7 minute read

Breakthrough—The Industrial Revolution

Next Article
Glossary

Glossary

Breakthrough—The Industrial Revolution

Lecture 41

Advertisement

Now, something also happens to the nature of land ownership. Increasingly, the land vacated by peasants was taken over by large landowners who farmed it for pro t. In Britain, this transfer of land from small pockets of peasant farming to much larger areas, farmed more commercially, was dominated by the idea of enclosures.

By 1700 many elements of modernity seemed to be in place, yet global rates of innovation remained slow. This lecture describes the breakthrough to modernity after 1700. It focuses on one country, Britain, where the transformation has been studied most intensively. To understand these changes we need statistics. First, we discuss estimates of changes in total global production from 1500–1998. What do these estimates show? First, they show an astonishing increase in total production: Between 1500 and 2000, global production increased by 135 times. Second, the increases really became evident in the 19th century and were most striking in the 20th century. Increasing production allowed population to multiply by almost 14 times in the same period. Once again, this is an accelerating process. Particularly striking is the fact that production rose faster than population. In other words, more goods and services were being produced per person. Production per person increased by about 10 times between 1500 and 1998. Once more, this is an accelerating trend. These gures show that in the Modern era, rates of innovation have begun to outstrip rates of population growth, promising to make Malthusian crises a thing of the past.

A second set of gures illustrates how these changes transformed the global geography of wealth and power. Here we compare the combined production of Britain and the U.S. (two major powers of the emerging Atlantic hub zone) with the combined production of India and China (the ancient economic heartlands of the pre-modern world). In 1750, India and China accounted for almost 60% of global production, while Britain and the U.S. accounted for just 2% of global production (Christian, Maps of Time, p. 366). In 1830, India and China still accounted for just under 50%, while the U.S. and Britain accounted for 13%. The relationship changes drastically in the

mid-19th century. By 1860, each region produced about 28% of global gross domestic product. Then India and China started to fall behind rapidly. By 1900 the U.S. and UK produced about 42% of global output, and India and China produced merely 8%. By 1950, the U.S. and UK produced 53%, and India and China a mere 4%. Of course, that’s not the end of the story. From the mid-20th century, the tide has started to turn once more.

The breakthrough to modernity can be seen most easily in Britain. Many historians argue that Britain was the rst country to experience the sustained growth rates typical of the Modern Revolution. Patrick O’Brien writes, “Between 1750 and 1850, the long-term rate of growth of the British economy became historically unique and internationally remarkable” (Christian, Maps of Time, p. 411). In 18th-century Britain we can see three interrelated revolutions: a transformation in social structures that created a more capitalistic society, a revolution in the agricultural sector, and a revolution in manufacturing.

By 1700 Britain was probably the most capitalistic and highly commercialized country in the world. It was also one of the best connected, being at the center of global exchange networks. Our model suggests that in such an environment rates of innovation ought to have accelerated as entrepreneurs competed to raise output and as markets expanded, with increasing numbers of wage earners who had to purchase both basic food and clothing with cash. That is exactly what we observe. Agriculture was the fundamental economic sector in all Agrarian societies. Productivity rst began to rise in this sector from the 17th century. By 1700 many British peasants had become wage earners. This rapidly growing class provided a source of cheap labor and also a rising source of demand for basic consumer goods. Much of the land vacated by peasants was taken over by large landowners who farmed for pro t. Often, they were helped by Parliament, which passed “Enclosure Acts,” granting them full possession of land that had once been available for communal use. On these large, consolidated plots of land, the new owners could introduce commercial farming methods, producing goods for sale rather than subsistence. Agriculture became a business.

Farming for pro t meant competing with other producers, and that meant increasing ef ciency. British farmers raised productivity by introducing techniques that had been known for many centuries. What was new was not the techniques but the increasing incentives to apply them on a large scale. Farmers raised soil fertility by planting legumes; they improved irrigation, bred better-quality animals, and used improved methods of planting and preparing their land.

Between 1700 and 1850, British agricultural output increased 3.5 times, while the numbers employed in agriculture fell from 61% to 29% of the population. For the rst time in human history, a minority of the population was feeding a majority. Expanding internal and foreign markets, a supportive government, and a stable nancial system that could provide cheap capital (the Bank of England had been incorporated in 1694) encouraged investment in manufacturing as well as in agriculture.

In most Agrarian societies, textile production was the largest sector after agriculture. Innovations in cotton spinning reduced the time taken to spin 100 pounds of cotton from 50,000 hours to 300 hours in the late 18th century and stimulated the mechanization of weaving. A shortage of wood encouraged greater use of coal. That meant improving the technologies used to pump water out of coal mines. In the 1760s, James Watt (1736–1819) improved the ef ciency of the steam engines traditionally used to pump out mines. More ef cient steam engines made it economical for the rst time to use coal to drive machines even well away from the coal elds. This encouraged the creation of large factories driven by steam power.

Putting steam engines on wheels early in the 19th century revolutionized land transportation and slashed transportation costs. The rst steam engine designed for passengers as well as for freight was the “Rocket,” designed by George Stephenson. We have a wonderful description from the actress Fanny Kemble (1809–1893), who traveled on one of Stephenson’s trains in 1830.

In most Agrarian societies, textile production was the largest sector after agriculture.

Putting steam power on wheels in the early 19th century revolutionized land transportation and slashed transportation costs.

© Brand X Pictures/Thinkstock.

By the early 19th century, innovation was raising productivity in many sectors of manufacturing, including textiles, coal, and metals; building; and consumer goods. Between 1770 and 1830, the value of cotton production in Britain rose over 40 times, that of coal production almost 9 times, that of iron production about 5 times, and that of building by more than 11 times.

The English Industrial Revolution provides a good illustration of the model of innovation proposed in Lecture Thirty-One. It suggests that once societies emerged that were highly commercialized, capitalistic in their social structures, and well-connected to global markets, new incentives would stimulate innovation. But the innovations themselves were also important, above all the discovery of a massive new energy source: fossil fuels. The steam engine, followed by technologies that exploited oil and natural gas, allowed humans to tap into the vast reserves of fossilized energy that had been laid down over several hundred million years. Before the steam engine, the most powerful prime mover available was probably a windmill, which could deliver about 9 horsepower. Watt’s steam engine delivered 134 horsepower.

By the early 19th century, contemporaries began to notice these changes. In 1837, French Revolutionary Blanqui described the changes in Britain as an “Industrial Revolution,” his way of saying that they were at least as important as the French revolution, the most momentous event in recent European history.

We have seen how, in Britain, a high level of commercialization, a highly capitalistic social structure, and multiple connections to global markets encouraged soaring innovation. The next lecture asks: How, why, and when did these innovations spread to other parts of the world?

Essential Reading

Supplementary Reading

Questions to Consider

Christian, Maps of Time, chap. 13.

Maddison, TheWorld Economy. Stearns, The Industrial Revolution in World History. Wrigley, Continuity, Chance, and Change.

1. What evidence justi es Blanqui’s claim that an “Industrial Revolution” had occurred in Britain by the early 19th century?

2. What factors did most to stimulate innovation in Britain during the

Industrial Revolution?

This article is from: