A Comparative Error Analysis of Current Time-of-Flight Sensors
Abstract: Time-of-flight (ToF) cameras suffer from systematic errors, which can be an issue in many application scenarios. In this paper, we investigate the error characteristics of eight different ToF cameras. Our survey covers both well established and recent cameras including the Microsoft Kinect V2. We present up to six experiments for each camera to quantify different types of errors. For each experiment, we outline the basic setup, present comparable data for each camera, and discuss the respective results. The results discussed in this paper enable the community to make appropriate decisions in choosing the best matching camera for a certain application. This work also lays the foundation for a framework to benchmark future ToF cameras. Furthermore, our results demonstrate the necessity for correcting characteristic measurement errors. We believe that the presented findings will allow 1) the development of novel correction methods for specific errors and 2) the development of general data processingalgorithms that are able to robustly operate on a wider range of cameras and scenes.