RESEARCH Hal eYoungbl ood
Day 3
Day 5
Day 9
Day 22
Day 32
Day 36
ARCHITECTURE AND PLASTIC: PLASTICS TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collating a “Master Timeline” of all plastics and plastics organizations relelvant to a book about architecture and plastics to be published by Princeton Architectural Press
Day 78
Day 80
Day 88
Day 92
Day 181
Day 203
ARCHITECTURE AND PLASTIC: PLASTICS TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Researching and developing the timeline to completion over several months with direction from the book’s author, Billie Faircloth
ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating with the author, Billie Faircloth, and a graphic designer, Alex Cohn, to develop a graphic methodology for presenting time-related information
Association
Society for Testing and Materials ASTM In ternation al Natio nal In stitute 1994 of Stan Build dards ing O and Te 199 fficia 4 chnolo ls an Inte gy d Co rnati de A ona dmin l Co istra Sta nfere tors nda nce Intern rd B of B ation uild Inte uild al, In in ing rna gC c. Offic ode tion ials Con Ge al C rm gre ode an ss In Cou Ins te Am rna ncil titu eric tion t e al an for Am En Sta eric gin nd ard ee an Am rin iza St er gS tio an ica AS n tan da n rds TM da Na rds In As tio Co te Co so na m rn mm cia lS m at tio itt ta itte io n ee nd e na ar on lO ds Pl rg I n a an sti sti tu iza cs te tio n fo rS ta nd ar di za tio n
Underwriters Laboratories Inc.
National Fire Prote ction
American
194 1 1 86
19 19 17 19
19
19 37
47
70 19 70 19 0 7 19
3
of Pr
Res
Co d
e
Mater
57
1964
2004
1964
19161910 80 18 76 18 18
1997
1946
18
18 72
stry
20 19
37
45
6 193 3
193
19
19
42
nd Plastics New Zeala
Plastics Federation of South Africa
National Association of Manufacturers of Plastics
titute Plastics Ins
Pi on ee rs ss In Ma As oc sti nu iat so tu fac te ion cia t urin of Ch of tio Am em Ho gC n cia m er he e lM ica mis Bu an t i s ufa lde As ctu r s s oc rer Am iat sA eric ion Am sso an eric cia Am Pla an tio eric Arc stic n hite an sC ctu C o Turk h un ral em ish P cil Ma is lastic tr nufa yC s Ind oun ctu ustri rers cil als R Ass 20 esea Briti ocia 02 rch, sh P 19 tion Deve 20 lasti 88 00 lopm cs F ent a ede ratio nd Tr n a ining Swed ish Pl Foun astics datio & Chem n icals Federa Plastic 1989 tion s and Ch 2003 emicals Federa tion Associatio n of Swedi sh Chemica l Industries Spanish Confeder ation of Plastics Industry 1990
87
2000
Pl as tic s
90
Autonomous
ies str n du tio cia oin ns Bi sso tio n of s' A cia tio n rer so da tio ctu As un ufa cia try an Fo so us d a sM As di l In try uld n a s u Mo tin ea mic Ind as op ry & he al Pl ur ine fC mic eE ach no he ici Th gM tio eC im sin era f th ch ces ed As no Pro tio nF r lia be era ub Ita ed &R nF iety lia Soc tics Ita las tics 84 P s Pla 19 lian on Ita able ciati rad sso deg cs A Bio lasti 84 on ioP 19 nB ciati a o Ass Jap 07 tion 20 7 stics dera 89 n Pla 200 19 ry Fe st n Japa Indu ciatio stics rs Asso n Pla acture Civil Japa Manuf iaci贸n o, Asoc astics l Pl谩stic sian Pl strias de Malay de Indu cional i贸n Na Asociac land of New Zea
2000
Pl as tic s
19 19
45 19 60 19
19
61
45
2 9 196 195 1962
1967
1961
1990
Na tio na lA
49
19
1944
1979
n tio ia oc ry st ss du sA In er r s u tic ct s a a uf Pl an e M th sin of ty Re cie tic o e h S nt Sy
19 61
19
19
42
19
Society of the Plast ics
1989
84
u Ind
3 193 929 1 27 20 19 19
Canadian Plastics Industry Association 1997
Industry of Cana da Associatio n of Intern ational Ch emical Ma China Pl nufacture as rs 2006 tics Proc essing Industr Gulf Pe y Associa troche tion mical s & Egyp Chem 200 tian icals 6 199 Plast Associ 3 ic Exp ation Euro orters pea 200 &M n Bio 6 anufa plas Inte cture ti cs rna rs Ass tion ocia al B Pla tion iode stic gra sEu dab rop Fin le P e: A ish o ly s Pla me soc La rs A stic iati sso Pla on s In ciati of P stu du Ge on las str rgie and rm yF tics Fe Wo ed an Ma de Pl era rkin nufa As as rat gG tio so ctu tic ion n rou c rers As sa iat ps ion so nd cia of Ru Al t P lI bb ion las nd e t r of ics ia Ma Hu Pl Ma c hin as ng nu tic ar er fac y ia sM tur n ers Pl an as uf tic ac s tu In re d u rs str 'A y ss oc ia tio n 1988
1956 1950
1957
stry, APC-ACC Polyurethanes Indu Alliance for the SPI e Division, Polyurethan SPI vision, astics Di Pl lar Cellu te Institu Pipe Plastic on ciati Asso rers u n ct iatio anufa ssoc er M rs A n Fib e c ca te u ri Am e stitu Prod r In e n ib o de F te Ray -Ma titu Man Ins g rin ion ove iat or C soc s lo n F A tio nt ilm ilie cia &F Res sso ric A b gs l Fa in r a ic ve em llco Ch Wa
th al He
Plastivida Instituto Socio-Ambiental dos Plasticos
1994
Center for the Polyurethanes Industry
d an ty fe Sa
ion A at al n str ion tio ini at ec dm up ot A c r c h lP alt rO ta fo He en te nd m tu ya on sti et vir af l In S a En l n na tio ics tio Na Tox pa nd cu ice na Oc ho tio aC en r v r cil l e Te Pr ea oun sign gC ion nS din l De ee llut Gr Po Buil enta of en nm o e re ir ffic sG Env O te d 8 n ta 8 S ya 19 ed nerg 89 Unit in E 19 hip nt 90 ders nme 19 Lea viro 93 r En fo 19 de ign g Co 4 Des uildin 199 nal B o ti itute a 7 ts Inst 199 Intern uc od e Pr radabl 1997 tute Biodeg tal Insti en m viron 1999 uard En Greeng 2001 Argentina ida stiv Pla 1992 Association icals Industries Plastics and Chem
1955 1952
47 41 19 19
Siding Institute, Society of the Plastics Industry
1946
In st itu Po te lys Vi Ins of tyr ny ula en Ar lS ted e ch id Mo All in ite Co ian g lde nc ct In ce r s r e sti s for te As tu Fo Fle s te All rm oc xib ian iat sA le ce ion Po ss of o ly 20 F cia ure oa Str 04 m tio tha uctu Pa n ne ral cka Fo Ins 19 gin am ula 98 gR te Spra ecy dP 19 ane cle y Po 95 rs l As lyure soc 19 tha iati ne 95 Plas on Foa tic P mA ipe 19 llian & Fit 91 ce ting s As 19 socia 90 tion 198 Vinyl 7 Polyur Instit ute ethane 198 Foam America 7 Associ n Com posites ation 1982 Manufa cturers Associa 1980 tion Composites Fabricator s Associatio n Fiberglass Fabr icators Associatio n 1979
1915 192 2
pa nd ed
y nc ge
er ica n
1884 1896 1898 1901
Am
National Academy of Engineering
Ex
1961 arch Institute p, Building Rese 1962 Plastic Study Grou titute search Ins Building Re ment Environ tructed the Cons ard re and sory Bo structu h Advi on Infra l Board esearc ounci ing R Build rch C esea nal R tory ra Natio 97 abo 19 cts L ces rodu st P cien Fore 91 of S ty 19 my ade ocie l Ac al S ona ty mic Nati ocie Che rS an ty me eric cie oly Am lP So te, er ry nta titu ist Ins me lym on try Po em s mis nvir Ch er ble E a e Che ed Bio rad en gin pli rs n p eg Gre ee sE dA yD in tic an tall ty ng re en las ie lE Pu oc nm fP ca of iro lS yo ni nv ion iet ha ica /E c n ec lU Bio So em M na Ch of atio n ty ern ica cie Int er So n Am ica er Am
Every chapter of the book has a set of relevant, time sensitive plastics data. Using the Master Timeline, we concluded each data set could be mapped radially, whereby the center is earliest and the outermost ring is latest. In all diagrams placement of plastics around the rings is always the same, each with its own trajectory through time.
Plastics Organizations when they were established, renamed, and terminated (if applicable)
ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop a timeline diagram for plastics organizations
cs)
tic plas
r
info
rced
lyeste
r re
ra
te
fibe
ce ta te ra
te na
nit
Ce
llu
lo
se
Ce
llu
pro
lo
pio
se
Ce llu
llu Ce
los ea
los
ea
te -bu ty
ce tate
bon Car
sein
Bois Dur ci
ic po Arom at
tyrene plasti cs
phthali
-butadiene-s
n (glycero
r
Ca
te
ne py le
m id es ne ) su lfid e)
te)
comonomer
tes)
Polyfluorene
Poly(hyd roxyalka noa
Poly(ethylene terephthalate), glycol
id)
ate cyan ur
Polyim
Polyi so
ide
te
ncre te
socy an a
dii
er co
ctic ac
Pol ym
ryla
me tha c
nyl me tha ne
Po ly
me
ric
dip he
Po ly
Poly (la
Po lyp ro
la
ph ta re te ne
ny le he
he ny le
(p
(m eth yl
(p Po ly
Po ly
ra
te na pio pro
se lo
Ambe
te tyra -bu te nit llu Ce
Acrylic resin
rced
ce tate ea
ce ta
ulo s
ea los
Ce ll
llu Ce
llu lo se
Acrylonitrile
tic plas
r lyeste
info
ic po
r re fibe
sein
Arom at
bon
Bois Dur ci
Car
Ce
Polyfluorene
comonomer
ic ac
ide Polyim
roxyalka noates) Poly(hyd
Poly(ethylene terephthalate), glycol
Polyi
socy anur ate
id)
te
ncre te
socy an a dii
er co
ne
(lact
Pol ym
en ylm eth a
cd iph
Poly
cry
late )
) lfid e su
Po ly
Po lym eri
Alkyd resi
cs
cs)
tyrene plasti
phthali
-butadiene-s
n (glycero r
Acrylic resin
ne
py le
) es
pro
id m
Po ly
la ta ph re
ne
te ne
ny le
ny le
he
(m eth yl
(p he
Po ly(p
Po ly
me tha
Ce
Ca
te ra
llu lo se
pro pio na te
nit se lo
llu Ce
Ambe
te tyra -bu te ce ta ea los llu Ce
Acrylonitrile
tic plas rced info r re fibe
ce tate
bon Car
ea
sein
los
Ca
llu Ce
comonomer Poly(ethylene terephthalate), glycol
ide
tes)
Polyim
Polyfluorene
eth yl
Alkyd resi
cs)
r lyeste ic po Arom at
Bois Dur ci
tyrene plasti cs
phthali
-butadiene-s
n (glycero
r Ambe
Acrylic resin
Acrylonitrile
Alkyd resi
py le ne
id es ) )
m
ulf ide ne s
cry
me tha
roxyalka noa
)
Poly(hyd
ate on
late ne ) dii socy an ate Pol ym er co ncre te Poly (lact ic ac id) Polyi socy anur ate
er
)
carb
m oly
op
)c
sin
sin
re
ne
le py ro
e yd eh
l re
ura
furf
ald
-p
ne
rm
ol-
ide
on (nyl
l lyco
ide
dig
nyl me tha
fo
yle th (e
en
llyl
onate
Transect 05: ASTM D 1600 1958-2008. ASTM instituted an acronym of abbreviation to replace chemical terminology. This chart plots plastics found in building and construction and when they made their debut on ASTM’s document D1600 of standard terminology for abbreviated terms related to plastics.
ol-
s
line
he
ne
re
sty
ly Po
im ide-
dip
ne lfo
su
ly Po
ysta
torto
l po
lym
y po lyet hy
r
ise sh
ell)
er
Me lam lene ine -fo plas Me rm tics thy ald eh lc yde ell Mo ulo resi dif se n ied Org Sil ico an ne ic Pa lig ra ht ffi em n itti ng dio de s
e len
y reth uo
arb Polyc
ric
ly Po
fl tra lyte Po
orn,
nist
ne
tha ure
lyeste
tin (h
id cr
Low de
ate)
oro
Po lyp ro
acet
rflu Pe
la
inate
rced po
Liqu
l)
coho
l viny
en
re ph ta
yl al (vin
Poly
Ph
te
)
tyral
Poly(
yam Pol
ny le
Kera
ly(a Po
(p he
sure lam
Jute rei nfo
)
Ph
he ny le ne
ide l chlor
polyethylene
High pres
ride)
chlo ylidene Poly(vin
ni Polya
(p
Glass fiber reinforced polyester
am Poly
Po ly
ene
Gutta-percha High density
Poly(ethylene terephthalate)
(m
plas tics
lymer
copo
e
tyren
d polys
rced plastic
e Polyethylen
Po ly
de Expan
Poly(v
y( Pol
ylene oeth fluor
etra lene-t
Ethy
e) inylidene fluorid
iny
se
llulo
l ce
Ethy
ASTM D 1600 1958
rsulfone Polyeste
fone
ate
me
de
am Poly
yl (all
ya Pol
e
arbon
nilin
Polyc
Poly(ethylene terephthalate)
er
m
te)
e Polyethylen
oly
op
e
a on
rsul Polyeste
)c
ne
Polya
le py
in
sin
res
e re
ral
yd eh
ro
-p
)
carb
ylon e (n
l lyco dig
mid
ate
Po ly
in
n
resi
ori
y
Epox
ASTM D 1600 1964
Rescorcinol formaldehyde
Poly(v
)
d polystyr
ly Po
ne
ald rm
l-fo
Ph
no
yle th (e
llyl
rfu
ya Pol
fu ol-
ly(a Po
en Ph
e
imid
nilin
ide-
arbon Polyc
Polya
am Poly
Poly(ethylene terephthalate)
e Polyethylen
rsulfone Polyeste
Po ly
Wood plastic composites
te resin de-vinyl aceta
Vinylidene chlori
sin ate re
r resin
n
n resi
resi
hyde
hane
alde
ide res
rm
Uret
acet
a-fo
inyl
e chlor
ide-v
Vinyl este
yliden ide-vin
chlor Vinyl
l chlor
Viny
e
plastics
de
lori
ch
Fiber-reinfo
dio de
2. Plastics PROCESSING from when and where they come (incomplete)
er est oly
ng
ASTM D 1600 1971
dp
Extrude
em
itti
Ure
n
flu
resi
fin
hyd e
ne
e
ole
los
ne
r
ell)
er
lyet hy
-fo rm ald e
llu
ico
er m oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rflu rm Pe fo sin oll re en te) ura na Ph furf rbo oll ca en co ly dig ) ylon e (n mid e imid ide-
n
lig ht
ce
Sil
de
dif ied
ic
yl (vin
e len thy lye te lori po na Ch ed cya ink iso er ss-l lym Cro po ion ls u Em
te na
ry polymers
bu vinyl
ise sh
lym
lene
tic
Me thy l
Mo Org an
Pa ra ffi
torto
lyeste
y po
lam ine
las
Me
l po
len thy lye
rced po
orn,
ysta
dp
inate
tin (h
oly
itin
Ch
Regenerated cellulose (rayon)
ssure lam
id cr
1991 ASTM D 1600 1986
es
ers
pla
Shellac
polyethylene
High pre
Kera
oly m
ASTM D 1600 1999
Shape memo
Glass fiber reinforced polyester
Liqu
rate
yli vin
ene
Gutta-percha
Low deni st
er
ASTM D 1600 2008
stics
d polystyr
Jute rei nfo
bb
id
ne pla
rced plastic Fiber-reinfo
)
oly an
en tp
foam
Silico
de Expan
High density
op
lymer
copo
e tyren d polys
Extrude
-ru
rp
orb
uta
po
ne
ylene oeth fluor
etra lene-t
Ethy
de s
ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop timeline diagrams for chapters 1, 2, and 3
se
llulo
l ce
ne fluoride) Poly(vinylide
1. Plastics CONTEMPORARY DISCUSSION significance (number of times mentioned) in experts’ essays
Sty ren e-a cr
Spr ay
y
Ethy
ne
e-b
pe
bs
sti die cs ne pla sti ylo cs nit rile pla stic poly uret hane Soy prot ein resi n Soy oil re sin
ate an ocy r is
me
ly po
Epox
dio
erm
le py
n
Th
pro
ro
plas tics
resi
t igh we
uo
po
ion uls
Em
) loride inyl ch Poly(v al) butyr vinyl Poly( hol) co yl al (vin Poly e) etat l ac ny y(vi e an Pol reth lyu e Po len thy ore e u on afl ulf tetr ly lys Po ne Po re ty lys Po
lar cu
fl xa he
ell)
ren
satu
ne
ise sh
re
Sty
ne
Un
yle eth
ed ink
ss-l
Cro
stics
chloride
le mo igh
oro
ri
lo Ch
cs
cs
last ic
Sty
le thy lye
Rescorcinol formaldehyde
ylidene Poly(vin
ra-h
flu
dp te na
ry polymers
plastics
Ult
tra Te
r resin
Vinyl este
te resin de-vinyl aceta
eh yde
Wood plastic composites
e
Vinylidene chlori
g
oro
e Ph
rflu Pe
n
em itti n
-fo rm
los
r
poly ethy
ald
llu
de
lig
ht
ffi
ce
Sil ico ne
ori
Po
an ic
Pa ra
torto
lyeste
lym er lene
ne
Org
ne
re
ty lys
in ide res e chlor yliden ide-vin sin chlor Vinyl ate re acet inyl ide-v n resi l chlor Viny hane Uret n resi hyde alde sin rm r re a-fo ste Ure lye po
Mo dif ied
e
n lfo
u lys Po
ine
flu
Me thy l
ne
yle reth
uo
afl tetr
lam
orn,
fin
rced po
ysta l po
ne
Me
ne
nist y
ole
Low de
tha ure
ly Po
ly Po
inate
tin (h
Liqu id cr
l)
e) etat
le thy lye
Kera
)
sti
sti
y (vin
oly
itin
Ch
Su
ra
) de
Regenerated cellulose (rayon)
sure lam
Jute rei nfo
)
es
ers
Shellac
polyethylene
High pres
)
ide l chlor
oly m
pla
Su pe
lori
h lc
Shape memo
Glass fiber reinforced polyester
chloride
id
ne pla
ene
Gutta-percha
Poly(v
de
Silico
d polystyr
High density
e) inylidene fluorid
pla
tic
Rescorcinol formaldehyde Regenerated cellulose (rayon)
ne
le p
er
las
e
c
vi
yli vin
lymer copo
tyren
op
ylene oeth fluor etra lene-t
bb
po
se
llulo
l ce
Ethy
coho
die
itri
poly
tp
-ru
oly an
hane Soy prot ein resi n Soy oil re sin
y
rced plasti Fiber-reinfo
ac nyl
foam
uret
Ethy
tyral
e-a cryl
on
ay
d polys
yl al (vin
uta
ren
Spr
ne
rp
orb
en
ht
Epox
e-b
pe
bs
d rate satu
Sty
te na cya iso
Extrude
bu vinyl
Un
ne
ren
de Expan
Poly
erm
le py
er
lym po ion
Shellac
Poly(
Th
pro
re
Sty
uls
Em
ry polymers
y( Pol
Sty
ne
po
ed ink
ss-l
Cro
Shape memo
iny
eig rw
ro uo
Ch
cs
ic
Su
ra
)
le thy lye
stics
Poly(v
ula
fl xa he
lori
cs
y (vin
oly
ne pla
ylidene Poly(vin
lec
ne
dp
te na
hane Soy prot ein resi n Soy oil re sin
Silico
mo
yle eth
de
sti
sti
igh
oro
n
ori
itin
Ch
Su pe
de
lori
h lc
last
uret
ra-h
flu
in
n
resi
ne
es
ers
pla
Ult
tra Te
Wood plastic composites
te resin de-vinyl aceta Vinylidene chlori
sin ate re
r resin
ide res
acet n
resi
resi
hyde
hane
alde
Uret
rm a-fo
inyl
e chlor
ide-v
Vinyl este
yliden ide-vin
chlor Vinyl
l chlor
Viny
er est oly
flu
fin
ne
ole
de
tic
pla
las
ne
le p
id
oly m
le thy lye
itri
er
dp
die
on
poly
oly an
en tp
bb
rate
yli vin
cryl
rp
orb
-ru
uta
e-a
foam
op
ren
ay
ne
e-b
po
Sty Spr
ren
ht
ne
erm
le py
Th
re
Sty
pe
bs
satu
eig rw
pro
ro
uo Su
ra
Sty
Ure
Un
ula
fl xa he
lec
ne
mo
yle eth
igh
oro
ra-h
flu
Ult
tra Te Su pe
3. Plastics INCLUSION IN ARCHITECTURE when they debuted on ASTM’s D1600
plastics
s)
tic plas
r
rced
lyeste
info
te ra
te
nit
pro pio na
los
ea
ea ce ta te
llu
los
Ce
llu
Ce ll
ulo se
Ce
llu
lo
Ce
se
sein
-bu
ce tate
tyra te
r re
ic po
fibe
Arom at
bon
Bois Dur ci
Car
tyrene plasti
phthalic
-butadiene-s
n (glycero r Ambe
Acrylic resin
ne py le
)
ro
es )
comonomer Poly(ethylene terephthalate), glycol
ide
tes)
Polyim
Polyfluorene
Poly(hyd roxyalka noa
socy anur ate
ate
ncre te
id)
Polyi
socy an dii
ic ac
er co
Pol ym
ne eth a
nyl m he
dip ric Po lym e
Poly (lact
late )
su lfid e
eth yl
me tha cry
m
id
Po lyp
la ta ph
re
ne
te ne
ny le he
ny le he
Po ly
(p
Po ly(m
llu Ce
Ca
te ra
te
nit lo
se
pro
pio
na
Po ly(p
Polyfluorene
comonomer Poly(ethylene terephthalate), glycol
ate
Polyim ide
eh yde
plas
tics
resi
n
em
itti
ng
dio
de
s Phenolics
PS
PVC
HDPE
PP
LDPE
Melamine
EP
PA
PE
ABS
UF
er
roxyalka noates)
e
)
Poly(hyd
Acrylonitrile
te tyra -bu
ce tate
te
ea
ce ta
ulo s
ea los
Ce ll
llu Ce
Ce
llu lo se
sein
bon
Car
Ca
ate
)
los
e
ate
Polyi socy anur
cya n
ncre te
iiso
acid
er co
ctic
-fo rm
lene
ald
llu
er
lyet hy
m
Pol ym
Alkyd resi
tic plas
r
info
rced
lyeste ic po
r re fibe
Arom at
Bois Dur ci
te) ryla
ht
ce
Sil ico n
ell)
lym
on
carb
on) (nyl
ate
e
Poly (la
ide
col igly
yl d
eth an ed
cs
cs
cs)
tyrene plasti
phthali
-butadiene-s
n (glycero r Ambe
Acrylic resin
Acrylonitrile
Alkyd resi
ne
py le
) es
pro
id
)
m
ulf ide
n
ine
torto ise sh
l po
y po
ura
me tha c
ffi
lig
lam
ysta
r
furf
e
imid
1. "Plastics in Building" (The Architectural Forum June, 1940) 413-417. 2. Rober F. Marshall "Plastics‌Practically Speaking" (Architectural Record April, 1943) 54-59. 3. Albert G.H. Dietz "Potentialities of Plastics in Building" (Architectural Record April, 1950) 132-138. 4. Albert G.H. Dietz "Selecting Plastics for Buildng Uses" (Architectural Record April, 1955) 225-233, 313, 314, 318. 5. "Look how many ways you can now use PLASTICS!" (House & Home September, 1956) 118-135. 6. "BRI Reviews Plastics for Roof Construction" (Journal of the AIA December, 1957) 118-135. 7. "Plastics Permeate Specifications Sections" (Progressive Architecture October, 1960) 206. 8. Z.S. Makowski "Structural Plastics in Europe" (Arts and Architecture August, 1966) 20-30.
dif ied
an
ic
Pa ra
arbon
he
Org
ne re
ty lys Po
nilin
dip
Mo
e
n lfo
u lys Po
Polyc
nyl m
Po ly
Me thy l
e
len
y reth uo
nist
oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rm fo sin oll re
la
ly Po
rflu Pe
ph ta
ne
ll ly(a Po
re
Me
olen
es
id cr
Low de
tha ure
fl tra lyte Po
orn,
Liqu
l)
e) etat
l ac
Ph
te
lyeste
tin (h
tyr
en Ph
ne
inate
rced po
Kera
coho yl al (vin
Poly
ny y(vi
plastics
sure lam
Jute rei nfo
al)
bu vinyl
polyethylene
High pres
)
ide)
Polya
4. Plastics EXPERIMENTATION significant historical case study projects and their included plastics
High density
e)
yam Pol
ny len
c
Glass fiber reinforced polyester
ideam Poly
he
8
ene
1
ny le
110 1 9
ded po
lor inyl ch
Pol
lymer copo
ene lystyr
d polystyr Extrude
chloride
Poly(
ylene oeth fluor
etra lene-t
Expan
2
(p
12
se
lo cellu
Ethy
3
eth yl
y
l Ethy
ne fluorid Poly(vinylide
Poly(v
ate
Gutta-percha
Poly(ethylene terephthalate)
ric
15 14 13
Epox
n cya
iso
er
lym
po
ion
rced plasti Fiber-reinfo
Polyethylene
me
uls
Em
4
he
e ink
ss-l Cro
5
(p
ne
Rescorcinol formaldehyde
ylidene Poly(vin
)
de
lori
yle eth oly dp
6
stics
rsulfone Polyeste
fone
onate
e
er m oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rflu rm Pe fo sin oll re en te) ura na Ph furf rbo oll ca en lyco Ph dig ) ylon e (n mid e imid ide-
am Poly
yl (all
ya Pol
ly Po
nilin
arb Polyc
Poly(ethylene terephthalate)
Polyethylene
Polya
Po ly
lori
16
cs
ic
ch
7
r
(hor n, to rtoise shell id cr ) ysta l po lym er nist y po Me lyet lam hyle ine ne -fo plas Me rm tics thy ald lc eh ell yde Mo ulo resi dif se n ied Org Sil ico an ne ic Pa lig ra ht ffi em n itti ng dio de s
rsul Polyeste
Po ly(m
n
e
lyeste
Low de
Po ly
n
d ori
rced po
Liqu
Po ly
Wood plastic composites
in
ide res
e chlor
n
resi
resi
resi
hyde
hane
alde
e resin etat
rm
Uret
nyl ac
a-fo
te resin de-vinyl aceta Vinylidene chlori r resin Vinyl este
yliden ide-vin
ide-vi
l chlor
Viny
Ure
flu
fin
ole
Kera tin
l)
Ch
sti
last
yl (vin
oly
Regenerated cellulose (rayon)
plastics
inate
Jute rei nfo
coho
cs
pla
dp
te na
ry polymers
ssure lam
ate) acet nyl y(vi e Pol an reth lyu e Po len thy ore e flu on tra ulf lyte lys o P ne Po re ty lys Po
itin
Ch
Shellac
polyethylene
High pre
tyr
yl al (vin
e
e ur ut
High density
bu vinyl
las ti
Shape memo
rced plastic
Glass fiber reinforced polyester
Poly
len
ne pla
ene
d polystyr
ide)
er est oly
Silico
lys ded po
Fiber-reinfo
lor inyl ch
le p
es
ers
rp
hane Soy prot ein resi n Soy oil re sin
lymer
copo
e tyren
Extrude
) chloride
ne
itri
id
m
dp
e
ylene oeth fluor
etra lene-t
Expan
ne fluoride)
die
on
poly
oly an
oly
rate
s ea Ar
m
lose cellu
Ethy
Poly(vinylide
cryl
ne de
d
y
Epox
Gutta-percha
Poly(
e-a
foam
tic
ren
ay
las
Sty
Spr
tp
uret
l Ethy
al)
yli vin
ate
n cya
iso
op
er
erm
lym
po
en
be
uta
rp
orb
-ru b
thy lye po
p
ion
uls
e-b
Th
pe
Em
pe
bs
ne
ren
ht eig rw
ed ink
ss-l
Cro
Regenerated cellulose (rayon)
Poly(v
ula
lo
Ch
ne
yle eth oly
Su
ra
Sty re
Sty
satu
ne le py pro ro uo
d
te
a rin
pe
)
de
lori
ch
Un
fl xa he
Ch
ly po
Rescorcinol formaldehyde
ylidene Poly(vin
lec mo igh
ne yle eth oro
n
stics
Shellac
ry polymers
chlor Vinyl
flu
n
ne pla
Shape memo
Su
yl (vin
itin
House of the Future P rest 1957 am All Plastic House H pat ous ra Cabin e eo 1956 Sara f th Hou Prefabrucated P eF s la 1945 utu e Plastic House stic H re 1941 ou se ran s 1938 F kfurt Plast i 1933 Vinylite Hous c Hou e se 1928 The Hous eo f th eF
ra-h Ult
tra Te
Wood plastic composites
in
r resin
ide res
te resin de-vinyl aceta
e chlor
n
resi
desh House /bangla infield .E/W use Plastic Ho .A.R Spray 2 C 197 biles eru omo sing in P 1 D y Hou 197 genc Tu b C o mer al House 0 E pheric S 197 o oliday House Casa Futuro Clam ond p ques H 9 R lle Six Co use Filament Wound Homes Mexic House an H o C 196 Bu rbach Ho liday ubino -Assembly House Sphar Hou Spla 8 Feie use PPL oide S se c 196 hu H o pher Var e aritc ical Sekisui Cabin Structural Pote iab 7 M Hou ntial le H 196 se mobile of Fo Abita Uni o am ous Egg Home Egg Ho 6 L’ h k i -Do use t 6 s a l 9 Pla us e 1 ch P me Vi stic ibera s fo 5 B Ya lla S otel Units Home Sweet GFRP H rH 196 M ntr p y a ome ou olid a H ie s sin Inst 4 H ays Shunting Cabin Iglu ou ant gi 196 h Railw s S i se t p nU H i r h erica ous 3 B nd l Ho e 196 rad House Miolina House Un er use ening idom de L 2 Sp e ve 196 ira lo lly Ge ne lyvilla ra 0 Po ene House Doerna te 196 d Diog -House Wils ch Shell Do on Hou 9 aredo se House 195 V
resi
hyde
hane
alde
cs
sti cs
ic
hane Soy prot ein resi n Soy oil re sin Silico
sin ate re
Uret
acet
de
ers
sti
pla
Vinyl este
inyl
resi
ori
uret
yliden ide-vin
ide-v
rm
flu
fin
es
last
poly
Vinylidene chlori
l chlor
Viny
chlor Vinyl
a-fo ne
m
er est oly
dp
ne
ole
de
tic
le p
las
ne
itri
pla
oly an
id
oly
le thy lye
die
on
er
po
bb
ht
cryl
en
tp
-ru
rate
yli vin
e-a
foam
rp
orb
ne
uta
ren
ay
op
ne
erm
Sty
Spr
ne -b
pe
ra bs
re
satu
eig rw
le py
Th
pro
ro
uo
Su
pe
Sty
Sty re
Ure
Un
ula
fl xa he
lec
ne
mo
yle eth
igh
oro
ra-h
flu
Ult
tra Te Su
9. Armand G. Winfield "A Case Study: The Plastic House" (Progressive Architecture October, 1970) 79-87. 10. "Foam: The controversial new building material" (House & Garden May, 1973) 58, 60, 215. 11. "Pandora's Plastic Box" (Progressive Architecture September, 1975) 86-91. 12. "The Light Heavyweights" (Progressive Architecture October, 1981) 125-133. 13. Forrest Wilson "Plastics, Past and Future" (Architecture April, 1988) 104-108. 14. Battle and McCarthy "Multi-Source Synthesis: Atomic Architecture" (Architectural Design January/February, 1995) iii-vii. 15. Paola Antonelli "Mutant Materials: On plastics and other artifacts of material culture" (Harvard Design Magazine Summer, 1998) 47-50. 16. Simone Jeska "Plastics: Ethereal Mateirals or Trash Culture? (Detail Magazine May, 2008) 12-16.
5. Plastics USE significant contemporary projects and their included plastics
6. Plastics PRODUCTION AND USE total production and use within building and construction
ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop timeline diagrams for chapters 4, 5, and 6
disassembly sequence. successfully recovered 98.95% of the energy embodied in materials during the 38-day Total Net Energy (Embodied Energy and Operations Energy) disassembly sequence. Total Net Energy (Embodied and Operations Energy) 40Energy Year Lifespan with 860 kWh/sf Source Embodied Energy 40 Year Lifespan with 860 kWh/sf Source Embodied Energy
Total Net Energy (Embodied Energy and Operations Energy)
Cellophane House
THE MUSEUM OF MODERN ART, NEW YORK
kWh/sf
kWh/sf
Conversion: 98.95% Material Recovery
Embodied Energy Loss
1300
1500 1400
Size: 1,800 GSF
1200
1,255 kWh/sf
Current NE Source Energy Intensity EIA Bldg
Assembly Date: July 2008 Dissasembly Date: December 2008
2030 Target Bldg
1100
860 kWh/sf
Best DOE Energy-Positive Bldg
810 kWh/sf
800 kWh/sf
NZEB Lessons Learned
ENERGY kWh/sf
ENERGY kWh/sf
Current (60%) 2030 Target Bldg
405 kWh/sf
1. The degree to which a building is disassembled depends on context, site, and destination of reassembly, as packing and transport efficiency is inversely proportional to reassembly efficiency. 2. The factory subcomponent assembly conditions were very different than those of the disassembly site, requiring different means and methods. Disassembly feasibility should take into account such discrepancies. 3. The reassembly of the dissembled structure is dependent upon accurate as-built drawings. During the disassembly it is essential to reconcile the inevitable variations between the construction documents and the built structure.
BUILT
-41 kWh/sf
40 YEARS
END OF LIFE
Component Embodied Energy
COMPONENT
FRAME
MATERIAL
4. All components of a dissasembled building may not be suitable for redeployment as weathering, fatigue, and disassembly damage may require their recycling and replacement. 5. True net zero buildings will be very difficult, if not impossible, to achieve without employing end of life material recovery or a significant reduction of the embodied energy of materials.
9 kWh/sf
energy neutral
SKIN
GLAZING
WALL PANELS
Bosch Aluminum Framing
NextGen Smart Wrap ™ (PET)
Schüco Glass
Steel Connectors
Aluminum Louvers
Schüco Aluminum Frame
BATHROOM PODS
3-Form Varia (PETG)
FLOORS
Fiberglass
ROOF
STAIRS
Aluminum Grate
PVC Downspouts
3-Form Stage (PC)
Steel Gutters
Acrylic
955,631 kWh
22,224 kWh
1,651 kWh/sf without recovery
1200 Current (60%) 2030 Target Bldg
1,255 kWh/sf
without recovery
Current NE Source Energy Intensity EIA Bldg 20 kWh/sf-year
900
Current NE Source Energy Intensity EIA2030 BldgTarget Bldg
800
600 500 400
700
300
20 kWh/sf-year
1000
10 KWh/sf-year 860 kWh/sf
0 kWh/sf-year
without recovery
Best DOE Energy-Positive Bldg
810Bldg kWh/sf 800 kWh/sf2030 Target without recovery
Current (60%) 2030 Target Bldg-1.24 kWh/sf-year
700
800
1,255 kWh/sf Current (60%) 2030 Target Bldg without recovery
1100
900
with total recovery
10 KWh/sf-year
800 2030 Target
0 kWh/sf-year
700
without recovery
405 kWh/sf
Best DOE Energy-Positive Bldg 600
0 kWh/sf-year
Best DOE Energy-Positive Bldg -1.24 kWh/sf-year 860 kWh/sf
Bldg
810 kWh/sf
with total recovery 800 kWh/sf
-1.24 kWh/sf-year
without recovery
with total recovery
Concrete
Steel Rebar
Danpalon (PC)
Steel Bolts
TOTAL EMBODIED ENERGY
FOUNDATION
without recovery Dissasembly
10 KWh/sf-year 1000
1000 900
1,651 kWh/sf
Materials Embodied Operations Dissasembly
20 kWh/sf-year
1100
1300 1,651 kWh/sf
Materials Embodied Operations
Materials Embodied Operations Dissasembly
Current NE Source 1300 Energy Intensity EIA Bldg
1200
Total Net Energy (Embodied Energy and Operations Energy) 40 Year Lifespan with 860 kWh/sf Source Embodied Energy
kWh/sf
1600 1500 1400
ENERGY kWh/sf
9
1600 1500 1400
1600
Key NZEB Strategies Conventional construction techniques, in striving for permanence, fix materials to one another in such a way that they lose the capacity to be reclaimed. By contrast, Cellophane House is assembled out of materials held in place by rapidly reversible attachment methods. Bosch Rexroth extruded aluminum framing, combined with custom steel connectors, provides the structure and the means to attach factory made elements together. Modularity enables the house to be efficiently transported. An analysis of the Cellophane House materials found an embodied energy intensity of 860 kWh/sf. When compared with current and future operations energy benchmarks, this figure reveals embodied energy as a significant contributor to the lifetime energy profile of a building. The Cellophane House disassembly/reassembly strategy successfully recovered 98.95% of the energy embodied in materials during the 38-day disassembly sequence.
Embodied Energy Recovered
851
1700
ENERGY kWh/sf
Embodied Energy
860
1700 40 Year Lifespan with 860 1700 kWh/sf Source Embodied Energy
Project Description Cellophane House is an off-site fabricated structure created in 2008 for The Museum of Modern Art’s exhibition, Home Delivery: Fabricating the Modern Dwelling, temporarily installed in a lot adjacent to the museum from July to October. The 1,800 square-foot, 1:1 prototype features an energy-harvesting transparent envelope made from PET laminated with thin-film photovoltaic cells. Off-site fabrication took place over the course of thirteen weeks at Kullman Buildings Corp in Lebanon, NJ, where the structure was separated into fourteen simultaneously built chunks. Once the chunks were delivered to the site, the house was assembled in sixteen days. After the exhibition, all components of the house were labeled and cataloged, and the house was disassembled, then segregated into constituent parts, and stored for future reassembly at a new location.
Measured Energy Use
600 TOTALS 1,800 sf building
71,423 kWh
22,577 kWh
71,448 kWh
146,008 kWh
8,214 kWh
235,001 kWh
15,264 kWh
1,547,790 kWh 860 kWh/sf
99.99%
100%
100%
100%
100%
100%
100%
100%
0%
98.95%
954,675 kWh
22,224 kWh
71,423 kWh
22,577 kWh
71,448 kWh
146,008 kWh
8,214 kWh
235,001 kWh
0 kWh
1,531,570 kWh 851 kWh/sf
500
100
400
500 400
Disassembly (October 29-December 5, 2008)
300 Client: The Museum of Modern Art Architect: KieranTimberlake Consultants Fabrication and Assembly: Kullman Buildings Corporation Construction Manager: F.J. Sciame Construction Co. Inc. On-site Assembly/Disassembly: Craftweld Fabrication Company Inc, Budco Enterprises, Inc. Structural Engineer: CVM Engineers Exterior Wall Panel Fabricator: Universal Services Associates, Inc. Lighting Designer: Arup Lighting Acrylic Stair Fabricator: Capital Plastics Company
Suppliers Structural Frame: Airline Hydraulics Corporation Interior Wall Surfaces: 3form Windows: Schüco USA LED Lighting: Philips/Color Kinetics Translucent Roofing: CPI Daylighting Inc. Acrylic for Stair: Total Plastics Inc. PET Film: DuPont Teijin Films Thin Film Technology: PowerFilm, Inc. Infrared Blocking Film: 3M Kitchen Casework: Valcucine Appliances: Miele Plumbing Fixtures: AF New York Bathroom Pods: Kullman Buildings Corporation
© Peter Aaron/esto
Contact: Roderick Bates KieranTimberlake 420 North 20th Street Philadelphia, PA 19130 T 215.922.6600 F 215.922.4680 E rbates@kierantimberlake.com kierantimberlake.com
C O U N T D O W N T O A S U S TA I N A B L E E N E R G Y F U T U R E - N E T - Z E R O B U I L D I N G S A N D B E Y O N D • M A R C H 2 9 - 3 1 , 2 0 0 9 • S A N F R A N C I S C O , C A
9 kWh/sf
energy neutral
300
with total recovery
-41 kWh/sf 405 kWh/sf with total recovery with total recovery
-100
200
BUILT
40 YEARS
200
100
100
0
© Peter Aaron/esto
Component Embodied Energy
0
© Peter Aaron/esto
PERCENT RECOVERED
EMBODIED ENERGY RECOVERED
200
0 -100
-100
END OF LIFE
energy neutral
9 kWh/sf
energy neutral
with total recovery
-41 kWh/sf
with total recovery
BUILT
BUILT
40 YEARS
40 YEARS
END OF LIFE
Component Embodied Energy
ergy
GLAZING
WALL PANELS
Bosch Aluminum Framing
NextGen Smart Wrap ™ (PET)
Schüco Glass
Steel Connectors
Aluminum Louvers
Schüco Aluminum Frame
BATHROOM PODS
3-Form Varia (PETG)
FLOORS
Fiberglass
ROOF
COMPONENT
FRAME
SKIN
TOTAL EMBODIED ENERGY
955,631 kWh
NextGen Smart99.99% Wrap ™ (PET) 954,675 kWh Aluminum Louvers
STAIRS
Aluminum Grate
PVC Downspouts
3-Form Stage (PC)
Steel Gutters
Steel Bolts
EMBODIED ENERGY teel RECOVERED onnectors
h
SKIN
MATERIAL
MATERIAL osch luminum PERCENT RECOVERED raming
teel olts
FRAME
COMPONENT
FOUNDATION Acrylic
Concrete
Steel Rebar
Danpalon (PC)
GLAZING
SKIN 22,224 kWh
WALL PANELS
71,423 kWh
Bosch Schüco Aluminum Glass 100% Framing
NextGen 3-Form Smart 100%Varia Wrap (PETG) ™ (PET)
22,224 kWh Steel Schüco Aluminum Connectors
71,423 kWh Aluminum Louvers
Frame
GLAZING
BATHROOM PODS 22,577 kWh
100%
Schüco Fiberglass Glass
22,577Schüco kWh
WALL PANELS FLOORS
71,448 kWh
100%
71,448 kWh
Aluminum Frame
BATHROOM PODS ROOF
146,008 kWh
3-Form Aluminum Varia Grate (PETG) 3-Form Stage (PC)
FLOORS
8,214 kWh
STAIRS
146,008 kWh
235,001 kWh
15,264 kWh
Aluminum Acrylic
Fiberglass PVC Downspouts 100%
100%
ROOF
FOUNDATION
PVC Concrete
Grate
Steel 8,214 kWh Gutters
0%
235,001 3-FormkWh
0 kWh SteelSteel Rebar
Stage (PC)
Gutters
Danpalon (PC)
Steel 5, 2008) Disassembly (October 29-December Bolts
Downspouts
100%
Danpalon (PC)
TOTALS 1,800 sf building STAIRS 1,547,790 kWh 860 kWh/sf Acrylic 98.95% 1,531,570 kWh 851 kWh/sf
TOTALS
1,800 sf building NET ZERO CONFERENCE POSTER, KIERANTIMBERLAKE March 2009 1,547,790 kWh 22,224 kWh 71,423 kWh 22,577 kWh 71,448 kWh 146,008 kWh 8,214 kWh 235,001 kWh 15,264 kWh TOTAL EMBODIED 955,631 and kWh diagramming 22,224 kWh 71,423 kWhfor embodied energy 22,577 kWhrecovery within 71,448 kWh 146,008 kWh 8,214 kWh House as an example 235,001 kWh Brainstorming, calculating, a collaborative argument buildings, using KieranTimberlake’s Cellophane 860 kWh/sf ENERGY
100%
PERCENT RECOVERED
99.99%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
0%
100%
FO
98.95%
100%
15
0%
BUILDING MONITORING DATA ANALYSIS, KIERANTIMBERLAKE May 2007 - July 2007 Systematically calculating building performance figures for use in “Passive Solar Energy Through Active Envelope Design: Monitoring and Testing”, a whitepaper by Roderick Bates
P6b
P4b
G4b
D7a P5b E4a E3a E3c
P3b
D5a
E3b P2b
P4a
b E2b
E2a
E3d
P2c
E6a E2c
E1c
E1e
1
2
3
4
5
6
7
8
9
P1a EXISTING & DEVELOPING LANDMARKS P6c
P2a
P3a
P7a E5a P6a
P5a
P5c
E1c E1e E2a E2b E2c E3a E3b E3c E3d E4a E5a E6a
St. George’s Square The British Insurance Oval Royal Hospital Chelsea Buckingham Palace Parliament of the United Kingdom St. Paul’s Cathedral Tate Modern Tower of London City Hall and More London 30 St Mary Axe (The Gherkin) Wimbledon Millennium Dome
D5a D7a
Canary Wharf Olympic Site / Straford City
P1a P2a P2b P2c P3a P3b P4a P4b P5a P5b P5c P6a P6b P6c P7a
Battersea Park Clapham Common The Green Park St. James’s Park Wandsworth Common Hyde Park Holland Park The Regent’s Park Wimbledon Park Mile End Park Crystal Palace Park Wimbledon Common Victoria Park Greenwich Park & Blackheath Richmond Park
G3c G3a
G3b
G2c
G4a
G2d
G2a
UNITE D S T A T E S E MBASSY IN LONDON EXISTI N G & D E V E L OPING LANDMARKS
G2b
K IERAN T IMBERLAKE 18 June 2009 Luton Airport 25 more miles
T4d
T4e
Stansted Airport 28 more miles
T4c T4b T4f T4a T4g
T3b T3c
London City Airport 8 miles away
T2a T3d T2b
G8 EMBASSIES & AMBASSADOR DESTINATIONS
T1a
1
Heathrow Airport 8 more miles
2
3
4
5
6
7
8
9
T3a
AIR & RAIL TRANSPORTATION T3a T08 T13 T23 T29 T32
London London London London London London
Heliport City Airport Heathrow Airport Gatwick Airport Luton Airport Stansted Airport
T1a T2a T2b T3b T3c T3d T4a T4b T4c T4d T4e T4f T4g
Victoria Train Station Charing Cross Train Station Waterloo Train Station Blackfriars Train Station Canon Street London Bridge Train Station Paddington Train Station Marylebone Train Station Euston Train Station St. Pancras Train Station King’s Cross Train Station Liverpool Street Train Station Fenchurch Street Train Station
G2a Embassy of France G2b Embassy of the Fed Rep of Germany G2c Embassy of Japan G3a United States Embassy G3b Canadian High Commission G3c Italian Embassy G4a Embassy of the Russian Fed G4b Winfield House G2d St. James's Palace
Gatwick Airport 18 more miles
UNITE D S T A T E S E MBASSY TRANSP O R T A T I O N
IN
LONDON
Travel Time Using Public Transit Minutes
0-15
16-30 31-45 46-60 Air, Rail, or Water Transportation Hub
>60
U N I T E D S T A T E S E M B A S S Y E M B A S S Y F U N C T I O N S
I N
L ONDON
K IERAN T IMBERLAKE 18 June 2009
K IERAN T IMBERLAKE 18 June 2009
UNITED STATES EMBASSY IN LONDON URBAN ANALYSIS DIAGRAMS, KIERANTIMBERLAKE June 2009 Diagraming boroughs, neighborhoods, landmarks, parks, transportation infrastructure, and embassy related destinations at multiple scales for competition submission
Winfield House
Current United States Embassy Current United States Embassy Current United States Embassy
N I T E D SU TN A TI TE ES D E M N B LAOS N N S TBAATSESSY EI M S YD OI N U N I T ED STATES EM B A S S Y I N B A S S Y FE UM NB C A TS IS O Y NFSU N C T I O N S E M B A SSY FUNCTION S
RAN T IMBERLAKE 18 June 2009 K IERAN T IMBERLAKE 18 June 2009 K IERAN T IMBERLAKE 18 June 2009
Winfield House Winfield House
St. James's PalaceSt. James's Palace St. James's Palace
1
L O N D O N L O N D O N
1 12
2 23
3 34
4 45
5 56
6 67
7 78
8 8
Travel Time UsingTravel Time Using Time Using Public TransitTravel Public Transit Public Transit Minutes 0-15 Minutes 16-30 31-45 0-1546-60 16-30>60 31-45 46 Minutes 0-15 16-30 31-45 46
Embassy or Consulate Embassy or Consul Embassy or Consul Program RelevantProgram to the US Relevant Program Relevant Ambassador Ambassador Ambassador
UNITED STATES EMBASSY IN LONDON URBAN ANALYSIS DIAGRAMS, KIERANTIMBERLAKE June 2009 Overlaying distance and train travel time information relative to the proposed site for the United States Embassy in London
RESEARCH, ENVIRONMENT, AND DESIGN (RED) REPORTS, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating with other researchers and design teams to create extensive preliminary documents describing projects’ environmental analyses and potential building systems
RESEARCH, ENVIRONMENT, AND DESIGN (RED) REPORTS, KIERANTIMBERLAKE November 2008 - June 2009 Researching topics using a wide array of media, including interviews, writing complete portions of the reports, and contributing to the layout and assembly of the reports
GRANZOTTI RESIDENCE, WINN WITTMAN ARCHITECTS November 2007 - February 2008 Performing as Lead Designer from schematic design to design development for a single family residence on a challenging hillside site in west Austin, TX
GRANZOTTI RESIDENCE, WINN WITTMAN ARCHITECTS November 2007 - February 2008 Evolving the size, massing, orientation, height, and level of separation over a period of three months based on client desires, budget, and site topography
ZOO DAMASCUS GUIDELINE DIAGRAMS, CLOUD9 May 2007 - July 2007 Synthesizing zoo design guidelines from meetings with a Barcelona Zoo design consultant
ZOO DAMASCUS GUIDELINE DIAGRAMS, CLOUD9 May 2007 - July 2007 Organizing and conveying concepts simply to mitigate language barriers between English, Spanish, and Arabic speaking architectural professionals
MATERIAL SAMPLE 1 diverting, absorbing, pumping
MATERIAL SAMPLE 2 containing, blocking, permitting
SHAPE MEMORY MATERIAL SAMPLES January 2005 - May 2005 Utilizing emergent polymer attributes on many scales to develop performative material systems
MATERIAL SAMPLE 3 blocking, emitting, directing
MATERIAL SAMPLE 4 enclosing, diffusing, collecting
0
20
40
60
80
100
MATERIAL SAMPLE 4 EXPANDED enclosing, diffusing, collecting over time
SHAPE MEMORY MATERIAL SAMPLES January 2005 - May 2005 Designing and testing dynamic material qualities through animation
POLYMER TOWER January 2006 - May 2006 Interrogating structuring strategies and polymer attributes
POLYMER TOWER January 2006 - May 2006 Towering with polymers through a form-finding process driven by performance and force
POLYMER TOWER January 2006 - May 2006 Utilizing surface and connectivity to develop a structuring strategy for a polymer tower
Utilizing emerging polymer technologies, the tower system is constructed through a deployable, form finding process where tubes are inflated, configured, rigidzed, and completed with floors and membranes. The method removes the steps of rationalizing into components, creating a structure of continuity.
Tubes made of gas-activated rigidizable polymer contain elevator, circulation, air flow, and other vertical services. When inflated, the tubes reserve space for said utilities while serving as a flexible framework for the structure.
Overlapping helical tube surfaces serve as the tower’s vertical structure. Multiple bundled tubes are contained within each individual tube, increasing its overall surface area. These bundled tubes are also made of gas-activated rigidizable polymer. Tensile floor surfaces are supported by unidirectional fiber reinforced composite straps attached to the horizontal moments of the bundled tubes. These straps resist outward lateral thrust created by the helical tube surfaces.
The outer skin consists of ultraviolet light resistant shape memory polymer strips with imbedded tensile fibers. These strips help counter outward thrust, while acting as a deformable membrane able to create strategic tower openings. The inner skin is a thin polymer film with variable permeability to air, based on temperature and humidity. Attached to the imbedded tube surfaces, it serves a vapor barrier, while thermal insulation is achieved by the contained space between the two skins.
POLYMER TOWER
SERVICES
STRUCTURE
SKIN
POLYMER TOWER January 2006 - May 2006 Designing a process of construction unique to polymers
POLYMER TOWER January 2006 - May 2006 Testing structure and construction strategies with analogue and digital models
POLYMER TOWER January 2006 - May 2006 Investigating the potential of indeterminate structure and redundancy within polymer architecture
ICE COMPOSITES
LIGHT TRANSMITTANCE
0.0
pure water
cotton fiber
0.5
1.0
1.5
0.0
0g
pure water
0.5
1.0
1.5
10%
12g
24g
36g
cotton fiber
3%
1%
0%
fiberglass
7g
14g
21g
fiberglass
7%
4%
3%
polyester fiber
3g
6g
9g
polyester fiber
8%
7%
5%
wood strand
6g
12g
18g
wood strand
4%
4%
3%
What does it mean to be a composite? What is the appearance, strength and durability? How can one test these material attributes? A composite has material qualities not present in either of its components; a composite is more than the sum of its parts.
ICE COMPOSITES January 2006 - May 2006 Investigating composite performance through systematic testing
IMPACT STRENGTH
MELTING RATE
0.0
pure water
0.5
1.0
1.5
0.0
0.1m
pure water
0.5
1.0
1.5
7h
cotton fiber
0.9m
1.0m
1.3m
cotton fiber
7h
7h
7h
fiberglass
0.6m
0.6m
0.9m
fiberglass
8h
9h
9h
polyester fiber
0.8m
1.0m
1.2m
polyester fiber
8h
10h
10h
wood strand
7.0m
0.6m
0.8m
wood strand
8h
9h
10h
ICE COMPOSITES January 2006 - May 2006 Evaluating collected data to draw concise conclusions regarding varied composite performance