probablemente a través de cambios en el Calcio intracelular. Además, modifican el flujo de iones a través de los canales postsinápticos. Es importante recordar que los canales iónicos son proteínas que regulan el flujo de los iones a través de la membrana citoplasmática. Una variedad de canales iónicos que modulan la actividad eléctrica de las células son sensibles a la acción de los agentes anestésicos inhalados. Estos canales iónicos incluyen los que ya fueron reseñados como receptores de los neurotransmisores: receptores nicotínicos de la Acetilcolina, receptores de Serotonina tipo 3, receptores del GABA, receptores de Glicina y receptores de Glutamato, que son activados por el NMDA o AMPA. Al interior de la sinapsis, los canales iónicos influyen en la liberación presináptica de neurotransmisores y alteran la excitabilidad postsináptica en respuesta a la liberación de

neurotransmisores.

Además

de

los

receptores

específicos

para

los

neurotransmisores, los agentes anestésicos inhalados presentan efectos directos sobre los canales iónicos que son dependientes del voltaje. Los canales iónicos dependientes del voltaje para el sodio, el potasio y el Calcio son sensibles a los agentes anestésicos inhalados.

Anestesia Inhalatoria: de la teoría a la práctica.

41


Figura 9. Un ejemplo de mecanismo de acción de los anestésicos. En la parte superior derecha se observa que los neurotransmisores inhibitorios se liberan y se unen al respectivo receptor inhibitorio, lo cual produce un influjo de cloro dentro de la membrana postsináptica. Este fenómeno es potenciado por los anestésicos inhalatorios. En la parte inferior se muestra un receptor típico con el sitio de unión a los anestésicos.

Los agentes anestésicos inhalatorios también ejercen acción sobre los lípidos y las proteínas de la membrana celular. Al final del siglo pasado, Meyer y Overton, en trabajos independientes con modelos experimentales, notaron que los anestésicos con mayor solubilidad en aceite de oliva tenían mayor potencia. Su hipótesis sostenía que la potencia anestésica era proporcional a la afinidad de estos agentes por alguna porción rica en lípidos del sistema nervioso central. La regla de Meyer-Overton describe la correlación entre la solubilidad en

lípidos y la potencia anestésica.

Debido a esta correlación, la búsqueda de las bases moleculares de la acción de los agentes anestésicos se enfocó hacia las regiones hidrofóbicas de la célula. Posteriormente se comprobó que concentraciones clínicas de un agente anestésico Anestesia Inhalatoria: de la teoría a la práctica.

42


inhalado producen sólo mínimos cambios en la estructura y en la función de la membrana lipídica, y que los postulados de Meyer-Overton son incorrectos, puesto que existen muchas excepciones a su regla. Posteriormente, algunos autores plantearon varias hipótesis que sugerían la posibilidad de que la interacción de los agentes anestésicos con las membranas celulares afectara indirectamente la función de las proteínas de membrana. Entonces, se presentó un cambio fundamental en la dirección de las investigaciones, pues ellas se redirigieron desde los lípidos hacia las proteínas de la membrana. En 1982 Franks y Lieb, mostraron por primera vez que los anestésicos inhalados provocaban una inhibición de la actividad enzimática, y esto permitía ubicar el sitio de acción directamente sobre una proteína, aunque ciertamente esto no se vinculaba con sus propiedades anestésicas. Hoy se conoce que los agentes anestésicos inhalados actúan sobre una proteína específica de la membrana neuronal que permite el movimiento de los iones durante la excitación de la membrana. Es probable que este efecto se deba a una unión directa del agente anestésico con los canales proteicos de la membrana o con sus lípidos circundantes, o con ambos. También existe la posibilidad de que los agentes anestésicos inhalados actúen indirectamente a través de la producción de un segundo mensajero. La capacidad de los agentes anestésicos inhalados para modular el flujo de iones a través del complejo canal-receptor-neurotransmisor puede ser alterada por la mutación selectiva de aminoácidos únicos en las proteínas del canal. Estos aminoácidos críticos pueden ser el sitio específico al cual se unen los anestésicos inhalados. En la actualidad se desarrollan investigaciones que sugieren firmemente una acción a nivel enzimático, que es independiente de las ya clásicas teorías de interferencia con las proteínas de membrana, con los receptores y con los canales iónicos. Además, los datos experimentales que sitúan a varias de estas estructuras sobre la neuroglía han permitido liberar nuevas líneas de investigación sobre los efectos de los agentes anestésicos inhalados sobre el tejido no neuronal del S.N.C.

Anestesia Inhalatoria: de la teoría a la práctica.

43


Podemos concluir que los agentes anestésicos inhalados ejercen sus acciones mediante múltiples mecanismos, que estas acciones ocurren a diferentes niveles de la función celular y que no es posible definir los efectos de un anestésico dado en función de alguna de sus acciones por separado.

3.2.

EFECTOS

ANALGÉSICOS

(EFECTOS

MEDULARES)

DEL

SEVOFLUORANO.

Varios estudios han comprobado que la inmovilidad que se menciona cuando se describe la C.A.M.50 de los anestésicos se debe a un efecto que sucede primordialmente en la médula espinal y no en los centros cerebrales superiores.

La replicación de modelos experimentales que usaron la médula espinal de ratas para estudiar los efectos analgésicos de los narcóticos, de la sinergia farmacológica entre narcóticos y los anestésicos inhalatorios y la realización de experimentos clínicos que usaron el “bolo inhalatorio” de Sevofluorano para controlar las respuestas hemodinámicas al estrés quirúrgico permitieron

demostrar que los efectos

analgésicos del Sevofluorano se localizan en la médula espinal. A continuación se describirán en detalle estas tres situaciones porque ellas son el referente para explicar los efectos analgésicos del Sevofluorano (Ver figura 11).

1.Algunas investigaciones utilizaron el siguiente modelo animal para estudiar el efecto analgésico del Fentanilo: se extrae la médula espinal de un rata, para mantenerla viva se le administra una perfusión de líquido cefalorraquídeo, y este líquido se mezcla con los fármacos que se van a examinar; luego, se coloca un electrodo en la raíz dorsal con el fin de aplicar un estímulo eléctrico que produzca una despolarización, y se identifica la respuesta a este estímulo en la raíz ventral para saber el grado de bloqueo a la respuesta dolorosa con la droga infundida en la solución. En este modelo se aplican hasta 20 estímulos y se registra si la Anestesia Inhalatoria: de la teoría a la práctica.

44


transmisión nociceptiva desaparece con el medicamento y si aparece cuando se administra un antagonista del narcótico como la naloxona. Este modelo que había sido utilizado para estudiar los narcóticos también se ha empleado para comparar los efectos analgésicos del Propofol y del Sevofluorano. Se observó que a las dosis que se usan en la clínica el Propofol no produce una reducción suficiente del área bajo la curva; es decir, que el Propofol carece de efecto analgésico. En cambio, el Sevofluorano a concentraciones del 1% reduce la transmisión nociceptiva del dolor de la médula espinal en más del 50%, y con concentraciones del 2% y del 4% se obtienen unos resultados parecidos a los que se habían obtenido con un analgésico parecido al del Fentanilo.

2.Con él propósito de disminuir las dosis de los anestésicos inhalados, la mayoría de los anestesiólogos administran narcóticos de manera concomitantemente. Los estudios de sinergia farmacológica entre los narcóticos y los anestésicos inhalatorios permitieron corroborar los hallazgos de la experimentación con la médula espinal y comprobaron los efectos analgésicos del Sevofluorano. Los narcóticos; en particular el Fentanilo, actúan principalmente en los receptores de la médula, lugar donde se manifiesta su efecto analgésico y bloqueador de la respuesta adrenérgica. En los estudios que mezclan halogenados y narcóticos se encontró que la mezcal del Fentanilo con un agente inhalatorio sólo logra disminuir la C.A.M.B.A.R. y la C.A.M.50% (DE50%) pero no la C.A.M.Despertar. Estos estudios demuestran que los narcóticos, que actúan fundamentalmente sobre los receptores ubicados en la médula espinal y en el tálamo, son capaces de reducir la concentración de Sevofluorano necesaria para producir inmovilidad y para bloquear la respuesta adrenérgica ante la estimulación quirúrgica, pero la ausencia del efecto narcótico en el hipocampo y en la corteza condiciona la escasa sinergia entre el narcótico y el efecto hipnótico del halogenado. Esta situación evidencia que el efecto de los anestésicos en la inmovilidad ante un estímulo doloroso está mediado por una acción espinal, y no por una acción cerebral. En otras palabras, evidencia que el efecto de los anestésicos inhalatorios es doble y que ellos actúan Anestesia Inhalatoria: de la teoría a la práctica.

45


sobre dos sitios anatómicos diferentes: el cerebro y la médula espinal. De acuerdo con lo anterior, los anestésicos inhalados tienen 3 acciones farmacológicas independientes: la amnesia-inconsciencia, que se debe al efecto cerebral del anestésico; la inmovilidad ante un estímulo doloroso, que se debe al efecto analgésico en la médula espinal; y el bloqueo a la respuesta adrenérgica, que también se debe al efecto sobre la médula espinal. Este último efecto, no esta mediado ni por una acción cerebral del fármaco, ni por una acción sobre nociceptores periféricos, sino que parece estar condicionado por una acción espinal que se combina con el efecto del halogenado sobre el sistema cardiovascular. En realidad, la acción espinal del anestésico inhalatorio que permite inhibir la respuesta adrenérgica al estímulo quirúrgico puede ser considerada como una acción analgésica del fármaco a nivel espinal. En particular, el Sevofluorano tiene un efecto inhibitorio marcado sobre la transmisión nociceptiva medular, la cual es dependiente de la dosis y se inicia a partir de una concentración de 0,75%, y otro efecto sobre la transmisión no nociceptiva que se inicia a una concentración del 2%. Con el Propofol, este efecto sobre la transmisión nociceptiva medular es sensiblemente inferior y sólo aparece con concentraciones superiores a las utilizadas habitualmente en la práctica clínica.

El Sevofluorano sólo deprime la transmisión nociceptiva cuando se administra a una concentración menor del 2%, y por encima de este valor deprime tanto la transmisión nociceptiva como la no nociceptiva. Por lo tanto, el Sevofluorano actúa tanto en las neuronas motoras como en las neuronas de las astas dorsales o sensitivas, y su efecto sobre estas células nerviosas juega un papel importante en la transmisión de la información nociceptiva, en la respuesta motora al estímulo doloroso y en la integración somato-sensitiva. Lo anterior hace que el Sevofluorano anule la respuesta aferente del dolor y desparecezca la respuesta motora frente al mismo. Entonces, se ha propuesto que el bloqueo de la respuesta motora ante un estímulo nociceptivo se debe a dos efectos aditivos del anestésico Anestesia Inhalatoria: de la teoría a la práctica.

46


en la médula espinal: por un lado, la reducción en el proceso de la información sensitiva del estímulo doloroso atenúa gran parte de la aferencia nociceptiva; y por otro lado, deprime la actividad de las neuronas motoras.

La acción antagonista de Sevofluorano sobre los receptores de estos aminoácidos que son neurotransmisores excitatorios justificaría la respuesta analgésica medular del fármaco y el efecto sobre la transmisión no nociceptiva. Además, pueden explicar porqué en la práctica clínica se disminuyen los requerimientos de los

bloqueadores

neuromusculares

durante

una

anestesia

general

con

Sevofluorano a concentraciones próximas a un M.A.C. También puede ayudar a aclarar la sinergia entre los halogenados y los narcóticos, en lo que se refiere al efecto analgésico y al efecto de bloqueo de la respuesta adrenérgica. Finalmente, la supresión de los reflejos motores ante el estímulo quirúrgico, la inhibición de la transmisión nociceptiva medular durante una anestesia general con Sevofluorano y las particularidades farmacocinéticas y farmacodinámicas del mismo, ofrecen la posibilidad de una realizar una anestesia fundamentalmente inhalatoria con un correcto control intraoperatorio, un despertar de calidad y una baja probabilidad de despertar intraoperatorio.

3.Del mismo modo que muchos autores han utilizado los bolos intravenosos de narcóticos para controlar la respuesta hemodinámica al estrés quirúrgico, pues ellos tienen una acción adrenérgica en la médula espinal, Matute y colaboradores compararon la eficacia del Sevofluorano y del Remifentanil para controlar la respuesta hemodinámica intraoperatoria y la respuesta inflamatoria. El estudió incluía 120 pacientes programados para cirugía abdominal o torácica; cuando observaban una respuesta adrenérgica intraoperatoria, Matute y sus colaboradores administraban un bolo de Sevofluorano a una concentración del 8% con un flujo de 6 litros durante un minuto o un bolo de Remifentanil a 1 microgramo/kilo; los resultados del estudio señalaron que con Remifentanil se obtuvo una buena respuesta analgésica, pero que el Sevofluorano era superior en lo que hace Anestesia Inhalatoria: de la teoría a la práctica.

47


referencia a la seguridad y a la eficacia para

controlar la respuesta

hemodinámica. A pesar de esto, la respuesta inflamatoria no presentó ningún cambio. Este estudio demostró que el Sevofluorano si tiene un efecto de bloqueo adrenérgico en la médula espinal, como se había descrito en los experimentos animales. Para que el bolo de Sevofluorano sea efectivo, deben realizarse tres maniobras en forma adecuada (el triángulo del bolo inhalatorio): flujo de gases frescos alto (4-5 litros por minuto), concentración inspiratoria alta de Sevofluorano durante un minuto (8%) y volumen de ventilación alveolar alto, para acelerar el paso del bolo del circuito al alvéolo y por ende al cerebro.

Figura 10. Mecanismos sistémicos y moleculares de la anestesia general. La sedación y la hipnosis que producen los agentes anestésicos inhalados de debe a sus efectos en el cerebro, mientras que la inmovilidad resulta predominantemente de la depresión de las neuronas espinales. Para los agentes intravenosos, las acciones supraespinales y espinales son las que generan inmovilidad. Los canales iónicos involucrados con la sedación y la hipnosis son miembros de la familia de los receptores GABAA: la sedación es mediada por los beta-2 y la hipnosis por los

beta-3. Una diferencia importante entre los agentes intravenosos y los

inhalatorios es la forma como ellos generan la inmovilidad: los inhalatorios producen inmovilidad por excitación múltiple

en receptores moleculares, mientras que los agentes

intravenosos actúan exclusivamente en la médula por una acción selectiva en los receptores GABAA. Esta diferencia explica la alta capacidad de los anestésicos inhalados de deprimir los movimientos en respuesta a un estímulo nociceptivo.

Anestesia Inhalatoria: de la teoría a la práctica.

