12 minute read

FARMS STEADILY ADDING DIGESTERS

The number of anaerobic digesters on farms continues to expand, growing tenfold between 2000 and 2020 (see graph below). As of this year, there are 255 anaerobic digesters in operation and 33 more under construction, according to the U.S. Environmental Protection Agency’s Ag STAR program. Of those farms operating digesters, 205 have dairy cattle, 44 raise hogs, eight have beef cattle, and seven raise poultry. Some digesters accept manure from more than one species, which is why this total exceeds 255.

and split N application (preplanting and in-season) is the best strategy. However, if applying N in the fall, consider the following practices to avoid over application and N loss.

Advertisement

1. Sa mple soil at 2 or 3 feet deep to determine residual nitrate-N to be credited in nitrogen rate calculations.

2. Apply fertilizer N or manure when soil temperature is below 50°F at a 4-inch soil depth.

3. Apply anhydrous ammonia instead of other N fertilizers.

4. Li mit fall application of N to silt loams, silty clay loams, and finer textured soils.

5. Avoid fall application on wet or flood-prone soils.

6. Consider applying part of the N in the fall and the remainder during the growing season.

7. Following University of Nebraska-Lincoln recommendations, plan to apply 5% more fertilizer-N in the fall compared to spring application to compensate for potential losses.

Litter and used manure are composted in windrows; some of it is used as bedding in the barns. The remainder is stacked in a manure shed and then land applied.

by Abby Bauer, Managing Editor

at Stutzman’s original career plan in public relations and sports media didn’t exactly include agriculture, but growth opportunities and technology drew him back to the farm he grew up on.

“I always enjoyed the business aspect of farming,” Mat said. “As technology became more prevalent in agriculture, that got my attention. The tech side played a major role for me.”

Mat’s grandfather moved to Constantine, Mich., in 1961 and started crop farming there. Mat’s parents, Albert and Sarah, followed suit, and until 2012, the Stutzmans were strictly grain farmers running 3,000 crop acres. At that point, Mat and his three siblings had all returned to the farm, and the ability to incorporate the third generation is what pushed them to diversify.

They considered other forms of livestock before partnering with Miller Poultry, a poultry processor headquartered in Goshen, Ind. Miller Poultry was looking to expand its business and needed more farms to raise birds, and the Stutzmans quickly became interested.

For the love of manure

They started out by building two broiler barns in 2013 to “dip our toe in the water and see what it was like,” Mat said. They quickly saw the benefits poultry manure provided their crop fields, along with the opportunity to provide more job opportunities on the farm.

In fact, poultry litter, not meat produc- tion, is really what pulled the Stutzmans to broiler raising. “We love the manure. That’s the reason we got into poultry,” Mat said. “Our number one goal was to produce manure for application.”

That interest in manure’s value started with Albert. When Albert took over the farm from his dad, he focused on nutrient management, started to plant cover crops, and instituted other environmental friendly farming practices. Albert also worked for a local dairy farm as a supervisor, and their anaerobic digester that generated power for the dairy intrigued him. “My dad was always interested in energy production,” Mat said. “We started looking at those concepts.”

While anaerobic digestion wasn’t a great fit for their farm, they quickly saw the litter provided tremendous value when land applied. “High-quality nutrients and everything you get from manure, that’s really why we expanded the poultry farm,” Mat said.

A year after their initial barns went up, they built two more, and then four more the year after that. Then, in 2017, Mat’s sister and her husband, Lynette and Tim Carpenter, built a four barn breeder egg facility. There they produce fertilized eggs that are picked up by

Miller to be hatched at their facility. Last year, the Stutzmans built another breeder egg facility 1.5 miles from the home farm.

Capturing the sun

Mat’s brothers have since moved on from the operation, so today he farms with his sister, his brother-in-law (who manages the crop side of their farm), and his parents. Albert’s interest level in renewable energy remained high, so they continued to look for ways to advance the farm in that area. Although it appeared too cost prohibitive at first, the Stutzmans found the right contracts with the right people and some grants that allowed them to install 870 solar panels on their farm this year.

“It was still a large financial invest- ment of ours,” explained Mat, “but we see two positive benefits. For one, our electrical bill by the end of this year should be down to $0, so there is a financial aspect to it. We are also cutting down on our electrical usage and producing energy in a way that is much more environmentally friendly.”

The solar panels will generate 425,000 kilowatt hours per year, or enough electricity to power 40 homes. All energy used in barns is being produced by the solar panels. Some of the harnessed energy is sold back to the power company; the rest is banked for use on the farm overnight or on nonproductive days when the panels are not capturing enough sunlight.

“It will be well down the road before we’ll see some financial return, but the reason behind the solar panels was that when people pull in to the farm, we want them to see the steps we are taking to be environmentally friendly in our farming practices,” Mat said, reaffirming their commitment to sustainability.

In the barns

Powered by the sun, each of the broiler barns is 60 feet wide by 600 feet long and can house 40,000 birds. When at full capacity, the Stutzmans are raising 320,000 birds on-site at a time. Miller Poultry brings the chicks from their hatchery when they are one day old, and the Stutzmans raise the birds for about 41 days, or until they are 5.2 pounds. Miller formulates and delivers the feed for the broilers, which changes as they grow. The Stutzmans’ farm is not certified organic, but they do raise their broilers without the use of antibiotics.

A new requirement of the Global Animal Partnership (G.A.P.) standards, which farms growing for Miller Poultry abide by, is incorporating windows in all barns to allow natural light. “The sun is good for you,” Mat said. “We have seen nothing but health benefits from it, and we get a lot better yield out of the birds.”

They also maintain a very consistent environment inside the barns. In the winter, this includes running furnaces to provide heat. For summer, fans and cooling walls are used to bring the temperature down and ventilate the barns. The cooling walls contain a material like cardboard and have cold water running through them.

“We try to make the birds as comfortable as possible,” Mat said. “A happy chicken is a healthy chicken.”

To make sure birds get off to a good start, they lower the feed and water trays so the 1-day-old chicks can easily access them, and they use Christmas lights to attract chicks to the water. Water intake is something that they monitor very closely, because Mat said, “It is often the first indicator that something is wrong.” They also drop a curtain halfway through the barn for the first 11 days to keep the chicks closer to food and water and in a more secure environment.

They have added different enrichments to the barns to enhance animal well-being. This includes perches and buckets with both ends cut off to provide areas for privacy when birds want it.

Once a barn full of broilers has grown and left the farm, the barn is cleaned out. The goal is to have a 3-inch layer of bedding on the ground when a new group of birds is placed in the barn, so the Stutzmans remove compost as necessary to reach that point. Sometimes they use a piece of equipment called a housekeeper, which Mat likened to a potato digger. It shakes up the litter, removing larger wet chunks while leaving behind the drier used shavings.

What lies beneath

The remaining used bedding and manure is pushed into windrows, and over the course of 14 days, the windrows are rolled two times to make sure the proper temperature of 140°F is maintained for composting. “That is key for antibiotic free,” Mat said. “Composting kills off the negative bacteria.”

Once composting is complete, the litter is leveled out and a layer of fresh shavings is placed on the top. Mat explained that for chicks, the litter is their immune system’s “lifeblood.” He said, “If they didn’t have bacteria that is in the used litter, the mortality rate would spike.” Not being able to use antibiotics can be a challenge, especially in the very young chicks. “Biosecurity is really, really big,” Mat said. “It is your main line of defense.”

The used litter and manure that is removed from the broiler houses is placed under an open-sided stack barn. Here the litter and manure are further composted until it’s used for land application. The Stutzmans test both the soil and the manure to make sure they are applying the correct amount on their fields, which they use to grow mostly seed corn and soybeans.

While they use some of the litter themselves, at this point, a majority is sold to other farms in the area. They have found a market and great demand for their product; the potato growers especially love it, Mat said. They currently have a waiting list for crop farmers wanting to purchase their composted manure.

The future of farming

While Mat’s four children are still young, some of his nieces and nephews are starting to show interest in joining the farm. The Stutzmans’ philosophy requires them to work somewhere else for two years before returning to the family business.

“Farming is so advanced now. The amount of business and tech involved, nutrient management, planning — it’s grown to such a high level,” Mat said. This requires more education, but it also creates more opportunities in different areas. And much of the thoughtful planning and practices the Stutzmans have put into place are in hopes that their farm can carry on for three more generations.

This includes the farm’s location, which they chose very carefully before building their first barns. With land spread over three counties, they selected this spot as there are no nearby neighbors. Using proper air control management, Mat said there are seldom odor issues anyway, but they remain committed to public perception and showing consumers what they do.

“We are genuine about what we do, how we care for our animals, and the way we care for the land,” Mat shared. “I think that’s very important for agriculture right now, finding ways to show our consumers and people not on a farm the positives we are doing.”

The Stutzmans feel their addition of solar power, which was the first installation on a Michigan poultry farm, was a prime example of how production agriculturalists can connect with consumers in a positive way. “We are really going the extra step to show we are looking at sustainability and looking for environmentally friendly ways to produce proteins, fruits, and vegetables,” Mat said.

“We take pride in what we do,” Albert added.

Their family remains committed to sustainable agriculture practices, mixed with technology that can help them raise healthier animals and grow better crops. For Mat, he is energized by the future potential of their farm. ■

Service is #1 here at CentriTEK Industrial Centrifuge Specialists.

Along with the high quality service on all brands of centrifuges, CentriTEK supplies a line of decanter centrifuges and systems which are Made in the USA and well suited to handle the requirements for all sizes of dairy farms looking to improve their overall manure management processes.

by Lindsay Pease

Between May 1 and July, 13 inches of rain fell at the University of Minnesota’s Northwest Research and Outreach Center in Crookston. This was about 3.5 inches greater than the 30-year average.

What started out as a near-normal season for rain took a sudden turn with 7 inches of rain in July. Quite literally, when it rained, it poured.

Falling with intensity

Many factors play into whether heavy rains lead to nutrient loss. Some of these factors are how much it rained, what soil type you have, what crop you grew, how much fertilizer you applied, how quickly it rained after you applied the fertilizer, and whether you have tile (or irrigation).

One of the key factors that determines if water will be absorbed into the soil or runoff the soil surface is rainfall intensity. The soil can only absorb water so fast. This is the soil’s infiltration rate. If rainfall intensity exceeds the soil’s infiltration rate, you will get ponding or runoff.

Infiltration rate depends on both the soil’s physical properties (texture, bulk density, and so forth) and the soil’s existing moisture content when it starts raining. Soils that are more coarse in texture absorb water faster than finer textured soils. Drier soils absorb water faster than wetter ones.

Management practices can have an effect on infiltration rate, too. Less compacted soils will absorb water faster than more compacted ones. In general, no matter what the soil properties are, if soil moisture is high and you get a high-intensity rainfall event, then conditions are right for surface runoff.

By my estimation, from May through July, rainfall intensity in Northwest Minnesota’s Red River Basin region likely exceeded infiltration rate on six days for sandier soils and up to 21 days on our more clay soils. That means between six and 21 chances for ponding and surface runoff.

Impacts the environment

Nutrient loss in surface runoff tends to be more of an environmental concern than a soil fertility concern. Surface runoff, ponding, and flooding can both damage crops and erode the soil surface, but it will not collect plant-available nutrients in a high enough volume to starve the crops. Surface runoff typically does not carry high amounts of nitrogen with it, but it can move high amounts of sediment-bound phosphorus into streams and waterways. Although this phosphorus is tightly bound to particles and not plant-available in the field, this can change once it moves into waterways and is exposed to different biological drivers. For example, phosphorus becomes more available at neutral pH levels. This means that phosphorus that is unavailable in the highly calcareous, high pH soils of western Minnesota can become available downstream.

Excessive phosphorus availability in lakes and streams can lead to harmful algal blooms. These harmful algal blooms are a critical environmental concern that threaten our use of freshwater lakes for fishing, drinking, or recreation.

Nutrient loss concerns are not only an issue with surface runoff. Once rain makes it into the soil, then nutrient loss from leaching becomes a potential problem. While surface runoff leads primarily to phosphorus loss concerns, leaching is more of a nitrogen loss issue. Excessive nitrogen in the form of nitrate in drinking water poses a health risk to babies and pregnant women.

Rainfall is one of the strongest predictors of nutrient movement into shallow groundwater (or tile drain flow). Rainfall tends to have a stronger influence on nutrient leaching than either fertilizer man agement or soil texture. This holds true whether you are looking at nitrogen or phosphorus.

For nitrogen, the soil moisture that comes with rainfall drives the mineralization process. For phosphorus, we see pulses of loss shortly following rainfall. This can temporarily elevate nutrient availability for the crop, but nutrients will move along with water as it leaches away.

Help nutrients stay put

Although we cannot control the weather, we can try different water strategies to improve our chances of keeping nutrients in the field. These strategies include managing tile drainage discharge with controlled drainage and implementing cover crops and reduced tillage into our cropping system. Controlled drainage is a practice that uses a structure installed at the outlet of a subsurface drainage system to physically slow or stop the flow of water out of the field. This practice keeps water in the field for a longer period and has been shown to reduce downstream nitrogen and phosphorus loading without reducing crop yield.

Experimenting with cover crops or reduced tillage to see if those practices help improve soil structure is another strategy. Improved soil structure can increase the available pore space for water to be absorbed into the soil. Cover crops promote improved soil structure by adding organic matter and living plant roots into the soil to help keep soil in place between cash-crop growing seasons. Reduced tillage helps to stabilize soil aggregates and keeps the pore spaces formed by those soil aggregates from breaking apart.

A low level of nutrient loss may be unavoidable if heavy rains are in the forecast. Even so, it is important (and economical) to optimize soil fertility in addition to implementing other water management practices. When we are looking at soil as a system, fertilizer management is only one aspect keeping nutrients in the field and out of downstream waterways. We may not have any silver bullets for improving nutrient use efficiency, but we do have options. ■

This article is from: