I ns t i t ut eo fMa na g e me nt & Te c hni c a lSt udi e s
I I S C I T A M E H T A M
Ci v i lEng i ne e r i ng
www. i mt s i ns t i t ut e . c om
IMTS (ISO 9001-2008 Internationally Certified) MATHEMATICS-II
MATHEMATICS-II
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II CONTENTS:
UNIT I
Matrices and Theory of Equations
01-49
Introduction ,Objective,Definition,Cayley – Hamilton,Theorem.,Characteristic roots, characteristic vectors. ,Some basic theorems in Theory of Equations,Relations between the root and coefficient of an equation,Problems Type – I,Problems Type – II,Answers to Self Assessment Questions
UNIT II
Theory of Equations (Continued)
Introduction,Objective,Formation
of
equations
50-100
with
roots
changed
in
sign,Formation of equations with roots multiplied by a constant,Formation of equation with roots as squares of the given equation,Formation of equation with roots increased or decreased by a constant,Removal of terms,Transformation in general,Symmetric functions of roots.,Answers to Self assessment problems.
UNIT III
Trigonometry
Introduction,Objective,Expansions
101-157
of Sinn , Cosn and tan n
,Expansions of sin n and cos n ,Expansions of sin , cos and tan ,Hyperbolic functions,Inverse hyperbolic functions,Logarithm of a complex number,Answers to Self Assessment Problems
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
UNIT IV
Differential Calculus
158-224
Introduction,Objective,Definition of Derivative.,Some Standard forms. ,Some general theorems,Some important formula,Successive differentiation ,Leibnitz formula,Meaning of the derivative,Answers to Self assessment Problems.
UNIT V
Partial Differentiation and Radius of Curvature
225-290
Introduction,Objective,Partial Differentiation,Euler’s Theorem,Total differential coefficient,Implicit Functions,Curvature,Radius of curvature in Cartesian Coordinates,Radius of curvature in Polar co-ordinates,Answers to Self assessment Problems .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
1
UNIT-1 MATRICES
1.0
Introduction
1.1
Objective.
1.2
Definition
1.3
Cayley – Hamilton Theorem.
1.4
Characteristic roots, characteristic vectors.
1.5
Some basic theorems in Theory of Equations
1.6.
Relations between the root and coefficient of an equation.
1.7.
Problems Type – I
1.8
Problems Type – II
1.9
Answers to Self Assessment Questions
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2
1.0 Introduction In this unit you will learn about Cayley- Hamilton theorem. The verification of this theorem is illustrated with suitable examples. The characteristic equation of a square matrix is formed and on solving which you can find the characteristic roots of the given matrix. The characteristic vectors of a given matrix are also calculated. You will also learn some basic theorems regarding the theory of equations and using them you can easily solve a given equation. You will know thw relation between the roots and the coefficients of a given equation.
1.1 Objective. After completing this unit you should be able to
Form the characteristic equation of a given matrix.
Find the characteristic roots and characteristic vectors of a given matrix.
Verify Cayley-Hamilton theorem for a given matrix and how to apply it to find the inverse of a given matrix.
Solve a given equation under given conditions.
Know the relation between the roots and the coefficients of a given equation and how to apply them to solve the given equation.
1.2. Definition A matrix is a rectangular array of numbers arranged into rows and columns.
a11 a12 a 21 a22 A a31 a32 am1 am 2
a13 a23 a33 am 3
a1n a2 n a3n amn
The above matrix has m rows and n columns The general element is aij th
th
It occurs at the intersection of i row and j column. Examples: 1.
1 2 A 3 4
2.
1 3 5 4 B 1 0 2 7
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
3
1 2 3. C 5 7 3 0 Square Matrix: If the number of rows is equal to the number of columns, then it is called a square matrix.
Examples 1.
1 2 A 4 6
2 4 6 2. B 1 2 0 1 2 7
1.3. Cayley – Hamilton Theorem. Every square matrix satisfies its characteristic equation. Problems 1. Verify cayley – Hamilton theorem for
Let
1 2 A 4 5
The characteristic equation is i.e.
1 2 4 5
1
2
4
5
A I o
0
i.e.
(1 )(5 ) 4.2 0
i.e.
5 5 2 8 0
i.e.
2 6 3 0 1
This is the characteristic equation By Cayley – Hamilton theorem, put We get
A in (1)
A2 6 A 3I 0 (2)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Now,
4
1 2 1 2 A2 4 5 4 5
9 12 24 33 9 12 1 2 1 0 0 0 (2) 6 3 24 33 4 5 0 1 0 0 9 12 6 24 33 24 9 6 3 24 24 0
12 3 0 0 30 0 3 0 12 12 0 0 33 30 3 0 0 0 0 0 0 0
0 0 0 0 0 0
, Cayley-Hamilton theorem is verified.
1 2 1 2. Verify Cayley-Hamilton theorem for 2 1 2 1 3 1
Let
1 2 1 A= 2 1 2 1 3 1
The characteristic equation is
A λI = 0 1
2
1
2
1
2
1
3
1
0
1 1 2 6 221 2 16 1 0 1 2 2 5 2 2 5 0 2 2 5 3 22 5 4 5 0 3 32 8 0
3 32 8 0 (1)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
5
This is the characteristic equation By Cayley – Hamilton theorem, every square matrix satisfies its characteristic equation. Put
A in (1) A3 3 A2 8 A 0 (2)
1 2 1 1 2 1 Now, A 2 1 2 2 1 2 1 3 1 1 3 1 2
6 7 6 A2 6 11 6 8 8 8 6 7 6 1 2 1 Next, A A A 6 11 6 2 1 2 8 8 8 1 3 1 3
2
26 37 26 A 34 41 34 32 48 32 3
(2)
26 37 26 6 7 6 1 2 1 34 41 34 36 11 6 82 1 2 0 32 48 32 8 8 8 1 3 1 26 37 26 18 21 18 8 16 8 0 0 0 34 41 34 18 33 18 16 8 16 = 0 0 0 32 48 32 24 24 24 8 24 8 0 0 0 26 18 8 37 21 16 26 18 18 0 34 18 16 41 33 8 34 18 16 0 32 24 8 48 24 24 32 24 8 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Thus Cayley – Hamilton Theorem is verified.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
6
2 3 1 1 3 3. Find the inverse of the Matrix 3 5 2 4 2 3 1 1 3 Let A 3 5 2 4 The characteristic equation is
A I 0 2
3
1
3
1
3
5
2
4
0
2 1 4 6 33 4 15 16 51 0
2 2 3 2 3 3 27 11 5 0 22 6 4 3 2 9 81 11 5 0 3 2 10 66 0
3 2 10 66 0 (1) This is the characteristic equation. By Cayley – Hamilton theorem, every square matrix satisfies its characteristic equation put
A in (1) A3 A 2 10 A 66I 0 Multiplying by
A 1 ,
A3 A1 A2 A1 10 A1 66I . A1 0. A1 A2 A 10I 66 A1 0
66 A1 A2 A 10I (2) 2 3 1 2 3 1 1 3 3 1 3 Now, A A A 3 5 2 4 5 2 4 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
7
10 7 7 A 24 14 12 16 9 5 2
10 7 7 2 3 1 1 0 0 2 66 A 24 14 12 3 1 3 100 1 0 16 0 0 1 9 5 5 2 4 1
7 1 0 10 2 10 7 3 0 24 3 0 14 1 10 12 3 0 16 5 0 9 2 0 5 4 10 2 10 8 1 A 27 3 9 66 11 11 9 1
Self assessment questions I
1.
1 2 0 Vertify Cayley – Hamilton theorem for 0 4 5 3 0 1
2.
1 2 2 Find the inverse of the matrix 2 1 2 2 2 1
1.4 Characteristic roots, characteristic vectors. If A is a square matrix, then its characteristic equation is
A I 0 . The roots of this
equation are called the characteristic roots or Eigen values. The matrix X satisfying the equation characteristic vector corresponding to
A I X 0 or
AX X is called the
. It is also called the eigen vector.
1. Find the characteristic roots of the matrix
2 2 18 4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
8
2 2 A 0 4
Let
The characteristic equation is
A I 0 2
2
0
4
0
2 4 0 0 2 2 8 0
4 2 0 2,4 The characteristic roots are 2, -4
8 6 2 7 4 2. Find the characteristic roots and characteristic vectors of 6 2 4 3 8 6 2 7 4 Let A 6 2 4 3 The characteristic equation is
A I 0 8
6
6
7
2
4
2 4 0 3
8 7 3 16 6 63 8 224 27 0
8 2 10 5 66 10 210 2 0
82 80 40 3 102 5 36 60 20 4 0 3 182 45 0
3 182 45 0
2 182 45 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
9
3 15 0
0, 3, 15 The characteristic roots are 0, 3, 15 To find the characteristic vectors Consider the equation
A I X 0 2 x1 0 8 6 6 7 4 x 0 2 2 4 3 x3 0
8 x1 6 x2 2 x3 0 6 x1 7 x2 4 x3 0 ( A) 2 x1 4 x2 3 x3 0 If
0, 8 x1 6 x2 2 x3 0 (1)
A , 6 x1 7 x2 4 x3 0 (2) 2 x1 4 x2 4 x3 0 (3) Solving (1) and (2) by the rule of cross – multiplication,
x1 6
2
7
4
x2
=
8
2
6 4
=
x3 8
6
6
7
x x1 x2 = = 3 10 20 20 x x1 x = 2 = 3 1 2 2 x1 1;
x2 2;
x3 2;
1 X1 2 2 If
3,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
10 5x1 6x 2 2x 3 0 (4)
A ,
6x1 4x 2 4x 3 0 (5) 2x1 4x 2 0x 3 0 (6)
Solving (5) and (5) we get
x1 4
4
4
0
=
x3 x2 = 6 4 6 4 2
0
2
4
x x2 x1 = = 3 8 16 16 x x1 x = 2 = 3 2 2 1 x2 1; x3 2;
x1 2;
2 X2 1 2 If
15, 7 x1 6 x2 2 x3 0 (7)
A , 6 x1 8 x2 4 x3 0 (8) 2 x1 4 x2 12 x3 0 (9) Solving (7) and (8), we get
x1 6
2
=
8 4
x3 x2 = 7 2 7 6 6 4
6 8
x x1 x2 = = 3 40 40 20 x x1 x2 = = 3 2 2 1 x1 2;
x2 2;
x3 1;
2 X 3 2 1 The characteristic root are 0, 3, 15
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
11
The corresponding characteristic vectors are
1 X1 2 ; 2
2 X 2 1 ; 2
2 X 3 2 1
Self assessment question II
2 2 3 1. Find the characteristic roots and the characteristic vectors of 1 1 1 1 3 1 2. Find the characteristic roots and the characteristic vectors of
1 3 3 1
1 2 3 3. Find the characteristic roots and the characteristic vectors of 0 4 5 0 0 6 THEORY OF EQUATIONS 1.5 Some basic theorems in Theory of Equations th
The general form of an n degree equation is
an x n an1 x n1 an2 x n2 ....... a1 x a0 0 where a0, a1, ………an are all constants, an # 0 and n 1. th
Theorem 1: Every polynomial equation of n degree has exactly n roots. Proof: Let
f (x) an x n an1 x n1 an2 x n2 ....... a1 x a0 0 be a nth degree equation in
x. Here a0, a1, a2………an are all elements, Let
an 0
and
n 1.
1 be a root of the given equation. Then, x 1 is a factor of f (x) .
f ( x) x 1 . f1 x Where f1 (x) is a polynomial of degree n 1 Now, f1 x 0 has one root, say
2
Then f1 x x 2 . f 2 x where f 2 x is a polynomial of degree (n – 2).
f ( x) x 1 x 2 . f 2 x Now, f 2 x 0 has one root, say
3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
12
f 2 x x 3 . f 3 x f x x 1 x 2 x 3 . f 3 x Producing like this, we get
f ( x) x 1 x 2 ............x n . f n x Where f n x is a polynomial of degree n-n=0.
f x x 1 x 2 ...........x n .k ………. where k is a constant an .x n an1 x n1 ......a1 x a0 x 1 x 2 ......x n .k Equating the coefficient of
x n , an k
we get f ( x) an x 1 x 2 ...........x n The equation f ( x) 0 has n roots 1 , 2 ......... n . If x is given any value other than Hence
1 , 2 ........... n
then
f ( x) 0 .
f ( x) 0 cannot have more than n roots.
The equation f ( x) 0 has got exactly n roots. Theorem 2: In an equation with rational coefficients, irrational roots occur in conjugate pairs. Proof: Let
f ( x) an x n an1 x n1 ........ a1 x a0 0 be a nth degree equation in x.
Here Let
a0 , a1 , a2 ...........an
xa b
are all rational numerals
an 0
and
n 1.
be one root of this equation where a and be are rational and
b
is
irrational. We will show that
xa b
is also a root of the given equation.
Now,
x a b x a b x a b x a b x a b (1) When f (x) is divided by x a b, let Q(x) be the quotient and Rx R' be the 2
2
remainder. Here R and
R' are rational numbers and Q(x) is a polynomial of degree n 2 .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
13
2 f (x) x a b .Q x Rx R1 (2)
Put
xa b
in (2)
b is a root of f ( x) 0 , we get f a b 0
f a b a b a Since
xa
2
b .Q a b R a b R '
0 R.a R. b R ' Equating Real parts,
0 R.a R ' (3) Equating irrational parts, we get
0 R. b R 0
R' 0
(3) 0 0 R1
(2) f ( x) x a b .Qx
2
f ( x) x (a b ) x a b .Qx
x a b
is a root of
f ( x) 0 .
Irrational roots occur in conjugate pairs.
Theorem 3. In an equation with real coefficients, imaginary roots occur in conjugate pairs. Proof: Let the given equation be
a0 , a1 , a2 ......an Let
are real numbers.
f ( x) an x n an1 x n1.......... a1 x a0 0 where
an 0
and
n 1.
x i be one root of this equation. Where , are real numbers.
We will prove,
x i is also a root.
Now, x i x i x i x i
x 2 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II When
14
f (x) is divided by x 2 2 , let Qx be the quotient and Rx R' be the
remainder. Here Qx is a polynomial of degree n 2 and R , R are real numbers. 2
1
f ( x) ( x ) 2 2 .Qx Rx R1 (1) Put
x i in (1)
f i a i 2 .Q i R i R1 (2) Since
2
x i is a root of f ( x) 0 , we get f i 0
2
0 0 R. iR R1 Equating real parts,
0 R. R'
Equating imaginary parts,
0 R.
0 R and R' 0 (1)
f ( x) x 2 .Q( x) 0 2
f ( x) x i .x i .Qx
x i is root of the equation f ( x) 0 Imaginary roots occur in conjugate pairs. 1.6. Relations between the root and coefficient of an equation. Let the given equation be
an x n an1 x n1 ..........a1 x a0 0 where
a0 , a1 ,...........an
are constants,
an 0
and
n 1.
Let 1 , 2 ........ n be the n roots of this equation then, a n x n a n 1x n 1 ..........a1x a 0 a n (x-1 ) x- 2 ......... x- n
an [ xn x n 1 (1 2 ................ n x n 2 1 2 1 2 ........... n 1. n x n 3 1 2 3 2 3 4 ....... ...... 1 1. 2 ..... n n
Equating the coefficient of x
n 1
, we get
an 1 an 1 2 ......... n FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
15
1 1 2 ........ n Equating the coefficients of
an 1 an
x n 2 , we get
a n 2 a n 1 2 23 ......... 1 2
a n 2 an
/// ly 1 23 1 23 23 4 ........
a n 3 an
…………………………………………….. ……………………………………………… Equating the constant terms,
a0 an 1 1. 2 ........... n n
1. 2 ............... n
n 1 .a0 .
an
Note: 1 Quadratic Equation Let the equation be Let the roots be
ax 2 bx c 0
and b a
and
Then
c a
Note: 2 Cubic Equation Let the equation be Let the roots be Then,
1
2
1
ax 3 bx 2 cx d 0
, and
b a
c a
d a
Note 3: Bi-quadratic equation Let the equation be Let the roots be
ax 4 bx 3 cx 2 dx e 0
, , and
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Then,
1
16
b a
2
2
1
1
c a
d a
e a
1.7. Problems Type – I 1. Solve the equation
x 4 2 x3 5x 2 6 x 2 0 given that 1 i is a root.
The given equation is
x 4 2 x3 5x 2 6 x 2 0 Given,
1 i is one root. 1 i is also a root.
Let the other two roots be Then,
and
1 i 1 i 1
2
4 4 (1) Product of the roots
1 i 1 i 2 1
1 1.. 4 2 4 2 1 2 4 1 0
4 16 4 2 42 3 2
2 3 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
17
The roots are 1 i , 2 3 Another Method The given equation is
x 4 2 x3 5x 2 6 x 2 0 (1) Given,
1 i is a root 1 i is also a root.
x 1 i x 1 i x 1 ix 1 i
Now,
x 1 1 2
x2 2x 2 Next,
x2 4x 1 x 2 2 x 2 x 4 2 x3 5x 2 6 x 2 x 4 2x3 2x 2 4x3 7 x 2 6x 4 x3 8x 2 8x x2 2x 2 x2 2x 2 0 1
x
2
2x 2 x 2 4x 1 0
x 2 2 x 2 0 (or) x 2 4 x 1 0
x
x
4 16 4 2
42 3 2
x 2 3 The roots are 1 i, 2 3 . 2.If 1 – 2i and
3
are two roots of the equation
x5 x4 8x2 9 x 15 0 , find the other
roots .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
18 x5 x4 8x2 9 x 15 0
The given equation is, Given,
3
1 2i and
are two roots
1 2i and 3 are also roots of this equation Let
be the fifth root,
Sum of the roots,
1 2i
3 1 2i 3
1 1
2 1 1 The roots are 1 2i, 3, 1 . 3.If
2 5
is one root of the equation
3x5 4 x4 42 x3 56 x2 27 x 36 0 , solve the
equation. The given equation is
3x5 4 x4 42 x3 56 x2 27 x 36 0
2 5
Given,
Let
is one root.
2 5, 2 5
2 5,
are also roots of this equation.
be the fifth root.
Sum of the roots
2 5
2 5 2 5 2 5
4 3
4 3 4 3
The roots are 2 5 , .
4. Solve the equation
x4 11x2 2 x 12 0 , given that
The given equation is Given,
5 1 is one root.
x4 11x2 2 x 12 0
5 1 is one root.
5 1 is also a root. Let the other two roots be
,
Sum of the roots,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
19
5 1 5 1 0
2 0
2
(1)
Product of the roots
5 1 5 1 . .
12 1
5 1. 2 12
2 2 3
2 2 3 0 ( 3)( 1) 0
3,1 The roots are 5. Solve the equation
5 1, 5 1, 3, 1 .
x4 2 x2 16 x 77 0 , given that 2 i 7 is a root.
The given equation is Given
2i 7
2 i 7
x4 2 x2 16 x 77 0
is a root
is also a root.
Let the other two roots be Sum of the roots
,
2 i
7 2 i 7 0
4 0
4 Product of the roots
. . .
77 1
4 2 i 7 2 i 7 77
4 .4 7 77 2
4 2 7
2 4 7 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
20
4 16 28 2
4 i2 3 2
2i 3 The roots are 2 i 7 , 2 i 3
Self Assessment problems III 1.
Solve the equation
x4 5x3 4 x2 8x 8 0 given that 1 5 is a root.
2.
Solve the equation
x 4 12 x 5 0 , given that 1 2i is a root.
3.
Solve the equation
x4 4 x2 8x 35 0 , given that 2 i 3 is a root.
4.
Solve
x6 4 x5 11x4 40 x3 11x2 4 x 1 0 , given that
2 3
is one root.
1.8 Problems-Type – II 1. Solve the equation
x 3 12 x 2 39 x 28 0 , given the roots are in A.P. x 3 12 x 2 39 x 28 0 (1)
The equation is
Given that the roots are in A.P.
a d , a, a d .
Let the roots be Sum of the roots
a d a a d
12 1
3a = 12 a=4
4
1 0 1
12
39
28
4 32
28
8
7
0
x 4 x 2 8x 7 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
21
x 4x 1x 7 0 x 4,1,7 The roots are 1, 4, 7 Another Method
x 3 12 x 2 39 x 28 0
The equation is
Given, the roots are in A.P.
a d , a, a d
Let the roots be Sum of the roots
a d a a d
12 1
3a 12 a4 Product of the roots
a d aa d 28 16 d 2 7 d 2 9 d2 9
d 3 The roots are 4 – 3, 4, 4 + 3 1, 4, 7 2. Solve the equation
4 x 3 24 x 2 23x 18 0
Given that the roots are in A.P The equation is
4 x 3 24 x 2 23x 18 0 (1)
Given that, the roots are in A.P. Let the roots be
a d , a, a d
Sum of the roots
a d a a a d
24 4
3a 6 a2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2
22
24
23
18
0
8 32
18
4
16 9
0
4
1 x 2 4 x 2 16 x 9 0
x 22 x 12 x 9 0
x 2 or x 1 2 or x 9 2 The roots are 1 2 , 2, 9 2
3. Find the condition that the roots of the equation The equation is
x 3 px 2 qx r 0
x 3 px 2 qx r 0
may be in A.P.
(1)
Its roots are in A.P. Let the roots be a – d, a, a + d. Sum of the roots
a d a a d p 3a p a
p 3
x
p is a root. 3
Substituting in (1), 3
2
p p p p q r 0 3 3 3
p 3 3 p 3 9 pq 27r 0 27
2p3 9pq 27r 0 This is the required condition. 4. Solve the equation
x 3 19 x 2 11x 216 0 , given that the roots are in G.P.
The equation is
x 3 19 x 2 11x 216 0 (1)
Given that, the roots are in G.P.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
23
Let the roots be
a , a, ar r
Product of the roots
216 a .a.ar r 1 a 3 216
a6
6
1
19
114
216
0
6
76
216
1
13
36
0
1 x 6 x 2 13x 36 0
x 6x 4x 9 0
x 6, 4, 9 The roots are 4, 6, 9
5. Solve the equation
2 x 3 21x 2 42 x 16 0
Given that the roots are in G.P. The equation is
2 x 3 21x 2 42 x 16 0 (1)
Given that, the roots are in G.P. Let the roots be
a , a, ar r
Product of the roots
16 a .a.ar r 2 a3 8
a2
2
2 0 2
21
42
16
4 34
16
17
8
0
1
x 22x 2 17 x 8 0 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
24
x 22x 1x 8 0 1 x 2, , 8 2 The roots are
1 , 2, 8. 2
6. If the roots of the equation
ax 3 3bx 2 3cx d 0 are in G.P., show that ac 3 db 3 .
The Given equation is
ax 3 3bx 2 3cx d 0 (1) Its roots are in G.P. Let the roots be,
A , A, R R
Product of the roots
A d . A. AR R a A3 Put
d a
x A in (1)
a. A3 3b. A2 3cA d 0
d a. 3bA2 3cA d 0 a 3bA2 3cA 0 3 AbA c 0
bA C b3 A3 C 3
d b 3 . C 3 a db3 ac 3 7. Solve the equation
6 x 3 11x 2 6 x 1 0 , given that the roots are in H.P.
The given equation is
6 x 3 11x 2 6 x 1 0 (1)
Given that, the roots are in H.P.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Put
x
Then,
6.
25
1 in (1) y 1 1 1 11. 2 6. 1 0 3 y y y
xy 3 ; 6 11y 6 y 2 y 3 0
y 3 6 y 2 11y 6 0
(2)
The roots of this equation are in A.P.
a d , a, a d
Let the roots be Sum of the roots
a d a a d
6 1
3a 6 a2
2
1
6
11
6
0
2
8
6
1
4
3
0
2 y 2y 2 4 y 3 0 y 2 y 1 y 3 0 y 1, 2, 3 The roots of equation (2) are 1, 2, 3
The roots of the given equation are
1 1 1 , , . 1 2 3 8. Solve the equation
x 3 3x 2 4 x 12 0 given that the sum of two roots is zero.
The given equation is Let the roots be
x 3 3x 2 4 x 12 0
, ,
Sum of the roots
3 1
3 Product of the roots
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
26
. . 12 2 .3 12
2 4
2 The roots are 2, -2, 3. 9. Solve the equation
x 3 9 x 2 14 x 24 0 given that two roots are in the ratio 3 : 2.
The given equation is
x 3 9 x 2 14 x 24 0 (1)
Given two roots are in the ratio 3 : 2 Let the roots be
3 , 2 ,
Sum of the roots
3 2
9 1
5 9
9 5
(2)
Next,
3.2 2. 2. 14 6 2 5 14 2 5 9 5 14 6 2 45 25 2 14 19 2 45 0 19 2 45 14 0
19 7 2 0 2, When Put
7 19
2, 2 4
x 4 in (1)
42 9.42 14.4 24 0 64 144 56 24 0 144 – 144 = 0 The equation is satisfied
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
27
x 4 is one root. Put
2
in (2)
9 5 2 1 The roots are 3 × 2, 2 × 2, -1 6, 4, -1 10. Solve the equation
x3 x 2 16 x 20 0 given that the difference between two roots is 7.
The given equation is Let the roots be
x3 x 2 16 x 20 0 (1)
, 7,
Sum of the roots
7 1 8 2 2
7 . 7. 16 2 7 2 7 16
2 7 2 8 2 7 8 2 16 2 7 16 4 2 56 14 16 0 3 2 23 40 0
3 2 23 40 0
53 8 0 5, Put
8 3
x 5 in (1)
53 52 16 5 20 0 –125 + 25 + 80 + 20 = 0 –125 + 125 = 0 The equation is satisfied.
x = -5 is a root Put
5
in (2)
8 10 2 The roots are 5, 5 7, 2
5, 2, 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
11. Solve the equation
28
x4 4 x3 2 x2 12 x 9 0 given that it has two pairs of equal roots.
The given equation is Let the roots be
x4 4 x3 2 x2 12 x 9 0 (1)
,, , .
Sum of the roots
4 2 4
2 2
(2)
. . . . . . 2 2 4 2 2 2 4 2 2 2 2 2 8 4 2 4 4 2 2 0 2 8 2 4 2 4 4 2 2 0 2 2 4 6 0
2 2 3 0
1 3 0 1, 3 The roots are 1, 1, –3, –3 12. Solve the equation
x 2 4 x 3 25x 2 8x 5 0 given that the product of two roots is unity.
The given equation is Let the roots be Given
x 2 4 x 3 25x 2 8x 5 0 (1)
, , ,
. 1 2
4 (3) 25 (4) 8 (5) 5 (6) Put
1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
29
6 1. 5
5
5 1. 1. .5 .5 8 5 8 (7) (3) (7) 4 12 3 3
2 3 1 3 2 1
2 3 1 0
3 9 4 2
3 5 (8) 2
Put
3
in (7)
5 3 8
7 7 We have
5
5
7 5 7 2 5 0
2 7 5 0
7 49 20 2
7 29 9 2
The roots are
3 5 7 29 , 2 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
30
13. Solve the equation x
4
2 x3 4 x 2 6 x 21 0 , given that two of its roots are equal in
magnitude and opposite in sign. The given equation is Let the roots be
x 4 2 x3 4 x 2 6 x 21 0 (1)
, , ,
2 2 (2)
4 2 4
(3)
( ) 6 2 6
2 .2 6 2 3
3 (4) Put
2 3
in (3)
3 2 4
2 2 7 0
2 2 7 0
2 4 28 2
1 i 6 5 The roots are 3, 1 i 6
14.Solve the equation
x 4 8x3 7 x 2 36 x 36 0 given that the product of two roots is
equal in magnitude but opposite in sign to the product of other two roots. The given equation is Let the roots be
x 4 8x3 7 x 2 36 x 36 0 1
, , ,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
31
8 2 7 3
36 4 36 5
6
given
5
- 36
2 36 6 7 6 8 4
- 6 - 6 .6 .6 -36 - - -6 9
2 9
2 2
1 1-
8
1 - 6
- 2 6 0
2 6 0
- 3 2 0 3,-2 8 Put
1 in 2
1 8 7 7 -
7
7 - 6 7 - 2 6 0
2 7 6 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
32
-1 6 0 1,6 9 The roots are 3, -2, 1, 6. Self assessment problems IV 1.
Solve the equation
4 x3 36 x 2 59 x 39 0 given that the roots are in A.P
2.
Solve the equation
x3 7 x 2 14 x 8 0 given that the roots are in G.P.
3.
Solve the equation
3x3 22 x 2 48x 32 0 given that the roots are in H.P.
4.
Solve the equation
x 4 2 x3 25x 2 26 x 120 0 given that the product of two of its
roots is 8. 5.
Solve
x 4 8x3 14 x 2 8x 15 0 given that the sum of two roots is equal to the sum
of the other two.
1.9. Answers Self Assessment Questions I
1 2 0 1. Verify Cayley – Hamilton theorem 0 4 5 3 0 1 1 2 0 Let A 0 4 5 3 0 1 The characteristic equation is
A I 0 1
2
0
4
3
0
0 5 0 1
1 4 1 0 20 3.5 0 0
1 4 5 2 30 0
4 5 2 4 52 3 30 0
3 62 9 34 0 3 62 9 34 0 (1)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
33
This is the characteristic equation. By Cayley-Hamilton theorem, every square matrix satisfies its characteristic equation. Put
A
in 1
A3 6 A2 9 A 34I 0 (2)
1 2 0 1 2 0 2 Now, A 0 4 5 0 4 5 3 0 1 3 0 1 1 10 10 15 16 25 6 6 1 1 10 10 1 2 0 3 2 Next, A A A 15 16 25 0 4 5 6 6 1 3 0 1 31 42 60 90 94 105 9 36 31
2 , 31 42 60 1 10 10 1 2 0 1 0 0 90 94 105 615 16 25 90 4 5 340 1 0 0 9 96 31 6 6 1 3 0 1 0 0 1 0 0 0 0 0 31 42 60 6 60 60 9 18 0 34 90 94 105 90 96 150 0 36 45 0 34 0 0 0 0 9 96 31 36 36 6 27 0 9 0 0 34 0 0 0 60 60 0 0 0 0 0 31 6 9 34 42 60 18 0 90 90 0 0 94 96 36 34 105 150 45 0 0 0 0 9 36 27 0 36 36 0 0 31 6 9 34 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The Cayley-Hamilton theorem is verified.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
34
1 2 2 2. Find the inverse of 2 1 2 2 2 1 1 2 2 Let A 2 1 2 2 2 1 The characteristic equation is
A I 0 1
2
2
1
2
2
2 2 0 1
1 1 2 4 221 4 24 21 0 1 2 2 3 2 2 2 22 2 0 2 2 3 3 22 3 4 4 4 4 0 3 32 9 5 0
3 32 9 5 0 This is the characteristic equation. By Cayley – Hamilton theorem, every square matrix satisfies its characteristic equation. Put
A
in (1)
A3 3 A2 9 A 5I 0 Multiplying by A
1
A3 . A1 3 A2 . A1 9 A. A1 5I . A1 0. A1 A2 3 A 9I 5 A1 0 5 A1 A2 3 A 9I (2)
1 2 2 1 2 2 2 Now, A A A 2 1 2 2 1 2 2 2 1 2 2 1 9 8 8 8 9 8 8 8 9 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
35
2 , 9 8 8 1 2 2 1 0 0 5 A1 8 9 8 32 1 2 90 1 0 8 8 9 2 2 1 0 0 1 86 86 9 3 9 86 939 8 6 8 6 86 9 3 9 2 3 2 1 A 1 2 3 2 5 2 2 3 Self Assessment Questions – II
2 2 3 1 1 1. Find the characteristic roots and characteristic vectors of 1 1 3 1 2 2 3 1 1 Let A 1 1 3 1 The characteristic equation is
A I 0 2
2
1
1
1
3
3 1 0 1
2 1 1 3 21 1 33 1 0
2 2 4 4 2 y 6 3 0
22 8 3 4 2 0 3 22 5 6 0
3 22 5 6 0 (1) This is the characteristic equation Put
1,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
36
1–2–5+6=0 The equation is satisfied.
1 is a root.
1
1
2
5
6
0
1
1
6
1
1
6
0
1 12 6 0 1 2 3 0 1, 3, - 2 The Characteristic roots are 1, 3, -2 To find the characteristic vectors Consider the equation A I X 0
3 x1 0 2 2 1 1 x2 0 1 1 3 1 x3 0
2 x1 2 x2 3x3 0 1.x1 1 x2 1.x3 0 A 1.x1 3x2 1 .x3 0 If
1,
A , x1 2 x2 3x3 0 x1 0.x2 x3 0 x1 3x2 2 x3 0 Solving
x1 2 3 0
1
x3 x2 1 3 1 2 1 1
1
0
x x1 x 2 3 2 2 2 x1 x2 x3 1 1 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
37
x1 1; x2 1; x3 1 1 X1 1 1 If
3
A ,
x1 2 x2 3x3 0 x1 2 x2 x3 0 x1 3x2 4 x3 0
Solving,
x1 2 3 2 1
x3 x2 1 3 1 2 1
1
2
1
x1 x2 x3 4 4 4 x1 x2 x3 1 1 1
x1 1; x2 1; x3 1 1 X 2 1 1 If
2
A ,
4 x1 2 x2 3x3 0 x1 3x2 x3 0 x1 3x2 x3 0
Solving,
x1 2 3 3
1
x3 x2 4 3 4 2 1 1
1
3
x x1 x 2 3 11 1 14
x1 11; x2 1; x3 14
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
38
11 X 2 1 14 The characteristic roots are 1, 3, -2
1 1 11 The characteristic roots are 1 , 1, 1 1 1 14 2. Find the characteristic roots and characteristic vectors of
Let
1 3 3 1
1 3 A 3 1
The characteristic equation is
A I 0 1
3
3
1
0
1 2 9 0 2 2 8 0
2 4 0 2, 4 The characteristic roots are –2, 4 To find the characteristic vectors Consider the equation Consider the equation A I X 0
3 x1 0 1 3 1 x2 0
1 x1 3x2 0 A 3x1 1 x2 0 If
2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
39
3x1 3x2 0
A ,
3x1 3x2 0 x1 x2 0 x2 x1
Put x1 1 Then x2 1
1 X 1 1 If
4 3x1 3x2 0
A ,
3x1 3x2 0 x1 x2 0 x2 x1
Put x1 1 Then x2 1
1 X2 1 The characteristic roots are –2, 4 The characteristic vectors are
1 1 , 1 1
1 2 3 3. Find the characteristic roots and characteristic vectors of 0 4 5 0 0 6 1 2 3 Let A 0 4 5 0 0 6 The characteristic equation is
A I 0 1
2
3
0
4
5
0
0
6
0
1 4 6 0 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
40
1, 4, 6 The characteristic roots are 1, 4, 6. Next, Consider the equation A I X 0
1 0 0
3 x1 0 4 5 x2 0 0 6 x3 0 2
1 x1 2 x2 3x3 0 0.x1 4 x2 5.x3 0 A 0.x1 0.x2 6 .x3 0 If
1,
A , 0.x1 2 x2 3x3 0 0.x1 3.x2 5.x3 0 0.x1 0.x2 5.x3 0 Solving
x1 2 3
3 5
x x2 3 0 3 0 2 0 5
0 3
x1 x2 x3 1 0 0
x1 1; x2 0; x3 0 1 X1 0 0 If
4,
A , 3.x1 2 x2 3x3 0 0.x1 0.x2 5.x3 0 0.x1 0.x2 2.x3 0 Solving
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II x1 2 3
0 5
41
x x2 3 3 3 3 2 0
5
0 0
x1 x2 x3 10 15 0 x1 x2 x3 2 3 0
x1 2; x2 3; x3 0 2 X2 3 0 If
6,
A , 5.x1 2 x2 3x3 0 0.x1 2.x2 5.x3 0 0.x1 0.x2 0.x3 0 Solving
x1 2
3
2 5
x3 x2 5 3 5 2 0
5
0
2
x1 x2 x3 16 25 10
x1 16; x2 25; x3 10 16 X 3 25 10 Answers Self Assessment Problems – III 1. Solve the equation
x 4 5x3 4 x 2 8x 8 0 given that 1 5 is a root.
The given equation is
x 4 5x3 4 x 2 8x 8 0 (1)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Given
1 5
42
is one root.
1 5 is also a root. Let the other two roots be
,
Sum of the roots
1
5 1 5 5
3 (2) Product of the roots
1 5 1 5 .. 8
1 5. 3 8
4 3 2 8 3 2 2
2 3 2 0
1 2 0 1, 2 The roots are 1 5 , 1, 2. 2. Solve the equation
x 4 12 x 5 0 , given that 1 2i is a root.
The given equation is Given
x 4 12 x 5 0
1 2i is a root.
1 2i is also a root. Let the other two roots be
,
Sum of the roots
1 2i 1 2i 0 2 Product of the roots
1 2i 1 2i .. 5 1 4. 2 5
5 2 2 5 2 2 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
43
2 2 1 0
2 44 2
1 2 The roots are 1 2i , 1 2 3. Solve the equation
x 4 4 x 2 8x 35 0 Given that 2 i 3 is a root.
The given equation is Given,
2i 3
x 4 4 x 2 8x 35 0 (1)
is a root
2 i 3 is also a root. Let the other two roots be
,
Sum of the roots
2 i
3 2 i 3 0
4 (2) Product of the roots
2 i 3 2 i 3 .. 35
4 3 4 35 4 2 5
2 4 5 0
4 16 20 2
2 i The roots are 2 i 3 , 2 i 4. Solve the equation
x6 4 x5 11x 4 40 x3 11x 2 4 x 1 0 given that
2 3
is one
root. The given equation is Given
2 3
x6 4 x5 11x 4 40 x3 11x 2 4 x 1 0
is a root.
2 3, 2 3, 2 3 are also roots.
Let the other two roots be
,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
44
Sum of the roots
2 3 2 3 2 3 2 3 4
4 1 Product of the roots
( 2 3)( 2 3)( 2 3)( 2 3). . 1 2 32 3. .4 1
4 2 1
2 4 1 0
4 16 4 2
2 3 The roots are
2 3, 2 3, 2 3, 2 3, 2 3, 2 3 . Self Assessment Problems – IV 1. Solve the equation
4 x3 56 x 2 59 x 39 0 Given that the roots are in A.P.
The given equation is
4 x3 56 x 2 59 x 39 0 (1)
Given, the roots are in A.P.
a d , a, a d
Let the roots be Sum of the roots
a d a a d
36 4
3a 9 a3
3
4 36
59
39
12 72
39
4 24 13
0
0
1 x 3 4 x 2 24 x 13 0
x 32x 132x 1 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II x 3,
45
13 1 ,2 2
The roots are 2. Solve the equation
1 13 , 3, 2 2
x3 7 x 2 14 x 8 0 Given that the roots are in G.P.
Let the roots be
a , a, ar r
Product of the roots
a .a.ar 8 r
a3 8
a2
1
2
0 1
7
14
8
2 10
8
5
4
0
1
x 2x2 5x 4 0 x 2x 1x 4 0 x 2, 1, 4 The roots are 1, 2, 4. 3. Solve the equation
3x3 22 x 2 48x 32 0 given the roots are in H.P.
The given equation is
3x3 22 x 2 48x 32 0 (1) Its roots are in H.P. Put
3.
x
1 in (1) y
1 1 1 22. 2 48 32 0 3 y y y
3 22y 48y 2 32y3 0 32y3 48y 2 22y 3 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
46
Its roots are in A.P.
a d , a, a d
Let the roots be Sum of the roots
48
a d a a d 32 3 2 1 a 2
3a
1 32 48 22 16 16 2 0 32 32
6
3 3 0
1
1 2 y 32 y 32 y 6 0 2 1 y 4 y 13 y 6 0 2 1 1 3 y , , 2 4 4 The roots of (2) are
1 1 3 , , 4 2 4
The roots of the given equation are 4, 2, 4. Solve the equation
4 . 3
x 4 2 x3 25x 2 26 x 120 0 given that the product of two roots is 8.
The equation is
x 4 2 x3 25x 2 26 x 120 0 (1)
Let the roots be
, , ,
2 (2) 25 (3) 26 (4) 120 (5)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Given
47
. 8 (6)
5 , 8. . 120 . 15 7 3 , 8 8 .15 15 26 15 8 26 8 2 8 8 , 7 42 6 6 9
6 , 6 8 2 6 8 0
2 4 0 2, 4
2,
If
9 , 6 2 4 Put
2, 4
in (2)
2 4 2
8 10
7 , 8 15 8 2 15 0
2 8 15 0
3 5 0 3, 5 3,
If
10 , 8 3 5 The roots are 2, 4, –3, –5. 5. Solve
x 4 8x3 14 x 2 8x 15 0 given that the sum of two roots is equal to the sum of the
other two.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
48
The given equation is Let the roots be
x 4 8x3 14 x 2 8x 15 0
, , ,
8 (1) 14 (2) 8 (3) 15 (4) Given
5
0 6 (1) + (6)
, 2 8
4 7 4 8
3 , 8 .4 . 8 2 9
2
4 , 2 15 Put
t
t 2 t 15
2t t 2 15 0 t 2 2t 15 0
t 5t 3 0 t 3 or 5
3 or 5 If
3,
4 3 4 2 3 0
2 4 3 0
1 3 0 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
1, 3 If
5
4 5 4 2 5 0
2 4 5 0
1 5 0 1, 5 The roots are 1, 3, -1, 5
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
49
MATHEMATICS-II
50
Unit 2
2.0 Introduction 2.1 Objective 2.2 Formation of equations with roots changed in sign 2.3 Formation of equations with roots multiplied by a constant 2.4 Formation of equation with roots as squares of the given equation 2.5 Formation of equation with roots increased or decreased by a constant 2.6 Removal of terms 2.7 Transformation in general 2.8 Symmetric functions of roots. 2.9 Answers to Self assessment problems.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2.0
51
INTRODUCTION In this unit will learn different types of transformation of equations. Whenever you
are given an equation you can transform it into another whose roots are changed in sign. You can transform the given equation one whose roots obtained by multiplying the roots of the given equation by a given number. You will also know how to form an equation whose roots are simply the squares of the equation. You can form new equation whose roots are obtained by increasing or decreasing the roots of the given equation by a number. If you are given an equation
you can transform it into one its second term
removed. Also you will learn many other types of transformations. You can also find the values of symmetric functions of roots.
2.1
OBJECTIVE After completing this unit you should be able to Form an equation with roots changed in sign. Form an equation with roots multiplied by a constant. Form an equation whose roots are squares of the given equation Form an equation with roots increased or decreased by a given number. Form an equation with its second term removed. Form an equation whose roots are changed under different conditions. Find the values of symmetric functions of roots.
Transformation of Equations: If 1 , 2 ,........n are the roots of the equation f(x)=0, then forming the equation whose roots are ( 1 ), ( 2 ) . . . . . ( n ) is called transformation of the given equation.
2.2 TYPE I: Formation of an equation with roots changed in sign of those of the given equation.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
52
1. If , , , are the roots of the equation ax4+ bx3+cx2+dx+e=0, form an equation whose roots are - , , , and - . The given equation is ax4+bx3+cx2+dx+e=0 (1) Its roots are , , and . We will form an equation with roots - , , , and - . Put y=- y=-x x=-y (1) a(-y) 4+ b(-y) 3 +c(-y) 2 +d(-y) +e = 0
ie.,
ay 4 –by3 +cy2 -dy +e = 0
This is the required equation. 2. If , , are the roots of the equation 2x 3 +3x 2 +x -4 =0, form an equation with roots , and
.
The given equation is 2x3 +3x2 +x -4 = 0
(1)
Its roots are , , . We will form an equation with roots – , , Put y = - y = -x x = -y (1)
2(-y) 3 +3(-y) 2 –y -4 = 0 -2y 3 +3y 2 –y -4 = 0 2y 3 -3y 2 +y +4 = 0
This is the required equation.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
53
Self assessment problems I. 1.
If , , are the roots of the equation x3 +px2 +qx +r =0, form an equation with roots – , ,
2.3
TYPE 2
Multiplication of roots by m.
Let 1 , 2 . . . . . . . . . n be the roots of the equation anxn + an-1xn-1 + an-2 xn-2 + . . . . . . . . + a1x + a0 = 0 (1) We will form an equation with roots m 1, m 2, . . . . . . . . . .m n Put
y =m 1 y =mx x=y
m
n 1 y y a n + an-1 y . . . . . . . . + a1 + a0 = 0 m m m
n
a n yn + m.an-1 yn-1 + m2.an-2yn-2 + . . . . + mn-1.a,y + mn.a0 = 0 This is the required equation. 1.If , , be the roots of the equation 2x3 + 4x2 + 5x – 1 = 0, form an equation with roots 10 , 10 , 10 . The given equation is 2x3 + 4x2 + 5x – 1 = 0 - - - - - - (1) Its roots are , , . We will form an equation with roots 10 ,10 ,10 . Put
y
=
10
y
=
10x
x
=
y 10
y y y (1) 2 + 4 + 5 -1 10 10 10 3
2y3 + 40y2 + 500y – 1000
2
= =
0
0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
54
This is the required equation. 2.If , , , are the roots of the equation x4 + 4x3 – 5x2 + 10x – 25 = 0 form an equation with roots 2, 2, 2, 2 . The given equation is x4 + 4x3 – 5x2 + 10x – 25 = 0 -------------- (1) Its roots are , , and . We will form an equation with roots 2, 2, 2, 2 . Let
y
=
2
y
=
2x
x
=
y 2
y y y y (1) + 4 - 5 + 10 - 25 2 2 2 2 4
3
2
y4 + 8y3 – 20y2 + 80y – 400
X1b;
=
0
=
0
This is the required equation. 3.If , , be the roots of the equation ax3 + bx2 + cx + d = 0 form an equation with roots k , k , and k . The given equation is ax3 + bx2 + cx + d = 0 -------------- 1 Its roots are , , . We will form an equation with roots k , k , and k . Put
y
=
k
y
=
kx
x
=
y k
y y y a + b + c + d k k k 3
(1)
ay3 + k.by2 + k2.cy + k3.d
2
=
=
0
0
This is the required equation. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
55
Self Assessment problem II 1.If , , , are the roots of the equation x4 + x3 + fx2 – 5x + 10 = 0 form an equation with roots 3 , 3 , 3 , and 3 .
Type III: Square of the roots. Let the given equation be. an xn + an-1 xn-1 + . . . . . . . . a1x + a0 = 0---------- 1 Let the roots be 1 , 2 . . . . . . . n. Put
(1)
y
=
12
y
=
x2
x
=
an
y
y
n
+ a n 1
y
n 1
+ . . . . . . + a1
y + a
0
=0
This is the required equation. 1.If , , be the roots of the equation x3 + 4x2 + 5x + 11 = 0 form an equation with roots
2 , 2 and 2 . Given, , , are the roots of the equation x3 + 4x2 + 5x + 11 = 0 ------------ (1) We will form an equation with roots 2 , 2 and 2 Put
(1)
y
=
2
y
=
x2
x2
=
y.
y.x + 4y + 5x + 11 = 0
Squaring,
x(y + 5)
=
-(4y + 11)
x2(y + 5)2
=
(4y + 11)2
y(y2 + 10y + 25)
=
16y2 + 88y + 121
y3 – 6y2 – 63y – 121
=
0
This is the required equation. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
56
2. If , , are the roots of the equation ax3 + bx2 + cx + d = 0, form an equation with roots 2 , 2 and 2 . Given, , , are the roots of the equation. ax3 + bx2 + cx + d = 0 -------------- (1) We will form an equation with roots 2 , 2 and 2 . Put
(1)
Squaring,
y
=
2
y
=
x2
x2
=
y.
ay.x + by + cx + d
=
0
x(ay + c)
=
1 (by + d)
x2(ay + c)2
=
(by + d)2
y(a2y2 + 2acy + c2)
=
b2y2 + 2bdy + d2
=
0
a2y3 + (2ac – b2)y2 + (c2 – 2bd)y – d2 This is the required equation.
Self assessment problem III 1.If , , are the roots of the equation x2 + 3px2 + 3qx + r= 0 form an equation with roots 2 , 2 and 2 .
Type 4: Increasing or decreasing the roots by a given number Let 1 , 2 . . . . . . . n be the roots of the equation an xn + an-1 xn-1 + . . . . . . . . a1x + a0 = 0
---------- (1)
We will form an equation with roots
1 n, 2 n, . . . . . . . n n, Put
y
=
y
=
x–n
x
=
y+n
(1)
1 n
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
57
an (y + n)n + an – 1 (y + n)n – 1 + . . . . . a1(y + n) + a0 = 0 This is the required equation. 1.Diminish by 2 the roots of the equation x3 + 2x2 – 3x + 5 = 0 Let , , be the roots of the equation x3 + 2x2 – 3x + 5 = 0 ----------------- (1) We will form an equation with roots
2, 2 and 2 Put
1
y
=
2
y
=
x–2
x
=
y+2
(y + 2)3 + 2(y + 2)2 – 3(y + 2) + 5 = 0
y3 + 6y2 + 12y + 8 + 2y2 + 8y + 8 – 3y – 6 + 5
=
0
y3 + 8y2 + 17y+ 15
=
0
This is the required equation.
Another method The given equation is x3 + 2x2 – 3x + 5 = 0 Diminishing the roots by 2, 2
-
1
2
0
2
8
1
4
5
0
2
1
6
5
3
1 0 1 5
1 2 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
58 7 0
2
1
8
The required equation is x3 + 8x2 + 17x + 15 = 0 2.
Decrease the roots of the equation x4 – 3x3 + 4x2 - 2x + 1 = 0 by unity The given equation is x4 – 3x3 + 4x2 - 2x + 1 = 0 Decreasing the roots by 1 1
1
0
1
1
2 2
-2
0
1
4
-3
1
-
2
0
0
1
1
1 1
-1
1
-2
0
1
0
1
0
1
0
1
1
1
1
The new equation is x4 + x3 + x2 + x + 1 = 0 3.Increase the roots of the equation x4 + 3x3 - 2x2 + x + 4 = 0 by unity The given equation is x4 + 3x3 - 2x2 + x + 4 = 0 Increasing the roots by 1,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
-1
59
1
0
3
-1
1
0
2
-1
1
0
1
1
1
-2
4
-4
5
-1
5
-
1
5
+ 4 5 1
0 0
-1
1
0
-2
0
5
-1 1
The new equation is x4 - x3 - 5x2 + 10x - 1 = 0 4.Find the equation whose roots are the roots of x4 - x3 - 10x2 + 4x + 24 = 0 increased by 2 and hence solve the equation. The given equation is x4 - x3 - 10x2 + 4x + 24 = 0 Increasing the roots by 2, -2
1
-1
0
-2
-
4
10 6
8
2 4 -24
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
60
1
-3
0
-2
1
-5
0
-2
1
-7
0
-2
-
1
4
0
2 1
0
12
6
0
1 4 2 0
1 -9 The new equation is x4 - 9x3 + 20x2 + 0x + 0 = 0 x2 (x2 – 9x + 20) = 0 x2 ( x – 5) (x – 4) = 0 therefore
x = 0, 0, 4, 5
The roots of the given equation are 0 – 2, 0 – 2, 4 – 2, 5 – 2 -2, -2, 2, 3
Self assessment problems IV 1.Find
the
equation
whose
roots
are
those
of
the
equation
those
of
the
equation
2x4 - 25x3 + 111x2 – 208x + 140 = 0 diminished by 3. 2.Find
the
equation
whose
roots
are
4x4 + 32x3 + 83x2 + 76x + 21 = 0 increased by 2. Hence solve the given equation.
Type 5 : Removal of Terms Let 1 , 2 . . . . . . . . . n be the roots of the equation
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
61
an xn + an-1 xn-1 + an-2 xn-2 + . . . . . . . a1x a 0 0 (1) We will decrease the roots by h. Put
y
=
1 h
y
=
x–h
x
=
y+h
(1) an(y + h)n + an-1(y+h)n-1+an-2(y+h)n-2+ . . . . . . .a1(y+h) + a0 = 0 [anyn+an.n h yn-1+. . . . ] + [an-1 yn-1+an-1(n-1)h yn-2+. . . .] + [an-2yn-2+ . . . .] + . . . . . +a1y+a1h+a0 = 0 anyn+yn-1[an.n.h+an-1] + . . . . +a1y+a1h+a0 = 0 This is the new equation. If the second term is to be removed, Coefficient of yn-1
=
0
an.n.h + an-1
=
0
h
=
=
-
h
-
a n 1 na n
Coeff of x n 1 n. Coeff of x n
Problems 1. Solve the equation x 4 + 20x 3 +143x 2 +430x + 462 = 0 by removing the second term. The given equation is x 4 + 20x 3 +143x 2 +430x + 462 = 0 We will decrease the roots by h h
=
Coeff of x n 1 n. Coeff of x n
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
62
coeff of x 3 4 coeff of x 4
20 4 1
= -5. Increase the roots by -5. 5
1
0
1
0
1
0
2 0
43 -
5
9
-
1
12 -
90 1
8 -
450
0
50
5
-
6
-
0
62
-340
8
5
4
30
75
5
4
-
1
1
0
1
0
25
5
7
5
1
The new equation is
0
y 4 +0.y 3 -7y 2 +0.y +12 = 0.
y 4 -7y 2 +12 = 0. (y 2 -3) (y 2 -4) = 0. y 2 = 3,4. y = 3 , 2. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
63
The roots of the given equation are
3 - 5, - 3 -5, 2-5, -2-5 3 - 5, - 3 -5, -3, -7. 2. Solve the equation x 3 -12x 2 +48x -72 = 0 by removing the second term. The given equation is x 3 -12x 2 +48x -72 = 0---------------- (1). We will decrease the roots by h. h
coeff of x 2 3 coeff of x 3
h
(12) 3 1
h4
Reducing the roots of (1) by 4, we get 4
1
12
0
1
8 4
-72 -
6
32
4 1
-8
0
1
4
6 4
8
16 0
-4
0
4
1
0
The new equation is x 3 + 0.x 2 +0.x -8 =0. x 3 -8 = 0.----------(2). x 3 -2 2 = 0.
(a 3 - b 3 ) = (a-b) (a 2 +ab+b 2 )
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
64
(x -2) (x 2 +2x +2 2 ) = 0. (x -2) = 0 or (x 2 +2x +2 2 ) = 0. x=2
x = -2
or
4 4.4 /2
x = -2 i 2 3 /2 x = -1 i 3 The roots of 2 are
2, -1 i 3 The roots of the given equation are 2+4, -1 i 3 +4 6, 3 i 3 . 3. Solve the equation x 4 -12x 3 +48x 2 -72x +35 = 0 by removing the second term. The given equation is x 4 -12x 3 +48x 2 -72x +35 = 0. We will decrease the roots by h. coeff of x 3 h 4 coeff of x 4 h
(12) 4 1
h 3
Decreasing the roots of 1 by 3, we get 3
1
12
8
0
1
3
3 2 1
3
5 6
27
9
-
3 -72
-
0 1
4
27 -
9 -
-
8 9
18 3
0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
65 6 0
1
3
9 -
-3
6
0
3
1
0
The new equation is x 4 + 0. x 3 -6x 2 +0.x + 8 = 0. x 4 -6x 2 +8 = 0. (x 2 -2) (x 2 -4) = 0. x 2 = 2 or x 2 = 4 x= The roots of 2 are
2 , or 2 2 , 2, -2.
The roots of the given equation are 3
2 , 3+2, 3-2
3
2 , 5, 1.
4. Solve the equation x 3 + 6x 2 +12x-19 = 0 by removing the second term. The given equation is x 3 + 6x 2 +12x-19 = 0--------------(1) We will decrease the roots by h, h
coeff of x 2 3 coeff of x 3
(6) 3 1 h 2 h
Increasing the roots of 1 by 2, we get, 1
6
1
-19
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
66
-2
2 0
-2
1 0
4
4
-27
-2
4
1 0
-8
8
2
0
2
1
0
The new equation is x 3 +0. x 2 +0.x-27 = 0. x 3 -27 = 0.------(2) x 3 -3 3 = 0 (x-3) (x 2 +3x+3 2 ) = 0 x-3 = 0 or x 2 +3x +9 =0. x = 3 or x = -3 x x= x
3 9 36 2
3 i3 3 2
The roots of (2) are 3, -3 i3 3 /2
The roots of the given equation are 3-2,
1,
3 i3 3 2 , 2
7 i3 3 2
5. Solve the equation x 4 +4x 3 +5x 2 +2x-6=0 by removing second term The given equation is x 4 +4x 3 +5x 2 +2x-6=0----------(1). We will decrease the roots by h, FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
67
h
coeff of x 3 4 coeff of x 4
4 4 1 h 1 h
Increasing the roots of (1) by -1, we get -1
1 0
4
-1
-6
-1
0
-2 2 -
0
-6
0
2 2
0
0
-1
1
0
3 3
1 0
2
-
1
0
5
1 1
1
-1
1
0
The new equation is x 4 +0.x 3 -x 2 +0.x -6 = 0 x 4 - x 2 -6 = 0------(2) (x 2 -3) (x 2 +2) = 0 x 2 =3 or x 2 = -2 x = 3, i 2 The roots of (2) are
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
68
3, i 2 The roots of the given equation are -1 3 , -1 i 2 . 6. Solve the equation 2x 3 -9x 2 +13x-6 = 0 by removing the second term. The given equation is 2x 3 -9x 2 +13x-6 = 0-------------(1). We will reduce the roots by h,
h
coeff of x 2 3 coeff of x 3
h
(9) 3 2
h
3 2
Decreasing the roots of 1 by 3/2, we get, 3 /2
2
1 -9
3
0
2
3
2
6 -
9 4
-6
0
3
-
6
0
9/2
-
-
3
1/2
0
3
2
0
The new equation is 2x 3 +0.x 2 -1/2x+0 =0. 4x 3 -x = 0. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
69
x(4x 2 -1) = 0 x(2x-1)(2x+1) =0. x = 0, 1/2., -1/2. The roots of the given equation are
3/2+0, 3/2+1/2, 3/2-1/2 3/2, 2, 1.
Self assessment problems: V 1. Solve the equation x 3 -6x 2 +11x-6=0. by removing the second term. 2. Solve the equation 4x 4 +32x 3 +83x 2 +76x+21=0. by removing the second term. 3. Solve the equation x 4 -4x 3 -7x 2 +22x+24 = 0. by removing the second term. 4. Solve the equation x 4 +16x 3 +83x 2 +152x+84 = 0. by removing the second term.
Type 6:Transformations in general 1. If , , , are the roots of the equation ax 4 +bx 3 +cx 2 +dx+e = 0, form an equation whose roots are 1/ , 1/ , 1/ , 1/ . Hence find the value of
1 / .
