INSTRUMENTOS ELECTRICOS

Page 1

2010

LABORATORIO DE CIRCUITOS ELÉCTRICOS II INSTRUMENTOS ELÉCTRICOS ALUMNOS: CONTRERAS SILVA HAROLD ANTONIO CUSMAN CASTILLO LUIS EDUARDO MORAN SANTAMARIA JORGE MAXIMO OLAZABAL MARTINEZ FRANCO DAVID PECSEN LUNA JOSE JONATHAN DOCENTE: ING. HECTOR OLIDEN NUÑEZ

Lambayeque 16/08/2010


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

LABORATORIO DE CIRCUITOS ELECTRICOS II

2


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

INSTRUMENTOS ELÉCTRICOS

1. AUTOTRANSFORMADOR Un autotransformador es una máquina eléctrica, de construcción y características similares a las de un transformador, pero que a diferencia de éste, sólo posee un único devanado alrededor del núcleo. Dicho devanado debe tener al menos tres puntos de conexión eléctrica, llamados tomas. La fuente de tensión y la carga se conectan a dos de las tomas, mientras que una toma (la del extremo del devanado) es una conexión común a ambos circuitos eléctricos (fuente y carga). Cada toma corresponde a un voltaje diferente de la fuente (o de la carga, dependiendo del caso). En un autotransformador, la porción común (llamada por ello "devanado común") del devanado único actúa como parte tanto del devanado "primario" como del "secundario". La porción restante del devanado recibe el nombre de "devanado serie" y es la que proporciona la diferencia de voltaje entre ambos circuitos, mediante la adición en serie (de allí su nombre) con el voltaje del devanado común.

 FUNCIONAMIENTO Al igual que los transformadores, los autotransformadores funcionan basados en el principio de campos magnéticos variantes en el tiempo, por lo que tampoco pueden ser utilizados en circuitos de corriente continua. La transferencia de potencia entre dos circuitos conectados a un autotransformador ocurre a través de dos fenómenos: el acoplamiento magnético (como en un transformador común) y la conexión galvánica entre los dos circuitos (a través de la toma común). Por esta razón, un autotransformador resulta en un aparato más compacto (y a menudo más económico) que un transformador de la misma potencia y voltajes nominales. De igual manera, un

LABORATORIO DE CIRCUITOS ELECTRICOS II

3


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA transformador incrementa su capacidad de transferir potencia al ser conectado como autotransformador. La relación de transformación de un autotransformador es la relación entre el número de vueltas del devanado completo (serie + común) y el número de vueltas del devanado común. Por ejemplo, con una toma en la mitad del devanado se puede obtener un voltaje de salida (en el devanado "común") igual a la mitad del de la fuente (o viceversa). Dependiendo de la aplicación, la porción del devanado que se utiliza sólo para el circuito de alta tensión se puede fabricar con alambre de menor calibre (puesto que requiere menos corriente) que la porción del devanado común a ambos circuitos; de esta manera la maquina resultante es aún más económica. La figura siguiente nos muestra un esquema del autotransformador. Consta de un bobinado de extremos A y D, al cual se le ha hecho una derivación en el punto intermedio B. Por ahora llamaremos primario a la sección completa A D y secundario a la porción B D, pero en la práctica puede ser a la inversa, cuando se desea elevar la tensión primaria.

La tensión de la red primaria, a la cual se conectará el autotransformador, es V1, aplicada a los puntos A y D. Como toda bobina con núcleo de hierro, en cuanto se aplica esa tensión circula una corriente que hemos llamado de vacío en la teoría anterior. Sabemos también, que esa corriente de vacío está formada por dos componentes; una parte es la corriente magnetizante, que está atrasada 90° respecto de la tensión, y otra parte que está en fase, y es la que cubre las pérdidas en el hierro, cuyo monto se encuentra multiplicando esa parte de la corriente de vacío, por la tensión aplicada. Llamamos a la corriente total de vacío I0, como lo hemos hecho en otras oportunidades.  TIPOS DE CONSTRUCCIÓN

Existen autotransformadores con varias tomas en el secundario y por lo tanto, con varias relaciones de transformación. De la misma manera que los

LABORATORIO DE CIRCUITOS ELECTRICOS II

4


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA transformadores, los autotransformadores también pueden equiparse con cambiadores de toma automáticos y utilizarlos en sistemas de transmisión y distribución para regular la tensión de la red eléctrica. Con la incorporación de varias tomas, es posible obtener más de un valor para el voltaje secundario e incluso es posible obtener voltajes ligeramente mayores a los de la fuente -para ello, el devanado debe construirse para que su voltaje nominal sea ligeramente mayor que el del lado fijo o primario-. También existen autotransformadores en los que la toma secundaria se logra a través de una escobilla deslizante, permitiendo una gama continua de voltajes secundarios que van desde cero hasta el voltaje de la fuente. Este último diseño se comercializó en Estados Unidos bajo el nombre genérico de “Variac” y en la práctica funciona como una fuente de corriente alterna regulable en voltaje.

 APLICACIONES Los autotransformadores se utilizan a menudo en sistemas eléctricos de potencia, para interconectar circuitos que funcionan a voltajes diferentes, pero en una relación cercana a 2:1 (por ejemplo, 400 kV / 230 kV ó 138 kV / 66 kV). En la industria, se utilizan para conectar maquinaria fabricada para tensiones nominales diferentes a la de la fuente de alimentación (por ejemplo, motores de 480 V conectados a una alimentación de 600 V). Se utilizan también para conectar aparatos, electrodomésticos y cargas menores en cualquiera de las dos alimentaciones más comunes a nivel mundial (100-130 V a 200-250 V). En sistemas de distribución rural, donde las distancias son largas, se pueden utilizar autotransformadores especiales con relaciones alrededor de 1:1, aprovechando la multiplicidad de tomas para variar el voltaje de alimentación y así compensar las apreciables caídas de tensión en los extremos de la línea. Se utilizan autotransformadores también como método de arranque suave para motores de inducción tipo jaula de ardilla, los cuales se caracterizan por demandar una alta corriente durante el arranque. Si se alimenta el motor conectándolo a la toma menor de un autotransformador, el voltaje reducido de la alimentación resultará en una menor corriente de arranque y por lo tanto en condiciones más seguras de operación, tanto para el motor como para la instalación eléctrica. Una vez que el motor ha alcanzado suficiente velocidad, se puede ir aumentando el voltaje de alimentación (en tantos pasos como tomas posea el autotransformador) gradualmente, hasta llegar al voltaje de la red (cuando la relación de tomas es 1:1).

LABORATORIO DE CIRCUITOS ELECTRICOS II

5


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA En sistemas ferroviarios de Alta velocidad existen métodos de alimentación duales tales como el conocido como 2x25 kV. En este, los transformadores de las subestaciones alimentan a +25 kV a la catenaria, a -25 kV (en realidad 25 kV desfasados 180º) al feeder o alimentador negativo y con la toma intermedia o neutro puesta al carril. Cada cierto tiempo, 10 km típicamente, se conectan autotransformadores con 50 kV en el primario (entre catenaria y feeder negativo) y 25 kV en el secundario (entre feeder negativo y carril). De esta manera, la carga (trenes) se encuentra alimentada a 25 kV entre catenaria y carril pero la energía se transporta a 50 kV, reduciendo las pérdidas.

 LIMITACIONES Una falla en el aislamiento de los devanados de un autotransformador puede producir que la carga quede expuesta a recibir plena tensión (la de la fuente). Se debe tener en cuenta esta situación al decidir utilizar un autotransformador para una determinada aplicación. Las ventajas en ahorro de material (tanto en los devanados como en el núcleo) tienen una limitación física, que en la práctica es una relación de voltajes de 3:1. Para relaciones de tensión mayores a ésta, o bien el transformador convencional de dos devanados es más compacto y económico, o bien resulta imposible construir el autotransformador. En sistemas de transmisión de energía eléctrica, los autotransformadores tienen la desventaja de no filtrar el contenido armónico de las corrientes y de actuar como otra fuente de corrientes de falla a tierra. Sin embargo, existe una conexión especial -llamada "conexión en zigzag"- que se emplea en sistemas trifásicos para abrir un camino de retorno a la corriente de tierra que de otra manera no sería posible lograr, manteniendo la referencia de tierra

 CONEXIONES TRIFASICAS 1. CONEXIÓN EN ESTRELLA DE AUTOTRANSFORMADORES. Tres autotransformadores monofásicos pueden conectarse en estrella, como se indica en la figura (A).En estas condiciones, el comportamiento del banco es análogo, en muchos aspectos, al de un banco de tres transformadores de dos circuitos conectados en estrella – estrella. Si el neutro está aislado, como el de la figura (A), las tensiones respecto al neutro están desequilibradas a menos que los transformadores tengan características de excitación exactamente iguales.

LABORATORIO DE CIRCUITOS ELECTRICOS II

6


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA Además, las tensiones entre línea y neutro contienen terceros armónicos relativamente grandes originados por la supresión de los terceros armónicos de las corrientes de excitación.

2. CONEXIÓN EN TRIÁNGULO DE AUTOTRANSFORMADORES. Tres autotransformadores pueden conectarse en triángulo en la forma indicada en la figura (B). Un posible inconveniente de esta conexión es que las tensiones de línea de los secundarios no están en concordancia de fase con las tensiones de línea de los primarios. Además, la mayor razón de transformación que puede obtenerse es 2:1 . Como en la conexión triángulo – triángulo de transformadores de dos circuitos, los terceros armónicos de las corrientes de excitación circulan por el triángulo, pero no aparecen en las corrientes de línea.

LABORATORIO DE CIRCUITOS ELECTRICOS II

7


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA Los autotransformadores también pueden conectarse en triángulo como se indica en la figura (C). En la cual los devanados serie se conectan en serie con las líneas de alta tensión y los devanados comunes se conectan en triángulo. Al igual que la conexión triángulo de la figura (B), las tensiones de línea del primario y secundario no están en fase.

3. CONEXIÓN DE AUTOTRANSFORMADORES EN TRIÁNGULO ABIERTO. A diferencia de la conexión en triángulo, la conexión en triángulo abierto de autotransformadores, indicada en la figura (D), no está restringida a razones de transformación inferiores a la 2:1. Además, si se prescinde de las caídas de tensión debidas a las impedancias de fuga, las tensiones de línea del primario y secundario están en concordia de fase.

LABORATORIO DE CIRCUITOS ELECTRICOS II

8


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA Luego, si se conectan ambos lados del primario y secundario de un banco de autotransformadores conectados en triángulo abierto a circuitos conectados en estrella, sólo podrá conectarse a tierra el neutro de uno de los lados del banco, ya que existe una diferencia de tensión entre los neutros de los circuitos primarios y secundarios.

2. DISPOSITIVOS LINEALES 2.1 RESISTENCIA ELÉCTRICA La resistencia eléctrica, simbolizada habitualmente como R, es la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, la resistencia se mide en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia. Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.  COMPORTAMIENTO EN CORRIENTE ALTERNA Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC,

LABORATORIO DE CIRCUITOS ELECTRICOS II

9


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular.  REÓSTATO Un reóstato (o reóstato) es un resistor de resistencia variable. Es por tanto un tipo constructivo concreto de potenciómetro (resistencia variable) que recibe comúnmente este nombre en vez del de potenciómetro al tratarse de un dispositivo capaz de soportar tensiones y corrientes muchísimo mayores, y de disipar potencias muy grandes. Los reóstatos son usados en Ingeniería Eléctrica en tareas tales como el arranque de motores o cualquier tipo de tarea que requiera variación de resistencia en condiciones de elevada tensión o corriente.

2.2 CONDENSADOR ELÉCTRICO En electricidad y electrónica, un condensador (capacitor en inglés) es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separadas por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una

LABORATORIO DE CIRCUITOS ELECTRICOS II

10


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada). La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio.  COMPORTAMIENTO EN CORRIENTE ALTERNA En CA, un condensador ideal ofrece una resistencia al paso de la corriente que recibe el nombre de reactancia capacitiva, XC, cuyo valor viene dado por la inversa del producto de la pulsación (

) por la capacidad, C:

Si la pulsación se expresa en radianes por segundo (rad/s) y la capacidad en faradios (F), la reactancia resultará en ohmios.  APLICACIONES TÍPICAS Los condensadores suelen usarse para: Baterías, por su cualidad de almacenar energía. Memorias, por la misma cualidad. Filtros. Adaptación de impedancias, haciéndolas resonar a una frecuencia dada con otros componentes. De modular AM, junto con un diodo. El flash de las cámaras fotográficas. Tubos fluorescentes. Mantener corriente en el circuito y evitar caídas de tensión.  CONDENSADORES VARIABLES Un condensador variable es aquel en el cual se pueda cambiar el valor de su capacidad. En el caso de un condensador plano, la capacidad puede expresarse por la siguiente ecuación:

donde: ε0: constante dieléctrica del vacío εr: constante dieléctrica o permitividad relativa del material dieléctrico entre las placas A: el área efectiva de las placas

LABORATORIO DE CIRCUITOS ELECTRICOS II

11


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA d: distancia entre las placas o espesor del dieléctrico Para tener condensador variable hay que hacer que por lo menos una de las tres últimas expresiones cambien de valor. De este modo, se puede tener un condensador en el que una de las placas sea móvil, por lo tanto varía d y la capacidad dependerá de ese desplazamiento, lo cual podría ser utilizado, por ejemplo, como sensor de desplazamiento.

 TIPOS DE DIELÉCTRICO UTILIZADOS EN CONDENSADORES

CONDENSADORES DE AIRE: Se trata de condensadores, normalmente de placas paralelas, con dieléctrico de aire y encapsulados en vidrio. Como la permitividad eléctrica relativa es la unidad, sólo permite valores de capacidad muy pequeños. Se utilizó en radio y radar, pues carecen de pérdidas y polarización en el dieléctrico, funcionando bien a frecuencias elevadas.

CONDENSADORES DE MICA. La mica posee varias propiedades que la hacen adecuada para dieléctrico de condensadores: bajas pérdidas, exfoliación en láminas finas, soporta altas temperaturas y no se degrada por oxidación o con la humedad. Sobre una cara de la lámina de mica se deposita aluminio, que forma una armadura. Se apilan varias de estas láminas, soldando los extremos alternativamente a cada uno de los terminales. Estos condensadores funcionan bien en altas frecuencias y soportan tensiones elevadas, pero son caros y se ven gradualmente sustituidos por otros tipos.

CONDENSADORES DE PAPEL: El dieléctrico es papel parafinado, bakelizado o sometido a algún otro tratamiento que reduce su higroscopia y aumenta el aislamiento. Se apilan dos cintas de papel, una de aluminio, otras dos de papel y otra de aluminio y se enrollan en espiral. las cintas de aluminio constituyen las dos armaduras, que se conectan a sendos terminales. Se utilizan dos cintas de papel para evitar los poros que pueden presentar.

Condensadores autorregenerables: Los condensadores de papel tienen aplicaciones en ambientes industriales. Los condensadores autorregenerables son condensadores de papel, pero la armadura se realiza depositando aluminio sobre el papel. Ante una situación de sobrecarga que supere la rigidez dieléctrica del dieléctrico, el papel se rompe en algún punto, produciéndose un cortocircuito entre las armaduras, pero este corto provoca una alta densidad de corriente por las armaduras en la zona de la rotura. Esta corriente funde la fina capa de aluminio que rodea al cortocircuito, restableciendo el aislamiento entre las armaduras.

LABORATORIO DE CIRCUITOS ELECTRICOS II

12


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA CONDENSADORES ELECTROLÍTICOS: Es un tipo de condensador que utiliza un electrolito, como su primera armadura, la cual actúa como cátodo. Con la tensión adecuada, el electrolito deposita una capa aislante (la cual es en general una capa muy fina de óxido de aluminio) sobre la segunda armadura o cuba (ánodo), consiguiendo así capacidades muy elevadas. Son inadecuados para funcionar con corriente alterna. La polarización inversa destruye el óxido, produciendo un corto entre el electrolito y la cuba, aumentando la temperatura, y por tanto, arde o estalla el condensador consecuentemente. Existen varios tipos, según su segunda armadura y electrolito empleados:

Condensadores de aluminio: Es el tipo normal. La cuba es de aluminio y el electrolito una disolución de ácido bórico. Funciona bien a bajas frecuencias, pero presenta pérdidas grandes a frecuencias medias y altas. Se emplea en fuentes de alimentación y equipos de audio. Muy utilizado en fuentes de alimentación conmutadas.

Condensadores de tantalio (tántalos): Es otro condensador electrolítico, pero emplea tantalio en lugar de aluminio. Consigue corrientes de pérdidas bajas, mucho menores que en los condensadores de aluminio. Suelen tener mejor relación capacidad/volumen.

Condensadores bipolares (para corriente alterna): Están formados por dos condensadores electrolíticos en serie inversa, utilizados en caso de que la corriente pueda invertirse. Son inservibles para altas frecuencias.

CONDENSADORES DE POLIÉSTER O MYLAR: Está formado por láminas delgadas de poliéster sobre las que se deposita aluminio, que forma las armaduras. Se apilan estas láminas y se conectan por los extremos. Del mismo modo, también se encuentran condensadores de policarbonato y polipropileno.

CONDENSADORES STYROFLEX: Otro tipo de condensadores de plástico, muy utilizado en radio, por responder bien en altas frecuencias y ser uno de los primeros tipos de condensador de plástico.

CONDENSADORES CERÁMICOS: Utiliza cerámicas de varios tipos para formar el dieléctrico. Existen tipos formados por una sola lámina de dieléctrico, pero también los hay formados por láminas apiladas. Dependiendo del tipo, funcionan a distintas frecuencias, llegando hasta las microondas. CONDENSADORES SÍNCRONOS: Es un motor síncrono que se comporta como un condensador. DIELÉCTRICO VARIABLE: Este tipo de condensador tiene una armadura móvil que gira en torno a un eje, permitiendo que se introduzca más o menos

LABORATORIO DE CIRCUITOS ELECTRICOS II

13


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA dentro de la otra. El perfil de la armadura suele ser tal que la variación de capacidad es proporcional al logaritmo del ángulo que gira el eje.

Condensadores de ajuste: Son tipos especiales de condensadores variables. Las armaduras son semicirculares, pudiendo girar una de ellas en torno al centro, variando así la capacidad. Otro tipo se basa en acercar las armaduras, mediante un tornillo que las aprieta.

2.3 BOBINA O INDUCTOR La bobina o inductor por su forma (espiras de alambre arrollados) almacena energía en forma de campo magnético. El símbolo de una bobina / inductores:

El inductor es diferente del condensador / capacitor, que almacena energía en forma de campo eléctrico. Todo cable por el que circula una corriente tiene a su alrededor un campo magnético, siendo el sentido de flujo del campo magnético, el que establece la ley de la mano derecha. Al estar el inductor hecho de espiras de cable, el campo magnético circula por el centro del inductor y cierra su camino por su parte exterior. Una característica interesante de los inductores es que se oponen a los cambios bruscos de la corriente que circula por ellas. Esto significa que a la hora de modificar la corriente que circula por ellos (ejemplo: ser conectada y desconectada a una fuente de alimentación de corriente continua), esta intentará mantener su condición anterior. Este caso se da en forma continua, cuando una bobina esta conectada a una fuente de corriente alterna y causa un desfase entre el voltaje que se le aplica y la corriente que circula por ella. En otras palabras: La bobina o inductor es un elemento que reacciona contra los cambios en la corriente a través de él, generando un voltaje que se opone al voltaje aplicado y es proporcional al cambio de la corriente.

 INDUCTANCIA, UNIDADES La inductancia mide el valor de oposición de la bobina al paso de la corriente y se miden en Henrios (H), pudiendo encontrarse valores de MiliHenrios (mH). El valor depende de:

LABORATORIO DE CIRCUITOS ELECTRICOS II

14


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA - El número de espiras que tenga la bobina (a más vueltas mayor inductancia, o sea mayor valor en Henrios). - El diámetro de las espiras (a mayor diámetro, mayor inductancia, o sea mayor valor en Henrios). - La longitud del cable de que está hecha la bobina. - El tipo de material de que esta hecho el núcleo, si es que lo tiene.

 APLICACIONES DE UNA BOBINA / INDUCTOR -En los sistemas de iluminación con lámparas fluorescentes existe un elemento adicional que acompaña al tubo y que comúnmente se llama balastro. -En las fuentes de alimentación también se usan bobinas para filtrar componentes de corriente alterna y solo obtener corriente continua en la salida. -En muchos circuitos osciladores se incluye un inductor. Por ejemplo circuitos RLC serie o paralelo.

3. PINZA AMPERIMÉTRICA La pinza es un tipo especial de amperímetro que permite obviar el inconveniente de tener que abrir el circuito en el que se quiere medir la corriente para colocar un amperímetro clásico. El funcionamiento de la pinza se basa en la medida indirecta de la corriente circulante por un conductor a partir del campo magnético o de los campos que dicha circulación de corriente que genera. Recibe el nombre de pinza porque consta de un sensor, en forma de pinza, que se abre y abraza el cable cuya corriente queremos medir. Este método evita abrir el circuito para efectuar la medida, así como las caídas de tensión que podría producir un instrumento clásico. Por otra parte, es sumamente seguro para el operario que realiza la medición, por cuanto no es necesario un contacto eléctrico con el circuito bajo medida ya que, en el caso de cables aislados, ni siquiera es necesario levantar el aislante.

LABORATORIO DE CIRCUITOS ELECTRICOS II

15


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

4. VATIMETRO El vatímetro es un instrumento electrodinámico para medir la potencia eléctrica o la tasa de suministro de energía eléctrica de un circuito eléctrico dado. El dispositivo consiste en un par de bobinas fijas, llamadas «bobinas de corriente», y una bobina móvil llamada «bobina de potencial». Las bobinas fijas se conectan en serie con el circuito, mientras la móvil se conecta en paralelo. Además, en los vatímetros analógicos la bobina móvil tiene una aguja que se mueve sobre una escala para indicar la potencia medida. Una corriente que circule por las bobinas fijas genera un campo electromagnético cuya potencia es proporcional a la corriente y está en fase con ella. La bobina móvil tiene, por regla general, una resistencia grande conectada en serie para reducir la corriente que circula por ella.

El resultado de esta disposición es que en un circuito de corriente continua, la deflexión de la aguja es proporcional tanto a la corriente como al voltaje, conforme a la ecuación W=VA o P=EI. En un circuito de corriente alterna la deflexión es proporcional al producto instantáneo medio del voltaje y la corriente, midiendo pues la potencia real y posiblemente (dependiendo de las características de cargo) mostrando una lectura diferente a la obtenida multiplicando simplemente las lecturas arrojadas por un voltímetro y un amperímetro independientes en el mismo circuito. Los dos circuitos de un vatímetro son propensos a resultar dañados por una corriente excesiva. Tanto los amperímetros como los voltímetros son vulnerables al recalentamiento: en caso de una sobrecarga, sus agujas pueden quedar fuera de escala; pero en un vatímetro el circuito de corriente, el de potencial o ambos

LABORATORIO DE CIRCUITOS ELECTRICOS II

16


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA pueden recalentarse sin que la aguja alcance el extremo de la escala. Esto se debe a que su posición depende del factor de potencia, el voltaje y la corriente. Así, un circuito con un factor de potencia bajo dará una lectura baja en el vatímetro, incluso aunque ambos de sus circuitos esté cargados al borde de su límite de seguridad. Por tanto, un vatímetro no sólo se clasifica en vatios, sino también en voltios y amperios. Los vatímetros electrónicos se usan para medidas de potencias directas y pequeñas o para medidas de potencia a frecuencias por encima del rango de los instrumentos de tipo electrodinamómetro. Los triodos acoplados se operan en la porción no lineal de sus curvas características al voltaje de red y la corriente de placa. El rango de frecuencia de un vatímetro electrónico puede extenderse hasta los 20 megahercios usando tubos de pentodos en lugar de triodos. Las condiciones de operación de un pentodo se ajustan de forma que la corriente de placa sea proporcional al producto de una función linear del voltaje de placa y a una función exponencial del voltaje de red.

5. COSFIMETRO Instrumento que mide el factor de potencia. El factor de potencia se medía tradicionalmente con un instrumento cuyo principio de funcionamiento es el mismo que el de un vatímetro, sin embargo los modernos vatímetros digitales han desplazado estos instrumentos, de tal manera que en la actualidad muchos fabricantes de instrumentación electrónica han dejado de fabricarlos. La forma de conexión es similar a la descrita en el inciso anterior y puede hacerse referencia a estas figuras en donde se cambiaría el valor leído. En caso, el vatímetro disponible carezca de la función de medición del factor de potencia, se puede recurrir al procedimiento descrito a continuación. 1. Mida la tensión de la carga con el multímetro o un voltímetro. 2. Mida la corriente de alimentación con una pinza amperimétrica. 3. Mida la potencia de carga real con la pinza vatímetrica. 4. Utilice las fórmulas siguientes para calcular el factor de potencia a partir de los datos medidos.

LABORATORIO DE CIRCUITOS ELECTRICOS II

17


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA đ?‘­. đ?‘ˇ. = đ?‘­. đ?‘ˇđ?&#x;‘đ?’‡ =

đ?‘ˇ đ?‘ˇ ∗ đ?&#x;?đ?&#x;Žđ?&#x;Žđ?&#x;Ž = ∗ đ?&#x;?đ?&#x;Žđ?&#x;Žđ?&#x;Ž đ?‘ş đ?‘źâˆ—đ?‘°

đ?‘ˇđ?&#x;‘đ?’‡ đ?‘ˇđ?&#x;‘đ?’‡ ∗ đ?&#x;?đ?&#x;Žđ?&#x;Žđ?&#x;Ž = ∗ đ?&#x;?đ?&#x;Žđ?&#x;Žđ?&#x;Ž đ?‘şđ?&#x;‘đ?’‡ đ?&#x;‘∗đ?‘źâˆ—đ?‘°

Donde: F.P. = Factor de potencia en sistemas monofĂĄsicos F.P3f = Factor de potencia promedio en sistemas trifĂĄsicos. U = TensiĂłn entre lĂ­neas, en Voltios I = Corriente de lĂ­nea, en Ampere P = Potencia en sistemas monofĂĄsicos, en W P3f = Potencia promedio en sistemas trifĂĄsicos, en W. S = Potencia aparente en sistemas monofĂĄsicos, en VA S3f = Potencia aparente en sistemas trifĂĄsicos, VA

6. MEDIDOR DE ENERGIA El vatihorĂ­metro, contador elĂŠctrico o medidor de consumo elĂŠctrico es un dispositivo que mide el consumo de energĂ­a elĂŠctrica de un circuito o un servicio elĂŠctrico, siendo esta la aplicaciĂłn usual. Existen medidores electromecĂĄnicos y electrĂłnicos. Los medidores electromecĂĄnicos utilizan bobinados de corriente y de tensiĂłn para crear corrientes parĂĄsitas en un disco que, bajo la influencia de los campos magnĂŠticos, produce un giro que mueve las agujas de la carĂĄtula. Los medidores electrĂłnicos utilizan convertidores analĂłgico-digitales para hacer la conversiĂłn. El medidor electromecĂĄnico utiliza dos juegos de bobinas que producen campos magnĂŠticos; estos campos actĂşan sobre un disco conductor magnĂŠtico en donde se producen corrientes parĂĄsitas. La acciĂłn de las corrientes parĂĄsitas producidas por las bobinas de corriente sobre el campo magnĂŠtico de las bobinas de voltaje y la acciĂłn de las corrientes parĂĄsitas

