3 minute read

The Advance FB1-4001

Figure 6-11 WarP ImPulse 9" motor for front-wheel-drive car s.

This motor has a “shorty” tail shaft housing from a Chevrolet Turbo 400 transmission fitted to the drive end-bell. The drive end-shaft is not the typical 1.125" single-keyed type, but rather a hefty 1.370", 32-tooth involute spline that is identical to the tail shaft spline of a Turbo 400 transmission. In other words, this motor was designed to replace a transmission and couple directly to a drive shaft!

The Advance FB1-4001

Another option, the Advance FB1-4001, shown in Figure 6-12, was designed to propel EVs. One of its big advantages that should not be underestimated is that you can acquire it new from a reputable vendor. A used compound wound DC aircraft starter motor for $200 might sound great, but powering EVs was never intended to be its true mission in life, and how much use has it seen already? With the FBI-4001 you get a motor that you can return if it doesn’t work. In a reputable vendor you have someone to turn to for answers to questions, technical data, and more. A surplus dealer is rarely able to offer this capability.

As I researched for this edition of the book, I noticed that the electric vehicle called the Tango from Commuter Cars Corporation used the FB1-4001. When I spoke with Rick Woodbury, creator of the Tango and president of the company, we talked for over an hour about the state of electric cars. One of the greatest things that I had heard from him was that the first edition of this book helped him to create the vehicle. To paraphrase, “If it wasn’t for this book, the Tango would not have been built.” I am glad this book made such a contribution to the electric vehicle industry.

One of the more popular riders of the Tango is George Clooney, as pictured with his Tango in Figure 6-13. Hopefully his involvement and the wonderful aspects of the Tango will allow Rick to Build More Of His Own Electric Vehicles. Keep it up, Rick!!! Way to go!

Figure 6-14 shows the performance curves used in deriving Chapter 5’s data, this time shown for values of 72 through 120 volts. Table 6-1 gives you the data from its S-2 DIN and ISO thermal tests. Another advantage to buying a new motor from a reputable

Figure 6-12 Advance series DC motor cutaway view.

dealer is that you have the curves and data you need to help you optimize your EV conversion.

There are better solutions. But regenerative braking was not important for the conversion we detail in Chapter 10, and there was already a matching controller available. We wanted good middle-of-the-road performance at a good price, as well as a product that any potential EV converter reading this book could use and get working the first time up to bat. This motor delivers all that and more.

Tomorrow’s Best EV Motor Solution

While the series DC motor is unquestionably the best for today’s first-time EV converters, the bias of this chapter toward AC induction motors was not accidental. Improvements in solid-state AC controller technology clearly put AC motors on the fast track for EV conversions of the future. AC motors are inherently more efficient, more rugged, and

Test Voltage Time – On Volts Amps RPM HP Peak HP KW 75 volts – .03I 5 minutes 63.5 380 1900 27.0 20.3 75 volts – .03I 1 hour 68.0 240 2550 19.0 14.3 75 volts – .03I continuous 69.0 210 2800 17.0 12.8 75 volts – .03I 42.0 96 volts – .03I 5 minutes 88.0 360 3300 35.0 26.5 96 volts – .03I 1 hour 89.0 210 3600 23.0 17.3 96 volts – .03I continuous 90.0 190 3900 20.0 15.0 96 volts – .03I 70

Table 6-1 Data for Advance Model FBI-4001 Series DC Motor S-2 DIN and ISO Ther mal Tests

This article is from: