J1066069

Page 1

International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 10, Issue 6 (June 2014), PP.60-69

Zeros of Polynomials in Ring-shaped Regions M. H. Gulzar Department of Mathematics University of Kashmir, Srinagar 190006 Abstract:- In this paper we subject the coefficients of a polynomial and their real and imaginary parts to certain conditions and give bounds for the number of zeros in a ring-shaped region. Our results generalize many previously known results and imply a number of new results as well. Mathematics Subject Classification: 30 C 10, 30 C 15 Keywords and Phrases:- Coefficient, Polynomial, Zero

I.

INTRODUCTION AND STATEMENT OF RESULTS

A large number of research papers have been published so far on the location in the complex plane of some or all of the zeros of a polynomial in terms of the coefficients of the polynomial or their real and imaginary parts. The famous Enestrom-Kakeya Theorem [5] states that if the coefficients of the polynomial n

P( z )   a j z j satisfy 0  a0  a1  ......  an1  an , then all the zeros of P(z) lie in the closed disk j 0

z  1. By putting a restriction on the coefficients of a polynomial similar to that of the Enestrom-Kakeya Theorem, Mohammad [6] proved the following result: n

Theorem A: Let

P( z )   a j z j be a polynomial such that 0  a0  a1  ......  an1  an . Then the j 0

number of zeros of P(z) in

1

z 

1 does not exceed 2

a 1 log n . log 2 a0

For polynomials with complex coefficients, Dewan [1] proved the following results: n

Theorem B: Let

P( z )   a j z j be a polynomial such that j 0

arg a j      for some real

 and 

 2

, j  0,1,2,....., n,

and

0  a0  a1  ......  an1  an . Then the number of zeros of P(z) in

z 

1 does not exceed 2 n 1

1 log log 2

a n (cos   sin   1)  2 sin   a j j 0

a0 n

Theorem C: Let

.

P( z )   a j z j b e a polynomial of degree n with Re( a j )   j , j 0

Im(a j )   j , j  0,1,2,......, n such that 0   0  1  ......   n1   n . 60


Zeros of Polynomials in Ring-shaped Regions

z 

Then the number of zeros of P(z) in

1 does not exceed 2

n

1

n    j

1 log log 2

j 0

a0

.

Recently Gulzar [3,4] proved the following results: n

Theorem D: Let

P( z )   a j z j be a polynomial of degree n such that for some k  1, o    1 and for j 0

some integer

 ,0    n  1 ,  n   n1  ......    1  k     1  ......  1   0 .

Then P(z) has no zero in

z

a0

, where

M1

n

M 1  a n   n  2(k  1)     (  0   0 )   0   0   n  2  j . j 1

n

Theorem E: Let

P( z )   a j z j be a polynomial of degree n such that for some j 0

real

 ,  ; arg a j     

2

 ,0    n  1 ,

, j  0,1,2,......, n and for some k  1, o    1 and some integer

a n  a n1  ......  a 1  k a  a 1  ......  a1   a0 . Then P(z) has no zeros in

z 

a0

, where

M2

M 2  a n (cos   sin   1)  2 a (k  k sin   1)   a0 (cos   sin   1)  a0  2 sin 

n 1

a

j 1, j  

j

.

n

Theorem F: Let

P( z )   a j z j be a polynomial of degree n with Re( a j )   j , j 0

Im(a j )   j , j  0,1,......, n such that for some k1  1, k 2  1,0    1 ,

k1 n  k 2 n1   n2 ......1   0 Then P(z) has no zero in z 

a0 M3

, where

M 3  a n  (k1  n  k 2  n1 )  (k1 n  k 2 n1 )   n1  (  n   n1 ) n 1

  (  0   0 )   0   0   n  2  j . j 1

n

Theorem G: Let

P( z )   a j z j be a polynomial of degree n such that for some k1  1, k 2  1,0    1 , j 0

k1 a n  k 2 a n1  a n2 ......  a1   a0 .

61


Zeros of Polynomials in Ring-shaped Regions

Then P(z) has no zero in

z 

a0 M4

, where

M 4  k1 a n (cos   sin   1)  k 2 a n1 (sin   cos   1)  a n1 (1  cos  ) n2

  a0 (cos   sin   1)  a0  2 sin   a j . j 1

In this paper, we prove the following results: n

Theorem 1: Let

P( z )   a j z j be a polynomial of degree n such that for some k  1, o    1 and for j 0

some integer

 ,0    n  1 ,  n   n1  ......    1  k     1  ......  1   0 .

Then the number of zeros of P(z) in

z

R ( R  0, c  1) does not exceed c n

a n R n 1  a 0  R n [ n  2(k  1)     (  0   0 )   0   0   n  2  j ]

1 log log c for R  1 and 1 log log c for R  1 .

j 1

a0 n 1

an R

n

 a 0  R[ n  2(k  1)     (  0   0 )   0   0   n  2  j ] j 1

a0

Combining Theorem 1 and Theorem D, we get a bound for the number of zeros of P(z) in a ring-shaped region as follows: n

P( z )   a j z j be a polynomial of degree n such that for some k  1, o    1 and for

Corollary 1: Let

j 0

some integer

 ,0    n  1 ,  n   n1  ......    1  k     1  ......  1   0 .

Then the number of zeros of P(z) in

a0 M1

 z

R ( R  0, c  1) does not exceed c n

a n R n 1  a 0  R n [ n  2(k  1)     (  0   0 )   0   0   n  2  j ]

1 log log c for R  1 and

j 1

a0 n

a n R n 1  a 0  R[ n  2(k  1)     (  0   0 )   0   0   n  2  j ]

1 log log c for R  1 , where

j 1

a0 n

M 1  a n   n  2(k  1)     (  0   0 )   0   0   n  2  j . j 1

n

Theorem 2: Let

P( z )   a j z j be a polynomial of degree n such that for some j 0

62


Zeros of Polynomials in Ring-shaped Regions

real

 ,  ; arg a j     

 ,0    n  1 ,

 2

, j  0,1,2,......, n and for some k  1, o    1 and some integer

a n  a n1  ......  a 1  k a  a 1  ......  a1   a0 . R ( R  0, c  1) does not exceed c  a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     z

Then the number of zeros of P(z) in

and

 a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 . log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     Combining Theorem 2 and Theorem E, we get a bound for the number of zeros of P(z) in a ring-shaped region as follows: n

Corollary 2: Let

P( z )   a j z j be a polynomial of degree n such that for some j 0

real

 ,  ; arg a j     

 ,0    n  1 ,

 2

, j  0,1,2,......, n and for some k  1, o    1 and some integer

a n  a n1  ......  a 1  k a  a 1  ......  a1   a0 .

a0

Then the number of zeros of P(z) in

M2

 z

R ( R  0, c  1) does not exceed c

 a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     and

 a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 , log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     where

M 2  a n (cos   sin   1)  2 a (k  k sin   1)   a0 (cos   sin   1)  a0 n 1

 a

 2 sin 

j 1, j 

j

.

n

Theorem 3: Let

P( z )   a j z j be a polynomial of degree n with Re( a j )   j , j 0

Im(a j )   j , j  0,1,......, n such that for some k1  1, k 2  1,0    1 ,

k1 n  k 2 n1   n2 ......1   0 R Then the number of zeros of P(z) in z  ( R  0, c  1) does not exceed c 63


Zeros of Polynomials in Ring-shaped Regions

 a n R n 1  R n {(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 and  a n R n 1  R{(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 . Combining Theorem 3 and Theorem F, we get a bound for the number of zeros of P(z) in a ring-shaped region as follows: n

Corollary 3: Let

P( z )   a j z j be a polynomial of degree n with Re( a j )   j , j 0

Im(a j )   j , j  0,1,......, n such that for some k1  1, k 2  1,0    1 ,

k1 n  k 2 n1   n2 ......1   0 Then the number of zeros of P(z) in

a0 M3

 z

R ( R  0, c  1) does not exceed c

 a n R n 1  R n {(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 and  a n R n 1  R{(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 , where M 3  a n  (k1  n  k 2  n1 )  (k1 n  k 2 n1 )   n1  (  n   n1 ) n 1

  (  0   0 )   0   0   n  2  j . j 1

n

Theorem 4: Let

P( z )   a j z j be a polynomial of degree n such that for some k1  1, k 2  1,0    1 , j 0

k1 a n  k 2 a n1  a n2 ......  a1   a0 . R Then the number of zeros of P(z) in z  ( R  0, c  1) does not exceed c n 1 n  a n R  a 0  R {k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1   n2 log   log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }   j 1   for R  1 and

64


Zeros of Polynomials in Ring-shaped Regions

 a n R n 1  a 0  R{k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1   n2 log   log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }   j 1   for R  1 . Combining Theorem 4 and Theorem G, we get a bound for the number of zeros of P(z) in a ring-shaped region as follows: n

Corollary 4: Let

P( z )   a j z j be a polynomial of degree n such that for some k1  1, k 2  1,0    1 , j 0

k1 a n  k 2 a n1  a n2 ......  a1   a0 . Then the number of zeros of P(z) in

a0 M4

 z

R ( R  0, c  1) does not exceed c

 a n R n 1  a 0  R n {k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1   n2 log   log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }   j 1   for R  1 and  a n R n 1  a 0  R{k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1   n2 log   log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }   j 1   for R  1 , where M 4  k1 a n (cos   sin   1)  k 2 a n1 (sin   cos   1)  a n1 (1  cos  )

  a0 (cos   sin   1)  a0 . For different values of the parameters in the above results, we get many interesting results including generalizations of some well-known results.

II.

LEMMAS

For the proofs of the above results, we need the following results: Lemma 1: Let

z1 , z 2  C with z1  z 2 and arg z j     

 and  . Then

2

, j  1,2 for some real numbers

z1  z 2  ( z1  z 2 ) cos   ( z1  z 2 ) sin  . The above lemma is due to Govil and Rahman [2]. Lemma 2: Let F(z) be analytic in

z  R , F ( z )  M for z  R and F (0)  0 . Then

for c>1, the number of zeros of F(z) in the disk

z

R does not exceed c

1 M log . log c a0 For the proof of this lemma see [7].

III.

PROOFS OF THEOREMS

Proof of Theorem 1: Consider the polynomial F(z)=(1-z)P(z)

 (1  z)(an z n  an1 z n1  ......  a 1 z  1  a z   a 1 z  1  ......  an1 z n1  an z n 65


Zeros of Polynomials in Ring-shaped Regions

 an z n1  (an  an1 ) z n  (an1  an2 ) z n1  ......  (a 1  a ) z  1  (a  a 1 ) z   (a 1  a 2 ) z  1  ......  (a1  a0 ) z  a0  a n z n1  ( n   n1 ) z n  ( n1   n2 ) z n1  ......  ......  {(  1  k  )  (k     )}z  1  {(k     1 )  (k     )}z   (  1    2 ) z  1  ......  {( 1   0 )  ( 0   0 )}z n

 i  (  j   j 1 )z j  a 0 j 1

For

z  R , we have, by using the hypothesis,

F ( z )  a n R n1   n   n1 R n   n 1   n2 R n1  .......    1  k  R  1  (k  1)   R  k     1 R   (k  1)   R     1     2 R  1  ......   1   0 R n

 (1   )  0 R   (  j   j 1 ).R j  a 0 j 1

 an R

n 1

 a0  R [ n   n1   n1   n2  .......    1  k   (k  1)   n

 k     1  (k  1)      1     2  ......   1   0 n

 (1   )  0   (  j   j 1 )] j 1

n

 a n R n 1  a 0  R n [ n  2(k  1)     (  0   0 )   0   0   n  2  j ] j 1

for

R 1

and

F ( z )  a n R n1  a0  R[ n   n1   n1   n2  .......    1  k   (k  1)    k     1  (k  1)      1     2  ......   1   0 n

 (1   )  0   (  j   j 1 )] j 1

n

 a n R n 1  a 0  R[ n  2(k  1)     (  0   0 )   0   0   n  2  j ] j 1

for

R  1.

Hence, by Lemma 2, it follows that the number of zeros of F(z) in

z

R ,c 1 c

does not exceed n

a n R n 1  a 0  R n [ n  2(k  1)     (  0   0 )   0   0   n  2  j ]

1 log log c for R  1 and

j 1

a0 n

1 log log c

a n R n 1  a 0  R[ n  2(k  1)     (  0   0 )   0   0   n  2  j ] j 1

a0 66

 1


Zeros of Polynomials in Ring-shaped Regions for R  1 . Since the zeros of P(z) are also the zeros of F(z), the proof of Theorem 1is complete. Proof of Theorem 2: Consider the polynomial F(z)=(1-z)P(z)

 (1  z)(an z n  an1 z n1  ......  a 1 z  1  a z   a 1 z  1  ......  an1 z n1  an z n

 an z n1  (an  an1 ) z n  (an1  an2 ) z n1  ......  (a 1  a ) z  1  (a  a 1 ) z   (a 1  a 2 ) z  1  ......  (a1  a0 ) z  a0 For

z  R , we have, by using the hypothesis and Lemma 1,

F ( z )  a n R n1  a n  a n1 R n  a n1  a n2 R n1  .......  a 1  ka R  1  (k  1) a R  1  ka  a  1 R   (k  1) a  R   a  1  a   2 R  1  ......  a1  a 0 R  (1   ) a 0 R

 a n R n1  a0  R n [( a n  a n1 ) cos   ( a n  a n1 ) sin   ( a n1  a n2 ) cos   ( a n 1  a n  2 ) sin   ......  ( a  1  k a  ) cos   ( a  1  k a  ) sin   (k  1)    (k      1 ) cos   (k      1 ) sin   (k  1)    ( a  1  a   2 ) cos   ( a  1  a   2 ) sin   ......  ( a1   a 0 ) cos   ( a1   a 0 ) sin   (1   ) a 0 ]

 a n R n1  a0  R n [ a n (cos   sin  )  2 a (k  k sin   1)   a0 (cos   sin   1)  a0  2 sin  for

n 1

a

j 1, j  

j

]

R 1

and

F ( z )  a n R n1  a0  R[ a n (cos   sin  )  2 a (k  k sin   1)   a0 (cos   sin   1)  a0  2 sin  for

n 1

a

j 1, j  

j

]

R 1 .

Hence, by Lemma 2, it follows that the number of zeros of F(z) in

z

R ,c 1 c

does not exceed

 a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     and

 a n R n 1  a 0  R n { a n (cos   sin  )  2 a  (k  k sin   1) 1 1   n 1 log   for R  1 . log c a 0   a 0 (cos   sin   1)  a 0  2 sin   a j }   j 1, j     Since the zeros of P(z) are also the zeros of F(z), Theorem 2 follows. Proof of Theorem 3: Consider the polynomial

F ( z )  (1  z ) P( z )  (1  z)(an z n  an1 z n1  ......  a1 z  a0 )  an z n1  (an  an1 ) z n  (an1  an2 ) z n1  ......  (a1  a0 ) z  a0 67


Zeros of Polynomials in Ring-shaped Regions

 an z n1  {(k1 n  k 2 n1 )  (k1 n   n )  (k 2 n1   n1 )}z n  ( n1   n2 ) z n1

 ......  {( 1   0 )  ( 0   0 )}z  i{( n   n 1 ) z n  ......  ( 1   0 ) z}  a 0 For

z  R , we have, by using the hypothesis,

F ( z)  a n R n1  k1 n  k 2 n1 R n  (k1  1)  n R n  (k 2  1)  n1 R n   n1   n2 R n1  ...... n

  1   0 R  (1   )  0 R    j   j 1 R j  a 0 j 1

 an R

n 1

 R [k1 n  k 2 n1  (k1  1)  n  (k 2  1)  n1   n1   n2  ..... n

n

  1   0  (1   )  0   (  j   j 1 )] j 1

 an R

n 1

 R [(k1  n  k 2  n1 )  (k1 n  k 2 n1 )   n1  (  n   n1 ) n

n 1

  (  0   0 )   0   0   n  2  j ] j 1

for

R 1

and

F ( z)  a n R n1  R[(k1  n  k 2  n1 )  (k1 n  k 2 n1 )   n1  (  n   n1 ) n 1

  (  0   0 )   0   0   n  2  j ] j 1

for

R 1 .