48


Finalmente, la importancia clínica de estos hallazgos son: en primer lugar, cuando se administra Sevofluorano conjuntamente con narcóticos, se debe tener el cuidado de no disminuir la concentración por debajo de un valor equivalente a su C.A.M.Despertar , porque los narcóticos sólo potencian los efectos en la médula y no en el cerebro, y por tanto el paciente puede entrar en un plano superficial de anestesia o recuperar la conciencia; en segundo lugar, el uso de un bolo inhalatorio de Sevofluorano es una alternativa costo-eficiente y segura para controlar la respuesta hemodinámica; en tercer lugar, se debe recordar que el Sevofluorano inhibe la transmisión nociceptiva en la médula espinal de forma similar a los narcóticos, y que suprime la actividad enlas neuronas motoras y los reflejos nociceptivos. Asimismo, a concentraciones muy bajas afecta la excitabilidad neuronal y, en comparación con el Remifentanil, controla mejor la respuesta hemodinámica, aunque mantiene la misma respuesta inflamatoria.

En conclusión, los modelos de experimentación animal y los ensayos clínicos han permitido demostrar que los anestésicos inhalados tienen acciones en diferentes lugares del sistema nervioso y no solamente en el cerebro. Se sabe que la amnesiainconsciencia (efecto hipnótico) se produce por la acción de los anestésicos sobre el cerebro y que la inmovilidad ante un estímulo doloroso así como el bloqueo de la respuesta adrenérgica al dolor se produce por la acción de los anestésicos sobre los receptores de la médula espinal. También se sabe que el efecto cerebral está modulado por sus acciones sobre la médula espinal, a través de la modificación de la información sensitiva ascendente.

3.3. CARDIOPROTECCIÓN Y NEUROPROTECCIÓN DE LOS AGENTES ANESTÉSICOS INHALADOS. En la actualidad, existe evidencia suficiente para demostrar que los agentes anestésicos volátiles protegen contra la isquemia, pues desarrollan un efecto cardioprotector. El término cardioprotección hace referencia a los mecanismos que

Anestesia Inhalatoria: de la teoría a la práctica.

49


reducen el tamaño del infarto o disminuyen la disfunción miocárdica tras un periodo de isquemia y de posterior reperfusión. Se podría pensar que los efectos cardioprotectores se deben a una alteración favorable de la relación entre la oferta y la demanda de oxigeno miocárdico, y que este efecto favorable se debe a la preservación en el nivel de energía celular energía que sucede cuando se aumenta el flujo coronario. Pero estos efectos son insuficientes para explicar la protección frente a la isquemia que producen los agentes anestésicos inhalados. Al final de la década de los 80 se describió el fenómeno de “Preacondicionamiento Isquémico”. Este término fue introducido por primera vez en 1986 por Murry y sus colaboradores (16), quienes

estudiaron los corazones de diferentes especies de

animales después de haberlos sometido a periodos breves de isquemia, mediante la ligadura de la arteria circunfleja; antes de cada periodo de isquemia de cuarenta minutos,

se

intercaló

un

periodo

de

reperfusión

de

cinco

minutos

(Preacondicionamiento). Los autores encontraron que los corazones sometidos a Preacondicionamiento

presentaban

una notoria

disminución

del infarto, menos disfunción inotrópica postisquémica y menor

en

el tamaño

incidencia de

arritmias. Los estudios concluyeron que el tamaño del infarto es menor si los episodios de isquemia sostenida son precedidos por un periodo de perfusión. Es decir, el preacondicionamiento ocurre cuando periodos transitorios de isquemia generan una respuesta protectora sobre los episodios subsiguientes. Al estudiar con más detalle este fenómeno, se encontraron dos fases de preacondicionamiento: una inicial, que aparece pocos minutos después del estímulo isquémico y que protege al miocardio durante 1ó 2 horas, denominada preacondicionamiento temprano; y otra fase de protección más tardía, que aparece después de 12 ó 24 horas del estímulo isquémico, y que tiene una duración de 72 horas, denominada preacondicionamiento tardío. Durante la isquemia falla la bomba de Na/K A.T.P.asa, y ello trae como consecuencia la acumulación del Sodio intracelular y el desarrollo posterior de edema y ácidosis intracelular. Por otra parte, la depleción del A.T.P. produce liberación de Calcio del Anestesia Inhalatoria: de la teoría a la práctica.

50


retículo sarcoplásmico. Ambos mecanismos conducen al desarrollo de calcinosis intracelular que marca el desarrollo de la lesión celular irreversible. Además, la isquemia desvía el metabolismo celular hacia las vías anaeróbicas para producir A.T.P. y esto hace que se desarrolle una ácidosis intracelular (producción de iones Hidrógeno). La célula intenta librarse de los iones Hidrógeno intercambiándolos por iones de Sodio, lo cual empeora el edema celular. Posteriormente, esta carga de Sodio intracelular es retirada de la célula a través de un intercambio por Calcio. Por otro lado, la depleción de A.T.P. produce liberación de Calcio del retículo sarcoplasmo a través de los receptores SERCA (receptores de Calcio del retículo sarcoplasmico). Como ya se explicó, la calcicosis intracelular marca el camino hacia la lesión celular irreversible. Además, la hipoxia lleva a la acumulación de Calcio y de iones Hidrógeno en la matriz mitocondrial, lo cual a su vez conduce a cambios conformacionales en dicha matriz y al desacople estructural de la cadena de fosforilación oxidativa, y todo ello conduce a un mayor deterioro en la síntesis del A.T.P..

El precondicionamiento (temprano y tardío) requiere la participación de varios receptores de superficie de la fibra miocárdica que actúan a través de proteínas G. Estos receptores son: de Adenosina (A1, A3)), de Purinas (P2Y), de Endotelina (ET1), de Acetilcolina (M2), Adrenérgicos Alfa 1 y Beta, Angiotensina II (ATII), Bradiquinina y de Opioides (delta1 y kappa). La participación de este gran número de receptores demuestra la redundancia biológica que existe en los mecanismos diseñados para proteger la vida.

La proteína G transfiere el estímulo desde los receptores mencionados hacia la fosfolipasas C y D. Estas fosfolipasas producen Inositol Trifosfato (IP3) que activa la liberación de Calcio desde el retículo sarcoplásmico y Diacilglicerol que activa diferentes isoformas de la Proteina Kinasa C (PKC). La PKC es activada por un gran número de sustancias, incluyendo las proteínas G, Fosfolípidos, Diacilglicerol, el Calcio intracelular y los radicales libres de Oxígeno y Oxido Nítrico. La PKC activa Anestesia Inhalatoria: de la teoría a la práctica.

51


los canales de K sensibles al A.T.P. en la membrana celular y mitocondrial; estos canales son el eje principal del precondicionamento temprano. Además la PKC induce cambios fenotípicos en la célula a través de mecanismos de expresión genética en el núcleo celular.

Las células musculares cardíacas tienen dos tipos diferentes de canales de potasio sensibles al A.T.P. (K-A.T.P.). Uno está localizado en la superficie de la membrana y el otro en la membrana mitocondrial interior. Estos canales permanecen inactivos si las concentraciones intracelulares de A.T.P. son normales, y sólo se activan cuando éstas son bajas. El papel de la apertura de los K-A.T.P. de la membrana celular en presencia de isquemia es importante porque permiten la salida de potasio y por este mecanismo producen una hiperpolarización celular que acorta el potencial de acción y disminuye la entrada de Calcio a la célula. Por otro lado y aún más importante, la apertura de los canales K-A.T.P. de la mitocondria permite la reorganización estructural de la cadena respiratoria y esto mantiene la producción de A.T.P.. Además, por un mecanismo similar al descrito en la membrana celular, evitan la entrada de Calcio a la mitocondria pues también disminuyen el potencial de acción en la membrana mitocondrial (Ver figura 11).

Además de la isquemia, muchos otros estímulos estresantes producen la misma respuesta protectora. Tal es el caso de los estímulos

oxidativos (hiperoxia),

mecánicos (estiramiento), eléctricos (marcapaseo rápido), químicos, térmicos y de algunos fármacos, como los agentes anestésicos inhalados. Los mecanismos implicados en el preacondicionamiento por vapores anestésicos parecen ser similares al preacondicionamiento inducido por la isquemia. Los anestésicos actúan como un desencadenante de una secuencia de eventos intracelulares que protegen contra la isquemia.

Anestesia Inhalatoria: de la teoría a la práctica.

52


Los

receptores

de

Adenosina tipo 1 (A1), de la Protein Kinasa C (PKC), de las proteínas inhibitorias de Guanidion Nucleótido (Gi), y los radicales

libres

de

oxigeno (RLO), generan una

señal

transmitida

que

es

hasta

los

efectores, que son los canales dependiente de K-A.T.P. mitocondriales y del sarcoplasma. Estos Figura 11. Representación simplificada de los mecanismos de

efectores

son

los

precondicionamiento. Durante el estímulo de preacondicionamiento, varios

responsables

del

mediadores son liberados,

fenómeno

de

los cuales activan

una cascada de señales

complejas, que incluyen PI3 kinasa (Fosfatidil Inositol 3 Kinasa), PKC (Protein Kinasa C) , PTK (Protein tirosina kinasa), Mitogen-Activado –

preacondicionamiento.

Protein –Kinasa. Esta cascada de señales inhiben la apertura del MPTP

La preservación del daño

(Poro Permeable Transitorio de la Mitocondria), a través de la apertura de

durante

canal de K-A.T.P. de la mitocondria y formación de Radicales de Oxigeno (ROS).

la

reperfusion

isquemiapuede

ser

mediada por la apertura de los canales K-A.T.P. mitocondrial junto con una modesta modulación de la función mitocondrial. La apertura de los canales puede reducir la permeabilidad de la membrana y prevenir la apoptosis o la necrosis, pues mantiene el contenido A.T.P./A.D.P., preserva la

Anestesia Inhalatoria: de la teoría a la práctica.

53


transferencia de fosfatos de alta energía, reduce la liberación de Citocromo C y atenúa el stress oxidativo (17). Los efectos cardioprotectores de los agentes anestésicos inhalados

han sido

comprobados en múltiples estudios experimentales con animales y en diversos estudios clínicos en humanos, aunque en menor numero. En la práctica clínica los efectos cardioprotectores de los agentes anestésicos son evidentes, especialmente si el anestésico se administra durante toda la intervención. A pesar de que los estudios comprueban el fenómeno de preacondicionamiento desencadenado por los anestésicos inhalatorios, todavía se necesitan nuevos estudios, más amplios, para poder esclarecer estos conceptos y para aclarar algunos interrogantes, como: ¿Cual es la dosis optima? y ¿Cuál es el impacto de estos efectos cardioprotectores sobre la morbilidad y mortalidad cardiaca postoperatoria? (18). 3.3.1. Efectos de neuroprotección del Sevofluorano.

En neurocirugía es conveniente elegir un agente anestésico que preserve el flujo sanguíneo cerebral, conserve el acople flujo-metabolismo, conserve la reactividad cerebral frente al Dióxido de Carbono, que no sea epileptogénico y que brinde protección pre y post lesión. Entre los agentes anestésicos, el Sevofluorano es el que más se aproxima a las condiciones antes señaladas,

porque no modifica la

hemodinamia cerebral, no afecta la autorregulación y en estudios experimentales se ha encontrado que este ejerce una acción protectora pos-isquémica. Los otros anestésicos inhalatorios dilatan los vasos sanguíneos cerebrales, lo cual aumenta el volumen sanguíneo cerebral y posiblemente la presión intracraneal, y ello empeora la autorregulación y la reactividad vascular. Sin embargo, el Sevofluorano no modifica estos mecanismos ni siquiera a altas dosis. Este efecto se comprobó porque el Sevofluorano mantiene constante el flujo en la arteria cerebral media a distintas dosis de administración, lo cual sugiere que su hemodinámico cerebral favorece su uso en neuroanestesia.

Anestesia Inhalatoria: de la teoría a la práctica.

54


Así la lesión que se presenta como respuesta a un daño neuronal aparezca en forma inmediata, existe un proceso con varias etapas que se desarrollan en diferentes momentos. La excitotoxicidad aparece en minutos, la despolarización en horas, los procesos inflamatorios en días y la apoptosis en meses. Por tanto, la “Protección Cerebral” implica que se deben controlar múltiples parámetros para asegurar la optimización fisiológica; por ejemplo, mantener una presión de perfusión adecuada y una oxigenación óptima, prevenir los daños secundarios y emplear agentes y técnicas neuroprotectoras. A nivel cerebral, se debe minimizar el riesgo de hipoxia y mantener un balance adecuado entre el aporte y la demanda de oxigeno. Para prevenir el riesgo vascular cerebral, se deben conservar constantes los valores del flujo y del metabolismo

cerebral

y

mantener

estable

la

hemodinamia

cerebral.

Es

particularmente importante asegurar una protección cerebral antes de que se presente la lesión; es decir, antes que ocurra el daño primario o el daño pos-lesión, porque esto puede evitar los daños secundarios a la lesión primaria. En síntesis, el Sevofluorano tiene un perfil hemodinámico cerebral que favorece su uso en neuroanestesia. No obstante, se necesitan más estudios que determinen su papel en el Preacondicionamiento cerebral y que comprueben su acción protectora postisquémica.

Anestesia Inhalatoria: de la teoría a la práctica.

55


Capítulo cuatro. Potencia de los anestésicos inhalados Dado que estos medicamentos se administran por la vía pulmonar y dado que habitualmente se utilizan en combinación con otros gases, para dosificarlos se utiliza la “concentración alveolar”. En la práctica clínica es difícil establecer su dosis en miligramos por kilo de peso o en concentraciones sanguíneas; en cambio, es fácil medir la concentración del agente en los gases que salen del alvéolo, lo cual se hace titulando la concentración del agente anestésico al final de la espiración. Esta medida se utiliza desde que los agentes anestésicos inhalados modernos se introdujeron a la práctica clínica, a mitad del siglo XX. Sin embargo, esta medida debe ser comparada con el efecto terapéutico deseado. Esta necesidad originó la medida actual, que se conoce como “Concentración Alveolar Mínima”, y que expresa la concentración alveolar mínima necesaria para producir un efecto.

4.1. CONCENTRACIÓN ALVEOLAR MÍNIMA.

La concentración alveolar mínima es el análogo a la dosis efectiva en el 50% de los sujetos observados (D.E.50) de los demás medicamentos y representa la concentración de la biofase o en el lugar de acción del fármaco una vez se haya estabilizado con la concentración plasmática (Ver figura 12). En español se conoce comúnmente con la sigla C.A.M. (Concentración Alveolar Mínima), o en ingles MAC, y se define como la concentración alveolar mínima de un agente anestésico a 1 atmósfera de presión que se necesita para producir inmovilidad en el 50% de los pacientes o de los animales que se exponen a un estímulo doloroso o nocivo. Por este motivo, la C.A.M. también se expresa como C.A.M.

50%,

y tradicionalmente se ha utilizado como una

medida para comparar la potencia de los agentes anestésicos inhalados y como guía para su dosificación.

Anestesia Inhalatoria: de la teoría a la práctica.

56


Los valores de la C.A.M. varían con la edad. La cifra es menor en los neonatos, alcanza su pico máximo en los lactantes y luego va disminuyendo a medida que aumenta la edad (Ver tabla 5). Los valores de la C.A.M. también pueden ser menores cuando se administran otros medicamentos y Figura 12. Concentración alveolar mínima-50 (C.A.M.50)

como consecuencia de la hipotermia, la hiponatremia, el embarazo, etc. En

la práctica clínica, también se pueden observar incrementos en el valor de la C.A.M. secundarios a la hipertermia y al abuso de las Anfetaminas o de la Cocaína (ver tabla 6.). Agente Halotano Isofluorano Enflurane Sevofluorano Desfluorano Oxido Nitroso

1 año 0,95 1,49 2,08 2,29 8,3 133

Edad 40 años 0,75 1,17 1,63 1,80 6,6 104

80 años 0,58 0,91 1,27 1,40 5,1 81

IC 95% (+ % C.A.M.50) 6 6 17 6 10 8

Tabla 5. Valores de la C.A.M. según la edad en mayores de 1 año. (Tomado de Nickalls; BJA 2003)

DISMINUCIÓN DE LA C.A.M. Hipotensión Hipotermia Hiponatremia Hipercapnia Embarazo Edad Avanzada Medicamentos: Opióides Benzodiazepinas Oxido Nitroso α2-agonista

AUMENTO DE LA C.A.M.

Abuso de Anfetaminas Cocaína Efedrina Niños y lactantes Hipertermia

Tabla 6. Factores que modifican la Concentración Alveolar mínima (C.A.M.).

Anestesia Inhalatoria: de la teoría a la práctica.

57


4.1.1. C.A.M.95, C.A.M.

DESPERTAR,

C.A.M.

INTUBACIÓN,

C.A.M.

B.A.R.,

C.A.M.

EXTUBACIÓN.

Es importante entender que la concentración alveolar mínima (C.A.M.50% ) es un dato estadístico. Cuando se administra 1 C.A.M. de cualquier agente anestésico, existe la posibilidad de que la mitad de los individuos anestesiados presente algún movimiento al momento de someterlo a un estímulo doloroso. Sin embargo, en la práctica clínica lo que realmente nos interesa es que la gran mayoría de los pacientes no respondan ante un estímulo doloroso. Numerosas investigaciones han informado que para conocer este valor de C.A.M., que se denomina C.A.M. 95% o C.A.M.quirúrgico, se debe multiplicar el valor de la C.A.M.

50%

por 1.3. De esta manera, se reduce la

probabilidad que los pacientes tengan algún movimiento en respuesta a la incisión a un valor igual o inferior del 5%. Por tanto, al conocer el valor C.A.M. de cada agente anestésico, se puede tener una idea de su potencia anestésica y de las concentraciones que se deben utilizar (Tabla 7).

ANESTÉSICO Desfluorano Oxido nitroso Sevofluorano Isofluorano Enfluorano Halotano

C.A.M. 50% (Vol. %) 6,0 105 2,0 1,2 1,7 0,75

C.A.M. 95% (Vol. %) 7,80 136,5 2,6 1,56 2,21 0,98

Tabla 7. Valores de la Concentración Alveolar Mínima (C.A.M.) de los anestésicos que se utilizan actualmente.

El concepto que inicialmente había sido definido para la C.A.M. posteriormente fue ampliado para comparar la potencia de los anestésicos en otras situaciones clínicas, como la sedación o la anestesia balanceada, y para definir la dosis que se requiere para producir otros efectos clínicos, como la inserción o el retiro de un tubo endotráqueal, pero con los mismos medicamentos. Anestesia Inhalatoria: de la teoría a la práctica.

58


En la literatura se definen los siguientes conceptos: C.A.M.Despertar, C.A.M.Intubación, C.A.M.B.A.R. y C.A.M.Extubación. La C.A.M.Despertar es la C.A.M. del anestésico a la cual desaparece la respuesta verbal frente a un estímulo auditivo en un 50% de los pacientes, y parece corresponder a la concentración anestésica a la cual se recupera la conciencia después de una anestesia, o se logra el efecto de amnesia y la perdida de la capacidad de aprender; en la práctica clínica es la C.A.M. que se usa para dosificar el anestésico inhalado cuando se pretende mantener la amnesia y la inconciencia en un paciente que está recibiendo una anestesia balanceada o sedación. La C.A.M.Intubación es la concentración anestésica mínima que evita el movimiento y la tos durante

una maniobra de intubación endotráqueal. La C.A.M.B.A.R. es la

concentración que bloquea

la respuesta del sistema nervioso autónomo a una

incisión. En la tabla 8 se presenta una lista con la C.A.M.Despertar, la C.A.M.Intubación y la C.A.M.B.A.R. de los diferentes anestésicos inhalatorios.

Agente

C.A.M.Despertar

C.A.M.Intubación,

C.A.M.B.A.R.

Óxido nitroso

0,66 atmósfera

>1,2 atmosfera

ND

Xenón

0,31 atmósfera

ND

ND

Desfluorano

2,6 Vol.%

ND

9,42 Vol %

Sevofluorano

0,67 Vol.%

4,52 Vol %

4,15 Vol %

Isofluorano

0,37 Vol.%

1,76 Vol %

1,5 Vol %

Halotano

0.,38 Vol.%

1,12 Vol %

1,07 Vol %

Tabla 8. C.A.M.Despertar, C.A.M.Intubación y C.A.M.B.A.R. de los diferentes anestésicos inhalatorios.

En síntesis, los anestésicos inhalados tienen diferentes dosis efectivas, como son:la C.A.M. 50 % o la D.E.50, que es la dosis a la cual el 50% de los pacientes no se mueven con la incisión quirúrgica;la C.A.M.95% o D.E.95, que es la dosis que produce inmovilidad en el 95% de los pacientes; la C.A.M.Despertar ó M.A.C.awake, que es la dosis que produce una pérdida de la conciencia en el 50% de los sujetos; y la C.A.M.B.A.R., que es la dosis que produce un bloqueo de la respuesta neurovegetativa Anestesia Inhalatoria: de la teoría a la práctica.

59


frente a un estímulo doloroso. Algunos autores también han definido la dosis efectiva 50 para un estímulo traqueal, que es la concentración a la cual se observa la ausencia de tos o de oposición al estímulo que produce un tubo localizado dentro de la tráquea, la cual es útil para conocer la dosis necesaria para mantener a un paciente intubado sin estímulo quirúrgico o para hacer la higiene faríngea y traqueal en los pacientes que ya están intubados. Esta concentración previene el movimiento y la tos después de 1 minuto de la extubación traqueal; es decir, es la concentración en la cuál se previene el laringoespasmo. Por ejemplo, en los niños entre 4 y 7 años, la C.A.M.Extubación del Desfluorano es de 0,077 atmósferas, ó lo que es lo mismo 7,7%. En el mismo grupo de edad, la C.A.M.Extubación para el Sevofluorano y el Isofluorano es de 1.07% y de 0.87% respectivamente.

4.1.2. La C.A.M. y la presión barométrica.

Como ya se explicó anteriormente, el movimiento de los gases anestésicos entre los diferentes compartimientos del organismo depende de los gradientes de presión y no de los gradientes de concentración. Todos los anestésicos a una concentración dada ejercen una presión dentro del alvéolo que se expresa en mm Hg y que en últimas es la responsable del equilibrio o del movimiento de los anestésicos entre diferentes los compartimientos. Esto quiere decir que la dosis efectiva 50 de los anestésicos inhalados realmente debería ser expresada como una medida de presión (cm de H20, mm de mercurio, Atmósferas, Pascales o unidades Bar) y no como un medida de la concentración (Vol. %). Por ejemplo, al nivel del mar, la presión barométrica es de 760 mm Hg ó de 1 atmósfera; el Sevofluorano ejerce una presión parcial de 15,2 mm Hg, que es lo mismo que decir que ejerce una presión parcial que equivale al 2 % de 760 mm Hg (760 mm Hg X 2 /100 = 15,2 mm Hg). También se puede decir que el Sevofluorano a una concentración de 2 Vol. % ejerce una presión parcial de 0,002 atmósferas. La importancia de este concepto es que en términos prácticos, la presión parcial que debe ejercer el Sevofluorano para que se encuentre en estado de equilibrio es de 15, 2 mm Hg, sin importar a cual altura sobre el nivel del mar o presión Anestesia Inhalatoria: de la teoría a la práctica.

60


barométrica lo estemos administrando. Así pues, con 760 mm Hg esa presión representa el 2% de 760 mm Hg, pero si estoy en una ciudad que tiene una presión barométrica de 584 mm Hg (como Manizales-Caldas-Colombia) esos 15,2 mm Hg equivalen a una concentración de Sevofluorano del 2.6 % en la mezcla que ocupa el alvéolo (15,2 mm Hg X 100 /584 mm Hg = 2.6 %). Lo anterior quiere decir que la C.A.M. del Sevofluorano en Manizales es de 2,6 Vol. %. Sin embargo, algunos autores no están de acuerdo con el anterior análisis porque ellos aseguran que los vaporizadores modernos además de ser termo-compensados también son barocompensados. En la tabla 9 se muestra la C.A.M. de los diferentes anestésicos en atmósferas y la presión parcial que ejercen en estado de equilibrio en el alvéolo.

C.A.M.50 a una presión Anestésico

Presión parcial que ejercen

barométrica de 760 mm

C.A.M.50, expresada en

en el alvéolo, en estado de

Hg o de 1 atmósfera,

atmósferas.

equilibrio, expresada en

expresa en % de la PB

mm Hg.

Desfluorano

6

0,06

45,6

Sevofluorano

1,58 - 2,05

0,0158-0,0205

15,2

1,15

0,0115

8,74

Isofluorano

Tabla 9. C.A.M. de los anestésicos expresados en porcentajes, en atmósferas y en mm Hg.

Anestesia Inhalatoria: de la teoría a la práctica.

61


Capítulo cinco. Efectos adversos de los anestésicos inhalados Cuando se solicita a las autoridades sanitarias que aprueben un medicamento para comercializarlo, la demostración de su eficacia y la evaluación de su seguridad se basan generalmente en estudios con unos pocos miles de pacientes (promedio: 4.000). Bajo tales circunstancias, resulta difícil evaluar de manera profunda el perfil de seguridad de un medicamento. La tabla 10 muestra la probabilidad, según la F.D.A., de no observar eventos adversos de acuerdo con el número de pacientes que han sido tratados con dicho medicamento.

Número de Pacientes tratados Probabilidad de no detectar una R.A.M. 500 95.1% 1000 90.5% 2500 77.9% 5000 60.7% 7500 47.2% 10.000 36.8% 15.000 22.3% 20.000 13.5% 25.000 8.2% 30.000 5.0% Tabla 10. Probabilidad de no detectar eventos adversos, de acuerdo con el número de pacientes tratados con un medicamento.

Es por ello que para presentar un panorama comprensible sobre la seguridad clínica de un medicamento, es importante realizar una vigilancia cercana, especialmente durante los primeros años de su comercialización. Dicha vigilancia constituye una responsabilidad que debe ser compartida entre las autoridades sanitarias y los titulares del registro sanitario. En efecto, las reacciones adversas severas a medicamentos son responsables del 24% de las hospitalizaciones en los pacientes mayores de 70 años (19) y el manejo de las reacciones adversas severas a nivel cutáneo y la

Anestesia Inhalatoria: de la teoría a la práctica.

62


hipersensibilidad con el uso de anticonvulsivantes esta asociada con altos costos directos (por cada paciente costó 3.128 dólares canadienses) (20).

La vigilancia de un medicamento (fármaco-vigilancia) depende en gran parte de la responsabilidad que demuestren los profesionales de la salud al reportar los eventos adversos y al establecer mecanismos preactivos para que los pacientes reciban la medicación ajustada a sus necesidades clínicas, en la dosis que corresponde a sus requisitos individuales, durante un período de tiempo adecuado y al menor costo posible, para ellos y para la comunidad. Para que esta situación ideal se cumpla, se debe realizar una selección y prescripción racional, se debe dispensar el medicamento adecuadamente y se debe asegurar un consumo o una aplicación juiciosa del medicamento. Para prescribir racionalmente al paciente es indispensable elegir el medicamento que más le conviene, aplicar la dosis adecuada por el tiempo requerido y realizar el seguimiento de las posibles reacciones adversas; y, si ellas se presentan, intervenirlas. La dispensación adecuada incluye verificar que el medicamento que se está administrando es el que se prescribió, que está en perfecto estado de calidad, y no vencido, y que no se está tomando la dosis de un frasco falsificado o de un producto alterado. Además, se debe asegurar una vigilancia continua del perfil de seguridad de los medicamentos a través de reportes individuales, consulta de la literatura, estudios clínicos e información pre-clínica.

Un evento adverso es cualquier experiencia indeseable que le ocurre a un paciente o a un individuo mientras toma un medicamento, y puede o no estar relacionado con éste. Esto quiere decir que un evento adverso puede ser un signo, un síntoma, una enfermedad, un resultado de un laboratorio o una experiencia indeseable que le ocurre a un paciente después de recibir un medicamento, pero que no necesariamente tiene una relación causal con el tratamiento. Esta reacción adversa puede o no estar consignada en la información de producto. En este contexto, los factores que influyen en la aparición de un evento adverso son: falta de información por parte del fabricante, defectos del producto o del medicamento (impurezas), ingrediente activo o Anestesia Inhalatoria: de la teoría a la práctica.

63


metabolito que produce una reacción adversa medicamentosa, reacciones a los excipientes que se le añaden a las drogas para estabilizarlas, idiosincrasia del paciente, problemas con la administración, el almacenamiento, la dosificación y la prescripción del medicamento por parte del médico.

Con

el

Sevofluorano

se

pueden

presentar

algunas

reacciones

adversas

medicamentosas, pero en general la mayoría de ellas pueden ser asumidas como un “evento adverso no serio”. Un evento adverso serio es aquel que puede dar como resultado la muerte, la hospitalización del paciente, una prolongación significativa de la incapacidad física o mental, una invalidez y una anormalidad congénita un defecto de nacimiento. En la practica clínica los problemas más frecuentes son la presencia de la agitación psicomotora en los niños, la presencia de nausea y vómito postoperatorio, las anormalidades electroencefalográficas y los movimientos anormales.

5.1. AGITACIÓN PSICOMOTORA.

Con respecto a la agitación psicomotora, vale decir que este problema no es exclusivo del Sevofluorano ni es de reciente presentación, pues se describió por primera vez en la literatura en el año de 1961 3 (hace 45 años) con el Halotano. Por otra parte, los resultados de los diferentes estudios que evalúan la incidencia de la agitación psicomotora en niños no son homogéneos, y ello quizás se deba a la diversidad de escalas para evaluar clínicamente su presentación. Por lo anterior, se han reportado incidencias que varían entre el 10% y el 67%. Además, en la literatura le han dado varias denominaciones al mismo cuadro clínico, pues lo han llamado agitación psicomotora, delirium postoperatrio o excitación postanestésica.

La definición que se ha sugerido para este trastorno es la siguiente: “la agitación psicomotora es un incidente crítico que consiste en un disturbio mental que se 3 Eckenhoff JE, Kneale DH, Dripps RD. The incidence and etiology of postanesthetic Excitement. Anesthesiology 1961; 22:667–673.

Anestesia Inhalatoria: de la teoría a la práctica.

64


presenta inmediatamente después de la anestesia general en el paciente pediátrico. Se caracteriza por la presencia de alteraciones preceptúales, como alucinaciones, ilusiones o confusión de inicio súbito; es autolimitada y se acompaña de llanto, desorientación e hiperactividad motora involuntaria, que puede conducir a autolesiones”. En el momento, la escala más adecuada para su evaluación es la descrita por Nancy Sikich y colaboradores(22), la cual tiene un puntaje máximo de 20. Entre más alto el valor, mayor probabilidad de presentar el trastorno.

Tabla 11. Escala para evaluar el estado de agitación

CARACTERÍSTICA 1. El niño hace contacto con los ojos con quien lo cuida 2. Los movimientos del niño tienen un propósito

PUNTAJE 4 = Nunca 3 = Ocasionalmente 2 = Parcialmente 1= Muy presente

3. El niño es consciente de su alrededor

4. El niño esta inquieto 5. El niño esta inconsolable

0 = Siempre presente 0 = Siempre presente 1= Muy presente 2 = Parcialmente 3 = Ocasionalmente 4 = Nunca

Se ha comprobado que existen algunos factores de riesgo para que se presente el trastorno. Voepel-Lewis y colaboradores reportaron algunos

factores de riesgo

independientes que se asocian con una mayor presencia de la agitación psicomotora. Ellos son: cirugía de otorrinolaringología, uso de Isoflurane y tiempo al despertar(23). Algunos estudios reportan que el fenómeno es más frecuente con el Sevofluorano que con el Halotano, pero otros no muestran diferencias. En otros estudios se ha reportado que el Desfluorano tiene una incidencia entre el 50% y el 80%, más alta que el Halotano. En general, estos estudios tienen muchos factores de confusión, lo cual hace que pierdan validez interna. No obstante, la tendencia de la mayoría de los

Anestesia Inhalatoria: de la teoría a la práctica.

65


estudios es que el fenómeno se presenta más con el Sevofluorano y con el Desfluorano que con el Halotano. En cambio, cuando se utiliza el Sevofluorano durante la inducción y el Isofluorano o el Desfluorano durante el mantenimiento, la agitación es menor(24).

En resumen, la agitación psicomotora se presenta luego de haber usado cualquiera de los anestésicos inhalatorios, sólo que la incidencia es diferente para cada agente. Es más frecuente en los niños y su severidad se mide con una escala que ha sido validada adecuadamente, la cual debe se utilizada de manera sistemática para evitar confusiones entre el diagnóstico de agitación psicomotora y la presencia de dolor o de ansiedad por la separación de los padres.

La agitación psicomotora se puede prevenir con la administración preoperatoria, entre 15 y 30 minutos antes del procedimiento(25), de Midazolam por la vía oral a una dosis que oscila entre 0.5 mg/Kg y 0,75mg/Kg. No obstante, hay estudios que contradicen este manejo(26,27,28). Otra opción terapéutica para prevenir la agitación psicomotora es la administración de Fentanyl a 1 ó 2 mcg/kg 10 minutos antes de terminar la anestesia(29). La Dexmedetomidina, a dosis entre 0.3 mcg/kg y1 mcg/kg por la vía intravenosa y administrada después de la inducción con Sevofluorano, puede disminuir del 37% al 10% y del 57% al 10% respectivamente la agitación(30,31).

Ahora, si se presenta la crisis, esta se puede manejar con el siguiente esquema: •

Opción A: Midazolam intravenoso. a) 6 meses a 5 años: 0.05 a 0.1 mg/kg/dosis cada 2-3 minutos (dosis máxima total de 6mg) b) 6-12 años: 0.025-0.5 mg/kg/dosis cada 2-3 minutos ( dosis máxima total de 10mg)

Anestesia Inhalatoria: de la teoría a la práctica.

66


c) Mayor de 12 años: 0.5-2mg/dosis cada 2-3 minutos (dosis máxima total de 10 mg) •

Opción B: Opiodes: a) Fentanyl 1-2 mcg/Kg. IV

Opción C: Pequeñas dosis de hipnóticos: a) Ketamina: 0.5 mg/Kg. b) Propofol: 0.5 mg/Kg.

5.2. NAUSEAS Y VÓMITO POSTOPERATORIOS (N.V.P.O.)

Hoy se sabe que todos los anestésicos inhalados producen nausea y vómito postoperatorio y que no hay diferencias entre ellos (32) en la frecuencia de presentación. La incidencia reportada es alta, pues oscila entre el 25% y el 35%. No obstante, hay otros medicamentos que también pueden inducir las nauseas y el vómito postoperatorio, por lo que esta reacción no es exclusiva de los anestésicos inhalados. A pesar de ello, no se justifica la profilaxis rutinaria, pues actualmente sólo se recomienda el uso de la profilaxis en pacientes con alto riesgo de presentar nauseas y vómito postoperatorios.

En el contexto de la cirugía ambulatoria las consecuencias de las náuseas y de los vómitos tienen un impacto negativo más evidente, porque provocan una sensación displacentera y porque es difícil tratarlos después de que el paciente ha sido dado de alta. Las nauseas y los vómitos postoperatorios son una causa importante de retraso en el alta de los servicios ambulatorios, son un motivo frecuente de reingresos y además producen un aumento considerable de los gastos sanitarios. Apfel y colaboradores identificaron cuatro factores de riesgo primarios en los pacientes que recibieron una anestesia inhalatoria balanceada: sexo femenino, no fumadores, historia previa de N.V.P.O. o cinetosis, y uso de opioides. Con estos factores crearon un índice de riesgo de tal manera que la incidencia de N.V.P.O. con la presencia de ninguno, uno, dos, tres o cuatro de los factores de riesgo, sería aproximadamente Anestesia Inhalatoria: de la teoría a la práctica.

67


10%, 20%, 40%, 60% y 80% respectivamente (33). En los últimos años se han realizado distintos estudios que valoran otros factores de riesgo, como el ciclo menstrual y el índice de masa corporal. Sin embargo, las revisiones sistemáticas han demostraron una falta de impacto de éstos factores en la aparición de la nausea y el vómito postoperatorio (34).

5.3.

ANORMALIDADES

ELECTROENCEFALOGRÁFICAS

Y

MOVIMIENTOS ANORMALES.

Se sospechó que el Sevofluorano era un epileptogeno potencial después del reporte de un caso de movimientos anormales en un niño sin epilepsia (35,36). En 1992, Haga y colaboradores reportaron movimientos anormales parecidos a las convulsiones en el 6% de 180 niños que habían recibido Sevofluorano a una concentración del 6% durante la inducción anestésica (37). Después de estos reportes comenzaron a publicarse cada día más estudios clínicos y paraclínicos que caracterizaban los movimientos anormales, la actividad epileptogena y las anormalidades en los registros del encefalograma. Estos estudios establecieron que en efecto estas alteraciones eran atribuibles a una reacción adversa medicamentosa del Sevofluorano. En un estudio reciente de Benjamin Julliac y Colaboradores, que fue publicado en la revista Anesthesiology (Anesthesiology 2007; 106:243–51), los autores encontraron cambios epileptiformes en el electroencefalograma del 30% de los pacientes cuando se realiza una inducción con Sevofluorano con prellenado previo del circuito (Sevofluorano 8% a un flujo de 8 litros/min.) e inducción con concentraciones

según

volumen

corriente,

según

capacidad

vital

altas y

con

hiperventilación de los pacientes (ETCO2 30+/- 2 mm Hg) para lograr rápidamente una concentración

alveolar

de 2 C.A.M.. En contraposición, encontraron una

frecuencia del 10% cuando realizaban la inducción con prellenado del circuito e inducción con Sevofluorano al 8% con respiración espontánea (ETCO2 40+/- 2 mm Hg) por 2 minutos para lograr y sostener una concentración alveolar equivalente a 1 Anestesia Inhalatoria: de la teoría a la práctica.

68


C.A.M.. Sin embargo, esta última situación no mostró una diferencia significativa con respecto a las otras. Ellos observaron que la mayoría de alteraciones en el E.E.G. desaparecen después de la inducción, una vez que se estabiliza la captación y baja la concentración alveolar del Sevofluorano. Los movimientos tónico-clónicos se pueden clasificar en dos tipos: •

Agitación temprana en la inducción después de la pérdida del reflejo

parpebral: se caracteriza por movimientos descoordinados en las manos y en los pies, seguidos frecuentemente por hipertonía y por algún grado de obstrucción respiratoria. Tanto la hipertonía como la obstrucción ceden al profundizar la anestesia. •

Movimientos localizados o generalizados que ocurren bajo anestesia

profunda: se presentan al final de la inducción y persisten mientras se mantenga este nivel de anestesia. Esta agitación motora se asocia con un incremento de la frecuencia cardiaca y con un aumento transitorio de la presión arterial. Se ha planteado que estos cambios pueden deberse a una breve disociación cortico-subcortical, la cual se observa también con otros agentes anestésicos ONDA

FRECUENCIA (Hz)

como el Propofol.

Delta

0.1-3.5

Para comprender los fenómenos antes descritos,

Theta

4-7.5

vale la pena recordar los tipos de ondas

Alfa

8-13

cerebrales y el comportamiento de la actividad

Beta

14-40

cerebral

Gamma

+40

durante

la

anestesia. Las

ondas

cerebrales tienen una intensidad que oscila entre 10 y 50 milivoltios y se clasifican con base en la

Tabla 12. Ondas cerebrales y frecuencias en Hertz.

frecuencia de su oscilación. En la tabla 12 se listan las diferentes ondas y su frecuencia. En la

persona conciente, el registro de las ondas electroencefalográficas se caracteriza por una actividad rápida irregular de baja frecuencia, con una dominancia de ondas con 13 Hz de frecuencia (ondas alfa 8-13 Hz).

Anestesia Inhalatoria: de la teoría a la práctica.

69


Figura 13. Espectro de las ondas con su respectiva frecuencia (parte superior) y registro de los cambios que suceden bajo anestesia general y durante la inducción anestésica con Sevofluorano en altas concentraciones. En el caso de la sedación, se observan ondas tipo beta (13-20 Hz); pero con anestesia profunda inicialmente se observan ondas con una frecuencia correspondiente a ondas theta (4-7.5) y luego por ondas delta (0.1-3.5) hasta que sólo se visualiza una línea isoeléctrica. Es decir, en anestesia se pasa de ondas alfa, a ondas theta, luego a delta y finalmente a una línea isoeléctrica. En inducción con Sevofluorano a altas concentraciones muestra un patrón similar al descrito pero con una excepción: cuando se pierde el reflejo parpebral, el electroencefalograma muestra un breve incremento de actividad beta (14-40), la cuál es seguido por ondas con una frecuencia de menos de 2Hz al final del segundo minuto de iniciada la inducción donde se acelera la predominancia de ondas delta (2-4 Hz); es decir, primero hay un efecto parecido cuando se aplican sedantes (aparición de ondas beta) y luego pasa directamente a ondas delta sin presentar las ondas theta, como sucede en el caso de una anestesia estándar.

Anestesia Inhalatoria: de la teoría a la práctica.

70


La perdida de la conciencia inducida por los agentes hipnóticos y la sedación con Benzodiazepinas produce cambios en las ondas cerebrales. En el caso de la sedación, se observan ondas tipo beta (13-20 Hz). Con la anestesia profunda, inicialmente se observan ondas con una frecuencia correspondiente a las ondas theta (4-7.5) y luego ondas delta (0.1-3.5) hasta que sólo visualiza una línea isoeléctrica durante la anestesia profunda. Es decir, en anestesia se pasa de ondas alfa, a ondas theta, luego a delta y finalmente a la línea isoeléctrica.

El registro electroencefalográfico durante la inducción y la anestesia profunda con el Sevofluorano muestra un patrón similar al descrito. Sin embargo, se han puntualizado algunas variaciones: cuando se realiza una inducción con Sevofluorano al 7% ó al 8% mezclado con oxigeno y óxido nitroso (50:50), una vez que se pierde el reflejo parpebral, entre 30 y 60 segundos después de haber empezado al inducción, el electroencefalograma muestra un breve incremento de actividad beta (14-40), que es seguida por ondas con una frecuencia de menos de 2Hz y al final del segundo minuto de iniciada la inducción se acelera la predominancia de las ondas delta (2-4 Hz) hasta que las pupilas están mióticas y centradas. Es decir, primero hay un efecto parecido al que sucede cuando se aplican sedantes (aparición de ondas beta) y luego se pasa directamente a ondas delta, sin presentar las ondas theta que se observan en una anestesia estándar. Estos fenómenos se observan con concentraciones de Sevofluorano de 2 C.A.M. Durante la anestesia profunda con Sevofluorano, también se pueden observar ondas delta (1-4 Hz) intercaladas con ondas semejantes a las que se presentan durante la actividad convulsiva (ondas en espiga) de diferente morfología, sin cambios ni signos clínicos.

Los cambios en los electroencefalogramas son más frecuentes en los niños que reciben medicamentos anticonvulsivantes y cuando se hiperventila el paciente, principalmente en pacientes con edades entre los 3 y los 12 años. En contraste, son menos frecuentes en los niños que se premedican con Benzodiazepinas (38).

Anestesia Inhalatoria: de la teoría a la práctica.

71


Una hipótesis, que se apoya en la similitud entre la estructura molecular del Sevofluorano y el Enfluorano, expone que el fenómeno es bifásico y que depende de la activación de los receptores NMDA, la cual es dosis dependiente. Pero, esta teoría no se ha podido comprobar hasta la fecha.

Un estudio reciente (39) identificó los principales factores de riesgo para la aparición de anormalidades electroencefalográficas durante la inducción de la anestesia con Sevofluorano en pacientes no epilépticos. Los autores encontraron los siguientes factores de riesgo: sexo femenino (OR=12.6 con IC95% 1.46-13.5); aparición más precoz

de las ondas beta y delta cerebrales que se visualizan en un

electroencefalograma (OR=0.92 con IC95% 1.12-69); y una concentración espirada alta de Sevofluorano (OR=8.78 con IC95% 1.12-69). Entonces, se puede inferir que la actividad epileptiforme ocurre durante

la anestesia profunda (con una

concentración alveolar de 2 C.A.M.) y la frecuencia de movimientos anormales oscila entre 50-100%. La concentración alveolar de 2 C.A.M. se corresponde con una concentración de Sevofluorano en el cerebro de 3,5%. Por otra parte, una segunda hipótesis plantea que la aparición más precoz de las ondas beta y delta, sin presentarse previamente las ondas cerebrales theta, hecho que ha denominado “efecto bifásico del Sevofluorano” porque primero aumenta la actividad alfa y beta y luego las delta, sensibiliza el cerebro y facilita la aparición de los cambios epileptiformes. A pesar de todo lo anterior, los mecanismos epileptogénicos del Sevofluorano son poco conocidos y hay muchas controversias. Por otra parte, no se han reportado secuelas neurológicas ni otro tipo de morbilidad asociada con estos fenómenos. Además, se les contrapone la alta seguridad y la estabilidad cardiovascular que hacen que estas alteraciones carezcan de relevancia frente a los resultados de la anestesia. No obstante, para evitar esta reacción adversa, se deben tomar las siguientes precauciones: 1. Administrar premedicación con Midazolam, principalmente en los niños. 2. Utilizar narcóticos durante la inducción, para disminuir la concentración anestésica del Sevofluorano por debajo de 1,5 C.A.M. Anestesia Inhalatoria: de la teoría a la práctica.

72


3. Evitar la hipocapnia, especialmente en pacientes jóvenes. 4. Evitar el uso de concentraciones de Sevofluorano por encima de 1,5 C.A.M. durante la inducción en mujeres menores de 40 años, caso en el cual se puede utilizar la inducción secuencial sin hiperventilar al paciente para lograr una ETCO2 de 40+/- 2 mm Hg y una concentración alveolar de Sevofluorano por debajo de 1,5 C.A.M.

Finalmente, desde el punto de vista de la fármaco-vigilancia, el Sevofluorano se puede considerar un medicamento seguro por las siguientes razones:

1. Tiene unas propiedades físico-químicas apropiadas. Su bajo coeficiente sangre:gas (0,63-0,67) garantiza una inducción y una recuperación rápida. Su buen olor no irrita las vías aéreas y permite usarlo tanto para la inducción inhalatoria como para el mantenimiento (técnica llamada VIMA), lo cual es muy útil en la anestesia pediátrica y en los adultos que tienen dificultades para canalizarles una vena o un gran temor a las inyecciones.

2. Ofrece una gran estabilidad hemodinámica. El Sevofluorano permite aumentar la concentración inhalada hasta obtener la profundidad anestésica necesaria sin producir cambios importantes en la tensión arterial o en la frecuencia del pulso. Esta estabilidad hemodinámica garantiza que el estado cardiovascular no va a estar comprometido durante la anestesia, especialmente cuando se necesita una mayor profundidad anestésica, porque el paciente no presenta hipotensión arterial severa ni bradicardia o taquicardia, que es la más comprometedora porque disminuye el tiempo diastólico y esto afecta el tiempo de llenado coronario hasta un nivel que llegue a afectar la irrigación miocárdica.

3. Tiene un efecto cardioprotector.

El efecto protector del Sevofluorano

contra el daño isquémico le permite al anestesiólogo manejar mejor al del Anestesia Inhalatoria: de la teoría a la práctica.

73


paciente con factores de riesgo para complicaciones cardiovasculares perioperatorias, porque el área de infarto, en caso de presentarse, va a ser menor, debido a la reducción de los efectos dañinos que causa el fenómeno de la reperfusión. Aunque el efecto protector del daño isquémico ha sido descrito con todos los agentes anestésico inhalados, se ha visto que este efecto es más acentuado después del uso del Sevofluorano que de cualquiera otro agente, inhalado o intravenoso.

4. Tiene un efecto de neuroprotección. El flujo en la arteria cerebral media se mantiene constante a pesar de que se administren diversas dosis de Sevofluorano, lo cual sugiere que este agente tiene un buen perfil hemodinámico cerebral, apropiado para ser usado en neuroanestesia. Por otra parte, Pape y colaboradores demostraron un efecto protector del Sevofluorano después de diversos tiempos de isquemia, pues ellos observaron una disminución significativa de la apoptosis celular.

5.4. OTROS EFECTOS. El efecto de los agentes anestésicos inhalados no es selectivo sobre el cerebro, sino que ellos actúan sobre las membranas de todas las células excitables; de tal forma que sus efectos se manifiestan sobre todos los órganos del cuerpo. Sistema nervioso central. A medida que aumenta la profundidad anestésica ocurren cambios en el electroencefalograma de superficie, cambiando la actividad de ondas rápidas de bajo voltaje por ondas lentas de mayor voltaje, hasta supresión total de la actividad, si la anestesia es demasiado profunda. El consumo metabólico cerebral de oxígeno es reducido, y el flujo sanguíneo es aumentado en mayor o menor proporción de acuerdo al agente anestésico y a su concentración:

Anestesia Inhalatoria: de la teoría a la práctica.

74


Halotano mayor que el enfluorano, mayor que el isofluorano, igual al desfluorano e igual al sevofluorano. Lo que quiere decir que en equipotentes dosis el Halotano producen el mayor aumento del flujo sanguíneo cerebral. Sistema respiratorio. Los agentes inhalatorios modifican tanto la frecuencia como la profundidad anestésica, en general produciendo una disminución de los volúmenes respiratorios y aumentando la frecuencia respiratoria. Sabemos que el diafragma es responsable del 60% del intercambio normal de la ventilación pulmonar y los músculos intercostales y accesorios de la respiración del otro 40%. A medida que aumenta la profundidad anestésica, (y es más notorio en niños y adolescentes) se pierde la función intercostal. La pérdida de volúmenes respiratorios genera un aumento de la presión parcial de CO2, no contrarestada puesto que todos los anestésicos deprimen la reacción ventilatoria al dióxido de carbono (aumento del volumen minuto respiratorio en respuesta a incrementos de la presión arterial de

CO2). Los agentes inhalados

reducen la resistencia de las vías respiratorias por ser potentes broncodilatadores en forma dosis dependiente.

Sistema cardiocirculatorio. En general, los efectos clínicos sobre el sistema circulatorio son más muy importantes, y generalmente son perjudiciales para el paciente. El halotano es el agente que tiene los efectos adversos cardiovasculares más marcados; la reducción de la presión arterial que ocasiona el halotano se debe principalmente a una disminución en la fuerza con la cual el corazón se contrae, mientras que la reducción en la presión arterial que ocasionan el isofluorano, el desfluorano y el sevofluorano se debe fundamentalmente a la reducción en el estado basal de los vasos sanguíneos. Aún a concentraciones bajas, el isofluorano y el desfluorano incrementan la frecuencia cardiaca porque ellos activan el sistema nervioso autónomo. El aumento de la frecuencia cardiaca compensa la disminución que ellos ocasionan en fuerza de la contracción y por este motivo finalmente la cantidad de sangre que llega a los

Anestesia Inhalatoria: de la teoría a la práctica.

75


tejidos no cambia; en cambio, con el halotano y con el sevofluorano a bajas concentraciones, este efecto de estímulo del sistema nervioso autónomo no se observa, posiblemente porque ellos no huelen tan mal como los primeros, pues se ha encontrado una correlación directa entre la acritud y la activación del sistema nervioso autónomo; en consecuencia, el halotano y el sevofluorano disminuyen la frecuencia de los latidos del corazón y el flujo de sangre que llega a los tejidos en una proporción que

es directamente proporcionales a la dosis. Por otra parte,

normalmente la disminución en la presión desencadena unos reflejos que aumentan la frecuencia del corazón, pero con el halotano no se aumenta la frecuencia, a pesar de que la presión arterial disminuya, porque los reflejos son anulados por efectos muy marcados sobre el mismo corazón. Todos estos cambios favorecen la aparición de alteraciones en el ritmo cardíaco que pueden terminar en un colapso circulatorio o en la muerte.

Músculo esquelético. Por una parte todos los agentes anestésicos inhalatorios potencian las acciones de los relajantes del músculo esquelético y por otra tienen propiedades relajantes propias de una manera dosis dependiente. El isofluorane y el enfluorane potencian el bloqueo en mayor proporción que los otros halogenados.

Músculo uterino. Los anestésicos inhalatorios producen relajación del músculo uterino de una manera dosis dependiente, que puede progresar a una atonía uterina. En parte esta relajación puede ser antagonizada por oxitócicos administrados por ejemplo en infusión. La anestesia para cesárea debe ser balanceada, utilizando otros medicamentos por vía intravenosa además de los agentes inhalados. Se consideran aceptables concentraciones de hasta de 0.5% de halotano, 0.75% de isofluorane y 1.0% de enfluorane durante una cesárea. (40, 41, 42,43).

Anestesia Inhalatoria: de la teoría a la práctica.

76


Capítulo seis. Técnicas anestésicas 6.1. INDUCCIÓN, INTUBACIÓN Y MANTENIMIENTO CON BAJOS FLUJOS CON SEVOFLURANE EN ADULTOS

6.1.1 Introducción.

La inducción inhalatoria perdió popularidad hace varias décadas por el advenimiento de los agentes inductores intravenosos; por la lenta absorción, distribución y alta toxicidad de los agentes anestésicos inhalados disponibles hasta entonces, lo que hacía la inducción inhalatoria desagradable para el paciente y el anestesiólogo, y la presencia frecuente de tos, excitación prolongada y laringoespasmo. La llegada del halotano permitió la inducción inhalatoria en anestesia pediátrica pero sus propiedades físico-químicas y su farmacocinética lo impidieron en adultos. No obstante, en la actualidad el sevoflurane por su perfil farmacológico hace posible nuevamente la inducción inhalatoria

de alta calidad en el paciente adulto,

y

equiparable a la producida por agentes anestésicos intravenosos. Es interesante recordar que la practica de la anestesia general, en el ámbito histórico se mueve en forma de péndulo: hace más de 100 años en su inicio, la anestesia era solo inhalada, luego por el descubrimiento y fabricación de drogas intravenosas se usaba con mucha frecuencia la inducción anestésica intravenosa y el mantenimiento con anestésicos volátiles, luego pasa al polo opuesto del péndulo, se populariza el uso de la anestesia total intravenosa (TIVA); finalmente, en la actualidad regresa a su polo de hace 100 años porque nuevamente la anestesia inhalatoria comienza a ser una técnica efectiva, rápida, costo efectiva y segura. Sin embargo, muchos anestesiólogos aún no utilizan la inducción inhalatoria en adultos y solo la reservan para la población pediátrica y para el mantenimiento anestésico en adultos y niños por el riesgo para la Anestesia Inhalatoria: de la teoría a la práctica.

77


salud, por la contaminación que producen los anestésicos volátiles en las salas de cirugía, y quizás por los costos de esta cuando se administra con flujos altos. Pero, el Comité de Salud Ocupacional de la ASA. (Sociedad Americana de Anestesiología) basado en varios estudios informó a mediados del año 1999, que no existen evidencias de riesgos en la salud del personal expuesto crónicamente a residuos de este agente, incluyendo el embarazo y que los niveles de contaminación no superaron los límites sugeridos en distintos países por sus organismos de seguridad ocupacional. Por otra parte, existen actualmente varios recursos de probada eficacia, cuya puesta en práctica logran evitar y reducir la contaminación a niveles muy inferiores a los establecidos, disminuir el consumo de los anestésicos volátiles, y en caso de realizar inducciones en adultos o niños disminuir la salida al ambiente de la sala quirúrgica, ellos son: Primero, control y mantenimiento periódico de las máquinas de anestesia y sus circuitos. Segundo, derivación al exterior de los residuos de gases contaminantes. Las máquinas de anestesia y sus circuitos cuentan con una salida para gases, con derivaciones o sistemas de evacuación que pueden conectarse a conductos especialmente diseñados, a los sistemas de aspiración central o los de extracción de los equipos de aire acondicionado. Tercero, sistemas de aireación adecuada en las salas de cirugía que si tienen los adecuados requerimientos técnicos logran por si solos mantener los niveles de contaminación por debajo de los límites sugeridos. Cuarto, el uso del conector SIBI “Single Breath Induction”. El conector SIBI fue diseñado por Ventitech Medical Devices Inc especialmente para la inducción de anestesia por inhalación y más específicamente para la inducción en una sola respiración o la inducción por inhalación según capacidad vital; este permite la preoxigenación del paciente mientras se ceba el circuito anestésico, reduce las fugas de gas anestésico al quirófano, es reusable y es de bajo costo.

Anestesia Inhalatoria: de la teoría a la práctica.

78


Finalmente, utilización de bajos flujos de gases fresco. Cook y colaboradores proponen emplear el término de Flujos Bajos para cifras de flujo menores a la ventilación alveolar por minuto del paciente; más recientemente se acepta como “la anestesia realizada con el mínimo flujo de gas fresco que permite una re-inhalación segura”. Baker (1994) propuso la siguiente clasificación, con el fin de aclarar los términos empleados en la literatura para denominar los flujos:

FLUJOS

RANGOS

Flujo Metabólico

Aproximadamente 250 ml / min.

Flujos Mínimos

250 - 500 ml / min.

Flujos Bajos

500 - 1000 m l/ min.

Flujos Medios

1 - 2 l / min.

Flujos Altos.

2-4 l / min.

Flujos Muy Altos.

> 4 l / min.

Tabla 13. Rango de los flujos utilizados en anestesia.

La utilización de flujos bajos disminuye notoriamente los costos al disminuir el consumo de agentes volátiles y de oxigeno,

disminuye la toxicidad que puede

producir la inhalación crónica de los gases anestésicos en el personal que labora en la sala de cirugía, y disminuye la morbilidad postoperatoria de la vía aérea porque proporciona gases húmedos y calientes. A pesar de estas ventajas, muchos anestesiólogos aún creen que esta técnica puede producir hipoxia o hipercapnia, que se puede infradosificar el agente volátil, y que facilita la acumulación de productos de degradación potencialmente tóxicos en el circuito respiratorio. A fin de que, se popularice el uso de flujos bajos por sus beneficios se hace necesario aclarar lo siguiente: En primer lugar, la cal sodada seca y la cal de hidróxido de bario hacen que el desflurano, el Isoflurano y el Enflurano produzcan monóxido de carbono durante su degradación, con la consiguiente formación de carboxihemoglobina; sin embargo, este hecho es relativamente infrecuente si se utiliza el uso de la cal sodada seca. Anestesia Inhalatoria: de la teoría a la práctica.

