Í2(È-E-MAM-FG01’Î
1
9
0
7
-
E
-
M
A
M
-
F
G
0
1
MATHEMATICS FACILITATOR’S GUIDE
Grade 7
A member of the FUTURELEARN group
Mathematics Facilitator’s guide
1907-E-MAM-FG01
Í3’È-E-MAM-FG01&Î
Grade 7
CAPS aligned
DM Oost
Facilitator’s Guide G07 ~ Mathematics
CONTENTS Guidelines for facilitators 1. 2. 3. 4.1 4.2 5. 6.
General........................................................................................................................ ii Study guide with activities and exercises .................................................................... ii Year mark tasks .......................................................................................................... ii Learning outcomes ..................................................................................................... iii Levels of difficulty ....................................................................................................... iii Year plan .................................................................................................................... iv Subject advisor’s information..................................................................................... vii
Study Guide Memorandum UNIT 1: NUMBER SYSTEMS .............................................................................................. 1 UNIT 2: EXPONENTS ....................................................................................................... 77 UNIT 3: ALGEBRA ............................................................................................................ 94 UNIT 4: NUMBER PATTERNS AND RELATIONSHIPS .................................................. 136 UNIT 5.1: GEOMETRY .................................................................................................... 168 UNIT 5.2: GEOMETRY: AREA, PERIMETER AND VOLUME ......................................... 220 UNIT 6: TRANSFORMATION GEOMETRY .................................................................... 256 UNIT 7: RATIO AND RATE ............................................................................................. 282 UNIT 8: FINANCE ............................................................................................................ 301 UNIT 9: STATISTICS ....................................................................................................... 319 UNIT 10: PROBABILITY .................................................................................................. 354
Note that the page numbers of the Study Guide Memorandum start at p. 1 again. The table of contents will guide you to easily access the units.
© Impaq
Facilitator’s Guide G07 ~ Mathematics
CONTENTS Guidelines for facilitators 1. 2. 3. 4.1 4.2 5. 6.
General........................................................................................................................ ii Study guide with activities and exercises .................................................................... ii Year mark tasks .......................................................................................................... ii Learning outcomes ..................................................................................................... iii Levels of difficulty ....................................................................................................... iii Year plan .................................................................................................................... iv Subject advisor’s information..................................................................................... vii
Year plan: Abridged version Term 1 1 1 2 2
Content Unit in study guide Number systems 1 Exponents 2 Geometry 5.1 Number systems: Fractions 1 Number patterns and 4 relationships 2 Perimeter, area and volume 5.2 3 Algebra 3 3 Transformations 6 3 Ratio and rate 7 3 Finance 8 4 Statistics 9 4 Probability 10 Revision November examination covers the year’s work
© Impaq
i
Facilitator’s Guide G07 ~ Mathematics
5.
Year plan To comply with the National Curriculum and work schedule, the content set out below has priority at certain stages of the year. The following schedule will be important when setting papers for examinations and tests. The year plan is based on this schedule, but some of the topics repeat and appear a few times during the year. It is very important to teach the curriculum in the same order as the rest of South Africa so that learners can move between schools with ease.
Term 1
Term 2
Term 3
Term 4
• • • • • • • • • • • • • • • •
Number systems Exponents Construction of geometric figures Geometry of 2-D figures Geometry of straight lines Fractions Number patterns and relationships Perimeter, area and volume Algebra Graphs Transformations Ratio and rate Finances Statistics Probability Revision
Year Plan Grade 7 Mathematics Term 1 Unit 1 Number systems LO1
© Impaq
Exercises 1 2 3 4 5 6 7 8 9 10
Content Where do number systems come from? Natural numbers Whole numbers (Counting numbers) Integers Fractions (Rational numbers) Roots and surds (Irrational numbers) Properties of calculations Percentages Calculator work Mixed exercises
iv
Lessons/ days 1 2 2 3 4 2 2 2 2 1 [20]
Facilitator’s Guide G07 ~ Mathematics
Unit 2 Exponents L02
1 2 3 4 5
Expanded exponential notation Calculations with exponents Prime factors Calculator work Mixed exercises
Unit 5.1 Geometry LO3
1 2 3 4 5 6 7 8 9
Measure and construct lines Measure and construct angles Different angles Parallel lines Triangle Quadrilaterals Polygons Circles Mixed exercises
The lessons and time allocated are a guideline only. Term 2 Exercises Content Unit 4 Number patterns LO1
Unit 5.2 Geometry area, perimeter and volume LO3
1 2 3 4 5 6 7
Visual presentation of patterns Number patterns in a sequence Types of number patterns (sequences) Determine rules for general terms Relationships: Input and output diagrams Number coordinates Mixed exercises
1 2 3 4 5 6 7 8 9
Convert units Rectangles Triangles Circles Polygons Volume Surface area Mixed exercises Summary of formulas
Revise the two terms’ work for the June examination.
© Impaq
v
1 3 3 2 1 [10] 2 2 2 3 3 3 3 1 1 [20] Lessons or days 1 2 2 2 2 3 1 [13] 1 3 3 3 1 2 2 2 1 [18]
Facilitator’s Guide G07 ~ Mathematics
Term 3
Exercises
Content
Unit 3 Algebra LO2
1 2 3 4 5 6 7 8 9
Variables Basic calculations Algebraic expressions English to Maths Substitution Linear equations Inequality Basic word problems Mixed exercises
Unit 6 Transformation geometry LO3
1
Symmetry
2 3 4 5 6
Reflection Translation Rotation Enlargement and reduction Mixed exercises
Unit 7 Ratio and rate LO1
1 2 3 4 5 6 7
Ratios and equivalent fractions Divide in specific ratios Rate Increase and decrease Distance, speed and time Scale drawings Mixed exercises
Unit 8 Finance LO1
1 2 3 4 5 6 7 8
Calculations with money Money and ratios Percentages Profit, loss and discount VAT Interest Exchange rate Mixed exercises
Š Impaq
vi
Lessons or days 1 3 2 2 3 2 2 2 2 [19] 1 1 1 2 2 2 [9] 2 2 2 2 2 2 1 [13] 1 2 2 2 2 2 2 1 [14]
Facilitator’s Guide G07 ~ Mathematics
Term 4
Exercises
Content
Unit 9 Statistics LO5
1 2 3 4 5 6
Data collection Organisation and summary of data Presentation of data Analysis and calculation of data Interpretation and evaluation of data Mixed exercises
Unit 10 Probability LO5
1 2 3 4 5
Terminology Relative frequency of outcomes The probability scale Probability P(x) of outcome x Mixed exercises
Revision
6.
Use the mixed exercises at the end of each unit for revision. The November Examination covers the entire year’s work.
Subject advisor’s information Contact the subject matter expert for more information or support.
© Impaq
Lessons or days 1 2 3 3 1 1 [11] 1 2 2 3 1 [9]
vii
Facilitator’s Guide G07 ~ Mathematics
Unit
1
CONTENTS Unit 1: Number systems ................................................................................................. 3 Exercise 1: Where do number systems come from? ..................................................... 3 Exercise 2: Natural numbers ......................................................................................... 4 Exercise 3: Counting numbers ..................................................................................... 26 Exercise 4: Integers ..................................................................................................... 29 Exercise 5: Fractions (rational numbers) ..................................................................... 33 Exercise 6: Roots (irrational numbers)......................................................................... 52 Exercise 7: Properties and calculations ....................................................................... 58 Exercise 8: Percentages .............................................................................................. 63 Exercise 9: Calculator work ......................................................................................... 68 Exercise 10: Mixed exercises ...................................................................................... 72 Bibliography ................................................................................................................. 76
Simplify means…
© Impaq
1
Facilitator’s Guide G07 ~ Mathematics
Unit
Level of difficulty 1 Basic knowledge 25%
*
Level of difficulty 2 Routine procedures 45%
**
Level of difficulty 3 Complex procedures 20%
***
Level of difficulty 4 Problem-solving 10%
****
Level of difficulty 5
**** *
© Impaq
Assessment analysis • Use mathematical facts and vocabulary • Use the correct formulas • Predict answers and round off values • Theoretical knowledge • Complete known procedures • Apply knowledge and facts with more than one step • Come to conclusions from given information • Basic calculations as learned from examples and exercises • Complex calculations and high order arguments • Euclidean Geometry • No stipulated path to follow • Similarities and differences between presentations • Need conceptual and holistic approaches to problems • Unseen and not-routine problems. • Problems in different sections • Still in curriculum and study guide • Mostly aimed at practical and everyday situations. • High order of thinking Advanced Often regarded as acceleration of the curriculum. Not included in tests and exam papers.
2
1
Facilitator’s Guide G07 ~ Mathematics
Unit
1
Unit 1: Number systems Content in this unit: • Where do number systems come from? • Natural numbers • Whole numbers (Counting numbers) • Integers • Fractions (Rational numbers) • Roots and surds (Irrational numbers) • Properties of number systems (associative, commutative and distributive laws)
Exercise 1: Where do number systems come from? There is proof that the Ishango people of the Democratic Republic of the Congo (DRC) made marks on bones to count their cattle or family members. The oldest bone found to confirm these assumptions is approximately 20 000 years old. The number system that we use today is the Hindu-Arabic system and it was developed more than 1 000 years ago by Hindu-Arabic mathematicians. The Egyptian number system consists of symbols. Examples of the two number systems are: Egyptians
Hindu-Arabic
staff
1
heel
10
rope
100
lotus
1000
pointing finger
10 000
burbot
100 000
astonished man
1000 000
1.1*
Write down the Egyptian equivalent for the number 3 516. Answer:
1.2*
Write down the Egyptian equivalent for the number 2 182. Answer:
© Impaq
3
Facilitator’s Guide G07 ~ Mathematics
1.3***
1.4*
1.5***
Unit
1
∩∩
Write the Hindu-Arabic number for
Answer: 1 million + 2 thousands + 2 tens + 3 units 100223 Study the number 234 654 365 123 987 341 236 687. Write down the number that is 10 000 more than the given number. Answer: 234 654 356 123 987 341 246 687 Investigate: For fun Draw the following table in your answer book and translate the terms addition, subtraction, multiplication and division in any other two languages. + English Afrikaans Sepedi
Addition Optelling Go hlakantšha
– Subtraction Aftrekking Go tloṧa
x Multiplication Vermenigvuldiging Go atiša
÷
Division Deling Go arola
Exercise 2: Natural numbers Natural numbers are the numbers from 1 to infinity. The symbol used is N. If tabulated: N = {1; 2; 3; 4; 5 ...} If we look at all the number systems together, A in this diagram represents natural numbers: E The letter A represents natural numbers. As the unit progresses, the other number systems will be explained.
The symbol for natural numbers is N.
© Impaq
4
Facilitator’s Guide G07 ~ Mathematics
Unit
Units
7
Tens
1
Hundreds
Millions
3
Thousands
Ten millions
4
Ten thousands
Hundred millions
2
Hundred thousands
Milliards
Each digit in natural numbers has its own meaning. Example:
5
9
0
6
8
Milliard and billion denote the same number. Milliard is almost never used in America and Britain, but is often used in Continental Europe.
Decimal system 1 million= 1000 000 = 106 Six zeros 1 billion = 1000 000 000 = 109 Nine zeros 1 trillion =1000 000 000 000 =1012 Twelve zeros 1 quintillion = 1018 Eighteen zeros
Š Impaq
(1000)2
A thousand million
(100 0000)2
(100 0000)3
5
1
Facilitator’s Guide G07 ~ Mathematics
2.1**
Unit
Complete the table by identifying the place value of the 7 .
Example
Number 345 2 7 8
Description Tens
2.1.1*
34 52 7 823
2.1.2*
2 7 82
2.1.3**
5 2 7 8 254
2.1.4**
7 254 164
2.1.5***
952 7 54 123
2.1.6*
1233452 7
2.1.7**
34 52 7 825 455
2.1.8*
7 82
2.1.9****
34 7 84 556 723
Answer: Number 345 2 7 8
Description Tens
2.1.1*
34 52 7 823
Thousands
2.1.2*
2 7 82
Hundreds
2.1.3**
5 2 7 8 254
Ten Thousands
2.1.4**
7 254 164
Millions
2.1.5***
952 7 54 123
Hundred Thousands
2.1.6*
1233452 7
Units
2.1.7**
34 52 7 825 455
Millions
2.1.8*
7 82
Hundreds
2.1.9****
34 7 84 556 723
Hundred Millions
Example
2.2**
Write the number from the description given.
Example 2.2.1* 2.2.2* 2.2.3** 2.2.4* 2.2.5** 2.2.6*** 2.2.7****
Š Impaq
Description 4 Hundred Thousands 6 Tens 12 Thousands 876 Millions 9 Units 47 Hundreds 639 Ten Thousands 32 456 Hundreds
6
Number 400 000
1
Facilitator’s Guide G07 ~ Mathematics
2.2
Unit
Answer:
Example 2.2.1* 2.2.2* 2.2.3** 2.2.4* 2.2.5** 2.2.6*** 2.2.7****
2.3***
Description 4 Hundred Thousands 6 Tens 12 Thousands 876 Millions 9 Units 47 Hundreds 639 Ten Thousands 32 456 Hundreds
Number 400 000 60 12 000 876 000 000 9 4 700 6 390 000 3 245 600
Add 10 to all the following values. Write your answers in the table. Number 2.3.1* 65 382 2.3.2* 1 234 2.3.3** 87 592 2.3.4*** 96 795 2.3.5**** 9 328 999
Answer
Answer: Number 2.3.1* 65 382 2.3.2* 1 234 2.3.3** 87 592 2.3.4*** 96 795 2.3.5**** 9 328 999 2.4**
Complete the table by calculating what is asked.
Example 2.4.1** 2.4.2* 2.4.3** 2.4.4** 2.4.5**** 2.4.6**
© Impaq
Answer 65 392 1 244 87 602 96 805 9 329 009
Number 3 761 676 767 78 493 78 493 12 121 212 875 462 867 444 444
Calculation Add 400. Add 1 million. Subtract 50. Add 9 000. Subtract 1 million. Add four hundred thousand. Add 5 000.
7
Answer 4 161
1
Facilitator’s Guide G07 ~ Mathematics
Unit
1
Answer Number 3 761 676 767 78 493 78 493 12 121 212 875 462 867
2.5**
Calculation Answer Example Add 400. 4 161 2.4.1** Add 1 million. 1 676 767 2.4.2* Subtract 50. 78 443 2.4.3** Add 9 000. 87 493 2.4.4** Subtract 1 million. 11 121 212 2.4.5**** Add four hundred 875 862 867 thousand. 2.4.6** 444 444 Add 5 000. 449 444 Break down the natural numbers as shown in the example. Number Answer Example 1 234 567 = 1000000 + 200000 + 30 000 + 4 000 + 500 + 60 + 7 2.5.1* 648 2.5.2* 33 333 2.5.3**** 54 545 454 2.5.4** 5 678 2.5.5* 6 2.5.6** 765 432 Answer Number 1 234 567
2.6**
2.7**
Š Impaq
Answer Example = 1 000 000 + 200 000 + 30 000 + 4 000 + 500 + 60 + 7 2.5.1* 648 = 600 + 40 + 8 2.5.2* 33 333 = 30 000 + 3 000 + 300 + 30 + 3 2.5.3**** 54 545 454 = 50 000 000 + 4 000 000 + 500 000 + 40 000 + 5 000 + 400 + 50 + 4 2.5.4** 5 678 = 5000 + 600 + 70 + 8 2.5.5* 6 =6 2.5.6** 765 432 = 700 000 + 60 000 + 5 000 + 400 + 30 + 2 Arrange the following natural numbers from small to big. {2 542; 154; 2 441; 2 523; 2 509} Answer {2 542; 2 523; 2 509; 2 441; 154} = {154; 2 441; 2 509; 2 523; 2 542} Arrange the following natural numbers from big to small. {592; 523; 2 600; 2 699} Answer {592; 523; 2 600; 2 699} = {2 699; 2 600; 592; 523}
8
Facilitator’s Guide G07 ~ Mathematics
Unit
2 379 + 6 666 = 2 379 + 6 666 9 045 In Mathematics we use symbols to show greater than or less than. If you look at the following symbols from left to right, you can say:
>
greater than
<
Example: 234 > 233 345 < 346 2.8**
less than
Place a < or > symbol between the values in the table. Number 1 < or > Number 2 546 124 12 65 3 232 6 756 437 436 112 233 112 234 4 356 11 111 Answer Number 1 < of > Number 2 546 > 124 12 < 65 3 232 < 6 756 437 > 436 112 233 < 112 234 4 356 < 11 111
When doing addition and subtraction of natural numbers, your answer must have enough steps to show that you did not use a calculator. Example Make sure you know where the = 9 370 – 6 666 2 379 + 6 666 sign is placed. = 9 379 = 2 379 Know how and – 6 666 + 6 666 where this sign is 2 713 9 045 placed.
© Impaq
9
1
Facilitator’s Guide G07 ~ Mathematics
Unit
1
Simplify the following. Show your calculations. You are not allowed to use a calculator. 2.9.*
17 + 25 Answer 17 + 25 = 17 + 25 42
2.10**
Use your answer and write down the correct answer for 17 hundred plus 25 hundred. Answer The line is the same as the = sign
1 700 + 2 500 = 1 700 + 2 500 4 200 2.11**
Now use your answer and write down the correct answer for 17 million plus 25 million. Answer Pay attention to the zeros.
17 000 000 + 25 000 000 = 17 000 000 + 25 000 000 42 000 000 2.12****
Determine the sum of 17 Hundred Thousands and 25 Ten Thousands. Answer Pay attention to the zeros.
1 700 000 + 250 000 = 170 000 + 250 000 1 950 000
−
Calculations with natural numbers can only be one of the following:
+
plus
© Impaq
×
minus
multiplication
10
÷ division
Facilitator’s Guide G07 ~ Mathematics
Unit
Examples of calculations with natural numbers:
Short division 25 863 ÷ 8 3 232 rem 7 = 8 ) 25 863
Addition 6765 + 25863
=
6765 + 25863 32628
Long division 25863 ÷ 8
=
3232 8 25863 − 24 18
Multiplication 456 x 18
=
456 x 18 3648 + 4560 8208
− 16 26 − 24 23 − 16 res 7 remainder 7
Subtraction 25863 − 4444
=
25863 − 4444 21419
Use the prescribed methods and determine the answers to the following. You are not allowed to use a calculator. 2.13**
2 345 + 999 Answer 2 345 + 999 = 2 345 + 999 3 344
2.14**
2 345 – 999 Answer 2 345 – 999 = 2 345 – 999 1 346 No calculators. Write down all the calculations to show that you did not use a calculator.
© Impaq
11
1
Facilitator’s Guide G07 ~ Mathematics
2.15**
Unit
2 345 x 99 Answer 2 345 99 =
Remember the zero
2 345 99
21 105 + 211 050 232 155 2.16***
2 345 ÷ 9 with the long division method. Answer
Two numbers below each other without a +, –, x or ÷ means nothing. In this case it is a minus (–) and you must write it down.
2.17***
2 345 ÷ 99 with the long division method. Answer
2.18****
2 345 ÷ 999 with the long division method. Answer
© Impaq
12
1
Facilitator’s Guide G07 ~ Mathematics
Unit
Rewriting English sentences as mathematical sentences (number sentences) is essential to solving word problems. The following terms for calculations may be used. Study them and use them. Symbol × ÷ – +
Meaning Multiply Divide Subtract Add
Other English words Product of Quotient of Difference between Sum of
Write the following English sentences in mathematical (number) sentences. Simplify them without using a calculator. 2.19**
Determine the sum of 12 and 56. Answer 12 + 56 = 68
If you cannot give the answers quickly…write the numbers below one other and add them.
or 12 + 56 68
2.20**
Calculate the product of 12 and 56. Answer 12 x 56 = 12 x 56 72 + 600 672
2.21**
Marks are allocated for: 1 for the Maths sentence 1 for the 72 + 600 1 for the answer
What is the quotient if 56 is divided by 12? Give the remainder. Answer 56 ÷ 12 = 12
4 56 − 48 remainder 8
© Impaq
The remainder is asked. That means that you have to do this question with long division. In future we will use decimals, but for now the remainder and quotient are both integers.
13
1