LABORATORIO DE CIRCUITOS ELECTRICOS II

18


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA producidas por las bobinas de voltaje sobre el campo magnético de las bobinas de corriente dan un resultado vectorial tal, que produce un par de giro sobre el disco. El par de giro es proporcional a la potencia consumida por el circuito. El disco está soportado por campos magnéticos y soportes de rubí para disminuir la fricción, un sistema de engranes transmite el movimiento del disco a las agujas que cuentan el número de vueltas del medidor. A mayor potencia más rápido gira el disco, acumulando más giros conforme pasa el tiempo. Las tensiones máximas que soportan los medidores eléctricos son de aproximadamente 600 voltios y las corrientes máximas pueden ser de hasta 200 amperios. Cuando las tensiones y las corrientes exceden estos límites se requieren transformadores de medición de tensión y de corriente. Se utilizan factores de conversión para calcular el consumo en dichos casos. También es importante indicar que existe una bobina de sombra que es una chapita la cual esta cortocircuitada. Dicha bobina posee una resistencia despreciable y por ende en esta se generará una corriente muy importante, la cual al estar sometida a un campo generara un par motor que eliminara el coeficiente de rozamiento de los engranajes. El medidor comenzara a funcionar con el 1 % de la carga y entre un factor de potencia 0,5 en adelanto y atraso.

7. FRECUENCIMETRO Un frecuencímetro es un instrumento que sirve para medir la frecuencia, contando el número de repeticiones de una onda en un intervalo de tiempo, mediante el uso de un contador que acumula el número de periodos. Dado que la frecuencia se define como el número de eventos de una clase particular ocurridos en un período, es generalmente sencilla su medida. Según el sistema internacional el resultado se mide en hercios (Hz). El valor contado se indica en un display y el contador se pone a cero, para comenzar a acumular el siguiente periodo de muestra. La mayoría de los contadores de frecuencia funciona simplemente mediante el uso de un contador que acumula el número de eventos. Después de un periodo predeterminado (por ejemplo, 1 segundo) el valor contado es transferido a un display numérico y el contador es puesto a cero, comenzando a acumular el siguiente periodo de muestra.

LABORATORIO DE CIRCUITOS ELECTRICOS II

19


UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA El periodo de muestreo se denomina base de tiempo y debe ser calibrado con mucha precisión. Para efectuar la medida de la frecuencia existente en un circuito, el frecuencímetro ha de colocarse en paralelo, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el frecuencímetro debe poseer una resistencia interna alta, para que no produzca un consumo apreciable, lo que daría lugar a una medida errónea. Por ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue la fuerza necesaria para el desplazamiento de la aguja indicadora. Si el elemento a contar está ya en forma electrónica, todo lo que se requiere es un simple interfaz con el instrumento. Cuando las señales sean más complejas, se tendrán que acondicionar para que la lectura del frecuencímetro sea correcta. Incluyendo en su entrada algún tipo de amplificador, filtro o circuito conformador de señal. Otros tipos de eventos periódicos que no son de naturaleza puramente electrónica, necesitarán de algún tipo de transductor. Por ejemplo, un evento mecánico puede ser preparado para interrumpir un rayo de luz, y el contador hace la cuenta de los impulsos resultantes. Los frecuencímetros diseñados para radiofrecuencia (RF) actúan igual que los frecuencímetros para más bajas frecuencias, pero suelen tener un mayor rango de medida para evitar su desbordamiento. Para las frecuencias muy altas, los diseños utilizan un dispositivo capaz de bajar la frecuencia de la señal para que los digitales normales puedan operar con frecuencias más comunes. Los displays tienen esto en cuenta para indicar la lectura verdadera. La precisión de un contador de frecuencia depende en gran medida de la estabilidad de su base de tiempo. Con fines de instrumentación se utilizan generalmente osciladores controlados por cristal de cuarzo, en los que el cristal está encerrado en una cámara de temperatura controlada, conocida como horno del cristal. Cuando no se necesita conocer la frecuencia con tan alto grado de precisión se pueden utilizar osciladores más simples. También es posible la medida de frecuencia utilizando las mismas técnicas en software en un sistema embebido - una CPU por ejemplo, puede ser dispuesta para medir su propia frecuencia de operación siempre y cuando tenga alguna base de tiempo con que compararse.

LABORATORIO DE CIRCUITOS ELECTRICOS II

20


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.