nutriFORUM 2019 - Ponencia sobre las condiciones para dietas bajas en proteína en pollos y ponedoras

Page 1

Conditions for low protein diets in broilers and laying hens Marinus van Krimpen & Jan van Harn


Content Developments in protein demand ü  Low-protein diets for broilers ü  Gly+Ser requirements for broilers ü  Low-protein diets for laying hens ü  Take-home messages ü

2


FAO report (2009) ü

Increase in world population (9.1 billion people in 2050)

ü

Increase in income levels (prosperity )

ü

Need to increase food production by 70%

ü

§

Meat production: 229 à 465 Mtonnes (x 2.0)

§

Milk production: 580 à 1043 Mtonnes (x 1.8)

5% Increase in arable land


Consequences of FAO trends ü

Drastic need for increased feed production

ü

Competition between feed and food §

shift from high-energy, high-digestible feed ingredients to fibrous, low-digestible co-products

ü

Less arable land available for feed production

ü

How can free amino acids contribute?


Feed (million tonnes)

European and global feed production (million tonnes) 1500 1250 1000 750 500 250 0

EU feed production (2005 – 2018) ü  Global feed production (2005 – 2017) ü  Prospect global feed production 2050: ü

2019-2050

2005-2018

Global Europe

+ 59% + 71% 1,500 MTon


Feed protein balance in EU-27 (2016-2017) Category

EU-­‐produc9on (mln. ton crude protein)

EU-­‐consump9on (mln. ton crude protein)

Rate of self sufficiency (%)

Soybean meal

0.7

13.4

5%

Rapeseed meal

3.4

4.4

79%

Sunflower meal

1.0

2.4

42%

Legumes

0.7

0.8

93%

Oil seeds (no crushing)

0.5

0.5

100%

Others (e.g. palm, DDGS, wheat bran)

4.6

5.4

86%

Total plant protein

10.9

26.9

41%

Animal proteins

0.9

0.9

94%

Total all proteins

11.8

27.8

42%

EU (2017)

6


How to increase European protein production?

Free download of reports at: www.wur.nl


Ingredients that meet the criteria as EU protein source Category

Protein source

Oil seeds

Proteins of soybeans, rapeseed and sunflower seed, aPer oil removal

Grain legumes Forage legumes

Peas, field beans, lupine, chickpeas, and their concentrates Lucerne (alfalfa)

Leaf proteins

Grass, sugar beet leaves

AquaVc proteins

Algae, both macro-­‐ (seaweed) and microalgae, duckweed

Cereals and pseudo cereals

Protein concentrates from oat and quinoa

Insects

E.g. mealworm, housefly

ü

Van Krimpen et al. (2013)


How to fulfil the demand for new proteins? Increase protein yield/hectare of current crops ü  Improve animals’ protein efficiency ü  Close nutrient cycles to prevent waste (e.g. by using PAPs) ü  Focus on new protein sources with high yields/ha and no competition with arable land ü

ü  ü  ü  ü

Micro and macro algae, duckweed Insects Leaf proteins Free amino acids


Low-Protein diets in broilers

The Liebig barrel


Low-Protein diets in broilers Might partly replace imported soybean meal ü  Addition with free Lys, Met, Thr and Trp is common practice ü  Despite this, several studies showed reduced bird performance (e.g. Ferguson et al., 1998; Bregendahl et al, 2002, Veldkamp et al., 2017 1+2) ü  Contribution of free Val, Arg, and Iso essential to maintain AA profile ü  Gly in LP-diets is suggested to be also essential (Corzo et al., ü

2004; Dean et al., 2006; Ospina-Rojas et al., 2012+2013; Awad et al., 2015 en Siegert et al., 2017)


Broiler study conducted at WLR 72 floor pens (0.75 m2) with litter (wood shavings) ü  936 Ross 308 day-old male birds ü  Water and feed ad lib available ü  Control CP starter diet ü  4 treatments in grower and finisher phase: ü

1)  2)  3)  4)

Control CP CP – 1% CP – 2% CP – 3%

Van Harn et al., accepted for publicaVon


Soybean meal content (%) 30

SBM content (%)

25 20 15 10 5 0 CP control

CP -­‐1% Grower

CP -­‐2% Finisher

CP -­‐ 3%


220

220

210

210

200

200

CP content (g/kg)

CP content (g/kg)

Calculated-analysed CP content (g/kg)

190 180 170

190 180 170

160

160

150

150 CP control

CP -­‐1%

Grower_Calculated

CP -­‐2%

CP -­‐ 3%

Grower_Analysed

CP control

CP -­‐1%

Finisher_Calculated

CP -­‐2%

CP -­‐ 3%

Finisher_Analysed


AA contents and profile per phase Starter g/kg

Grower g/kg

11.5

RaVo to lysine 100%

Dig. methionine

5.6

Dig. M+C

Finisher g/kg

10.5

RaVo to lysine 100%

9.9

RaVo to lysine 100%

49%

5.3

50%

5.1

52%

8.5

74%

7.9

75%

7.5

76%

Dig. threonine

7.5

65%

6.8

65%

6.4

65%

Dig. tryptophan

2.4

21%

1.9

18%

1.8

18%

12.5

109%

11.6

110%

10.9

110%

Dig. valine

8.5

74%

8.4

80%

7.9

80%

Dig. isoleucine

7.8

68%

7.4

70%

6.9

70%

16.3

142%

14.7

140%

13.7

138%

Dig. lysine

Dig. arginine

Dig. glycine+serine

Van Harn et al., accepted for publicaVon


Observations Body weight at d 0, 10, 28 and 35 ü  Feed and water intake at d 10, 28 en 35. ü  Mortality ü  Litter quality (visual / DM content) ü  Footpad lesions ü  Slaughter yield ü  Litter analyses ü  Economic performance ü  Ecological footprint ü

Van Harn et al., accepted for publicaVon


Overall performance (0 –35d)

Control CP

CP-­‐1%

CP-­‐2%

CP-­‐3%

Live weight (g)

2416

2433

2450

2444

Growth (g/d)

68.0

68.4

68.9

68.8

Mortality (%)

5.4

5.9

2.7

6.1

FCR (field)

1.555 a

1.531 ab

1.500 c

1.518 bc

FCR

1.513 a

1.506 ab

1.488 b

1.489 b

Feed intake (g)

107.3

106.4

105.0

106.0

Water intake (ml/d)

199.7

193.0

179.6

188.9

W/F ra9o

1.85

1.81

1.71

1.79

European Efficiency Factor1

415 b

421 b

448 a

426 b

Footpad score2

143 a

110 b

79 c

39 d

1 European Efficiency Factor = {(100-­‐mortality%)*BWG (in g/d)}/(FCR*10)

2 FPS (Footpad score) = [(n score 0 * 0) + (n score 1 * 0.5) + (n score 2 * 2)]/n total *100

Van Harn et al., accepted for publicaVon


Slaughter yields (d35)

Control CP

CP-­‐1%

CP-­‐2%

CP-­‐3%

Live weight (g)

2446

2481

2488

2495

Carcass weight (g)

1615

1645

1648

1647

Carcass (%)

66.0

66.3

66.2

66.0

Wing (%)

10.3 a

10.3 a

10.2 ab

10.1 b

Leg (%)

33.9 b

33.8 b

33.8 b

34.3 a

Back (%)

15.1 ab

15.0 b

15.2 ab

15.3 a

Breast meat (Fillet) (%)

32.1 ab

32.3 a

31.9 b

31.2 c

Breast meat (Fillet) (g)

785

801

794

778

a,b,c Values without a common superscript per row differ significantly (P < 0.05)

Van Harn et al., accepted for publicaVon


Litter quality and composition (d35)

Control CP

CP-­‐1%

CP-­‐2%

CP-­‐3%

Friability 1

3.3 c

4.3 b

4.7 b

6.1 a

Dryness 2

2.7 c

3.8 b

4.4 b

5.8 a

Dry maRer (g/kg)

387 b

402 b

404 ab

436 a

Total-­‐N (g/kg)

17.0

17.0

16.4

16.5

Ammonia-­‐N (g/kg)

4.4

5.3

5.1

4.7

pH

6.5

6.8

7.1

7.0

a,b,Values without a common superscript per row differ significantly (P < 0.05).

1 1 – 10: 1 completely caked – 10: completely friable; 2 1 -­‐10: 1 very wet – 10 dry

Van Harn et al., accepted for publicaVon


Effect of CP on carbon footprint (g CO2eq/kg) and feed cost (€/100 kg) Carbon footprint (g CO2-eq/kg)

Feed margin (€/bird)

Feed costs (€/100 kg)

Control CP 0.511

CP-­‐1% 0.485

CP-­‐2% 0.487

Van Harn et al., accepted for publicaVon

CP-­‐3% 0.450


Conclusions Reducing CP content in grower/finisher diet resulted in ü  Similar to better growth performance ü  Dryer and more friable litter ü  Less footpad lesions (a lower footpad score) ü  Reduced breast meat-% in CP-2% and CP-3% (but a similar absolute amount of breast meat) ü  Increased carbon footprint and feed cost

Van Harn et al., accepted for publicaVon


Impact ü

ü

3% CP reduction in grower and finisher diets (2.2 and 2.3% in current experiment) is technically possible, provided that the levels of essential AA are maintained. By this, the amount of SBM can be reduced by 40% (inclusion level from 25 à 15%).

Van Harn et al., accepted for publicaVon


Glycine and serine requirements of broilers fed low protein diets


Background ü

Glycine and Serine may become growth limiting in LP diets (Waterhouse&Scott,1961; Dean et al., 2006)

ü

Gly supplementation recovers performance (Corzo et al., 2004, Dean et al., 2006; Ospina-Rojas et al., 2012+2013)

Optimal levels for dGly+Ser in low protein diets not clear ü  Thr is a precursor of Gly, Thr might have a Gly sparring effect ü

(Davis and Austic, 1982; Ospina-Rojas et al., 2013; Siegert et al., 2015)


Metabolic functions of Glycine Non-essential AA in standard CP diets ü  Excrete excess nitrogen via the synthesis of uric acid molecules (Corzo et al, 2004) ü  Increase the excretion of uric acid by impeding its renal tubular reabsorption (Friedman, 1947). ü  Essential AA in low CP diets ü


Ser and Thr involved in Gly-pathways


Effect of 3% CP reduction on FCR 1,70 1,65 1,60

FCR

1,55 1,50 1,45 1,40 1,35 1,30 Control CP Veldkamp Exp. 1

Veldkamp Exp.2

Low CP Veldkamp Exp. 3

Van Harn Exp. 1


4 low CP broiler studies in our group CVB Rec.

Veldkamp Exp. 1

Veldkamp Exp. 2

Veldkamp Exp. 3

Van Harn Exp. 1

AFD Lys (g/kg)

10.2

9.9

11.2

11.2

10.5

Lys (%)

100

100

100

100

100

M+C (%)

73

74

73

73

75

Val (%)

80

81

80

80

80

Arg (%)

105

105

105

105

110

Ile (%)

66

67

65

68

70

Thr (%)

65

65

65

65

65

Trp (%)

16

16

16

18

18

Gly+Ser (%)

-­‐ -­‐ -­‐

119

102

135

140

1.57a 1.65b

1.65a 1.68b

1.43 1.43

1.56a 1.52bc

Effect -­‐3% CP on FCR


Objective Determine the optimal level of Gly+Ser in LP diets ü  To test the Gly-sparing effect of Thr ü

(Van Harn et al., 2018)


Experimental facility


Experimental design (1) 910 Ross 308 day-old male birds (13 birds/pen) ü  70 floor pens / 10 replicate pens per treatment ü  Water and feed ad lib available ü  All birds were fed a control starter diet ü  7 dietary treatments in grower/finisher phase ü

(Van Harn et al., 2018)


Experimental design (2); Treatments CP (in %) grower/finisher

dGly+Ser (in g/kg) grower/finisher

dThr (in g/kg) grower/finisher

A

17.7 / 16.5

12.4 / 11.4

6.8 / 6.4

B

17.7 / 16.5

13.3 / 12.3

6.8 / 6.4

C

17.7 / 16.5

14.1 / 13.2

6.8 / 6.4

D

17.7 / 16.5

14.9 / 14.0

6.8 / 6.4

E

17.7 / 16.5

15.7 / 14.9

6.8 / 6.4

F

17.7 / 16.5

12.4 / 11.4

7.5 / 7.1

G

20.9 / 19.9

15.7 / 14.9

6.8 / 6.4

Treatment

(Van Harn et al., 2018)


Experimental design (3) Control diets

Low protein diets

Grower

Finisher

Grower

Finisher

Dig. Lysine (g/kg)

10.5

9.9

10.5

9.9

Dig.Gly+Ser/ dig. Lys (%)

150

150

Soybean meal (%)

26

23

ü

115 – 150 16

13

To maintain amino acid profile and content, low protein diets were supplemented with free Lys, Met, Thr, Trp, Val, Arg, Ile and Gly

(Van Harn et al., 2018)


Experimental design (4); observations ü

Observations: Body weight at d 0, 10, 28 and 35 ü  Feed and water intake at d 10, 28 en 35. ü  Mortality ü  Slaughter yields ü  Footpad lesions ü

(Van Harn et al., 2018)


Performance 0 – 35 days 12.5 Gly 13.3 Gly

14.1 Gly

14.9 Gly

15.7 Gly

12.5 Gly + Thr

Control

Body weight (g)

2263

2269

2254

2261

2260

2222

2238

BWG (g/d)

63.5

63.7

63.3

63.4

63.4

62.3

62.8

Mortality (%)

6.8 a

1.5 ab

0.8 b

4.6 ab

2.3 ab

3.1 ab

4.3 ab

1.533

1.526

1.530

1.520

1.522

1.544

1.525

Feed intake (g/d)

97.3

97.2

96.8

96.4

96.5

96.2

95.8

CP intake (g)

600 b

606 b

608 b

605 b

608 b

593 b

681 a

CP conv. (g/g)

0.270 b

0.272 b

0.274 b

0.272 b

0.273 b

0.272 b

0.310 a

FootPad Score

41 B

68 AB

62 AB

44 B

43 B

46 B

101 A

FCR

ü

a,b, Values

ü

A,B

without a common superscript per row differ significantly (P < 0.05).

Values without a common superscript per row indicate a tendency (0.05<P < 0.10).

(Van Harn et al., 2018)


Slaughter yields (d35) 12.5 Gly

13.3 Gly

14.1 Gly

14.9 Gly

15.7 Gly

12.5 Gly + Thr

Live weight (g)

2284

2291

2277

2284

2270

2253

2270

Carcass Weight (g)

1531

1541

1527

1535

1522

1518

1508

Carcass (%)

67.0

67.3

67.1

67.2

67.0

67.3

66.4

10.5 b

10.4 b

10.5 b

10.5 b

10.5 b

10.4 b

10.7 a

34.3 ab

34.4 ab

34.5 ab

34.4 ab

34.8 a

34.5 ab

34.1 b

32.8 a

32.8 a

32.6 ab

32.6 ab

32.0 b

32.3 ab

32.8 a

Wing (%) Leg (%) Breast meat (%)

a,b, Values without a common superscript per row differ significantly (P < 0.05).

(Van Harn et al., 2018)

Control


Litter composition (d35) 12.5 Gly

13.3 Gly

14.1 Gly

14.9 Gly

15.7 Gly

12.5 Gly + Thr

Control

Dry maRer (g/kg)

450 a

436 ab

431 ab

462 a

456 a

452 a

411 b

Total N (g/kg DM)

35.9 b

36.8 b

35.9 b

36.8 b

36.3 b

36.4 b

43.5 a

Ammonia N (g/kg DM)

8.8 b

9.4 b

9.1 b

9.2 b

9.3 b

9.4 b

11.4 a

a,b, Values without a common superscript per row differ significantly (P < 0.05).

(Van Harn et al., 2018)


Conclusions on dGly+Ser dose No effect on growth performance. ü  The highest dGly+Ser dose reduced breast meat yield. ü  No effect on the severity of footpad lesions. ü  No effect on litter quality and composition. ü  In low-protein diets, the lowest dGly+Ser doses (12.4 g/kg and 11.4 g/kg in grower and finisher phase) are sufficient. ü

(Van Harn et al., 2018)


Conclusions on Threonine ü

Thr did not demonstrate a Gly-sparing effect.

(Van Harn et al., 2018)


Conclusions on 3% CP reduction Similar growth performance results (BWG, FCR, mortality, FI) ü  Improved crude protein efficiency ü  Dryer and more friable litter à tendency towards a lower footpad score ü  Less N-excretion and ammonium-N in the litter. ü

(Van Harn et al., 2018)


Amino acid requirements of laying hens fed low-protein diets


Literature review 27 references with keywords ‘low-protein’ and ‘laying hens’ ü  Period 1992 – 2017 ü  Not all references useful ü  12 useful experiments from 10 publications involved ü


Effect of CP content on egg mass 70

65

Egg mass (g/d)

60

55

50

45

40

35 10

11

12

13

14

15

16

17

18

Dietary crude protein content (%) Azzam(2017)

Torki (2015)

Ji (2014)

Ghasemi (2014)

Fuente-Martinez (2012)

Poosuwan (2010)

Novak (2006)

Da Silva (2006)

Da Silva (2010)

Harms_Exp 1 (1993)

Harms_Exp 2 (1993)

Harms_Exp 3 (1993)

19

20


Effect of CP content on FCR FCR (kg/kg) 2,4 2,2

FCR (kg/kg)

2,0 1,8 1,6 1,4 1,2 1,0 10

11

12

13

14

15

16

17

18

Dietary crude protein content (%) Azzam(2017)

Torki (2015)

Ji (2014)

Ghasemi (2014)

Fuente-Martinez (2012)

Poosuwan (2010)

Novak (2006)

Da Silva (2006)

Da Silva (2010)

Harms_Exp 1 (1993)

Harms_Exp 1 (1993)

Harms_Exp 2 (1993)

19

20


Long-term study with -1.5% CP reduction per phase (Khajali, 2008) Only supplementation of free Lys and Met to LP-diet ü  Similar trends in egg mass and FCR ü  Second half of production cycle seems to be more sensitive for CP reduction ü


AFD AA intake (mg/d) (Fuente-Martinez et al., 2012) AA intake (mg/d) Lysine Met+Cys Threonine Tryptophan Arginine Valine Leucin Isoleucine Crude protein (g/d) Egg mass FCR

16 708 582 497 175 886 689 1.401 637 15.6 52.6 1.86

Dietary CP content (%) 15 14 713 725 586 596 501 509 176 179 816 751 649 616 1.354 1.318 597 563 14.8 14.0 52.6 52.1 1.87 1.92

ü  13 710 584 498 175 659 559 1.233 507 12.7 50.4 1.95

Reduced performance parameters coincided with reduced AA intake


AA profile (Da Silva et al., 2010) Ra9o

CVB

Dietary crude protein content (g/kg)

180

160

140

120

Lys

100

100

100

100

100

Met

55

47

47

47

47

Met+Cys

88

83

83

75

71

Thr

70

78

70

61

61

Trp

22

23

21

18

18

Arg

131

118

99

89

Ile

80

86

76

76

76

Val

78

98

86

81

81

Egg mass

60.62

60.47

57.89

54.52

FCR

1.91

1.89

1.99

2.02

ü

Reduced performance parameters coincided with unbalanced AA profile


Trp, Thr, and Ile in low CP diets (15.5 vs. 13.0%) FCR (kg/kg)

Rojas et al. (2015) ü  30 wk of age ü  3 x 4 wk trial period ü  AA to Hy-LINE W-36 recommendations (2009-2011) ü  Trp+Thr+Ile à full recovery of performance ü

2,25 2,20 2,15 2,10 2,05 2,00 1,95 1,90 1,85 1,80 Control Reduced CP 13%CP + (15.5% CP) (13.0% CP) Trp

13%CP + 13%CP + Ile 13%CP + 13%CP 13%CP + 13%CP + Thr Trp + Ile +Trp + Thr Thr + Ile Trp + Ile + Thr

Egg mass (g/d) 53,0 52,0 51,0 50,0 49,0 48,0 47,0 46,0 45,0 44,0 43,0 Control Reduced CP 13%CP + (15.5% CP) (13.0% CP) Trp

13%CP + 13%CP + Ile 13%CP + 13%CP 13%CP + 13%CP + Thr Trp + Ile +Trp + Thr Thr + Ile Trp + Ile + Thr


Calculations LP-diets laying hens Ingredient Corn Wheat Soybean meal Sunflower meal Other ingredients Oyster shells Limestone Palm oil Monocalciumphosphate Vitamin premix Sodium bicarbonate Phytase Salt L-Lysine HCl DL-Methionine L-Arginine L-Isoleucine L-Threonine L-Tryptophan L-Glycine L-Valine

CP-15% CP-14% CP-13% CP-12% CP-11% 22.78 40.00 40.00 76.74 77.46 37.83 21.01 32.78 14.21 7.50 15.28 9.18 8.83 7.31 2.00 4.74 0.55 0.50 0.14 0.25 0.27 0.22 0.21

0.00 7.28 2.00 4.43 0.56 0.50 0.22 0.23 0.21 0.35 0.20

0.07 0.08 0.01

0.10 0.10 0.03 0.01

3.41 7.82 2.00 1.83 0.85 0.50 0.28 0.06 0.20 0.38 0.21 0.18 0.13 0.10 0.04 0.03 0.02

7.35 7.76 2.00 1.66 1.09 0.50 0.56

6.24 7.58 2.00 1.83 1.21 0.50 0.48

0.65 0.29 0.42 0.27 0.23 0.09 0.22 0.17

0.71 0.34 0.49 0.31 0.26 0.11 0.25 0.23


Calculations LP-diets laying hens Ingredient Ash Crude protein Crude fat Crude fibre Starch Ca P Na Cl AME Dig. LYS Dig. MET Dig. CYS Dig. M+C Dig. THR Dig. TRP Dig. ILE Dig. ARG Dig. HIS Dig. LEU Dig. VAL

g g g g g g g g g MJ g g g g g g g g g g g

CP-15% CP-14% CP-13% CP-12% CP-11% 126.19 127.17 129.81 131.65 142.85 150.00 140.00 130.00 120.00 110.00 68.06 66.28 39.39 38.42 35.30 35.00 57.80 41.67 35.00 35.00 372.23 379.26 446.07 449.27 463.94 38.00 38.00 40.00 40.00 40.00 4.65 5.00 5.00 5.00 5.00 1.50 1.50 1.60 1.60 1.60 2.50 2.50 2.50 1.98 2.10 11.80 11.80 11.80 11.80 11.80 6.90 6.90 6.90 6.90 6.90 4.07 4.17 4.28 4.59 4.88 2.07 1.96 1.84 1.52 1.15 6.10 6.10 6.10 6.10 6.10 4.80 4.80 4.80 4.80 4.80 1.50 1.50 1.50 1.50 1.50 5.50 5.50 5.50 5.50 5.50 7.75 7.75 7.75 7.75 7.75 3.12 3.02 2.60 1.86 1.73 9.45 9.55 9.45 9.45 9.45 5.40 5.40 5.40 5.40 5.40


Conclusions laying hens ü

Several Low-CP studies are available in literature

ü

Performance of most studies is below current levels

ü

Often, performance levels reduced with decreasing CP levels

ü

Reduced performance coincided with an unbalanced AA profile

ü

2nd half of production cycle à more sensitive for drop in performance

ü

We need more accurate Low-CP studies (between 11 – 15% CP)


Take-home messages Free AA can be considered as a novel protein source ü  Maintaining AA content and profile of all essential AA is required to prevent compromising performance results of the birds ü  Low-protein diets can have beneficial effects on litter quality and bird welfare ü  In broilers, replacement of 40% SBM has been demonstrated ü  In laying hens, replacement of 100% SBM seems to be possible if CP-content ≤ 13% ü


Thank you for your aoenVon!

This research was conducted by Wageningen Livestock Research, within the framework of the public private partnership “Feed4Foodure”, and parVally funded by "Vereniging Diervoederonderzoek Nederland" (VDN), and parVally funded by the Ministry of Agriculture, Nature and Food Quality

53


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.