Secrecy Ensured Socially Aware Resource Allocation in Device-to-Device Communications Underlaying He

Page 1

Secrecy Ensured Socially Aware Resource Allocation in Device-to-Device Communications Underlaying HetNet

Abstract: Device-to-device (D2D) communication standardization is underway and considered as one of the key technologies in the 5G ecosystem. Eavesdropping is a well-known security risk for D2D communications. Thus, ensuring information security for both cellular users (CUs) and D2D pairs in an underlay network is quite challenging. In this paper, we look into the problem of physical-layer secure transmission jointly with resource allocation in D2D communications. Existing research works for D2D underlay networks considered perfect channel state information (CSI), which is usually unrealistic in practical networks due to the wireless channels' dynamic nature. Hence, unlike the previous works, we are considering imperfect CSI that include estimation errors. We leverage social-domain and frame a coalitional game approach, enabling multiple D2D pairs to share CU spectral resource. We assume heterogeneous cellular network based practical scenario considering multiple eavesdroppers, intra-cell interference, and inter-cell interference to evaluate achievable performances in terms of sum-rate


and secrecy capacity for both CUs and D2D pairs. Moreover, we prove our proposed algorithm stability, convergence, and computational complexity. The simulation results establish the effectiveness of our proposed approach that not only maximizes the sum rate (i.e., 10%-60%) but also improves the secrecy capacity (i.e., 20%-67%) in comparison to the baseline schemes.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.