Hence, by Lemma 2, it follows that the number of zeros of F(z) in

z

R ,c 1 c

does not exceed

 a n R n 1  R n {(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 and  a n R n 1  R{(k1  n  k 2  n 1 )  (k1 n  k 2 n 1 )   n 1  (  n   n 1 ) 1 1   n 1 log   log c a 0   (  0   0 )   0   0   n  2  j }   j 1   for R  1 . Since the zeros of P(z) are also the zeros of F(z), Theorem 3 follows. Proof of Theorem 4: Consider the polynomial

F ( z )  (1  z ) P( z )  (1  z)(an z n  an1 z n1  ......  a1 z  a0 )

 an z n1  (an  an1 ) z n  (an1  an2 ) z n1  ......  (a1  a0 ) z  a0  a n z n1  {(k1 a n  k 2 a n1 )  (k1 a n  a n )  (k 2 a n1  a n1 )}z n  (a n1  a n2 ) z n1

 ......  {(a1  a0 )  (a0  a0 )}z  a0 For

z  R , we have, by using the hypothesis and Lemma 1, 68


Zeros of Polynomials in Ring-shaped Regions

F ( z)  a n R n1  k1 a n  k 2 a n1 R n  (k1  1) a n R n  (k 2  1) a n1 R n  a n1  a n2 R n1  ......  a1  a0 R  (1   ) a0 R  a0  a n R n1  a0  R n [(k1 a n  k 2 a n1 ) cos   (k1 a n  k 2 a n1 ) sin   (k1  1) a n  (k 2  1) a n 1  ( a n 1  a n  2 ) cos   ( a n 1  a n  2 ) sin   ( a1   a 0 ) cos   ( a1   a 0 ) sin   (1   ) a 0

 a n R n1  a0  R n [k1 a n (cos   sin   1)  k 2 a n1 (sin   cos   1)  a n n2

 a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j ] j 1

for

R 1

and

F ( z )  a n R n1  a0  R[k1 a n (cos   sin   1)  k 2 a n1 (sin   cos   1)  a n n2

 a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j ] j 1

R 1 . R Hence, by Lemma 2, it follows that the number of zeros of F(z) in z  , c  1 c for

does not exceed

 a n R n 1  a 0  R n {k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1   n2 log  log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }   j 1   for R  1 and  a n R n 1  a 0  R{k1 a n (cos   sin   1)  k 2 a n 1 (sin   cos   1)  a n  1 1  n2 log log c a 0  a n 1 (1  cos   sin  )   a 0 (cos   sin   1)  2 sin   a j }  j 1 

for R  1 . Since the zeros of P(z) are also the zeros of F(z), Theorem 4 follows.

   

REFERENCES [1].

K.K. Dewan, Extremal Properties and Coefficient Estimates for Polynomials with Restricted Coefficients and on Location of Zeros of Polynomials,Ph. Thesis, IIT Delhi, 1980. [2]. N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Mathematics Journal, 20(1968), 136. [3]. M. H. Gulzar, The Number of Zeros of a Polynomial in a Disk,International Journal of Innovative Science, Engineering & Technology, Vol.1, Issue 2,April 2014, 37-46. [4]. M. H. Gulzar, Zeros of Polynomials under Certain Coefficient Conditions, Int. Journal of Advance Foundation and Research in Science and Technology (to appear) . [5] M. Marden, , Geometry of Polynomials,Math. Surveys No. 3, Amer. Math Society(R.I. Providence) (1966). [6] Q. G. Mohammad, On the Zeros of Polynomials, American Mathematical Monthly, 72 (6) (1965), 631633. [7] E. C. Titchmarsh, The Theory of Functions, 2 nd Edition, Oxford University Press,London, 1939.

69


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.