Conditions for low protein diets in broilers and laying hens Marinus van Krimpen & Jan van Harn
Content Developments in protein demand ü Low-protein diets for broilers ü Gly+Ser requirements for broilers ü Low-protein diets for laying hens ü Take-home messages ü
2
FAO report (2009) ü
Increase in world population (9.1 billion people in 2050)
ü
Increase in income levels (prosperity )
ü
Need to increase food production by 70%
ü
§
Meat production: 229 à 465 Mtonnes (x 2.0)
§
Milk production: 580 à 1043 Mtonnes (x 1.8)
5% Increase in arable land
Consequences of FAO trends ü
Drastic need for increased feed production
ü
Competition between feed and food §
shift from high-energy, high-digestible feed ingredients to fibrous, low-digestible co-products
ü
Less arable land available for feed production
ü
How can free amino acids contribute?
Feed (million tonnes)
European and global feed production (million tonnes) 1500 1250 1000 750 500 250 0
EU feed production (2005 – 2018) ü Global feed production (2005 – 2017) ü Prospect global feed production 2050: ü
2019-2050
2005-2018
Global Europe
+ 59% + 71% 1,500 MTon
Feed protein balance in EU-27 (2016-2017) Category
EU-‐produc9on (mln. ton crude protein)
EU-‐consump9on (mln. ton crude protein)
Rate of self sufficiency (%)
Soybean meal
0.7
13.4
5%
Rapeseed meal
3.4
4.4
79%
Sunflower meal
1.0
2.4
42%
Legumes
0.7
0.8
93%
Oil seeds (no crushing)
0.5
0.5
100%
Others (e.g. palm, DDGS, wheat bran)
4.6
5.4
86%
Total plant protein
10.9
26.9
41%
Animal proteins
0.9
0.9
94%
Total all proteins
11.8
27.8
42%
EU (2017)
6
How to increase European protein production?
Free download of reports at: www.wur.nl
Ingredients that meet the criteria as EU protein source Category
Protein source
Oil seeds
Proteins of soybeans, rapeseed and sunflower seed, aPer oil removal
Grain legumes Forage legumes
Peas, field beans, lupine, chickpeas, and their concentrates Lucerne (alfalfa)
Leaf proteins
Grass, sugar beet leaves
AquaVc proteins
Algae, both macro-‐ (seaweed) and microalgae, duckweed
Cereals and pseudo cereals
Protein concentrates from oat and quinoa
Insects
E.g. mealworm, housefly
ü
Van Krimpen et al. (2013)
How to fulfil the demand for new proteins? Increase protein yield/hectare of current crops ü Improve animals’ protein efficiency ü Close nutrient cycles to prevent waste (e.g. by using PAPs) ü Focus on new protein sources with high yields/ha and no competition with arable land ü
ü ü ü ü
Micro and macro algae, duckweed Insects Leaf proteins Free amino acids
Low-Protein diets in broilers
The Liebig barrel
Low-Protein diets in broilers Might partly replace imported soybean meal ü Addition with free Lys, Met, Thr and Trp is common practice ü Despite this, several studies showed reduced bird performance (e.g. Ferguson et al., 1998; Bregendahl et al, 2002, Veldkamp et al., 2017 1+2) ü Contribution of free Val, Arg, and Iso essential to maintain AA profile ü Gly in LP-diets is suggested to be also essential (Corzo et al., ü
2004; Dean et al., 2006; Ospina-Rojas et al., 2012+2013; Awad et al., 2015 en Siegert et al., 2017)
Broiler study conducted at WLR 72 floor pens (0.75 m2) with litter (wood shavings) ü 936 Ross 308 day-old male birds ü Water and feed ad lib available ü Control CP starter diet ü 4 treatments in grower and finisher phase: ü
1) 2) 3) 4)
Control CP CP – 1% CP – 2% CP – 3%
Van Harn et al., accepted for publicaVon
Soybean meal content (%) 30
SBM content (%)
25 20 15 10 5 0 CP control
CP -‐1% Grower
CP -‐2% Finisher
CP -‐ 3%
220
220
210
210
200
200
CP content (g/kg)
CP content (g/kg)
Calculated-analysed CP content (g/kg)
190 180 170
190 180 170
160
160
150
150 CP control
CP -‐1%
Grower_Calculated
CP -‐2%
CP -‐ 3%
Grower_Analysed
CP control
CP -‐1%
Finisher_Calculated
CP -‐2%
CP -‐ 3%
Finisher_Analysed
AA contents and profile per phase Starter g/kg
Grower g/kg
11.5
RaVo to lysine 100%
Dig. methionine
5.6
Dig. M+C
Finisher g/kg
10.5
RaVo to lysine 100%
9.9
RaVo to lysine 100%
49%
5.3
50%
5.1
52%
8.5
74%
7.9
75%
7.5
76%
Dig. threonine
7.5
65%
6.8
65%
6.4
65%
Dig. tryptophan
2.4
21%
1.9
18%
1.8
18%
12.5
109%
11.6
110%
10.9
110%
Dig. valine
8.5
74%
8.4
80%
7.9
80%
Dig. isoleucine
7.8
68%
7.4
70%
6.9
70%
16.3
142%
14.7
140%
13.7
138%
Dig. lysine
Dig. arginine
Dig. glycine+serine
Van Harn et al., accepted for publicaVon
Observations Body weight at d 0, 10, 28 and 35 ü Feed and water intake at d 10, 28 en 35. ü Mortality ü Litter quality (visual / DM content) ü Footpad lesions ü Slaughter yield ü Litter analyses ü Economic performance ü Ecological footprint ü
Van Harn et al., accepted for publicaVon
Overall performance (0 –35d)
Control CP
CP-‐1%
CP-‐2%
CP-‐3%
Live weight (g)
2416
2433
2450
2444
Growth (g/d)
68.0
68.4
68.9
68.8
Mortality (%)
5.4
5.9
2.7
6.1
FCR (field)
1.555 a
1.531 ab
1.500 c
1.518 bc
FCR
1.513 a
1.506 ab
1.488 b
1.489 b
Feed intake (g)
107.3
106.4
105.0
106.0
Water intake (ml/d)
199.7
193.0
179.6
188.9
W/F ra9o
1.85
1.81
1.71
1.79
European Efficiency Factor1
415 b
421 b
448 a
426 b
Footpad score2
143 a
110 b
79 c
39 d
1 European Efficiency Factor = {(100-‐mortality%)*BWG (in g/d)}/(FCR*10)
2 FPS (Footpad score) = [(n score 0 * 0) + (n score 1 * 0.5) + (n score 2 * 2)]/n total *100
Van Harn et al., accepted for publicaVon
Slaughter yields (d35)
Control CP
CP-‐1%
CP-‐2%
CP-‐3%
Live weight (g)
2446
2481
2488
2495
Carcass weight (g)
1615
1645
1648
1647
Carcass (%)
66.0
66.3
66.2
66.0
Wing (%)
10.3 a
10.3 a
10.2 ab
10.1 b
Leg (%)
33.9 b
33.8 b
33.8 b
34.3 a
Back (%)
15.1 ab
15.0 b
15.2 ab
15.3 a
Breast meat (Fillet) (%)
32.1 ab
32.3 a
31.9 b
31.2 c
Breast meat (Fillet) (g)
785
801
794
778
a,b,c Values without a common superscript per row differ significantly (P < 0.05)
Van Harn et al., accepted for publicaVon
Litter quality and composition (d35)
Control CP
CP-‐1%
CP-‐2%
CP-‐3%
Friability 1
3.3 c
4.3 b
4.7 b
6.1 a
Dryness 2
2.7 c
3.8 b
4.4 b
5.8 a
Dry maRer (g/kg)
387 b
402 b
404 ab
436 a
Total-‐N (g/kg)
17.0
17.0
16.4
16.5
Ammonia-‐N (g/kg)
4.4
5.3
5.1
4.7
pH
6.5
6.8
7.1
7.0
a,b,Values without a common superscript per row differ significantly (P < 0.05).
1 1 – 10: 1 completely caked – 10: completely friable; 2 1 -‐10: 1 very wet – 10 dry
Van Harn et al., accepted for publicaVon
Effect of CP on carbon footprint (g CO2eq/kg) and feed cost (€/100 kg) Carbon footprint (g CO2-eq/kg)
Feed margin (€/bird)
Feed costs (€/100 kg)
Control CP 0.511
CP-‐1% 0.485
CP-‐2% 0.487
Van Harn et al., accepted for publicaVon
CP-‐3% 0.450
Conclusions Reducing CP content in grower/finisher diet resulted in ü Similar to better growth performance ü Dryer and more friable litter ü Less footpad lesions (a lower footpad score) ü Reduced breast meat-% in CP-2% and CP-3% (but a similar absolute amount of breast meat) ü Increased carbon footprint and feed cost
Van Harn et al., accepted for publicaVon
Impact ü
ü
3% CP reduction in grower and finisher diets (2.2 and 2.3% in current experiment) is technically possible, provided that the levels of essential AA are maintained. By this, the amount of SBM can be reduced by 40% (inclusion level from 25 à 15%).
Van Harn et al., accepted for publicaVon
Glycine and serine requirements of broilers fed low protein diets
Background ü
Glycine and Serine may become growth limiting in LP diets (Waterhouse&Scott,1961; Dean et al., 2006)
ü
Gly supplementation recovers performance (Corzo et al., 2004, Dean et al., 2006; Ospina-Rojas et al., 2012+2013)
Optimal levels for dGly+Ser in low protein diets not clear ü Thr is a precursor of Gly, Thr might have a Gly sparring effect ü
(Davis and Austic, 1982; Ospina-Rojas et al., 2013; Siegert et al., 2015)
Metabolic functions of Glycine Non-essential AA in standard CP diets ü Excrete excess nitrogen via the synthesis of uric acid molecules (Corzo et al, 2004) ü Increase the excretion of uric acid by impeding its renal tubular reabsorption (Friedman, 1947). ü Essential AA in low CP diets ü
Ser and Thr involved in Gly-pathways
Effect of 3% CP reduction on FCR 1,70 1,65 1,60
FCR
1,55 1,50 1,45 1,40 1,35 1,30 Control CP Veldkamp Exp. 1
Veldkamp Exp.2
Low CP Veldkamp Exp. 3
Van Harn Exp. 1
4 low CP broiler studies in our group CVB Rec.
Veldkamp Exp. 1
Veldkamp Exp. 2
Veldkamp Exp. 3
Van Harn Exp. 1
AFD Lys (g/kg)
10.2
9.9
11.2
11.2
10.5
Lys (%)
100
100
100
100
100
M+C (%)
73
74
73
73
75
Val (%)
80
81
80
80
80
Arg (%)
105
105
105
105
110
Ile (%)
66
67
65
68
70
Thr (%)
65
65
65
65
65
Trp (%)
16
16
16
18
18
Gly+Ser (%)
-‐ -‐ -‐
119
102
135
140
1.57a 1.65b
1.65a 1.68b
1.43 1.43
1.56a 1.52bc
Effect -‐3% CP on FCR
Objective Determine the optimal level of Gly+Ser in LP diets ü To test the Gly-sparing effect of Thr ü
(Van Harn et al., 2018)
Experimental facility
Experimental design (1) 910 Ross 308 day-old male birds (13 birds/pen) ü 70 floor pens / 10 replicate pens per treatment ü Water and feed ad lib available ü All birds were fed a control starter diet ü 7 dietary treatments in grower/finisher phase ü
(Van Harn et al., 2018)
Experimental design (2); Treatments CP (in %) grower/finisher
dGly+Ser (in g/kg) grower/finisher
dThr (in g/kg) grower/finisher
A
17.7 / 16.5
12.4 / 11.4
6.8 / 6.4
B
17.7 / 16.5
13.3 / 12.3
6.8 / 6.4
C
17.7 / 16.5
14.1 / 13.2
6.8 / 6.4
D
17.7 / 16.5
14.9 / 14.0
6.8 / 6.4
E
17.7 / 16.5
15.7 / 14.9
6.8 / 6.4
F
17.7 / 16.5
12.4 / 11.4
7.5 / 7.1
G
20.9 / 19.9
15.7 / 14.9
6.8 / 6.4
Treatment
(Van Harn et al., 2018)
Experimental design (3) Control diets
Low protein diets
Grower
Finisher
Grower
Finisher
Dig. Lysine (g/kg)
10.5
9.9
10.5
9.9
Dig.Gly+Ser/ dig. Lys (%)
150
150
Soybean meal (%)
26
23
ü
115 – 150 16
13
To maintain amino acid profile and content, low protein diets were supplemented with free Lys, Met, Thr, Trp, Val, Arg, Ile and Gly
(Van Harn et al., 2018)
Experimental design (4); observations ü
Observations: Body weight at d 0, 10, 28 and 35 ü Feed and water intake at d 10, 28 en 35. ü Mortality ü Slaughter yields ü Footpad lesions ü
(Van Harn et al., 2018)
Performance 0 – 35 days 12.5 Gly 13.3 Gly
14.1 Gly
14.9 Gly
15.7 Gly
12.5 Gly + Thr
Control
Body weight (g)
2263
2269
2254
2261
2260
2222
2238
BWG (g/d)
63.5
63.7
63.3
63.4
63.4
62.3
62.8
Mortality (%)
6.8 a
1.5 ab
0.8 b
4.6 ab
2.3 ab
3.1 ab
4.3 ab
1.533
1.526
1.530
1.520
1.522
1.544
1.525
Feed intake (g/d)
97.3
97.2
96.8
96.4
96.5
96.2
95.8
CP intake (g)
600 b
606 b
608 b
605 b
608 b
593 b
681 a
CP conv. (g/g)
0.270 b
0.272 b
0.274 b
0.272 b
0.273 b
0.272 b
0.310 a
FootPad Score
41 B
68 AB
62 AB
44 B
43 B
46 B
101 A
FCR
ü
a,b, Values
ü
A,B
without a common superscript per row differ significantly (P < 0.05).
Values without a common superscript per row indicate a tendency (0.05<P < 0.10).
(Van Harn et al., 2018)
Slaughter yields (d35) 12.5 Gly
13.3 Gly
14.1 Gly
14.9 Gly
15.7 Gly
12.5 Gly + Thr
Live weight (g)
2284
2291
2277
2284
2270
2253
2270
Carcass Weight (g)
1531
1541
1527
1535
1522
1518
1508
Carcass (%)
67.0
67.3
67.1
67.2
67.0
67.3
66.4
10.5 b
10.4 b
10.5 b
10.5 b
10.5 b
10.4 b
10.7 a
34.3 ab
34.4 ab
34.5 ab
34.4 ab
34.8 a
34.5 ab
34.1 b
32.8 a
32.8 a
32.6 ab
32.6 ab
32.0 b
32.3 ab
32.8 a
Wing (%) Leg (%) Breast meat (%)
a,b, Values without a common superscript per row differ significantly (P < 0.05).
(Van Harn et al., 2018)
Control
Litter composition (d35) 12.5 Gly
13.3 Gly
14.1 Gly
14.9 Gly
15.7 Gly
12.5 Gly + Thr
Control
Dry maRer (g/kg)
450 a
436 ab
431 ab
462 a
456 a
452 a
411 b
Total N (g/kg DM)
35.9 b
36.8 b
35.9 b
36.8 b
36.3 b
36.4 b
43.5 a
Ammonia N (g/kg DM)
8.8 b
9.4 b
9.1 b
9.2 b
9.3 b
9.4 b
11.4 a
a,b, Values without a common superscript per row differ significantly (P < 0.05).
(Van Harn et al., 2018)
Conclusions on dGly+Ser dose No effect on growth performance. ü The highest dGly+Ser dose reduced breast meat yield. ü No effect on the severity of footpad lesions. ü No effect on litter quality and composition. ü In low-protein diets, the lowest dGly+Ser doses (12.4 g/kg and 11.4 g/kg in grower and finisher phase) are sufficient. ü
(Van Harn et al., 2018)
Conclusions on Threonine ü
Thr did not demonstrate a Gly-sparing effect.
(Van Harn et al., 2018)
Conclusions on 3% CP reduction Similar growth performance results (BWG, FCR, mortality, FI) ü Improved crude protein efficiency ü Dryer and more friable litter à tendency towards a lower footpad score ü Less N-excretion and ammonium-N in the litter. ü
(Van Harn et al., 2018)
Amino acid requirements of laying hens fed low-protein diets
Literature review 27 references with keywords ‘low-protein’ and ‘laying hens’ ü Period 1992 – 2017 ü Not all references useful ü 12 useful experiments from 10 publications involved ü
Effect of CP content on egg mass 70
65
Egg mass (g/d)
60
55
50
45
40
35 10
11
12
13
14
15
16
17
18
Dietary crude protein content (%) Azzam(2017)
Torki (2015)
Ji (2014)
Ghasemi (2014)
Fuente-Martinez (2012)
Poosuwan (2010)
Novak (2006)
Da Silva (2006)
Da Silva (2010)
Harms_Exp 1 (1993)
Harms_Exp 2 (1993)
Harms_Exp 3 (1993)
19
20
Effect of CP content on FCR FCR (kg/kg) 2,4 2,2
FCR (kg/kg)
2,0 1,8 1,6 1,4 1,2 1,0 10
11
12
13
14
15
16
17
18
Dietary crude protein content (%) Azzam(2017)
Torki (2015)
Ji (2014)
Ghasemi (2014)
Fuente-Martinez (2012)
Poosuwan (2010)
Novak (2006)
Da Silva (2006)
Da Silva (2010)
Harms_Exp 1 (1993)
Harms_Exp 1 (1993)
Harms_Exp 2 (1993)
19
20
Long-term study with -1.5% CP reduction per phase (Khajali, 2008) Only supplementation of free Lys and Met to LP-diet ü Similar trends in egg mass and FCR ü Second half of production cycle seems to be more sensitive for CP reduction ü
AFD AA intake (mg/d) (Fuente-Martinez et al., 2012) AA intake (mg/d) Lysine Met+Cys Threonine Tryptophan Arginine Valine Leucin Isoleucine Crude protein (g/d) Egg mass FCR
16 708 582 497 175 886 689 1.401 637 15.6 52.6 1.86
Dietary CP content (%) 15 14 713 725 586 596 501 509 176 179 816 751 649 616 1.354 1.318 597 563 14.8 14.0 52.6 52.1 1.87 1.92
ü 13 710 584 498 175 659 559 1.233 507 12.7 50.4 1.95
Reduced performance parameters coincided with reduced AA intake
AA profile (Da Silva et al., 2010) Ra9o
CVB
Dietary crude protein content (g/kg)
180
160
140
120
Lys
100
100
100
100
100
Met
55
47
47
47
47
Met+Cys
88
83
83
75
71
Thr
70
78
70
61
61
Trp
22
23
21
18
18
Arg
131
118
99
89
Ile
80
86
76
76
76
Val
78
98
86
81
81
Egg mass
60.62
60.47
57.89
54.52
FCR
1.91
1.89
1.99
2.02
ü
Reduced performance parameters coincided with unbalanced AA profile
Trp, Thr, and Ile in low CP diets (15.5 vs. 13.0%) FCR (kg/kg)
Rojas et al. (2015) ü 30 wk of age ü 3 x 4 wk trial period ü AA to Hy-LINE W-36 recommendations (2009-2011) ü Trp+Thr+Ile à full recovery of performance ü
2,25 2,20 2,15 2,10 2,05 2,00 1,95 1,90 1,85 1,80 Control Reduced CP 13%CP + (15.5% CP) (13.0% CP) Trp
13%CP + 13%CP + Ile 13%CP + 13%CP 13%CP + 13%CP + Thr Trp + Ile +Trp + Thr Thr + Ile Trp + Ile + Thr
Egg mass (g/d) 53,0 52,0 51,0 50,0 49,0 48,0 47,0 46,0 45,0 44,0 43,0 Control Reduced CP 13%CP + (15.5% CP) (13.0% CP) Trp
13%CP + 13%CP + Ile 13%CP + 13%CP 13%CP + 13%CP + Thr Trp + Ile +Trp + Thr Thr + Ile Trp + Ile + Thr
Calculations LP-diets laying hens Ingredient Corn Wheat Soybean meal Sunflower meal Other ingredients Oyster shells Limestone Palm oil Monocalciumphosphate Vitamin premix Sodium bicarbonate Phytase Salt L-Lysine HCl DL-Methionine L-Arginine L-Isoleucine L-Threonine L-Tryptophan L-Glycine L-Valine
CP-15% CP-14% CP-13% CP-12% CP-11% 22.78 40.00 40.00 76.74 77.46 37.83 21.01 32.78 14.21 7.50 15.28 9.18 8.83 7.31 2.00 4.74 0.55 0.50 0.14 0.25 0.27 0.22 0.21
0.00 7.28 2.00 4.43 0.56 0.50 0.22 0.23 0.21 0.35 0.20
0.07 0.08 0.01
0.10 0.10 0.03 0.01
3.41 7.82 2.00 1.83 0.85 0.50 0.28 0.06 0.20 0.38 0.21 0.18 0.13 0.10 0.04 0.03 0.02
7.35 7.76 2.00 1.66 1.09 0.50 0.56
6.24 7.58 2.00 1.83 1.21 0.50 0.48
0.65 0.29 0.42 0.27 0.23 0.09 0.22 0.17
0.71 0.34 0.49 0.31 0.26 0.11 0.25 0.23
Calculations LP-diets laying hens Ingredient Ash Crude protein Crude fat Crude fibre Starch Ca P Na Cl AME Dig. LYS Dig. MET Dig. CYS Dig. M+C Dig. THR Dig. TRP Dig. ILE Dig. ARG Dig. HIS Dig. LEU Dig. VAL
g g g g g g g g g MJ g g g g g g g g g g g
CP-15% CP-14% CP-13% CP-12% CP-11% 126.19 127.17 129.81 131.65 142.85 150.00 140.00 130.00 120.00 110.00 68.06 66.28 39.39 38.42 35.30 35.00 57.80 41.67 35.00 35.00 372.23 379.26 446.07 449.27 463.94 38.00 38.00 40.00 40.00 40.00 4.65 5.00 5.00 5.00 5.00 1.50 1.50 1.60 1.60 1.60 2.50 2.50 2.50 1.98 2.10 11.80 11.80 11.80 11.80 11.80 6.90 6.90 6.90 6.90 6.90 4.07 4.17 4.28 4.59 4.88 2.07 1.96 1.84 1.52 1.15 6.10 6.10 6.10 6.10 6.10 4.80 4.80 4.80 4.80 4.80 1.50 1.50 1.50 1.50 1.50 5.50 5.50 5.50 5.50 5.50 7.75 7.75 7.75 7.75 7.75 3.12 3.02 2.60 1.86 1.73 9.45 9.55 9.45 9.45 9.45 5.40 5.40 5.40 5.40 5.40
Conclusions laying hens ü
Several Low-CP studies are available in literature
ü
Performance of most studies is below current levels
ü
Often, performance levels reduced with decreasing CP levels
ü
Reduced performance coincided with an unbalanced AA profile
ü
2nd half of production cycle à more sensitive for drop in performance
ü
We need more accurate Low-CP studies (between 11 – 15% CP)
Take-home messages Free AA can be considered as a novel protein source ü Maintaining AA content and profile of all essential AA is required to prevent compromising performance results of the birds ü Low-protein diets can have beneficial effects on litter quality and bird welfare ü In broilers, replacement of 40% SBM has been demonstrated ü In laying hens, replacement of 100% SBM seems to be possible if CP-content ≤ 13% ü
Thank you for your aoenVon!
This research was conducted by Wageningen Livestock Research, within the framework of the public private partnership “Feed4Foodure”, and parVally funded by "Vereniging Diervoederonderzoek Nederland" (VDN), and parVally funded by the Ministry of Agriculture, Nature and Food Quality
53