Design Research Portfolio

Page 1

RESEARCH Hal eYoungbl ood


Day 3

Day 5

Day 9

Day 22

Day 32

Day 36

ARCHITECTURE AND PLASTIC: PLASTICS TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collating a “Master Timeline” of all plastics and plastics organizations relelvant to a book about architecture and plastics to be published by Princeton Architectural Press


Day 78

Day 80

Day 88

Day 92

Day 181

Day 203

ARCHITECTURE AND PLASTIC: PLASTICS TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Researching and developing the timeline to completion over several months with direction from the book’s author, Billie Faircloth


ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating with the author, Billie Faircloth, and a graphic designer, Alex Cohn, to develop a graphic methodology for presenting time-related information


Association

Society for Testing and Materials ASTM In ternation al Natio nal In stitute 1994 of Stan Build dards ing O and Te 199 fficia 4 chnolo ls an Inte gy d Co rnati de A ona dmin l Co istra Sta nfere tors nda nce Intern rd B of B ation uild Inte uild al, In in ing rna gC c. Offic ode tion ials Con Ge al C rm gre ode an ss In Cou Ins te Am rna ncil titu eric tion t e al an for Am En Sta eric gin nd ard ee an Am rin iza St er gS tio an ica AS n tan da n rds TM da Na rds In As tio Co te Co so na m rn mm cia lS m at tio itt ta itte io n ee nd e na ar on lO ds Pl rg I n a an sti sti tu iza cs te tio n fo rS ta nd ar di za tio n

Underwriters Laboratories Inc.

National Fire Prote ction

American

194 1 1 86

19 19 17 19

19

19 37

47

70 19 70 19 0 7 19

3

of Pr

Res

Co d

e

Mater

57

1964

2004

1964

19161910 80 18 76 18 18

1997

1946

18

18 72

stry

20 19

37

45

6 193 3

193

19

19

42

nd Plastics New Zeala

Plastics Federation of South Africa

National Association of Manufacturers of Plastics

titute Plastics Ins

Pi on ee rs ss In Ma As oc sti nu iat so tu fac te ion cia t urin of Ch of tio Am em Ho gC n cia m er he e lM ica mis Bu an t i s ufa lde As ctu r s s oc rer Am iat sA eric ion Am sso an eric cia Am Pla an tio eric Arc stic n hite an sC ctu C o Turk h un ral em ish P cil Ma is lastic tr nufa yC s Ind oun ctu ustri rers cil als R Ass 20 esea Briti ocia 02 rch, sh P 19 tion Deve 20 lasti 88 00 lopm cs F ent a ede ratio nd Tr n a ining Swed ish Pl Foun astics datio & Chem n icals Federa Plastic 1989 tion s and Ch 2003 emicals Federa tion Associatio n of Swedi sh Chemica l Industries Spanish Confeder ation of Plastics Industry 1990

87

2000

Pl as tic s

90

Autonomous

ies str n du tio cia oin ns Bi sso tio n of s' A cia tio n rer so da tio ctu As un ufa cia try an Fo so us d a sM As di l In try uld n a s u Mo tin ea mic Ind as op ry & he al Pl ur ine fC mic eE ach no he ici Th gM tio eC im sin era f th ch ces ed As no Pro tio nF r lia be era ub Ita ed &R nF iety lia Soc tics Ita las tics 84 P s Pla 19 lian on Ita able ciati rad sso deg cs A Bio lasti 84 on ioP 19 nB ciati a o Ass Jap 07 tion 20 7 stics dera 89 n Pla 200 19 ry Fe st n Japa Indu ciatio stics rs Asso n Pla acture Civil Japa Manuf iaci贸n o, Asoc astics l Pl谩stic sian Pl strias de Malay de Indu cional i贸n Na Asociac land of New Zea

2000

Pl as tic s

19 19

45 19 60 19

19

61

45

2 9 196 195 1962

1967

1961

1990

Na tio na lA

49

19

1944

1979

n tio ia oc ry st ss du sA In er r s u tic ct s a a uf Pl an e M th sin of ty Re cie tic o e h S nt Sy

19 61

19

19

42

19

Society of the Plast ics

1989

84

u Ind

3 193 929 1 27 20 19 19

Canadian Plastics Industry Association 1997

Industry of Cana da Associatio n of Intern ational Ch emical Ma China Pl nufacture as rs 2006 tics Proc essing Industr Gulf Pe y Associa troche tion mical s & Egyp Chem 200 tian icals 6 199 Plast Associ 3 ic Exp ation Euro orters pea 200 &M n Bio 6 anufa plas Inte cture ti cs rna rs Ass tion ocia al B Pla tion iode stic gra sEu dab rop Fin le P e: A ish o ly s Pla me soc La rs A stic iati sso Pla on s In ciati of P stu du Ge on las str rgie and rm yF tics Fe Wo ed an Ma de Pl era rkin nufa As as rat gG tio so ctu tic ion n rou c rers As sa iat ps ion so nd cia of Ru Al t P lI bb ion las nd e t r of ics ia Ma Hu Pl Ma c hin as ng nu tic ar er fac y ia sM tur n ers Pl an as uf tic ac s tu In re d u rs str 'A y ss oc ia tio n 1988

1956 1950

1957

stry, APC-ACC Polyurethanes Indu Alliance for the SPI e Division, Polyurethan SPI vision, astics Di Pl lar Cellu te Institu Pipe Plastic on ciati Asso rers u n ct iatio anufa ssoc er M rs A n Fib e c ca te u ri Am e stitu Prod r In e n ib o de F te Ray -Ma titu Man Ins g rin ion ove iat or C soc s lo n F A tio nt ilm ilie cia &F Res sso ric A b gs l Fa in r a ic ve em llco Ch Wa

th al He

Plastivida Instituto Socio-Ambiental dos Plasticos

1994

Center for the Polyurethanes Industry

d an ty fe Sa

ion A at al n str ion tio ini at ec dm up ot A c r c h lP alt rO ta fo He en te nd m tu ya on sti et vir af l In S a En l n na tio ics tio Na Tox pa nd cu ice na Oc ho tio aC en r v r cil l e Te Pr ea oun sign gC ion nS din l De ee llut Gr Po Buil enta of en nm o e re ir ffic sG Env O te d 8 n ta 8 S ya 19 ed nerg 89 Unit in E 19 hip nt 90 ders nme 19 Lea viro 93 r En fo 19 de ign g Co 4 Des uildin 199 nal B o ti itute a 7 ts Inst 199 Intern uc od e Pr radabl 1997 tute Biodeg tal Insti en m viron 1999 uard En Greeng 2001 Argentina ida stiv Pla 1992 Association icals Industries Plastics and Chem

1955 1952

47 41 19 19

Siding Institute, Society of the Plastics Industry

1946

In st itu Po te lys Vi Ins of tyr ny ula en Ar lS ted e ch id Mo All in ite Co ian g lde nc ct In ce r s r e sti s for te As tu Fo Fle s te All rm oc xib ian iat sA le ce ion Po ss of o ly 20 F cia ure oa Str 04 m tio tha uctu Pa n ne ral cka Fo Ins 19 gin am ula 98 gR te Spra ecy dP 19 ane cle y Po 95 rs l As lyure soc 19 tha iati ne 95 Plas on Foa tic P mA ipe 19 llian & Fit 91 ce ting s As 19 socia 90 tion 198 Vinyl 7 Polyur Instit ute ethane 198 Foam America 7 Associ n Com posites ation 1982 Manufa cturers Associa 1980 tion Composites Fabricator s Associatio n Fiberglass Fabr icators Associatio n 1979

1915 192 2

pa nd ed

y nc ge

er ica n

1884 1896 1898 1901

Am

National Academy of Engineering

Ex

1961 arch Institute p, Building Rese 1962 Plastic Study Grou titute search Ins Building Re ment Environ tructed the Cons ard re and sory Bo structu h Advi on Infra l Board esearc ounci ing R Build rch C esea nal R tory ra Natio 97 abo 19 cts L ces rodu st P cien Fore 91 of S ty 19 my ade ocie l Ac al S ona ty mic Nati ocie Che rS an ty me eric cie oly Am lP So te, er ry nta titu ist Ins me lym on try Po em s mis nvir Ch er ble E a e Che ed Bio rad en gin pli rs n p eg Gre ee sE dA yD in tic an tall ty ng re en las ie lE Pu oc nm fP ca of iro lS yo ni nv ion iet ha ica /E c n ec lU Bio So em M na Ch of atio n ty ern ica cie Int er So n Am ica er Am

Every chapter of the book has a set of relevant, time sensitive plastics data. Using the Master Timeline, we concluded each data set could be mapped radially, whereby the center is earliest and the outermost ring is latest. In all diagrams placement of plastics around the rings is always the same, each with its own trajectory through time.

Plastics Organizations when they were established, renamed, and terminated (if applicable)

ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop a timeline diagram for plastics organizations


cs)

tic plas

r

info

rced

lyeste

r re

ra

te

fibe

ce ta te ra

te na

nit

Ce

llu

lo

se

Ce

llu

pro

lo

pio

se

Ce llu

llu Ce

los ea

los

ea

te -bu ty

ce tate

bon Car

sein

Bois Dur ci

ic po Arom at

tyrene plasti cs

phthali

-butadiene-s

n (glycero

r

Ca

te

ne py le

m id es ne ) su lfid e)

te)

comonomer

tes)

Polyfluorene

Poly(hyd roxyalka noa

Poly(ethylene terephthalate), glycol

id)

ate cyan ur

Polyim

Polyi so

ide

te

ncre te

socy an a

dii

er co

ctic ac

Pol ym

ryla

me tha c

nyl me tha ne

Po ly

me

ric

dip he

Po ly

Poly (la

Po lyp ro

la

ph ta re te ne

ny le he

he ny le

(p

(m eth yl

(p Po ly

Po ly

ra

te na pio pro

se lo

Ambe

te tyra -bu te nit llu Ce

Acrylic resin

rced

ce tate ea

ce ta

ulo s

ea los

Ce ll

llu Ce

llu lo se

Acrylonitrile

tic plas

r lyeste

info

ic po

r re fibe

sein

Arom at

bon

Bois Dur ci

Car

Ce

Polyfluorene

comonomer

ic ac

ide Polyim

roxyalka noates) Poly(hyd

Poly(ethylene terephthalate), glycol

Polyi

socy anur ate

id)

te

ncre te

socy an a dii

er co

ne

(lact

Pol ym

en ylm eth a

cd iph

Poly

cry

late )

) lfid e su

Po ly

Po lym eri

Alkyd resi

cs

cs)

tyrene plasti

phthali

-butadiene-s

n (glycero r

Acrylic resin

ne

py le

) es

pro

id m

Po ly

la ta ph re

ne

te ne

ny le

ny le

he

(m eth yl

(p he

Po ly(p

Po ly

me tha

Ce

Ca

te ra

llu lo se

pro pio na te

nit se lo

llu Ce

Ambe

te tyra -bu te ce ta ea los llu Ce

Acrylonitrile

tic plas rced info r re fibe

ce tate

bon Car

ea

sein

los

Ca

llu Ce

comonomer Poly(ethylene terephthalate), glycol

ide

tes)

Polyim

Polyfluorene

eth yl

Alkyd resi

cs)

r lyeste ic po Arom at

Bois Dur ci

tyrene plasti cs

phthali

-butadiene-s

n (glycero

r Ambe

Acrylic resin

Acrylonitrile

Alkyd resi

py le ne

id es ) )

m

ulf ide ne s

cry

me tha

roxyalka noa

)

Poly(hyd

ate on

late ne ) dii socy an ate Pol ym er co ncre te Poly (lact ic ac id) Polyi socy anur ate

er

)

carb

m oly

op

)c

sin

sin

re

ne

le py ro

e yd eh

l re

ura

furf

ald

-p

ne

rm

ol-

ide

on (nyl

l lyco

ide

dig

nyl me tha

fo

yle th (e

en

llyl

onate

Transect 05: ASTM D 1600 1958-2008. ASTM instituted an acronym of abbreviation to replace chemical terminology. This chart plots plastics found in building and construction and when they made their debut on ASTM’s document D1600 of standard terminology for abbreviated terms related to plastics.

ol-

s

line

he

ne

re

sty

ly Po

im ide-

dip

ne lfo

su

ly Po

ysta

torto

l po

lym

y po lyet hy

r

ise sh

ell)

er

Me lam lene ine -fo plas Me rm tics thy ald eh lc yde ell Mo ulo resi dif se n ied Org Sil ico an ne ic Pa lig ra ht ffi em n itti ng dio de s

e len

y reth uo

arb Polyc

ric

ly Po

fl tra lyte Po

orn,

nist

ne

tha ure

lyeste

tin (h

id cr

Low de

ate)

oro

Po lyp ro

acet

rflu Pe

la

inate

rced po

Liqu

l)

coho

l viny

en

re ph ta

yl al (vin

Poly

Ph

te

)

tyral

Poly(

yam Pol

ny le

Kera

ly(a Po

(p he

sure lam

Jute rei nfo

)

Ph

he ny le ne

ide l chlor

polyethylene

High pres

ride)

chlo ylidene Poly(vin

ni Polya

(p

Glass fiber reinforced polyester

am Poly

Po ly

ene

Gutta-percha High density

Poly(ethylene terephthalate)

(m

plas tics

lymer

copo

e

tyren

d polys

rced plastic

e Polyethylen

Po ly

de Expan

Poly(v

y( Pol

ylene oeth fluor

etra lene-t

Ethy

e) inylidene fluorid

iny

se

llulo

l ce

Ethy

ASTM D 1600 1958

rsulfone Polyeste

fone

ate

me

de

am Poly

yl (all

ya Pol

e

arbon

nilin

Polyc

Poly(ethylene terephthalate)

er

m

te)

e Polyethylen

oly

op

e

a on

rsul Polyeste

)c

ne

Polya

le py

in

sin

res

e re

ral

yd eh

ro

-p

)

carb

ylon e (n

l lyco dig

mid

ate

Po ly

in

n

resi

ori

y

Epox

ASTM D 1600 1964

Rescorcinol formaldehyde

Poly(v

)

d polystyr

ly Po

ne

ald rm

l-fo

Ph

no

yle th (e

llyl

rfu

ya Pol

fu ol-

ly(a Po

en Ph

e

imid

nilin

ide-

arbon Polyc

Polya

am Poly

Poly(ethylene terephthalate)

e Polyethylen

rsulfone Polyeste

Po ly

Wood plastic composites

te resin de-vinyl aceta

Vinylidene chlori

sin ate re

r resin

n

n resi

resi

hyde

hane

alde

ide res

rm

Uret

acet

a-fo

inyl

e chlor

ide-v

Vinyl este

yliden ide-vin

chlor Vinyl

l chlor

Viny

e

plastics

de

lori

ch

Fiber-reinfo

dio de

2. Plastics PROCESSING from when and where they come (incomplete)

er est oly

ng

ASTM D 1600 1971

dp

Extrude

em

itti

Ure

n

flu

resi

fin

hyd e

ne

e

ole

los

ne

r

ell)

er

lyet hy

-fo rm ald e

llu

ico

er m oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rflu rm Pe fo sin oll re en te) ura na Ph furf rbo oll ca en co ly dig ) ylon e (n mid e imid ide-

n

lig ht

ce

Sil

de

dif ied

ic

yl (vin

e len thy lye te lori po na Ch ed cya ink iso er ss-l lym Cro po ion ls u Em

te na

ry polymers

bu vinyl

ise sh

lym

lene

tic

Me thy l

Mo Org an

Pa ra ffi

torto

lyeste

y po

lam ine

las

Me

l po

len thy lye

rced po

orn,

ysta

dp

inate

tin (h

oly

itin

Ch

Regenerated cellulose (rayon)

ssure lam

id cr

1991 ASTM D 1600 1986

es

ers

pla

Shellac

polyethylene

High pre

Kera

oly m

ASTM D 1600 1999

Shape memo

Glass fiber reinforced polyester

Liqu

rate

yli vin

ene

Gutta-percha

Low deni st

er

ASTM D 1600 2008

stics

d polystyr

Jute rei nfo

bb

id

ne pla

rced plastic Fiber-reinfo

)

oly an

en tp

foam

Silico

de Expan

High density

op

lymer

copo

e tyren d polys

Extrude

-ru

rp

orb

uta

po

ne

ylene oeth fluor

etra lene-t

Ethy

de s

ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop timeline diagrams for chapters 1, 2, and 3

se

llulo

l ce

ne fluoride) Poly(vinylide

1. Plastics CONTEMPORARY DISCUSSION significance (number of times mentioned) in experts’ essays

Sty ren e-a cr

Spr ay

y

Ethy

ne

e-b

pe

bs

sti die cs ne pla sti ylo cs nit rile pla stic poly uret hane Soy prot ein resi n Soy oil re sin

ate an ocy r is

me

ly po

Epox

dio

erm

le py

n

Th

pro

ro

plas tics

resi

t igh we

uo

po

ion uls

Em

) loride inyl ch Poly(v al) butyr vinyl Poly( hol) co yl al (vin Poly e) etat l ac ny y(vi e an Pol reth lyu e Po len thy ore e u on afl ulf tetr ly lys Po ne Po re ty lys Po

lar cu

fl xa he

ell)

ren

satu

ne

ise sh

re

Sty

ne

Un

yle eth

ed ink

ss-l

Cro

stics

chloride

le mo igh

oro

ri

lo Ch

cs

cs

last ic

Sty

le thy lye

Rescorcinol formaldehyde

ylidene Poly(vin

ra-h

flu

dp te na

ry polymers

plastics

Ult

tra Te

r resin

Vinyl este

te resin de-vinyl aceta

eh yde

Wood plastic composites

e

Vinylidene chlori

g

oro

e Ph

rflu Pe

n

em itti n

-fo rm

los

r

poly ethy

ald

llu

de

lig

ht

ffi

ce

Sil ico ne

ori

Po

an ic

Pa ra

torto

lyeste

lym er lene

ne

Org

ne

re

ty lys

in ide res e chlor yliden ide-vin sin chlor Vinyl ate re acet inyl ide-v n resi l chlor Viny hane Uret n resi hyde alde sin rm r re a-fo ste Ure lye po

Mo dif ied

e

n lfo

u lys Po

ine

flu

Me thy l

ne

yle reth

uo

afl tetr

lam

orn,

fin

rced po

ysta l po

ne

Me

ne

nist y

ole

Low de

tha ure

ly Po

ly Po

inate

tin (h

Liqu id cr

l)

e) etat

le thy lye

Kera

)

sti

sti

y (vin

oly

itin

Ch

Su

ra

) de

Regenerated cellulose (rayon)

sure lam

Jute rei nfo

)

es

ers

Shellac

polyethylene

High pres

)

ide l chlor

oly m

pla

Su pe

lori

h lc

Shape memo

Glass fiber reinforced polyester

chloride

id

ne pla

ene

Gutta-percha

Poly(v

de

Silico

d polystyr

High density

e) inylidene fluorid

pla

tic

Rescorcinol formaldehyde Regenerated cellulose (rayon)

ne

le p

er

las

e

c

vi

yli vin

lymer copo

tyren

op

ylene oeth fluor etra lene-t

bb

po

se

llulo

l ce

Ethy

coho

die

itri

poly

tp

-ru

oly an

hane Soy prot ein resi n Soy oil re sin

y

rced plasti Fiber-reinfo

ac nyl

foam

uret

Ethy

tyral

e-a cryl

on

ay

d polys

yl al (vin

uta

ren

Spr

ne

rp

orb

en

ht

Epox

e-b

pe

bs

d rate satu

Sty

te na cya iso

Extrude

bu vinyl

Un

ne

ren

de Expan

Poly

erm

le py

er

lym po ion

Shellac

Poly(

Th

pro

re

Sty

uls

Em

ry polymers

y( Pol

Sty

ne

po

ed ink

ss-l

Cro

Shape memo

iny

eig rw

ro uo

Ch

cs

ic

Su

ra

)

le thy lye

stics

Poly(v

ula

fl xa he

lori

cs

y (vin

oly

ne pla

ylidene Poly(vin

lec

ne

dp

te na

hane Soy prot ein resi n Soy oil re sin

Silico

mo

yle eth

de

sti

sti

igh

oro

n

ori

itin

Ch

Su pe

de

lori

h lc

last

uret

ra-h

flu

in

n

resi

ne

es

ers

pla

Ult

tra Te

Wood plastic composites

te resin de-vinyl aceta Vinylidene chlori

sin ate re

r resin

ide res

acet n

resi

resi

hyde

hane

alde

Uret

rm a-fo

inyl

e chlor

ide-v

Vinyl este

yliden ide-vin

chlor Vinyl

l chlor

Viny

er est oly

flu

fin

ne

ole

de

tic

pla

las

ne

le p

id

oly m

le thy lye

itri

er

dp

die

on

poly

oly an

en tp

bb

rate

yli vin

cryl

rp

orb

-ru

uta

e-a

foam

op

ren

ay

ne

e-b

po

Sty Spr

ren

ht

ne

erm

le py

Th

re

Sty

pe

bs

satu

eig rw

pro

ro

uo Su

ra

Sty

Ure

Un

ula

fl xa he

lec

ne

mo

yle eth

igh

oro

ra-h

flu

Ult

tra Te Su pe

3. Plastics INCLUSION IN ARCHITECTURE when they debuted on ASTM’s D1600

plastics


s)

tic plas

r

rced

lyeste

info

te ra

te

nit

pro pio na

los

ea

ea ce ta te

llu

los

Ce

llu

Ce ll

ulo se

Ce

llu

lo

Ce

se

sein

-bu

ce tate

tyra te

r re

ic po

fibe

Arom at

bon

Bois Dur ci

Car

tyrene plasti

phthalic

-butadiene-s

n (glycero r Ambe

Acrylic resin

ne py le

)

ro

es )

comonomer Poly(ethylene terephthalate), glycol

ide

tes)

Polyim

Polyfluorene

Poly(hyd roxyalka noa

socy anur ate

ate

ncre te

id)

Polyi

socy an dii

ic ac

er co

Pol ym

ne eth a

nyl m he

dip ric Po lym e

Poly (lact

late )

su lfid e

eth yl

me tha cry

m

id

Po lyp

la ta ph

re

ne

te ne

ny le he

ny le he

Po ly

(p

Po ly(m

llu Ce

Ca

te ra

te

nit lo

se

pro

pio

na

Po ly(p

Polyfluorene

comonomer Poly(ethylene terephthalate), glycol

ate

Polyim ide

eh yde

plas

tics

resi

n

em

itti

ng

dio

de

s Phenolics

PS

PVC

HDPE

PP

LDPE

Melamine

EP

PA

PE

ABS

UF

er

roxyalka noates)

e

)

Poly(hyd

Acrylonitrile

te tyra -bu

ce tate

te

ea

ce ta

ulo s

ea los

Ce ll

llu Ce

Ce

llu lo se

sein

bon

Car

Ca

ate

)

los

e

ate

Polyi socy anur

cya n

ncre te

iiso

acid

er co

ctic

-fo rm

lene

ald

llu

er

lyet hy

m

Pol ym

Alkyd resi

tic plas

r

info

rced

lyeste ic po

r re fibe

Arom at

Bois Dur ci

te) ryla

ht

ce

Sil ico n

ell)

lym

on

carb

on) (nyl

ate

e

Poly (la

ide

col igly

yl d

eth an ed

cs

cs

cs)

tyrene plasti

phthali

-butadiene-s

n (glycero r Ambe

Acrylic resin

Acrylonitrile

Alkyd resi

ne

py le

) es

pro

id

)

m

ulf ide

n

ine

torto ise sh

l po

y po

ura

me tha c

ffi

lig

lam

ysta

r

furf

e

imid

1. "Plastics in Building" (The Architectural Forum June, 1940) 413-417. 2. Rober F. Marshall "Plastics‌Practically Speaking" (Architectural Record April, 1943) 54-59. 3. Albert G.H. Dietz "Potentialities of Plastics in Building" (Architectural Record April, 1950) 132-138. 4. Albert G.H. Dietz "Selecting Plastics for Buildng Uses" (Architectural Record April, 1955) 225-233, 313, 314, 318. 5. "Look how many ways you can now use PLASTICS!" (House & Home September, 1956) 118-135. 6. "BRI Reviews Plastics for Roof Construction" (Journal of the AIA December, 1957) 118-135. 7. "Plastics Permeate Specifications Sections" (Progressive Architecture October, 1960) 206. 8. Z.S. Makowski "Structural Plastics in Europe" (Arts and Architecture August, 1966) 20-30.

dif ied

an

ic

Pa ra

arbon

he

Org

ne re

ty lys Po

nilin

dip

Mo

e

n lfo

u lys Po

Polyc

nyl m

Po ly

Me thy l

e

len

y reth uo

nist

oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rm fo sin oll re

la

ly Po

rflu Pe

ph ta

ne

ll ly(a Po

re

Me

olen

es

id cr

Low de

tha ure

fl tra lyte Po

orn,

Liqu

l)

e) etat

l ac

Ph

te

lyeste

tin (h

tyr

en Ph

ne

inate

rced po

Kera

coho yl al (vin

Poly

ny y(vi

plastics

sure lam

Jute rei nfo

al)

bu vinyl

polyethylene

High pres

)

ide)

Polya

4. Plastics EXPERIMENTATION significant historical case study projects and their included plastics

High density

e)

yam Pol

ny len

c

Glass fiber reinforced polyester

ideam Poly

he

8

ene

1

ny le

110 1 9

ded po

lor inyl ch

Pol

lymer copo

ene lystyr

d polystyr Extrude

chloride

Poly(

ylene oeth fluor

etra lene-t

Expan

2

(p

12

se

lo cellu

Ethy

3

eth yl

y

l Ethy

ne fluorid Poly(vinylide

Poly(v

ate

Gutta-percha

Poly(ethylene terephthalate)

ric

15 14 13

Epox

n cya

iso

er

lym

po

ion

rced plasti Fiber-reinfo

Polyethylene

me

uls

Em

4

he

e ink

ss-l Cro

5

(p

ne

Rescorcinol formaldehyde

ylidene Poly(vin

)

de

lori

yle eth oly dp

6

stics

rsulfone Polyeste

fone

onate

e

er m oly op )c ne le py ro -p ne sin yle th e re (e yd eh oro ald rflu rm Pe fo sin oll re en te) ura na Ph furf rbo oll ca en lyco Ph dig ) ylon e (n mid e imid ide-

am Poly

yl (all

ya Pol

ly Po

nilin

arb Polyc

Poly(ethylene terephthalate)

Polyethylene

Polya

Po ly

lori

16

cs

ic

ch

7

r

(hor n, to rtoise shell id cr ) ysta l po lym er nist y po Me lyet lam hyle ine ne -fo plas Me rm tics thy ald lc eh ell yde Mo ulo resi dif se n ied Org Sil ico an ne ic Pa lig ra ht ffi em n itti ng dio de s

rsul Polyeste

Po ly(m

n

e

lyeste

Low de

Po ly

n

d ori

rced po

Liqu

Po ly

Wood plastic composites

in

ide res

e chlor

n

resi

resi

resi

hyde

hane

alde

e resin etat

rm

Uret

nyl ac

a-fo

te resin de-vinyl aceta Vinylidene chlori r resin Vinyl este

yliden ide-vin

ide-vi

l chlor

Viny

Ure

flu

fin

ole

Kera tin

l)

