12 applied on certain generalized modified beta operators sangeetha garg

Page 1

IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 2, Issue 7, Jul 2014, 95-106 © Impact Journals

ON CERTAIN GENERALIZED MODIFIED BETA OPERATORS PRERNA MAHESHWARI SHARMA1 & SANGEETA GARG2 1

Department of Mathematics, SRM University, NCR Campus, Ghaziabad, Uttar Pradesh, India 2

Research Scholar, Mewar University, Chittorgarh, Rajasthan, India

ABSTRACT In the present paper we study about the Stancu variants of modified Beta operators. We obtain some direct results in simultaneous approximation and asymptotic formula for these operators. We also modify these operators so as to preserve the linear moments, by applying the King’s approach.

KEYWORDS: Simultaneous Approximation, Modified Beta Operators, King’s Approach, Stancu Type Operators, Asymptotic Formula, Peetre’s K-Functional

AMS: Primary 41a25, 41a35 1. INTRODUCTION Stancu type generalization of Bernstein polynomials was introduced by Stancu [10] as n k  S nα ( f , x ) = ∑ f   p nk,α ( x ), 0 ≤ x ≤ 1 k =0  n  k −1

n k 

where p n ,α ( x ) =   k

(1.1)

n − k −1

∏ (x + αs ) ∏ (1 − x + αs ) s =0

s =0

n −1

∏ (1 + αs ) s =0

As a special case if α = 1, we get the classical Bernstein polynomials. Starting with two parameters

satisfying 0 ≤

and

in the year 1983, Stancu [11] gave the other generalization of the operators (1.1) as follows

n  k +α  , S nα , β ( f , x ) = ∑ pn ,k ( x ) f  k =0 k+β  n k n−k where p n ,k ( x ) =   x (1 − x ) , k 

(1.2)

(1.3)

is the Bernstein basis function. In the year 2010, Buyukyazici and collaborators [1] and [2] have proposed the Stancu variants of several well known operators and estimated some direct results. Recently Gupta-Yadav [4] established some interesting results for BBS operators. Motivating with their work, we propose Stancu type generalization of modified Beta operators (1.1).

Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us


96

Prerna Maheshwari Sharma & Sangeeta Garg

For0 ≤

≤ , Stancu type generalization for modified Beta operators is as follows α ,β

Pn

∞  nt + α   n − 1 ∞ dt, x ∈ [0, ∞) ( f , x) =  ∑ bn,v ( x )∫ p n,v (t ) f   n  v =0  n+β  0

where

1 + 1,

=

,

+

=

,

The operators

,

,

1+

−1

(1.4)

1+

are called modified Beta-Stancu operators. For

modified Beta operators defined by Gupta-Ahmad [4], as

=

= 0, the operators (1.4) reduce to the

 n −1  ∞ Pn ( f , x ) =  ∑ bn,v ( x )∫ p n,v (t ) f (t )dt, x ∈ [0, ∞)  n  v =0 0 ,

,

and

(1.5)

are defined as above. Some approximation properties of these operators were discussed by

Maheshwari [6] and [7], Maheshwari-Gupta [8], and Maheshwari-Sharma [9] etc.

Also

,

In the analysis, Hewitt-Stromberg [5] showed that the operators 1,

are linear positive operators.

= 1, howsoever smooth the function may be, it turns out the order of approximation for the operators

(1.4) are at best of

2. BASIC RESULTS

.

In this section, we give certain lemmas, which will be useful for the proof of main theorem. Lemma-1 [3]: If for $

,%

=

1

& ∞

∈ " and )

,

'(

+1

∈ #0, ∞ ,

− *

%

then there exists the following recurrence relation+1 $

,%

Consequently • •

$

$

,% ,%

=

1+

is a polynomial in = -

#%

//0

+$ ′ ,%

+

$

,%

of degree ≤ m .

1 where #20 denotes the integral part of 2.

Lemma-2 [3]: There exists the polynomial 34,5,6 6

1+

6

86 8 6 1+

,

= &

/4 596, 4,5:(

+ 1 4# −

independent of + 1 05 34,5,6

7 8 , such that 1+

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us


97

On Certain Generalized Modified Beta Operators

Lemma-3: Let ; be < times < = 1,2,3, … differentiable on @ , then ;,

C PB, ,

=

−<−1 ! +<−1 ! ! −2 !

6

+

& ∞

E

6,

'(

6,

(

;

6

+ +

6

8

Proof: We have PB,C ,

;,

=

−1

&

E

6 ,

'(

(

Using Leibnitz theorem for C PB, ,

;,

=

−1

×E

−1

=

−1

=

& ∞

'(

< &&) * F 6

4'(

(

'4

;

,

+ +< ! . −1 ! ! 1+

+<−1 ! & n! ∞

+ +

8 .

+ +<−F ! −1 −1 ! −F ! 8

∞ 6

E & −1

6

( 4'(

∞ 6

E & −1

6,

'(

+ +

;

,

( 4'(

6 4

6 4

< ) * F

1+

< ) * F

6 4

,

4

,

+ +

;

4

+ +

;

4

6 4

8

8

Again using Leibnitz theorem, we get 6

6,

6

=

< −1 ! & −1 4 ) * −<−1 ! F 6

4'(

,

4

Hence we get P, C,

;,

=

−<−1 ! +<−1 ! & −2 ! ! ∞

E −1 ∞

6,

'(

(

6

6

6,

6

;

+ +

8

Solving integrals by parts ‘r’ times, we have the required Lemma 6 , ,

;,

=

−<−1 ! +<−1 ! ! −2 !

× E

(

6,

;

6

6

+

+ +

6

8

& ∞

'(

6,

Lemma-4: Let Us Define I6,

,

,%

=

−<−1 & +< ∞

'(

6,

E

(

6,

6

+ +

%

8

Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us


98

Prerna Maheshwari Sharma & Sangeeta Garg

Then, we have I6,

,

I6,

I

,

L

=

,

, ,6,/

/

= 1,

,(

−<−2

=

/

+ { 2< + 3 −<−2

+

−<−2 +2 +

+ <+1 }

{ 2< + 3 − −<−2

/

2.1

+ <+1 }

+

/

+

2.2

×

2 − 1 + 2< + 3 2 − 1 + 2< + 3 < + 2 N+ L N+ <+1 <+2 2< + 5 + 2< + 5 < + 1 −<−2 −<−3

2.3

and the following recurrence relation is satisfied

=

+

1+

−<−

OI6,

+O

− 2 I6,

,

+<+1 +

B β B

,

Q+

,%

)

+

L

+

− * n − r − 2m − 2 +

∈ #0, ∞ , we have

n+β , − 1N mI6, ,% n

+ < + 1 Q I6,

,

,%

(2.4)

,% .

To prove recurrence formula,

% O Q /

=

,%

,%

+ mI6,

, ,′ ,%

Further, for all I6,

,

where #S0 is the integral part of S.

Proof: We Have Some Identities to Use in Our Proof

• •

1+

t 1+t

′ ′

,

,

=# −

t =# −

+1 0

0

,

t

,

,

= 0,1,2 respectively in I6,

Obviously (2.1)-(2.3) can be obtained by taking

taking first derivative of I6, , ,′ I6, ,%

, ,′ I6, ,%

=

+

,

,%

with respect to x,

−<−1 & +< I

'(

, ,6,%

=

6,

E

(

6,

−<−1 & +< ∞

'(

+ +

6

6,

E

(

− 6,

%

6

Multiplying by x 1 + x on both sides and using identity (1), we have 1+

OI

, ,′ ,6,%

+

I

, ,6,%

8 −

,

I

+ +

, ,6,%

%

8

Q

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us


99

On Certain Generalized Modified Beta Operators

−<−1 & +<

=

1+

'(

−r−1 &# − +<

=

+<+1 0

'(

−r−1 & +<

=

'(

−r−1 & +<

=

'(

E#

6,

E

6,

×

(

−<

−r−1 & +<

= +

+ < + 1 0I

Substituting +

+ +

W

E

+

6, 6,

(

, ,6,%

(

6,

'(

E

6,

1+

(

−#< + =

E

−r−1 & +<

6 6,

6

6,

6

%

+ +

+ +

6

+ +

6

8

− −

%

%

6, %

%

+ +

+<+1 0

−< t−r−

+ +

+<+1 x

+

6,

'(

−<

(

6,

(

+<−

E

6,

8 8

+ +

6

8

%

8

8

X

and Using the Identity (2), We Have

=

1+

− + −2

+

+

+ +

OI

#

− /

+

, ,′ ,6,%

Q

, ,6,%

−<−1 & +<

. #

I

6,

'(

.

E

6,

'(

E ∞

−<−1 & +< ∞

'(

(

6,

6,

(

6,

E

6

+ +

6

(

+ +

6

6,

'(

6,

(

−<−1 & +<

−<−1 & +<

E

6,

6

+ +

+ +

%

8

%

% /

8 0

8

%

8

Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us


100

Prerna Maheshwari Sharma & Sangeeta Garg

+

+

+

+ −

/

.

−< # −

+

−#< +

−<−1 & +<

6,

'(

−<−1 & +<

(

+ < + 1 0I

'(

, ,6,%

E

E

6,

(

+ +

6

6,

(

6,

6,

6,

'(

−<−1 & +<

.

E

6

+ +

6

+ +

%

− − −

8 0

% %

8

8 0

.

Now Solving the Integrals by Parts, We Get 1+

OI

=− + +

+1

+

+2 − + −

+

+

+

−#< + =

W1 − +)

I

−<−1 & +< ∞

'(

+2

'(

−<−1 & +<

− < OI

, ,6,%

+

, ,6,%

'(

E

(

E (

E 6,

E

− 1X I

, ,6,%

(

6,

+ +

6 6,

6

6

6,

(

6,

(

E

6,

6,

'(

6

6,

6,

−<−1 & +<

6,

6,

'(

'(

+

E

+ +

6

−<−1 & +<

+ < + 1 0I

6,

(

−<−1 & +<

−<−1 & +<

.

6,

−< # −

(

+1 /

E

6,

+

Q

, ,6,%

−<−1 & +<

#−

+ 1 W2

*

+

'(

+

+

, ,′ ,6,%

6

+ +

+ +

6

+ +

%

8

+ +

%

+ +

%

8

%

% %

%

8 8

8 0 8

8 0

.

+

XI

, ,6,%

−)

− m+2

− *I

, ,6,%

+m

+

+

I

Q − #< +

, ,6,%

×

+ < + 1 0I

, ,6,%

.

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us


101

On Certain Generalized Modified Beta Operators

≥ 0.

On rearranging both sides, we get the required recurrence formula (2.4) for The Peetre’s K-Function The Peetre’s K-functional is defined by

Z/ ;, δ = F ;{‖; − \‖ + δ‖\"‖ ∶ \ ∈ _ / }

where

_ / = {\ ∈ `a #0, ∞ : \′ , \" ∈ `a #0, ∞ }, ∃ a positive constant ` > 0 such that Z/ ;, o ≤ `p/ ;, o , o > 0,

where the second order modulus of smoothness is given by p/ -;, δ

//

sup |;

1 = sup

+ 2ℎ − 2;

(qr9√δ (9tq∞

+ℎ +;

Corollary 1: Let o be a positive integer, then for all

constant x depending upon n−1

& ∞

and E

,

'(

such that y

,

|z {|:δ

8 ≤x

%

,

|.

> w > 0, and

∈ #0, ∞ , there exists a positive

∈ |.

3. MAIN RESULTS In this section we have some important theorems and obtain asymptotic formula. Theorem 1: Let ; ∈ } has a derivative of order (< + 2) at a fixed point

subinterval of @ . For some w > 0, ; → ∞, we have

lim €

;,

6 , ,

→∞

−;

×;

6

=

y

, as

•= r 2+r−β ;

6

+

1+‚ ;

6 /

6

Proof: Using Taylor Series Expansion, We Have 6 /

;

=& 4'(

where ƒ , €

=

6 , ,

6 , ,

;,

;

4

F!

−;

6 /

„& 4'(

;

4

6

F!

6 /

4

+ƒ ,

.

+# 1+<+

4

, …+

+ 3 + 2< −

‚0

6 /

is of exponential order as → ∞ and ƒ ,

∈ 0, ∞ . ; is bounded on every finite

6 , ,

ƒ ,

6 /

,

→ 0 as → . Now from Lemma 3, we have − ;

6

Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us


102

Prerna Maheshwari Sharma & Sangeeta Garg

=

6 /

× †& 4'(

+ ˆ

=

×;

−<−2 ! +< ! n . ! −2 ! n+β

;

4

−1

ˆ

6 /

&

E

6 ,

'(

(

−<−2 ! +< ! ! −2 ! +Š

= n−1 &

,6

'(

Tends to 0 as

ƒ

,

6

+

E

6 ,

6

+

,6

E

6,

'(

−<−2 ! +< ! . ! −2 !

where Š

−r−1 & +<

.

F!

C

(

− 1‰ ;

6

− 1‰ ;

6

+ +

,

ƒ t,

,

(

6,

+ +

→ ∞ to show this we suppose ‹ =

+ + 6

×E

(

,

−1 Z

ƒ t,

−1 Z

× Ž& ∞

'(

,

where Z

'( /4 5q6; 4,5:(

&

/4 5q6; 4,5:(

&

•E

(

,

6 /

4

'(

„&

|ƒ ,

| –

,

'(

6 /

1+

6

,

| –

Š

E

(

+ 1 |/5 … /

|| − |6 / 8 • ‘

6

8 ,6

4

+

8 −;

n I 2!

6

, ,6,/

, so that ‹ → 0 as

,

|5

+1

8

;

, ,6,

+ 1 |5 34,5,6

8

+1 & 4

+1

/4 5q6 4,5:(

= sup ’34,5,6 /4 596; 4,5:(

+ +

+1 4| −

+ +

6 /

+ nI

Hence using Lemma 2

|‹ | ≤ n − 1 & &

86 8 6

6

,

|ƒ ,

|| − |6 / 8

/

/

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

3.1

→ ∞.


103

On Certain Generalized Modified Beta Operators

o ƒ,

Here 34,5,6

represents certain polynomials in

> 0 such that |ƒ , ∴ •E

(

1 −1

|| −

E

|6 /

,

|z {|q–

1 −1

+

E

,

|z {|:δ

&

'(

•E

,

1 & −1

(

'(

= ƒ/ -

,

6 ›

E

/

-ƒ ,

1

/

1+ -

1,

œ

/6 •

/6 •

/6 •

= €ϵ/ ≤ϵ

−1 Z

1 + -

1 .

&

6 ›

/4 5q6; 4,5:( œ

This shows that ‹ → 0 as

4 5

#

5

(

8

-ƒ ,

,

1 t−x /

/6 •

| ≤ x| − |y .

8 •

8

/

8 +˜

Now using Lemma 1, taking 3 > < + 2 and |‹ | ≤

8 • •E

,

(

|| − |6 / 8 • ƒ/

,

(

8 • ≤ •E

1

|ƒ ,

,

/

-ƒ ,

From Corollary 1, we have ∞

7 8 . For a given ƒ > 0, there exists a

| < ƒ for 0 < | − | < o; and for | − | ≥ o, we observe that |ƒ ,

|ƒ ,

,

and independent of

M/ š& −1 ∞

'(

E

,

|z {|:δ

8

,

, ,6,/

from Lemma 4 in (3.1).

/6 /y •

to be large enough, we get

0/ €ƒ / -

6 ›

1+ -

œ

1•/

1•/ → ∞.

Hence in order to prove the theorem, we substitute the values of I

, ,6,

and I

Suppose that `a #0, ∞ be the space of real valued continuous bounded functions ; on the interval [0,∞ ,

and let the norm ‖. ‖ on the space `a #0, ∞ be defined as ‖;‖ = sup |; (9{q∞

|.

Also using K-functional, defined in Section 4 and for ; ∈ `a #0, ∞ the usual modulus of continuity is given by

p ;, o = •ž

•ž |;

(qr9– (9{q∞

+ℎ −;

|

Therefore, let us modify the operators 1.5 as Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us


104

Prerna Maheshwari Sharma & Sangeeta Garg

Ÿ

;,

,

=

;,

,

−;˜ +

n−2

Theorem 2: Let ; ∈ `a #0, ∞ , then ∀ ’

;,

,

where δ

−2

=

/

’ ≤ `p/ -;, δB

−;

n−2

+2

+2

/

+

/

+n 1+3 š+; +

∈ #0, ∞ , and

1 + p ˜;,

− n−2

+n 1+3

+

− n−2

∈ |, there exists an absolute constant Z > 0 such that

n−2

1+3

− n−2 +

/

3.2

+n 1+3 š. +

2n/ # n + 7 x / + n + 5 x + 10 + / n−2 n−3

Proof: Let \ ∈ _ / . Then from Taylor expansion

\

=\

+ \′

+ ¢{

z

Therefore from Lemma 4, we have Ÿ

\,

,

− \

Ÿ

= \′

− ž \" ž 8ž, ƒ#0, ∞ \

− ,

,

+ Ÿ

z

•E

,

− ž \" ž 8ž, •

{

Hence ’Ÿ ≤ ≤€

\,

,

B /

{

, /

For Ÿ ∴’

− \

, ,

,

B /

E {

‖\"‖ ;,

;,

{

/

B

,

’≤£ ›{

•E {

¤ +

•+˜ +

, we have Ÿ

−;

+ ¤; ˜ +

≤ 3‖; − \‖ + o

z

,

/

n

’≤’ −

,

,

+

− ž \" ž 8ž, • £

n−2 n−2 ;,

− n−2

− n−2

+n 1+3 +

+n 1+3 š ‖\"‖ +

≤ 3‖;‖.

; − \,

1+3

‖\"‖ + ¤; ˜ +

− ;−\

š−;

n−2

− ž¤ ’\" ž ’8ž

¤

− n−2

Taking infimum on RHS over all \ ∈ _ / , we get

’+’

/

,

\,

−\

+n 1+3 š−; +

¤

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us


105

On Certain Generalized Modified Beta Operators

,

;,

−;

’ ≤ 3Z/ );, δ/B

* + p ˜;,

n−2

− n−2

+n 1+3 š +

− n−2

+n 1+3 š +

According to the property of Peetre’s K-functional, we get ’

,

;,

−;

’ ≤ `p/ -;, δ

1 + p ˜;,

n−2

which is the required result and hence completes the proof of theorem.

REFERENCES 1.

C. Atacut and I. Buyukyazici, “Stancu type generalization of the Favard-Szasz operators,” Original Research Article Applied Mathematics Letters”, 23, (12), 2010, 1479-1482.

2.

I. Buyukyazici and C. Atakut, “On Stancu type generalization of 3-Baskakov operators,” Original Research

Article Mathematical and Computer Modeling”, 52 (5-6), 2010, 752-759. 3.

V. Gupta and A. Ahmad, “Simultaneous approximation by modified Beta operators,” Istanbul Univ. Fen. Fak. Mat. Derg. 54 (1995), 11-22.

4.

V. Gupta and R. Yadav, “Direct estimates in simultaneous approximation for BBS operators,” Applied Mathematics and Computation 218(22) (2012), 11290-11296.

5.

E. Hewitt and K. Stromberg, “Real and Abstract Analysis”, McGraw Hill, New York 1956.

6.

P. Maheshwari, “An inverse result in simultaneous approximation by modified Beta operators,” Georgian Math. J. 13 (2), (2006), 297-306.

7.

P. Maheshwari, “Saturation theorem for the combinations of modified Beta operators in Lp-space,” Applied Mathematics E-notes 7 (2007), 32-37.

8.

P. Maheshwari and V. Gupta, “On the rate of approximation by modified Beta operators,” Int. J. of Mathematics and Mathematical Sciences Vol. 2009, Art ID 205649, 9 pages.

9.

P. Maheshwari and D. Sharma, “Rate of Convergence for certain mixed family of linear positive operators,” J. of Mathematics and Applications, No. 33, 2009, (2010), 00-06.

10. D.D. Stancu, “Approximation of function by a new class of linear polynomials operators,” Rev. Romaine. Math. Pures Appl. 13 (1968), 1173-1194. 11. D.D. Stancu, “Approximation of function by means of a new generalized Bernstein operator,” Calcolo 20 (1983), 211-229.

Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.