79


Wissing, mediante un trabajo experimental, demostró que los agentes volátiles que más producen monóxido de carbono en su orden son: desflurano, Enflurano, Isoflurano, y en menor proporción el Sevoflurano y el halotano. Además demostró que después de la segunda hora de anestesia la producción de monóxido de carbono se suspende, a pesar de continuar con el mismo flujo de gas anestésico, y que la concentración en el circuito respiratorio baja a cero o cerca de cero en todos los casos. Esto implica que alguna sustancia o algo que se requiere para que continuase la reacción, comienza a agotarse; por esto existe una inconsistencia entre los hallazgos de laboratorio y la experiencia clínica. En segundo lugar, el sevoflurane por la acción de la cal sodada y del hidróxido de bario se degrada a un Haloalqueno que ha sido llamado “Compuesto A”. Las concentraciones elevadas de este compuesto provocan nefrotoxicidad en los túbulos proximales de los riñones de las ratas. Sin embargo, con las publicaciones actuales se puede afirmar que hasta el momento no se ha demostrado en forma real la nefrotoxicidad en humanos. A pesar de lo anterior, es prudente recomendar que cuando se utilice sevoflurane con flujos bajos se debe abrir el circuito de anestesia cada 2 horas porque ha medida que aumenta el tiempo quirúrgico, hay más posibilidad que se forme el compuesto A. En tercer lugar, para evitar la Hipoxemia se deben revisar con frecuencia los flujometros de la máquina de anestesia y tener analizador de oxigeno, más si se usa óxido nitroso en la técnica.

Para concluir, el Desflurane y sevoflurane tienen propiedades fisicoquímicas que los hacen más adecuados para administrar anestesia con flujos bajos; En particular, el sevoflurane tiene una purgencia menor que lo hacen además ideal para realizar inducción inhalatoria tanto en niños como en adultos (44,45,46,47).

Anestesia Inhalatoria: de la teoría a la práctica.

80


6.1.2. Técnica de inducción, intubación, mantenimiento con sevoflurane en paciente adulto. La técnica que se expondrá a continuación es el resultado de integrar los nuevos conocimientos y técnicas descritas en la literatura: las propiedades fisicoquímicas y farmacocinéticas del sevoflurane, la técnica de inducción “por inducción por inhalación según capacidad vital”, el uso del conector SIBI y el uso del flujo bajo. La técnica tiene los siguientes beneficios: La inducción inhalatoria con Sevoflurane permite la intubación endotraqueal en el adulto sin la utilización de relajantes neuromusculares, es posible utilizarla en cualquier grupo etáreo, reduce significativamente el consumo del anestésico, elimina por completa la necesidad de utilizar relajantes neuromusculares, es rápida y muy bien aceptada por el paciente si se presenta alguna situación no deseada que obligue a interrumpir el procedimiento, permite una rápida recuperación del nivel anestésico, elimina los potenciales estados de

conciencia

y

“recuerdos

intraoperatorios”

al

no

utilizar

relajantes

neuromusculares, evita las dificultades inherentes a la utilización de los relajantes neuromusculares, disminuye los cambios hemodinámicos con la IET, logra una recuperación rápida, previsible y confiable de las funciones cognoscitivas, sensoriales y motoras, permite cuando es necesario la canalización venosa posterior a la perdida de conocimiento, dependiendo del tipo de cirugía puede ser costo efectiva en especial en cirugía ambulatoria. La técnica se describe con el sevoflurane porque es el único halogenado con el que se puede efectuar sobrepresión anestésica con la técnica de inducción por inhalación según capacidad vital por su olor no purgente y mejor tolerancia por la vía aérea, y así lograr una rápida segura y placentera inducción inhalatoria y rescate de mantenimiento en niños y adultos. Otras ventajas son: su baja solubilidad, su mínima toxicidad y metabolismo, su estabilidad hemodinámica, y su potencia.

Anestesia Inhalatoria: de la teoría a la práctica.

81


Figura 14. La técnica es el resultado de integrar los nuevos conocimientos y técnicas descritas en la literatura: las propiedades fisicoquímicas y farmacocinéticas del sevoflurane, la técnica de inducción “por inducción por inhalación según capacidad vital”, el uso del conector SIBI y el uso del flujo bajo. La técnica se muestra en el cuadro de la mitad, y los beneficios de ella en el cuadro de la derecha.

Para que la inducción inhalatoria en el paciente adulto sea efectiva y rápida, deben seguirse ciertos pasos, que incluyen; monitorización del paciente, explicación de la técnica al paciente, pre oxigenación del paciente, saturación del circuito respiratorio y por ultimo la inducción en si, seguida por el mantenimiento anestésico.

6.1.2.1. Pre oxigenación del paciente y saturación del circuito respiratorio.

En la figura 15 se ilustran los componentes del conector SIBI, que es necesario para realizar la técnica adecuadamente.

Antes de preparar el conector para la

preoxigenación y el prellenado del circuito se debe inspeccionar la integridad de este por inspección visual para asegurarse de que sus componentes están limpios, intactos y libres de cualquier cuerpo extraño.

Anestesia Inhalatoria: de la teoría a la práctica.

82


Figura 15. Componentes del conector SIBI.

El conector SIBI. Fue

diseñado por Ventitech Medical

Devices Inc especialmente para la inducción de anestesia por inhalación y más específicamente para la inducción en una sola respiración o la inducción por inhalación según capacidad vital; este permite la preoxigenación del paciente mientras se ceba el circuito anestésico, reduce las fugas de gas anestésico al quirófano, es reusable y es de bajo costo.

Inicialmente se debe montar el conector en el circuito anestésico (figura 16); este debe quedar completamente fijo y hermético. Luego fije la bolsa reservorio y el tubo de oxígeno a la sección de preoxigenación del conector. El tubo de oxígeno se enchufa a la salida secundaria de oxígeno del equipo de anestesia (figura 17), al sistema de conducciones de oxígeno del hospital o a un cilindro de oxígeno.

Figura 16.

Anestesia Inhalatoria: de la teoría a la práctica.

Figura 17.

83


Luego se debe retirar la tapa de seguridad para movilizar el selector a la posición 6:00 (reloj imaginario). La punta de la flecha debe rotarse entre la posición 12:00 a la posición 6:00 pasando por las 9:00, nunca por las 3:00; de esta manera el circuito queda aislado para realizar el prellenado mientras se realiza la preoxigenación del paciente a través de la sección de oxigenación, estas maniobras se muestran en las figuras 18 y 19.

Figura 18.

Figura 19.

Luego se realiza la saturación del circuito respiratorio por dos minutos,

de la

siguiente manera: se lleva el dial del vaporizador a 8% y se ajusta un flujo de gases frescos a 4 litros por minuto. Los gases frescos pueden estar compuestos por oxigeno al 100% hasta oxigeno al 25% y Oxido Nitroso al 75% dependiendo de la preferencia del anestesiólogo y la altura a nivel del mar en la cual trabaje. Mientras se realiza la saturación o prellenado del circuito aislado y sellado por el conector SIBI, en forma simultanea se inicia la preoxigenación del paciente administrando oxigeno al 100% con mascara facial durante dos minutos, lo cual provoca un buen nivel de desnitrogenización, acumulando así una gran cantidad de oxigeno en el organismo, como reserva en caso de alguna eventualidad. En algunos casos se recomienda que el paciente sostenga la mascara para que se familiarice con esta y simultáneamente pude practicar la maniobra de inspiración forzada que se explica posteriormente. Los pasos descritos se ilustran en las figuras 20 y 21. Anestesia Inhalatoria: de la teoría a la práctica.

Mientras se oxigena el paciente, el 84


circuito se está saturando con los gases anestésicos; mientras tanto, se procura hacer circular esta mezcla anestésica por todo el circuito realizando compresiones periódicas del balón reservorio, con el fin de igualar la concentración del Sevofluorano dentro del circuito como se observa en la figura 23. Mientras se realiza este procedimiento la válvula de escape APL debe permanecer parcialmente abierta y conectada a un sistema de evacuación activa de gases para evitar la contaminación de la sala de cirugía.

Figura 20.

Figura 21.

Figura 22.

Para observar los cambios que ocurren en el circuito, los alvéolos y los tejidos realizaremos el ejercicio con un paciente de 70 Kgrs de peso, un gasto cardíaco de 5 litros por minuto y una ventilación alveolar de 5 litros / minuto;

además,

simularemos los diferentes cambios farmacocinéticos en el software GAS-MAN. Este es un excelente simulador de anestesia inhalatoria que reproduce fielmente la farmacocinética de estos agentes y nos permite apreciar gráficamente la absorción,

Anestesia Inhalatoria: de la teoría a la práctica.

85


distribución y eliminación del sevoflurano durante esta técnica. Podemos observar en el gráfico de la figura 16 que durante los primeros 2 minutos la concentración inspirada de sevoflurano en el circuito, al cabo de este tiempo supera el 5% (48,49,50).

Figura 23. Cambios en la concentración de sevoflurano en el circuito al finalizar la saturación del circuito. Los componentes de la máquina de anestesia se representan en el cuadro punteado del lado izquierdo, los compartimientos farmacocinéticos del organismo en el cuadro punteado del lado derecho, la curva de la concentración en el tiempo en el circuito, el alveolo y los tejidos se representa arriba y a la derecha. La figura muestra que con la maniobra para saturar el circuito se logra una concentración de 5.8% de sevoflurano. La línea punteada de la curva y la línea punteada del compartimiento cerebral representa el CAM95%.

6.1.2.2. Inducción con sevoflurano.

Para realizar la inducción inhalatoria existen varios métodos descritos, pero el más efectivo en cuanto a velocidad y calidad es la inducción por inhalación según

Anestesia Inhalatoria: de la teoría a la práctica.

86


capacidad vital o Inducción a capacidad vital Retenida. Esta técnica se realiza de la siguiente manera: Se instruye al paciente para que realice una espiración máxima (exhale al máximo el aire de sus pulmones), con lo cual conservara solo el volumen residual, en ese momento se coloca la máscara facial conectada al circuito respiratorio, manteniendo la misma mezcla inhalatoria de la saturación del circuito respiratorio, se moviliza el selector a la posición 12:00 (reloj imaginario). La punta de la flecha debe rotarse 180 grados pasando por la posición de las 9:00, nunca por las 3:00; de esta manera el circuito queda comunicado con la mascara del paciente, esta maniobra se ilustra en la figura 24.

Figura 24.

Figura 25.

Figura 26.

Anestesia Inhalatoria: de la teoría a la práctica.

87


Cuando el conector está en la ubicación adecuada, es decir que permite la comunicación entre el circuito y la vía aérea, se le pide se le pide al paciente que realice una inspiración máxima (inspire lo mas profundo posible), reteniendo este volumen inspirado lo mas que pueda. Para esta maniobra que es sencilla y fácilmente aceptada por los pacientes es recomendable el ejercicio de su práctica durante la preoxigenación. Luego coloque la tapa de seguridad, si esta ajusta adecuadamente, el circuito anestésico con seguridad está en comunicación con la vía aérea del paciente (figura 25, 26). Con la primera inspiración profunda se presenta perdida de conciencia en el 59% de los pacientes, si esto no ocurre se continua en contacto verbal con el paciente haciendo que repita la maniobra de inspiración profunda. Según nuestra experiencia con tres respiraciones profundas más del 95% de los pacientes presentan perdida de conciencia. La retención del volumen inspiratorio luego de una inspiración máxima, genera un aumento de la presión alveolar de fin de inspiración, lo cual incrementa la difusión alveolo sangre del agente anestésico inhalado. Los cambios en las concentraciones de los compartimientos se ilustran en la figura 27 donde se representa en el GASMAN el paciente antes mencionado.

Anestesia Inhalatoria: de la teoría a la práctica.

88


Figura 27. Cambios en la concentración de sevoflurano en el circuito y compartimientos corporales al finalizar la inducción con capacidad vital retenida. La figura muestra que a los 3 minutos con este tipo de inducción las concentraciones en el cerebro muestran que el paciente está en un plano anestésico adecuado y puede realizarse la permeabilización de la vía aérea con máscara laringea o tubo endotraqueal. Recuerde que el CAM-intubación para el sevoflurano es de 4.52 % y el CAM-bar es de 4.15%. La simulación muestra una concentración alveolar de 5.07%.

Continuando la ventilación del paciente con esta concentración, al cabo de 3 a 5 minutos el paciente estará en un plano anestésico adecuado, con relajación de la musculatura buco faríngea y laríngea que permite manipular la vía aérea inclusive para

realizar

la

intubación

endotraqueal

sin

la

necesidad

de

relajantes

neuromusculares. La colocación de la mascara laríngea puede lograrse a partir de los dos a tres minutos. Antes de permeabilizar la vía aérea se debe girar el selector de la 12:00 a las 6:00 para que el circuito nuevamente quede aislado del paciente y del medio ambiente. Luego se disminuye el flujo de gases a 1 litro por minuto de oxigeno, y la

Anestesia Inhalatoria: de la teoría a la práctica.

89


concentración del dial al 3,5%. Luego se retira el circuito del paciente y después se coloca la mascara laringea o el se realiza la intubación endotraqueal. Estas maniobras se representan en las figuras 28, 29, 30.

Figura 28.

Figura 29.

Figura 30.

Luego de permeabilizar la vía aérea se retira la sección de preoxigenación del conector, se conecta el circuito con el conector al paciente y se gira nuevamente el selector de las 6:00 a las 12:00, finalmente se coloca la tapa de seguridad. Si ajusta adecuadamente con toda seguridad el circuito está comunicado con la vía aérea del paciente. Estas maniobras se ilustran en las figuras 31, 32.

Anestesia Inhalatoria: de la teoría a la práctica.

90


Figura 30.

Figura 31.

6.1.2.3. Otras técnicas de inducción inhalatoria. 6.1.2.3.1. Inducción Tradicional con respiración normal: Se inicia colocando la mascara facial al paciente quien respira normalmente, con un flujo de gases frescos de 4 litros por minuto, se abre el vaporizador lentamente, incrementando la fracción inspirada del sevoflurane a razón de 0,5% cada dos ciclos respiratorios. Esta técnica de inducción inhalatoria es poco efectiva, pues es muy prolongada y se observa excitación prolongada y tos hasta en un 30% de los paciente. 6.1.2.3.2.

Inducción de alta concentración con respiración normal:

Esta

técnica se realiza administrando concentraciones de Sevoflurane entre el 6 y el 8% desde el inicio, con flujo de gases frescos entre 4 y 6 litros por minuto con o sin Oxido Nitroso, con el paciente respirando normalmente. Una vez alcanzada la perdida de conciencia se diminuye la concentración de sevofluorane. 6.1.2.3.3. Inducción en tres secuencias de capacidad vital: Se logra utilizando la técnica anterior pero instruyendo al paciente para que realice tres secuencias de capacidad vital sin retener la respiración. En esta técnica no se realiza la saturación previa del circuito respiratorio.

Anestesia Inhalatoria: de la teoría a la práctica.

91


En la practica, el anestesiólogo debe evaluar cada técnica, y según sus preferencias y habilidades y características de cada paciente ir adaptando la técnica según las necesidades. 6.1.2.3. Mantenimiento anestésico. Una vez intubado el paciente o colocada la mascara laríngea y conectado al circuito respiratorio, se deja la concentración de sevofluorane a la equivalente al CAM quirúrgico, con un flujo de gases frescos no menor de 1 litro por minuto, preferiblemente con oxigeno al 100% y se monitoriza la fracción inspirada de oxigeno, de gases anestésicos y capnografía. Es recomendable ventilar al paciente mecánica o manualmente y no dejarlo en respiración espontánea. La concentración alveolar alcanzada durante la inducción se nivelara a la CAM quirúrgica más o menos a los 30 a 40 minutos. Es importante recordar que el plano anestésico es fácil y rápidamente modificable utilizando el dial del vaporizador desde 0% hasta 8%. En la figura 32 se ilustran las diferentes concentraciones a los 30 minutos de iniciada la técnica, una vez más con las resultantes de la simulación en el GASMAN.

Figura 32. Cambios en la concentración de sevoflurano en el circuito y compartimientos corporales a los treinta (30) minutos de haber iniciado con la preoxigenación. Observe que la concentración alveolar y la cerebral están siempre por encima del CAM95%.

Anestesia Inhalatoria: de la teoría a la práctica.

92


6.1.2.4. Recuperación

Al cerrar el vaporizador estando este en un CAM quirúrgico, el comienzo d la recuperación (rechazo al tubo endotraqueal, movimientos, apertura de ojos) se produce más o menos a los 10 minutos alcanzando una concentración espirada equivalente a 0,33 lo que se conoce como la CAM de despertar. Este tiempo se puede acortar si hiperventila el paciente con un circuito semiabierto utilizando un flujo de gases frescos entre 8 y 10 litros por minuto, lo que nos permite acelerar el lavado alveolar invirtiendo los gradientes del anestésico en tejido- sangre y sangre –alvéolos. La recuperación es similar o superior a otros agentes anestésicos inhalados e incluso intravenosos según lo reportado en múltiples estudios. Con esta técnica, se le suma a la calidad de recuperación de las funciones sensoriales y cognoscitivas, la excelente recuperación motora ya que no se utilizan agentes relajantes neuromusculares.

6.1.2.5. Medicación Concomitante 6.1.2.5.1. Opioides. Es conveniente administrar analgésicos opióides tipo fentanyl antes de iniciar el procedimiento quirúrgico a dosis de 0,5 a 1 microgramos por kilo, con el fin de inducir una mejor protección neurovegetativa. Si es posible se prefiere la infiltración de anestésicos locales tipo Bupivacaina o un bloqueo regional antes de la incisión quirúrgica para inducir una adecuada analgesia durante y luego del procedimiento quirúrgico. 6.1.2.5.2. AINES. Se recomienda su administración en bolo IV previo a la incisión quirúrgica en especial si no se ha realizado infiltración con anestésicos locales previo a la incisión quirúrgica. Se recomienda la utilización de ketorolaco. 6.1.2.6. Prevención de nausea y vomito postoperatorio: Si es posible, se recomienda reducir al máximo la utilización de opióides con el objetivo de evitar al máximo las nauseas y vomito postoperatorio. Anestesia Inhalatoria: de la teoría a la práctica.

93


En algunos centros recomiendan la utilización de antieméticos como profilaxis para las nauseas y vomito postoperatorio. Actualmente existe evidencia que muestra que la profilaxis antiemética solo se debe utilizar en pacientes con antecedentes de nauseas y vomito postoperatorio. Algunos anestesiólogos utilizan una sonda oro gástrica temporal antes de terminar el procedimiento anestésico con el fin de evacuar liquido gástrico, así como aire que pudieran haber entrado al estomago durante la inducción. 6.1.2.7. Precauciones con la técnica. Como en las técnicas con flujos bajos, se debe siempre revisar que el circuito funcione adecuadamente y revisar en forma permanente el canister o sistema absorbedor de dióxido de carbono. La vigilancia del sistema absorbedor de dióxido de carbono se establece a través del cambio de coloración del absorbedor, el aumento de temperatura del compartimiento del absorbedor y el calculo del gasto de cal sodada por hora según la producción de dióxido de carbono del paciente. Los indicadores son ácidos o bases que se agregan a la cal sodada o baritada; estos cambian de color de acuerdo a la concentración de hidrogeniones; de ahí que, cuando la cal sodada es fresca los indicadores son incoloros, luego con la producción de CO2 y la capacidad del absorbente se agota cambian a color violáceo si el colorante es el etil violeta, y a rosado si es fenoftaleina. Por otra parte, cuando se administran flujos bajos o mínimos, la cal sodada debe calentarse a los 15 o 20 minutos porque las reacciones son exotérmicas; si esto no sucede debe sospecharse que el absorbente no está funcionando adecuadamente. Finalmente; para calcular el consumo de la cal sodada por hora, se parte del supuesto que 100 gramos de esta absorba entre 15 y 18 litros de dióxido de carbono y se necesita calcular la producción de CO2 del paciente (51, 52, 53, 54, 55,56).

Anestesia Inhalatoria: de la teoría a la práctica.

94


6.2. ANESTESIA INHALATORIA EN PEDIATRÍA.

En este aparte, tomando como base la mejor evidencia disponible en la literatura actual, se responderán las preguntas que surgen con mayor frecuencia cuando se quiere administrar anestesia inhalatoria en los niños.

6.2.1. ¿En pacientes pediátricos, cuál es el circuito anestésico más seguro y costo eficiente? ¿Cuál circuito anestésico se debe emplear?. Según Restrepo Torres J (57), los criterios que se deben tener en cuenta para decidir cuál circuito utilizar son: seguridad mecánica, estabilidad en la profundidad anestésica, características ergonómicas, compatibilidad ambiental y análisis costobeneficio. En este contexto, al comparar los circuitos semiabiertos, que son los más usados en la historia de la anestesia pediátrica, con los circuitos semicerrados o de reinhalación puede decirse que ambos son semejantes en seguridad mecánica, que ambos permiten mantener la estabilidad y la profundidad anestésica y que ambos tienen dificultades ergonómicas. Ambos tienen dificultades ergonómicas porque en los de no reinhalación es fácil cuantificar la necesidad de flujo de los gases frescos para barrer el CO2 y porque en los circuitos de rehinalación no es fácil calcular la reposición del volumen de comprensión que representa el circuito para no alterar la relación VT/VD. Sin embargo, en el análisis de costo beneficio y en lo que hace referencia al compromiso ambiental, el circuito de reinhalación se acerca más a las demandas farmacocinéticas de esta época, dado que con esta clase de circuitos se genera menos contaminación y se reduce el consumo anestésico, dado que permiten la administración de los anestésicos inhalados a flujos bajos (58).

6.2.2. ¿En pacientes pediátricos, cuál anestésico inhalatoria es mejor para la inducción? Indudablemente es el Sevofluorano, porque no tiene un olor desagradable y ello facilita la inducción placentera en los niños, e incluso en los adultos. Por otra parte, el Sevofluorano tiene un bajo coeficiente de partición sangre:gas (0,63), lo cual Anestesia Inhalatoria: de la teoría a la práctica.

95


garantiza una inducción y una recuperación rápida. Su baja acritud y la ausencia de irritación en las vías aéreas permite una inducción inhalatoria suave y su perfil de estabilidad hemodinámica permite un mantenimiento anestésico muy seguro.

La anestesia tiene tres fases: inducción, mantenimiento y despertar. En los adultos la inducción de la inconciencia generalmente se realiza con medicamentos que son aplicados por vía intravenosa. En los niños, a diferencia de los adultos, la inducción se puede realizar sólo con los anestésicos volátiles que ingresan por inhalación, sin necesidad de agregar medicamentos por vía intravenosa para alcanzar la inconciencia o la relajación neuromuscular.

Los anestésicos volátiles modernos son menos

solubles en los tejidos, motivo por el cual entran y salen muy rápidamente del cuerpo, y esto les concede tiempos de inducción y de recuperación más breves y un cambio del plano anestésico más veloz. Por otra parte, dado que generalmente los niños prefieren la máscara facial al pinchazo que se requiere para la inducir la anestesia con la técnica intravenosa, el método más frecuentemente utilizado para iniciar la anestesia general en los niños es la técnica inhalatoria, En teoría, se puede realizar una inducción inhalatoria con cualquiera de los agentes disponibles en la actualidad, pero en la práctica clínica sólo el Sevofluorano es útil para este propósito, pues el mal olor y la irritación en las vías aéreas superiores que causan el Enfluorano, el Isofluorano y el Desfluorano habitualmente provocan el rechazo del niño y aumentan la incidencia de eventos adversos respiratorios, especialmente la tos, la sialorrea, el laringoespasmo y el broncoespasmo. Las ventajas de realizar la inducción inhalatoria con Sevofluorano en los niños son las siguientes: 1. Tiene un mayor margen de seguridad cardiovascular. 2. No se ha relacionado el uso de Sevofluorano con Hepatitis postoperatoria. 3. Es un medicamento más versátil que el Halotano, puesto que tiene menos efectos adversos y contraindicaciones y los tiempos de inducción y de recuperación son más breves, lo cual le confiere ventajas clínicas, económicas y administrativas. Anestesia Inhalatoria: de la teoría a la práctica.

96


6.2.3. ¿En pacientes pediátricos, cuál es la técnica anestésica más eficiente? Las técnicas según volumen

corriente y según capacidad vital son más costo-

eficientes que la inducción secuencial. Tanto la técnica según volumen corriente como la técnica según capacidad vital se tardan igual tiempo para lograr los objetivos de la inducción; no obstante, la elección entre ellas depende de la edad del paciente.

Anteriormente,

para

realizar

una

inducción inhalatoria en

un

niño

se

utilizaba la técnica llamada

“por

gravedad”

o

inducción en forma secuencial. Con esta técnica se aumenta la concentración Figura 33. Anestesia inhalatoria en niños. Técnica recomendada en el presente texto. Ver descripción con más detalle en él texto.

inspirada

del

Sevofluorano en un

1% por cada 2 ó 3 respiraciones del niño hasta alcanzar la inconciencia. Recientemente se han sugerido e implementado otras técnicas para acelerar el tiempo de inducción sin comprometer la seguridad de los pacientes. Ellas son: la inducción con respiración espontánea, o inducción según volumen corriente; la inducción con prellenado del circuito anestésico con oxigeno y Sevofluorano; y la inducción con prellenado del circuito y con la invitación al paciente para que realice un inspiración profunda después de una espiración profunda, llamada inducción según capacidad vital. En inglés se denomina “Single-breath Vital Capacity Rapid Inhalation” a la inducción según capacidad vital y “tidal volume technique » a la inducción con volumen nidal. La motivación para el desarrollo de estás técnicas es lograr Anestesia Inhalatoria: de la teoría a la práctica.

97


inducciones más rápidas, menos traumáticas, más seguras y con menor consumo de Sevofluorano. En la literatura hay estudios descriptivos previos que definen el comportamiento de la técnica secuencial en cuanto a seguridad y características clínicas; de igual manera, existen estudios donde se describe la técnica con prellenado de circuito en niños (59), estudios donde se describen las características y se compara de la inducción con prellenado

e inducción según capacidad vital (60,61,62),

inducción secuencial comparado con inducción con prellenado y según volumen corriente(63).

De acuerdo los resultados de varios estudios, con las técnicas de inducción según capacidad vital se consume menos Sevofluorano y se gasta menos tiempo que con la inducción secuencial. La inducción según capacidad vital esta no es bien tolerada en todas las edades. Por ejemplo, en un estudio se observó que los niños entre los 4 y los 5 años la aceptan en un 10% de los casos, que los niños de 11 años la aceptan en un 75% de los casos y que los niños mayores de 14 años la aceptan en un 95% de los casos. En términos generales, la tolerancia es mayor en niños mayores de 9 años, y en especial, por encima de esta edad prefieren la inducción según capacidad vital frente a la inducción según volumen corriente. En el estudio de Fernández y colaboradores, una regresión logística encontró que los factores que predicen con mayor probabilidad el éxito para realizar la técnica de inducción según capacidad vital son: la edad, el grado de cooperación del paciente y el menor número de explicaciones que se le debe dar al niño para realizar la técnica. La conclusión es que la técnica según capacidad vital es la preferida y que tiene una mayor probabilidad de éxito en niños mayores de 9 años.

6.2.4. ¿En pacientes pediátricos, la intubación es mejor con Sevoflurano que con relajantes neuromusculares? Las condiciones clínicas de la intubación son similares, pero el análisis de costoeficiencia favorece a los agentes inhalatorios. Un estudio demostró que la colocación de la máscara laríngea y la intubación orotráqueal era segura cuando se usaba la Anestesia Inhalatoria: de la teoría a la práctica.

98


anestesia con Sevofluorano en los niños (64). En este estudio también se demostró que los pacientes tienen una relajación neuromuscular suficiente, que la visibilidad de la laringe es buena, que las cuerdas vocales permanecen inmóviles durante la laringoscopia y las maniobras de intubación y que los pacientes presentan muy buena estabilidad hemodinámica. Otro estudio demostró adecuadas condiciones para la intubación y encontró que estas condiciones se logran con una concentración cercana al 3,1% de Sevofluorano, lo que equivale a 1,5 C.A.M. del anestésico (65). En términos generales, la inducción inhalatoria con Sevofluorano permite las condiciones necesarias para una adecuada intubación y en algunas partes del mundo donde los relajantes neuromusculares son más caros puede ser más costo-eficiente.

6.2.5. ¿Para el mantenimiento anestésico en pacientes pediátricos, cuál es el medicamento coadyuvante más costo-eficiente? En la actualidad, el mejor coadyudante es el Remifentanil. Recientemente un estudio demostró que este medicamento disminuye los requerimientos de Sevofluorano en niños para evitar la movilidad durante la inducción (66). En este estudio se logró disminuir el Sevofluorano a una concentración de 1,91 +/-0,36 C.A.M. cuando se administraba Remifantanilo a 0,06 microgramos/Kg.-1/min.(IC95% 2,16-2,72 C.A.M.)), y a 0,92+/- 0,11 C.A.M. cuando se administra 0,12 microgramos/Kg.-1/min. (IC95% 0,99-1,36 C.A.M.). Este estudio se realizo también con Remifentanilo a una dosis de 0.24 microgramos/Kg-1/min., pero se suspendió porque la disminución de la C.A.M. podría estar en el umbral de la conciencia/inconciencia.

6.2.6. ¿Cuál es el valor del flujo de gas fresco más indicado para el mantenimiento de la anestesia general inhalatoria? No hay estudios con suficiente evidencia que soporten un valor de flujo mínimo para anestesia inhalatoria en niños. Sin embargo, si se extrapolan los resultados de los estudios en adultos, como se hace muchas veces con algunos interrogantes en la practica de la anestesia pediátrica, se puede decir que el flujo mínimo indicado es de 0.7 litros por minuto. Este flujo demostró ser seguro en adultos (67). Anestesia Inhalatoria: de la teoría a la práctica.

99


BIBLIOGRAFIA. 1. Steven LS, Debra AS. Basic Principles of Pharmacology Related to Anesthesia. Anesthesia Ronald D. Miller: 6th edition. 2005. IN: medconsult.com

2. Candia C. ¿Es posible la anestesia cuantitativa asistida por computador en pediatría?.En: Jaramillo J, Reyes G, Gómez JM Editores. Anestesiología Pediátrica Sociedad Colombiana de Anestesiología y Reanimación. Primera edición. Legis 2003; Págs. 1047-1059.

3. Parra CJ. Flujos Bajos Circuito Cerrado. En: Aldrete J.A, Editor. Texto de anestesiología teórico practico. Salvat Mexicana de Ediciones S.A de C.V 1990:1529-50.

4. Agnor R., Sikich N., Lerman J. Single breath vital capacity rapid inhalation induction in children 8% sevoflurane versus 5% halothane. Anesthesiology 1998; 89:379-384. 5. Colas MJ, Tétrault JP, Dumais L et al. The SiBlTM Connector: A New Medical Device To Facilitate Preoxygenation and Reduce Waste Anesthetic Gases During Inhaled Induction With Sevoflurane. Anesth Analg 2000; 91: 1555-9.

6. Kety SS: The physiological and physical factors governing the uptake of anesthetic gases by the body. Anesthesiology 1990, 11: 517.

7. Kety SS: The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 1951, 3:1.

8. Philip JH: Gas Man: Understanding anesthesia uptake and distribution. Macintosh Edition. Chestnut Hill, MA: Med Man Simulations, In, 1990.

9. Stoelting RK, Eger EI II. The effects of ventilation and anesthetic solubilitv on recovery from anesthesia: an in vim and analog analysis before and after equilibrium. Anesthesiology 1969; 30:250-6.

Anestesia Inhalatoria: de la teoría a la práctica.

100


10. Carpenter RL, Eger EI II, Johnson BH, et al. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 1986;65: 575-82.

11. Eger EI al, Johnson BH. Rates of awakenine from anesthesia with desflurane, halothane, isoflurane, and seuvoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesth Analg 1987; 66:977-82.

12. Bailey JM. The pharmacokinetics of volatile anesthetic agent elimination: a theoretical study. J Pharmacokinet Biopharm 1989; 17:109-23.)

13. James M Bailey, MD, PhD. Context-sensitive half times and other decrement times of inhaled anesthestics in. Anesth Analg 1997; 85:681-6)

14. Philippe Juvin, MD*, Christophe Vadam, MD, Leslie Malek, MD, Herve´ Dupont, MD, JeanPierre Marmuse, MD, and Jean-Marie Desmonts, MD. Postoperative Recovery After Desflurane, Propofol, or Isoflurane Anesthesia Among Morbidly Obese Patients: A Prospective, Randomized Study Anesth Analg 2000; 91:714–9).

15. Shahbaz R. Arain MD, Christofer D. Barth MD1, Hariharan Shankar MD, Thomas J. Ebert MD, PhD. Choice of volatile anesthetic for the morbidly obese patient: sevoflurane or desflurane. Journal of Clinical Anesthesia (2005) 17, 413–419.

16. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124±36

17. M. Zaugg, E. Lucchinetti, M. Uecker, T. Pasch and M. C. Schaub. Anaesthetics and cardiac preconditioning. Part II.Signalling and cytoprotective mechanisms. British Journal of Anaesthesia 91 (4): 566±76 (2003)

18. M. Zaugg, E. Lucchinetti, M. Uecker, T. Pasch and M. C. Schaub. Anaesthetics and cardiac preconditioning. Part I.Signalling and cytoprotective mechanisms. British Journal of Anaesthesia 91 (4): 551±65 (2003)

19. Age and Ageing 2000; 29: 35-39 British Geriatrics Society

Anestesia Inhalatoria: de la teoría a la práctica.

101


20. Epilepsia, 39 (Supl. 7):s27-S32, 1998

21. Eckenhoff JE, Kneale DH, Dripps RD. The incidence and etiology of postanesthetic Excitement. Anesthesiology 1961; 22:667–673.

22. Development and Psychometric Evaluation of the Pediatric Anesthesia Emergence Delirium Scale. Nancy Sikich, M.Sc., R.N., Jerrold Lerman, B.A.Sc., M.D., F.R.C.P.C., F.A.N.Z.C.A. Anesthesiology Volume 100. Number 5. May 2004.

23. Voepel-Lewis T, Malviya S, Tait AR. A prospective cohort study of emergence agitation in the pediatric postanesthesia care unit. Anesth Analg 2003; 96:1625–1630.

24. Emergence agitation in preschool children: doubleblind, randomized, controlled trial comparing sevoflurane and isoflurane anesthesia. LUCIANO BORTONE MD, PABLO

INGELMO MD ,

SILVIA GROSSI MD, COSIMO GRATTAGLIANO MD , CRISTINA BRICCHI MD , DANIELE BARANTANI MD , EMANUELE SANI MD AND MARIO MERGONI MD. Pediatric Anesthesia 2006.

25. Lapin SL, Auden SM, Goldsmith LJ, Reynolds A. Effects of sevoflurane anaesthesia on recovery in children: a comparison with halothane. Paediatr Anaesth 1999; 9:299–304.

26. Kain Z, Mayes L, Wang S, Hofstadter M. Postoperative behavioral outcomes in children: effects of sedative premedication. Anesthesiology 1999; 90:758–765.

27. Arai YC, Fukunaga K, Hirota S. Comparison of a combination of midazolam and diazepam and midazolam alone as oral premedication on preanesthetic and emergence condition in children. Acta Anaesthesiol Scand 2005; 49:698–701.

28. Cole J, Murray D, McAllister J, Hirshberg G. Emergence behaviour in children: defining the incidence of excitement and agitation following anaesthesia. Paediatr Anaesth 2002; 12:442–447.

29. The Effect of Fentanyl on the Emergence Characteristics After Desflurane or Sevoflurane Anesthesia in Children. Ira Todd Cohen, MD, Julia C. Finkel, MD, Raafat S. Hannallah, MD, Kelly A. Hummer, RN, and Kantilal M. Patel, PhD. Anesth Analg 2002;94:1178 –81.

Anestesia Inhalatoria: de la teoría a la práctica.

102


30. Ibacache ME, Munoz HR, Brandes V, Morales A. Single dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. Anesth Analg 2004; 98:60–63.

31. Guler G, Akin A, Tosun Z, et al. Single dose dexmedetomidine reduces agitation and provides smooth extubation after pediatric adenotonsillectomy. Pediatr Anesth 2005; 15:762–766. This article confirms the beneficial effect of dexmedetomidine on emergence agitation following sevoflurane anesthesia.

32. Macario A, Dexter F & Lubarsky D. Meta-analysis of trials comparing postoperative recovery after anesthesia with sevoflurane or desflurane. Am J Health Syst Pharm 2005; 62: 63–68.

33. Apfel CC, Laara E, Koivuranta M, Greim CA, Roewer N. A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology 1999; 91: 693-700.

34. Habib A, Gan TJ. Evidence-based managemente of postoperative nausea and vomiting: a review. Can J Anesth 2004; 51: 326-41.

35. Bosenberg AT. Convulsions and sevoflurane. Paediatr Anaesth 1997; 7: 477–478.

36. Adachi M, Ikemoto Y, Kubo K et al. Seizure-like movements during induction of anaesthesia with sevoflurane. Br J Anaesth 1992; 68: 214–215.

37. Haga S, Shima T, Momose K et al. Anesthetic induction of children with high concentrations of sevoflurane. Masui 1992; 41: 1951–1955.

38. Isabelle Constant , Robert Seeman and Isabelle Murat. Sevoflurane and epileptiform EEG changes: Review. Pediatric Anesthesia 2005 15: 266–274

39. Benjamin Julliac, Dominique Guehl, Fabrice Chopin, Pierre Arne,Pierre Burbaud, Franc¸ ois Sztark, Anne-Marie Cros. Risk Factors for the Occurrence of Electroencephalogram Abnormalities during Induction of Anesthesia with Sevoflurane in Nonepileptic Patients. Anesthesiology 2007; 106:243–51

40. Steven LS, Debra AS. Basic Principles of Pharmacology Related to Anesthesia. Anesthesia Ronald D. Miller: 6th edition. 2005. IN: medconsult.com

Anestesia Inhalatoria: de la teoría a la práctica.

103


41. Walter S Nimmo, David J. Rowbotham, Graham Smith. Anesthesia, Second Edition 1994.

42. Philip B. Practical cost-Effective choices: Ambulatory general anesthesia. J. Clin. Aneth 1995; 7:606.

43. Robert K. Stoelting: Pharmacology and Physiology in Anesthetic Practice. Lippincott- Raven. 3ª Ed. 1999.

44. Agnor R., Sikich N., Lerman J. Single breath vital capacity rapid inhalation induction in children 8% sevoflurane versus 5% halothane. Anesthesiology 1998; 89:379-384.

45. Bito H, Ikeda K. Closed circuit anesthesia with sevoflurane in humans: Effects on renal and hepatic function and concentration of breakdown products with soda lime in the circuit. Anesthesiology 1994; 80:71-80.

46. Bito H., Ikeuchi Y., Ikeda K. Effects of low flow sevoflurane anesthesia on renal function: Comparison with high flow sevoflurane anesthesia and low flow isoflurane anesthesia. Anesthesiology 1997; 86:1231-1237.

47. Boldt J., Jaun N., Kumle B., Heck M., Mund K. Economic considerations of the use of new anesthetics: A comparison of propofol, sevoflurane, desflurane and isoflurane. Anaesth. Analg. 1998; 86:504-509. 48. Colas MJ, Tétrault JP, Dumais L et al. The SiBlTM Connector: A New Medical Device To Facilitate Preoxygenation and Reduce Waste Anesthetic Gases During Inhaled Induction With Sevoflurane. Anesth Analg 2000; 91: 1555-59. 49. Dashfield A., Birt D., Thurlow J. Characteristics using single breath 8% sevoflurane or propofol for induction of anesthesia in day case. Anaesthesia 1998; 53:1062-1066.

50. Ebert T.J., Robinson B.J., Uhrich T.D. Recovery from sevoflurane anesthesia. Anesthesiology 1998; 89:1524.1531. 51. Ebert T.J., Messana L.D., Uhrich T.D., et al. Absence of renal toxicity after 4 hours of 1.25 MAC of Sevoflurane anesthesia. Anesth. Analg. 1998; 86:662-670.

Anestesia Inhalatoria: de la teoría a la práctica.

104


52. Fredman B., Nathanson M., Smith I. Et al. Sevoflurane for outpatient anesthesia: a comparison with propofol. Anesth. Analg. 1995; 81:823-828.

53. Gravel N., Searle N., Taillefer J., et al. Comparison of the hemodinamics effects of sevoflurane anesthesia induction and maintenance versus TIV A in CABG surgery. Can. J. Ananaesth 1999; 46:240-246.

54. Hall J., Ebert T., Harmer M. lnduction characteristics with 3% and 8% Sevoflurane in adults: an evaluation of the second stage of anaesthesia and its haemodynamic consequences. Anaesthesia 2000; 55:545-550.

51. Hall J., Stewart J., Harmer M. Single breath inhalation induction of sevoflurane anaesthesia with and without nitrous oxide a feasibility study in adult and comparison with an intravenous bolus of propofol. Anaesth. 1997; 52:410-415.

52. Hall J., Oldham T.,Stewart J., Harmer M. Comparison between halothane and sevoflurane for adult vital capacity induction. Br. J. Anaethesiology 1997; 79:285-288.

53. Hendrickx J., Vandeput D., De Geyndt A., et al. Coasting after overpressure induction with Sevoflurane. J. Clin. Anesth. 2000; 12:100-103.

54. Philip B. Practical cost-Effective choices: Ambulatory general anesthesia. J. Clin. Aneth 1995; 7:606.

55. Philip JH: Gas Man: an example of goal oriented computer-assisted teaching which results in learning. Int J Clin Monit Com 1986, 3: 165-173.

56. Philip JH: Gas Man: Understanding anesthesia uptake and distribution. Macintosh Edition.

57. ¿Cuál circuito anestésico se debe emplear? Cáp. 29 pág. 294-300 Jairo Restrepo Torres en: Anestesiología Pediátrica. Jaramillo Mejía Jaime, Reyes Duque Gustavo, Gómez Menéndez Juan Manuel. 1ª Edición. Editorial Legis. Sociedad Colombiana de Anestesia. 2003.

Anestesia Inhalatoria: de la teoría a la práctica.

105


58. Mesuring de costs of inhaled anaesthetics. G.G. Lockwood And DC White. British Journal of Anaesthesia 87 (4): 559-63 (2001).

59. F. Wappler et al. Inhalation induction of anaesthesia with 8% sevoflurane in children: conditions for endotraqueal and side effects. In: European Journal of Anaesthesiology July 2002. 20:548-554.

60. Modesto Fernandez, Corinne Lejus, Olivier Rivault, Ve´ ronique Bazin, Corinne Le Roux, Philippe Bizouarn and Michel Pinaud. Single-breath vital capacity rapid inhalation induction with sevoflurane: feasibility in children. In: Pediatric Anesthesia 2005 15: 307–313.

61. Kok-yuen ho, Wee-leng Chua, Serene st, Mmed Ed and Agnes. A comparison between single- and double-breath Vital capacity inhalation induction with 8% sevoflurane in children.

Pediatric

Anesthesia 2004 14: 457–461.

62. C. Lejus, Bazin, M. Fernandez, J. M. Nguyen, A. Radosevic, M. F. Quere, C. Le Roux, Le Corre and M. Pinaud. Inhalation induction using sevoflurane in children: the single-breath vital capacity technique compared to the tidal volume technique. Anaesthesia, 2006, 61, pages 535–540.

63. Epstein RH, Stein AL, Marr AT, Lessin JB. High concentration versus incremental induction of H

anesthesia with sevoflurane in children: a comparison of induction times, vital signs, and complications. In: J Clin Anesth. 1998 Feb; 10(1): 41-5.

64. F. Wappler, D.P. Frings, J, Scholz. V. Mann.Inhalational induction of anaesthesia with 8% sevoflurane in children conditions for endotraqueal intubation and side effects. European Journal of Anaesthesiology 2003; 20: 548-554

65. A. W. Woods and S. Allam. Tracheal intubation without the use of neuromuscular blocking agents. Br J Anaesth 2005; 94: 150–8

66. Damian J. Castanelli MBBS FANZA, William M. Splinter MD FRCPC, Natalie A. Clavel.Remifentanil decreases sevoflurane requirements in children. CAN J ANESTH 2005 / 52: 10 / pp 1064–1070.

Anestesia Inhalatoria: de la teoría a la práctica.

106


67. Evan D. Kharasch, MD, PhD, Edward J. Frink, Jr., MD, Alan Artru, MD,Piotr Michalowski, MD, PhD, G. Alec Rooke, MD, PhD, and Wallace Nogami, MD. Long-Duration Low-Flow Sevoflurane and Isoflurane Effects on Postoperative Renal and Hepatic Function Anesth Analg 2001;93:1511–20.

Anestesia Inhalatoria: de la teoría a la práctica.

107


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.