Ch

sti

last

yl (vin

oly

Regenerated cellulose (rayon)

plastics

inate

Jute rei nfo

coho

cs

pla

dp

te na

ry polymers

ssure lam

ate) acet nyl y(vi e Pol an reth lyu e Po len thy ore e flu on tra ulf lyte lys o P ne Po re ty lys Po

itin

Ch

Shellac

polyethylene

High pre

tyr

yl al (vin

e

e ur ut

High density

bu vinyl

las ti

Shape memo

rced plastic

Glass fiber reinforced polyester

Poly

len

ne pla

ene

d polystyr

ide)

er est oly

Silico

lys ded po

Fiber-reinfo

lor inyl ch

le p

es

ers

rp

hane Soy prot ein resi n Soy oil re sin

lymer

copo

e tyren

Extrude

) chloride

ne

itri

id

m

dp

e

ylene oeth fluor

etra lene-t

Expan

ne fluoride)

die

on

poly

oly an

oly

rate

s ea Ar

m

lose cellu

Ethy

Poly(vinylide

cryl

ne de

d

y

Epox

Gutta-percha

Poly(

e-a

foam

tic

ren

ay

las

Sty

Spr

tp

uret

l Ethy

al)

yli vin

ate

n cya

iso

op

er

erm

lym

po

en

be

uta

rp

orb

-ru b

thy lye po

p

ion

uls

e-b

Th

pe

Em

pe

bs

ne

ren

ht eig rw

ed ink

ss-l

Cro

Regenerated cellulose (rayon)

Poly(v

ula

lo

Ch

ne

yle eth oly

Su

ra

Sty re

Sty

satu

ne le py pro ro uo

d

te

a rin

pe

)

de

lori

ch

Un

fl xa he

Ch

ly po

Rescorcinol formaldehyde

ylidene Poly(vin

lec mo igh

ne yle eth oro

n

stics

Shellac

ry polymers

chlor Vinyl

flu

n

ne pla

Shape memo

Su

yl (vin

itin

House of the Future P rest 1957 am All Plastic House H pat ous ra Cabin e eo 1956 Sara f th Hou Prefabrucated P eF s la 1945 utu e Plastic House stic H re 1941 ou se ran s 1938 F kfurt Plast i 1933 Vinylite Hous c Hou e se 1928 The Hous eo f th eF

ra-h Ult

tra Te

Wood plastic composites

in

r resin

ide res

te resin de-vinyl aceta

e chlor

n

resi

desh House /bangla infield .E/W use Plastic Ho .A.R Spray 2 C 197 biles eru omo sing in P 1 D y Hou 197 genc Tu b C o mer al House 0 E pheric S 197 o oliday House Casa Futuro Clam ond p ques H 9 R lle Six Co use Filament Wound Homes Mexic House an H o C 196 Bu rbach Ho liday ubino -Assembly House Sphar Hou Spla 8 Feie use PPL oide S se c 196 hu H o pher Var e aritc ical Sekisui Cabin Structural Pote iab 7 M Hou ntial le H 196 se mobile of Fo Abita Uni o am ous Egg Home Egg Ho 6 L’ h k i -Do use t 6 s a l 9 Pla us e 1 ch P me Vi stic ibera s fo 5 B Ya lla S otel Units Home Sweet GFRP H rH 196 M ntr p y a ome ou olid a H ie s sin Inst 4 H ays Shunting Cabin Iglu ou ant gi 196 h Railw s S i se t p nU H i r h erica ous 3 B nd l Ho e 196 rad House Miolina House Un er use ening idom de L 2 Sp e ve 196 ira lo lly Ge ne lyvilla ra 0 Po ene House Doerna te 196 d Diog -House Wils ch Shell Do on Hou 9 aredo se House 195 V

resi

hyde

hane

alde

cs

sti cs

ic

hane Soy prot ein resi n Soy oil re sin Silico

sin ate re

Uret

acet

de

ers

sti

pla

Vinyl este

inyl

resi

ori

uret

yliden ide-vin

ide-v

rm

flu

fin

es

last

poly

Vinylidene chlori

l chlor

Viny

chlor Vinyl

a-fo ne

m

er est oly

dp

ne

ole

de

tic

le p

las

ne

itri

pla

oly an

id

oly

le thy lye

die

on

er

po

bb

ht

cryl

en

tp

-ru

rate

yli vin

e-a

foam

rp

orb

ne

uta

ren

ay

op

ne

erm

Sty

Spr

ne -b

pe

ra bs

re

satu

eig rw

le py

Th

pro

ro

uo

Su

pe

Sty

Sty re

Ure

Un

ula

fl xa he

lec

ne

mo

yle eth

igh

oro

ra-h

flu

Ult

tra Te Su

9. Armand G. Winfield "A Case Study: The Plastic House" (Progressive Architecture October, 1970) 79-87. 10. "Foam: The controversial new building material" (House & Garden May, 1973) 58, 60, 215. 11. "Pandora's Plastic Box" (Progressive Architecture September, 1975) 86-91. 12. "The Light Heavyweights" (Progressive Architecture October, 1981) 125-133. 13. Forrest Wilson "Plastics, Past and Future" (Architecture April, 1988) 104-108. 14. Battle and McCarthy "Multi-Source Synthesis: Atomic Architecture" (Architectural Design January/February, 1995) iii-vii. 15. Paola Antonelli "Mutant Materials: On plastics and other artifacts of material culture" (Harvard Design Magazine Summer, 1998) 47-50. 16. Simone Jeska "Plastics: Ethereal Mateirals or Trash Culture? (Detail Magazine May, 2008) 12-16.

5. Plastics USE significant contemporary projects and their included plastics

6. Plastics PRODUCTION AND USE total production and use within building and construction

ARCHITECTURE AND PLASTIC TIMELINES, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating to develop timeline diagrams for chapters 4, 5, and 6


disassembly sequence. successfully recovered 98.95% of the energy embodied in materials during the 38-day Total Net Energy (Embodied Energy and Operations Energy) disassembly sequence. Total Net Energy (Embodied and Operations Energy) 40Energy Year Lifespan with 860 kWh/sf Source Embodied Energy 40 Year Lifespan with 860 kWh/sf Source Embodied Energy

Total Net Energy (Embodied Energy and Operations Energy)

Cellophane House

THE MUSEUM OF MODERN ART, NEW YORK

kWh/sf

kWh/sf

Conversion: 98.95% Material Recovery

Embodied Energy Loss

1300

1500 1400

Size: 1,800 GSF

1200

1,255 kWh/sf

Current NE Source Energy Intensity EIA Bldg

Assembly Date: July 2008 Dissasembly Date: December 2008

2030 Target Bldg

1100

860 kWh/sf

Best DOE Energy-Positive Bldg

810 kWh/sf

800 kWh/sf

NZEB Lessons Learned

ENERGY kWh/sf

ENERGY kWh/sf

Current (60%) 2030 Target Bldg

405 kWh/sf

1. The degree to which a building is disassembled depends on context, site, and destination of reassembly, as packing and transport efficiency is inversely proportional to reassembly efficiency. 2. The factory subcomponent assembly conditions were very different than those of the disassembly site, requiring different means and methods. Disassembly feasibility should take into account such discrepancies. 3. The reassembly of the dissembled structure is dependent upon accurate as-built drawings. During the disassembly it is essential to reconcile the inevitable variations between the construction documents and the built structure.

BUILT

-41 kWh/sf

40 YEARS

END OF LIFE

Component Embodied Energy

COMPONENT

FRAME

MATERIAL

4. All components of a dissasembled building may not be suitable for redeployment as weathering, fatigue, and disassembly damage may require their recycling and replacement. 5. True net zero buildings will be very difficult, if not impossible, to achieve without employing end of life material recovery or a significant reduction of the embodied energy of materials.

9 kWh/sf

energy neutral

SKIN

GLAZING

WALL PANELS

Bosch Aluminum Framing

NextGen Smart Wrap ™ (PET)

Schüco Glass

Steel Connectors

Aluminum Louvers

Schüco Aluminum Frame

BATHROOM PODS

3-Form Varia (PETG)

FLOORS

Fiberglass

ROOF

STAIRS

Aluminum Grate

PVC Downspouts

3-Form Stage (PC)

Steel Gutters

Acrylic

955,631 kWh

22,224 kWh

1,651 kWh/sf without recovery

1200 Current (60%) 2030 Target Bldg

1,255 kWh/sf

without recovery

Current NE Source Energy Intensity EIA Bldg 20 kWh/sf-year

900

Current NE Source Energy Intensity EIA2030 BldgTarget Bldg

800

600 500 400

700

300

20 kWh/sf-year

1000

10 KWh/sf-year 860 kWh/sf

0 kWh/sf-year

without recovery

Best DOE Energy-Positive Bldg

810Bldg kWh/sf 800 kWh/sf2030 Target without recovery

Current (60%) 2030 Target Bldg-1.24 kWh/sf-year

700

800

1,255 kWh/sf Current (60%) 2030 Target Bldg without recovery

1100

900

with total recovery

10 KWh/sf-year

800 2030 Target

0 kWh/sf-year

700

without recovery

405 kWh/sf

Best DOE Energy-Positive Bldg 600

0 kWh/sf-year

Best DOE Energy-Positive Bldg -1.24 kWh/sf-year 860 kWh/sf

Bldg

810 kWh/sf

with total recovery 800 kWh/sf

-1.24 kWh/sf-year

without recovery

with total recovery

Concrete

Steel Rebar

Danpalon (PC)

Steel Bolts

TOTAL EMBODIED ENERGY

FOUNDATION

without recovery Dissasembly

10 KWh/sf-year 1000

1000 900

1,651 kWh/sf

Materials Embodied Operations Dissasembly

20 kWh/sf-year

1100

1300 1,651 kWh/sf

Materials Embodied Operations

Materials Embodied Operations Dissasembly

Current NE Source 1300 Energy Intensity EIA Bldg

1200

Total Net Energy (Embodied Energy and Operations Energy) 40 Year Lifespan with 860 kWh/sf Source Embodied Energy

kWh/sf

1600 1500 1400

ENERGY kWh/sf

9

1600 1500 1400

1600

Key NZEB Strategies Conventional construction techniques, in striving for permanence, fix materials to one another in such a way that they lose the capacity to be reclaimed. By contrast, Cellophane House is assembled out of materials held in place by rapidly reversible attachment methods. Bosch Rexroth extruded aluminum framing, combined with custom steel connectors, provides the structure and the means to attach factory made elements together. Modularity enables the house to be efficiently transported. An analysis of the Cellophane House materials found an embodied energy intensity of 860 kWh/sf. When compared with current and future operations energy benchmarks, this figure reveals embodied energy as a significant contributor to the lifetime energy profile of a building. The Cellophane House disassembly/reassembly strategy successfully recovered 98.95% of the energy embodied in materials during the 38-day disassembly sequence.

Embodied Energy Recovered

851

1700

ENERGY kWh/sf

Embodied Energy

860

1700 40 Year Lifespan with 860 1700 kWh/sf Source Embodied Energy

Project Description Cellophane House is an off-site fabricated structure created in 2008 for The Museum of Modern Art’s exhibition, Home Delivery: Fabricating the Modern Dwelling, temporarily installed in a lot adjacent to the museum from July to October. The 1,800 square-foot, 1:1 prototype features an energy-harvesting transparent envelope made from PET laminated with thin-film photovoltaic cells. Off-site fabrication took place over the course of thirteen weeks at Kullman Buildings Corp in Lebanon, NJ, where the structure was separated into fourteen simultaneously built chunks. Once the chunks were delivered to the site, the house was assembled in sixteen days. After the exhibition, all components of the house were labeled and cataloged, and the house was disassembled, then segregated into constituent parts, and stored for future reassembly at a new location.

Measured Energy Use

600 TOTALS 1,800 sf building

71,423 kWh

22,577 kWh

71,448 kWh

146,008 kWh

8,214 kWh

235,001 kWh

15,264 kWh

1,547,790 kWh 860 kWh/sf

99.99%

100%

100%

100%

100%

100%

100%

100%

0%

98.95%

954,675 kWh

22,224 kWh

71,423 kWh

22,577 kWh

71,448 kWh

146,008 kWh

8,214 kWh

235,001 kWh

0 kWh

1,531,570 kWh 851 kWh/sf

500

100

400

500 400

Disassembly (October 29-December 5, 2008)

300 Client: The Museum of Modern Art Architect: KieranTimberlake Consultants Fabrication and Assembly: Kullman Buildings Corporation Construction Manager: F.J. Sciame Construction Co. Inc. On-site Assembly/Disassembly: Craftweld Fabrication Company Inc, Budco Enterprises, Inc. Structural Engineer: CVM Engineers Exterior Wall Panel Fabricator: Universal Services Associates, Inc. Lighting Designer: Arup Lighting Acrylic Stair Fabricator: Capital Plastics Company

Suppliers Structural Frame: Airline Hydraulics Corporation Interior Wall Surfaces: 3form Windows: Schüco USA LED Lighting: Philips/Color Kinetics Translucent Roofing: CPI Daylighting Inc. Acrylic for Stair: Total Plastics Inc. PET Film: DuPont Teijin Films Thin Film Technology: PowerFilm, Inc. Infrared Blocking Film: 3M Kitchen Casework: Valcucine Appliances: Miele Plumbing Fixtures: AF New York Bathroom Pods: Kullman Buildings Corporation

© Peter Aaron/esto

Contact: Roderick Bates KieranTimberlake 420 North 20th Street Philadelphia, PA 19130 T 215.922.6600 F 215.922.4680 E rbates@kierantimberlake.com kierantimberlake.com

C O U N T D O W N T O A S U S TA I N A B L E E N E R G Y F U T U R E - N E T - Z E R O B U I L D I N G S A N D B E Y O N D • M A R C H 2 9 - 3 1 , 2 0 0 9 • S A N F R A N C I S C O , C A

9 kWh/sf

energy neutral

300

with total recovery

-41 kWh/sf 405 kWh/sf with total recovery with total recovery

-100

200

BUILT

40 YEARS

200

100

100

0

© Peter Aaron/esto

Component Embodied Energy

0

© Peter Aaron/esto

PERCENT RECOVERED

EMBODIED ENERGY RECOVERED

200

0 -100

-100

END OF LIFE

energy neutral

9 kWh/sf

energy neutral

with total recovery

-41 kWh/sf

with total recovery

BUILT

BUILT

40 YEARS

40 YEARS

END OF LIFE

Component Embodied Energy

ergy

GLAZING

WALL PANELS

Bosch Aluminum Framing

NextGen Smart Wrap ™ (PET)

Schüco Glass

Steel Connectors

Aluminum Louvers

Schüco Aluminum Frame

BATHROOM PODS

3-Form Varia (PETG)

FLOORS

Fiberglass

ROOF

COMPONENT

FRAME

SKIN

TOTAL EMBODIED ENERGY

955,631 kWh

NextGen Smart99.99% Wrap ™ (PET) 954,675 kWh Aluminum Louvers

STAIRS

Aluminum Grate

PVC Downspouts

3-Form Stage (PC)

Steel Gutters

Steel Bolts

EMBODIED ENERGY teel RECOVERED onnectors

h

SKIN

MATERIAL

MATERIAL osch luminum PERCENT RECOVERED raming

teel olts

FRAME

COMPONENT

FOUNDATION Acrylic

Concrete

Steel Rebar

Danpalon (PC)

GLAZING

SKIN 22,224 kWh

WALL PANELS

71,423 kWh

Bosch Schüco Aluminum Glass 100% Framing

NextGen 3-Form Smart 100%Varia Wrap (PETG) ™ (PET)

22,224 kWh Steel Schüco Aluminum Connectors

71,423 kWh Aluminum Louvers

Frame

GLAZING

BATHROOM PODS 22,577 kWh

100%

Schüco Fiberglass Glass

22,577Schüco kWh

WALL PANELS FLOORS

71,448 kWh

100%

71,448 kWh

Aluminum Frame

BATHROOM PODS ROOF

146,008 kWh

3-Form Aluminum Varia Grate (PETG) 3-Form Stage (PC)

FLOORS

8,214 kWh

STAIRS

146,008 kWh

235,001 kWh

15,264 kWh

Aluminum Acrylic

Fiberglass PVC Downspouts 100%

100%

ROOF

FOUNDATION

PVC Concrete

Grate

Steel 8,214 kWh Gutters

0%

235,001 3-FormkWh

0 kWh SteelSteel Rebar

Stage (PC)

Gutters

Danpalon (PC)

Steel 5, 2008) Disassembly (October 29-December Bolts

Downspouts

100%

Danpalon (PC)

TOTALS 1,800 sf building STAIRS 1,547,790 kWh 860 kWh/sf Acrylic 98.95% 1,531,570 kWh 851 kWh/sf

TOTALS

1,800 sf building NET ZERO CONFERENCE POSTER, KIERANTIMBERLAKE March 2009 1,547,790 kWh 22,224 kWh 71,423 kWh 22,577 kWh 71,448 kWh 146,008 kWh 8,214 kWh 235,001 kWh 15,264 kWh TOTAL EMBODIED 955,631 and kWh diagramming 22,224 kWh 71,423 kWhfor embodied energy 22,577 kWhrecovery within 71,448 kWh 146,008 kWh 8,214 kWh House as an example 235,001 kWh Brainstorming, calculating, a collaborative argument buildings, using KieranTimberlake’s Cellophane 860 kWh/sf ENERGY

100%

PERCENT RECOVERED

99.99%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

FO

98.95%

100%

15

0%


BUILDING MONITORING DATA ANALYSIS, KIERANTIMBERLAKE May 2007 - July 2007 Systematically calculating building performance figures for use in “Passive Solar Energy Through Active Envelope Design: Monitoring and Testing”, a whitepaper by Roderick Bates


P6b

P4b

G4b

D7a P5b E4a E3a E3c

P3b

D5a

E3b P2b

P4a

b E2b

E2a

E3d

P2c

E6a E2c

E1c

E1e

1

2

3

4

5

6

7

8

9

P1a EXISTING & DEVELOPING LANDMARKS P6c

P2a

P3a

P7a E5a P6a

P5a

P5c

E1c E1e E2a E2b E2c E3a E3b E3c E3d E4a E5a E6a

St. George’s Square The British Insurance Oval Royal Hospital Chelsea Buckingham Palace Parliament of the United Kingdom St. Paul’s Cathedral Tate Modern Tower of London City Hall and More London 30 St Mary Axe (The Gherkin) Wimbledon Millennium Dome

D5a D7a

Canary Wharf Olympic Site / Straford City

P1a P2a P2b P2c P3a P3b P4a P4b P5a P5b P5c P6a P6b P6c P7a

Battersea Park Clapham Common The Green Park St. James’s Park Wandsworth Common Hyde Park Holland Park The Regent’s Park Wimbledon Park Mile End Park Crystal Palace Park Wimbledon Common Victoria Park Greenwich Park & Blackheath Richmond Park

G3c G3a

G3b

G2c

G4a

G2d

G2a

UNITE D S T A T E S E MBASSY IN LONDON EXISTI N G & D E V E L OPING LANDMARKS

G2b

K IERAN T IMBERLAKE 18 June 2009 Luton Airport 25 more miles

T4d

T4e

Stansted Airport 28 more miles

T4c T4b T4f T4a T4g

T3b T3c

London City Airport 8 miles away

T2a T3d T2b

G8 EMBASSIES & AMBASSADOR DESTINATIONS

T1a

1

Heathrow Airport 8 more miles

2

3

4

5

6

7

8

9

T3a

AIR & RAIL TRANSPORTATION T3a T08 T13 T23 T29 T32

London London London London London London

Heliport City Airport Heathrow Airport Gatwick Airport Luton Airport Stansted Airport

T1a T2a T2b T3b T3c T3d T4a T4b T4c T4d T4e T4f T4g

Victoria Train Station Charing Cross Train Station Waterloo Train Station Blackfriars Train Station Canon Street London Bridge Train Station Paddington Train Station Marylebone Train Station Euston Train Station St. Pancras Train Station King’s Cross Train Station Liverpool Street Train Station Fenchurch Street Train Station

G2a Embassy of France G2b Embassy of the Fed Rep of Germany G2c Embassy of Japan G3a United States Embassy G3b Canadian High Commission G3c Italian Embassy G4a Embassy of the Russian Fed G4b Winfield House G2d St. James's Palace

Gatwick Airport 18 more miles

UNITE D S T A T E S E MBASSY TRANSP O R T A T I O N

IN

LONDON

Travel Time Using Public Transit Minutes

0-15

16-30 31-45 46-60 Air, Rail, or Water Transportation Hub

>60

U N I T E D S T A T E S E M B A S S Y E M B A S S Y F U N C T I O N S

I N

L ONDON

K IERAN T IMBERLAKE 18 June 2009

K IERAN T IMBERLAKE 18 June 2009

UNITED STATES EMBASSY IN LONDON URBAN ANALYSIS DIAGRAMS, KIERANTIMBERLAKE June 2009 Diagraming boroughs, neighborhoods, landmarks, parks, transportation infrastructure, and embassy related destinations at multiple scales for competition submission


Winfield House

Current United States Embassy Current United States Embassy Current United States Embassy

N I T E D SU TN A TI TE ES D E M N B LAOS N N S TBAATSESSY EI M S YD OI N U N I T ED STATES EM B A S S Y I N B A S S Y FE UM NB C A TS IS O Y NFSU N C T I O N S E M B A SSY FUNCTION S

RAN T IMBERLAKE 18 June 2009 K IERAN T IMBERLAKE 18 June 2009 K IERAN T IMBERLAKE 18 June 2009

Winfield House Winfield House

St. James's PalaceSt. James's Palace St. James's Palace

1

L O N D O N L O N D O N

1 12

2 23

3 34

4 45

5 56

6 67

7 78

8 8

Travel Time UsingTravel Time Using Time Using Public TransitTravel Public Transit Public Transit Minutes 0-15 Minutes 16-30 31-45 0-1546-60 16-30>60 31-45 46 Minutes 0-15 16-30 31-45 46

Embassy or Consulate Embassy or Consul Embassy or Consul Program RelevantProgram to the US Relevant Program Relevant Ambassador Ambassador Ambassador

UNITED STATES EMBASSY IN LONDON URBAN ANALYSIS DIAGRAMS, KIERANTIMBERLAKE June 2009 Overlaying distance and train travel time information relative to the proposed site for the United States Embassy in London


RESEARCH, ENVIRONMENT, AND DESIGN (RED) REPORTS, KIERANTIMBERLAKE November 2008 - June 2009 Collaborating with other researchers and design teams to create extensive preliminary documents describing projects’ environmental analyses and potential building systems


RESEARCH, ENVIRONMENT, AND DESIGN (RED) REPORTS, KIERANTIMBERLAKE November 2008 - June 2009 Researching topics using a wide array of media, including interviews, writing complete portions of the reports, and contributing to the layout and assembly of the reports


GRANZOTTI RESIDENCE, WINN WITTMAN ARCHITECTS November 2007 - February 2008 Performing as Lead Designer from schematic design to design development for a single family residence on a challenging hillside site in west Austin, TX


GRANZOTTI RESIDENCE, WINN WITTMAN ARCHITECTS November 2007 - February 2008 Evolving the size, massing, orientation, height, and level of separation over a period of three months based on client desires, budget, and site topography


ZOO DAMASCUS GUIDELINE DIAGRAMS, CLOUD9 May 2007 - July 2007 Synthesizing zoo design guidelines from meetings with a Barcelona Zoo design consultant


ZOO DAMASCUS GUIDELINE DIAGRAMS, CLOUD9 May 2007 - July 2007 Organizing and conveying concepts simply to mitigate language barriers between English, Spanish, and Arabic speaking architectural professionals


MATERIAL SAMPLE 1 diverting, absorbing, pumping

MATERIAL SAMPLE 2 containing, blocking, permitting

SHAPE MEMORY MATERIAL SAMPLES January 2005 - May 2005 Utilizing emergent polymer attributes on many scales to develop performative material systems

MATERIAL SAMPLE 3 blocking, emitting, directing


MATERIAL SAMPLE 4 enclosing, diffusing, collecting

0

20

40

60

80

100

MATERIAL SAMPLE 4 EXPANDED enclosing, diffusing, collecting over time

SHAPE MEMORY MATERIAL SAMPLES January 2005 - May 2005 Designing and testing dynamic material qualities through animation


POLYMER TOWER January 2006 - May 2006 Interrogating structuring strategies and polymer attributes


POLYMER TOWER January 2006 - May 2006 Towering with polymers through a form-finding process driven by performance and force


POLYMER TOWER January 2006 - May 2006 Utilizing surface and connectivity to develop a structuring strategy for a polymer tower


Utilizing emerging polymer technologies, the tower system is constructed through a deployable, form finding process where tubes are inflated, configured, rigidzed, and completed with floors and membranes. The method removes the steps of rationalizing into components, creating a structure of continuity.

Tubes made of gas-activated rigidizable polymer contain elevator, circulation, air flow, and other vertical services. When inflated, the tubes reserve space for said utilities while serving as a flexible framework for the structure.

Overlapping helical tube surfaces serve as the tower’s vertical structure. Multiple bundled tubes are contained within each individual tube, increasing its overall surface area. These bundled tubes are also made of gas-activated rigidizable polymer. Tensile floor surfaces are supported by unidirectional fiber reinforced composite straps attached to the horizontal moments of the bundled tubes. These straps resist outward lateral thrust created by the helical tube surfaces.

The outer skin consists of ultraviolet light resistant shape memory polymer strips with imbedded tensile fibers. These strips help counter outward thrust, while acting as a deformable membrane able to create strategic tower openings. The inner skin is a thin polymer film with variable permeability to air, based on temperature and humidity. Attached to the imbedded tube surfaces, it serves a vapor barrier, while thermal insulation is achieved by the contained space between the two skins.

POLYMER TOWER

SERVICES

STRUCTURE

SKIN

POLYMER TOWER January 2006 - May 2006 Designing a process of construction unique to polymers


POLYMER TOWER January 2006 - May 2006 Testing structure and construction strategies with analogue and digital models


POLYMER TOWER January 2006 - May 2006 Investigating the potential of indeterminate structure and redundancy within polymer architecture


ICE COMPOSITES

LIGHT TRANSMITTANCE

0.0

pure water

cotton fiber

0.5

1.0

1.5

0.0

0g

pure water

0.5

1.0

1.5

10%

12g

24g

36g

cotton fiber

3%

1%

0%

fiberglass

7g

14g

21g

fiberglass

7%

4%

3%

polyester fiber

3g

6g

9g

polyester fiber

8%

7%

5%

wood strand

6g

12g

18g

wood strand

4%

4%

3%

What does it mean to be a composite? What is the appearance, strength and durability? How can one test these material attributes? A composite has material qualities not present in either of its components; a composite is more than the sum of its parts.

ICE COMPOSITES January 2006 - May 2006 Investigating composite performance through systematic testing


IMPACT STRENGTH

MELTING RATE

0.0

pure water

0.5

1.0

1.5

0.0

0.1m

pure water

0.5

1.0

1.5

7h

cotton fiber

0.9m

1.0m

1.3m

cotton fiber

7h

7h

7h

fiberglass

0.6m

0.6m

0.9m

fiberglass

8h

9h

9h

polyester fiber

0.8m

1.0m

1.2m

polyester fiber

8h

10h

10h

wood strand

7.0m

0.6m

0.8m

wood strand

8h

9h

10h

ICE COMPOSITES January 2006 - May 2006 Evaluating collected data to draw concise conclusions regarding varied composite performance


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.