The given equation is ax 4 +bx 3 +cx 2 +dx+e = 0------------------(1) Its roots are , , , . We will form an equation whose roots are 1/ , 1/ , 1/ and 1/ . Put
y = 1/ ,
y = 1/x, x = 1/y Substituting in (1), we get a (1/y) 4 +b (1/y) 3 +c (1/y) 2 +d (1/y)+e = 0
y 4 ; a +by +cy 2 +dy 3 +ey 4 = 0
ey 4 +dy 3 +cy 2 +by +a = 0------------(2)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
70
This is the required equation. Its roots are 1/ , 1/ , 1/ , 1/ . Sum of the roots
1/ d / e. 2. If , , are the roots of the equation x 3 -px 2 +qx –r = 0 form an equation whose roots are 1 / , 1 / and 1 / Deduce the value of ( 1 / ).( 1 / ).( 1 / ) .
The given equation is x 3 -px 2 +qx –r = 0 Its roots are , , .
p q r We will form an equation with roots
1 / , 1 / and 1 / . y = 1 /
Put,
y = ( 1) / y = (r+1)/ y = (r+1)/x
x = (r+1)/y
Substituting in (1), we get 3
2
r 1 r 1 r 1 3 p q r 0 y ; y y y (r+1) 3 - py (r+1) 2 + qy 2 (r+1) - ry 3 = 0 ry 3 - q(r+1) y 2 + p(r+1) 2 y _ (r+1) 3 = 0----------------------(2) This is the required equation. Its roots are 1 / , 1 / and 1 / .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Product of the roots, ( 1 / ).( 1 / ).( 1 / ) = + (r+1) 3 /r.
3. If , , are the roots of the equation ax 3 +bx 2 +cx +d = 0, form an equation whose roots are , , . The given equation is ax 3 +bx 2 +cx +d = 0----------------------1 Its roots are , , + b / a
c / a d / a. We will form an equation with roots,
, , . Let, y = / (d / a) / (d / a) / x x = -d/ay
Substituting in (1), we get a (-d/ay) 3 + b (-d/ay) 2 + c (-d/ay) + d = 0 -ad 3 + bd. 2 ay – cd.a 2 y 2 + d.a 3 y 3 = 0 -d 2 + dby – acy 2 + a 2 y 3 = 0 a 2 y 3 – acy 2 + bdy – d 2 = 0 This is the required equation. 4. If , , are the roots of the equation x 3 + px 2 + qx + r = 0, form an equation whose roots are 2 , 2 , 2 . The given equation is x 3 + px 2 + qx + r = 0-----------------1
Its roots are , , p
q r. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
71
MATHEMATICS-II
72
We will form an equation with roots,
2 , 2 , 2 . Put
y = 2
y = ( ) 3 y = - p -3 y = - p -3x 3x = - p – y x = - (y+p)/3.
Substituting in (1), we get, [ - (p+y)/3] 3 + p [- (p+y)/3] 2 + q [- (p+y)/3] + r = 0 -(y+p) 3 + 3p (y+p) 2 – 9q (y+p) +27r = 0 (y+p) 3 – 3p (y+p) 2 + 9q (y+p) -27r = 0 y 3 + 3py 2 + 3p 2 y+p 3 -3py 2 -6p 2 y – 3p 3 +9qy+9pq -27r = 0 y 3 + (9q – 3p 2 )y – 2p 3 +9pq – 27r = 0. This is the required equation. 5.If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are
2 + 2 , 2 + 2 , 2 + 2 . The given equation is x 3 +qx + r = 0--------------------------1. Its roots are , , 0
q r. We will form an equation with roots,
2 + 2 , 2 + 2 , 2 + 2 . Put
y = 2 + 2 = ( ) 2 = (a) 2
2
y = 2 + 2r/ y = x 2 + 2r/x FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
73
xy = x 3 - 2r x 3 - xy +2r = 0 -----------(2) Eliminating x from 1 & 2, We get the required equation. 1 - 2 qx +xy –r = 0 x(q+y) = r
x
r yq 3
r r (1) q r 0 yq yq
r 3 + qr (y+q) 2 + r (y+q) 3 = 0 y 3 + 3q 2 y +3qy 2 +q 3 +qy 2 +2q 2 y + q 3 +r 2 = 0 y 3 + 4qy 2 + 5q 2 y +2q 3 +r 2 = 0. This is the required equation. 6. If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are ( ) 2 , ( ) 2 and ( ) 2 . The given equation is x 3 +qx + r = 0--------------------------1. Its roots are , , 0
q r. We will form an equation with roots, ( ) 2 , ( ) 2 and ( ) 2 . Put,
y =( ) 2 = ( ) 2 - 4
= (- ) 2 - 4 / = 2 +4r/ = x 2 + 4r/x xy = x 3 +4r x 3 -xy +4r = 0 --------------------(2) FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
74
Eliminating x from 1 & 2, We get the required equation. 1 - 2 qx +xy –3r = 0 x(q+y) = 3r x
3r yq 3
3r 3r (1) q r 0 yq yq
( y q) 3 ;
27r 3 + 3qr(y+q) 2 + r (y+q) 3 = 0
r;
27r 2 + 3q (y+q) 2 + (y+q) 3 = 0 27r 2 + 3qy 2 + 6q 2 y +3q 3 + y 3 + 3qy 2 + 3q 2 y + q 3 = 0. y 3 + 6qy 2 + 9q 2 y + 4q 3 + 27r 2 = 0.
This is the required equation.
7. If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are / / , / / and / / . The given equation is x 3 +qx + r = 0 -------------------------- (1) Its roots are , , 0
q r. We will form an equation with roots,
/ / , / / and / / . Put
y = / / y = ( 2 + 2 )/ y = [( ) 2 -2 ]/
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
y
() 2 2
y
2 . 2
y
3 2 r
75
-ry = x 3 + 2r x 3 + ry +2r = 0 --------------------------------(2) Eliminating x from 1 & 2, We get the required equation. (1)-(2)
qx – ry –r = 0
qx = ry+r
x
r(y 1) q
Substituting in 2, we get r 3 (y+1) 3 /q 3 + ry +2r = 0 r 3 (y+1) 3 + q 3 .ry + q 3 .2r = 0
r;
r 2 (y+1) 3 +q 3 y + 2q 3 = 0
r 2 y 3 + 3r 2 y 2 + (3r 2 +q 3 )y + 2q 3 + r 2 = 0 This is the required equation. 8. If , , are the roots of the equation x 3 -x -1 = 0 form an equation with roots
1 1 1 , , Deduce that 1 1 1
1
1 7
The given equation is x 3 -x -1 = 0 -------------------------- (1) Its roots are , , 0
1 1 We will form an equation with roots,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
76
1 1 1 , , 1 1 1 Put
y
1 1
y
1 x 1 x
y = 1+ / 1 = 1+x/1-x y – xy = 1+x y – 1 = xy +x y – 1 = x (y+1)
x
y 1 y 1
Substituting in (1), we get. 3
y 1 y 1 1 0 y 1 y 1
( y 1) 3 ;
(y – 1) 3 - (y -1) (y+1) 2 -(y+1) 3 = 0
y 3 -3y 2 +3y -1 –(y -1) (y 2 +2y+1) – y 3 -3y 2 -3y -1 = 0 -6y 2 -2 –y 3 -2y 2 –y +y 2 +2y +1 = 0 -y 3 -7y 2 +y -1 = 0 y 3 -7y 2 -y +1 = 0 This is the required equation. Its roots are
1 1 1 , , 1 1 1
Sum of the roots,
1
1 7 9. If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are (1 / 1 / ), (1 / 1 / ) , and (1 / 1 / ) .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II The given equation is x 3 +qx + r = 0--------------------------(1) Its roots are , , 0
q r. We will form an equation with roots,
(1 / 1 / ), (1 / 1 / ) , and (1 / 1 / ) . Put ,
y = (1 / 1 / ), y [( ) /()]
y
( )
2 ( ) r 3 y r 3 x y r 3 x ry y
Substituting in 1, we get ry + qx + r = 0 qx = -r(y+1) q 3 x 3 = - r 3 ( y 1) 3 q 3 ry = - r 3 (y 3 + 3y 2 + 3y +1) r q 3 y + r 3 (y 3 + 3y 2 + 3y +1) = 0
r 2 y 3 + 3r 2 y 2 + (3r 2 + q 3 ) y + r 2 = 0. This is the required equation. 10. If , , are the roots of the equation x 3 -3x -1 = 0. show that 2 -2 also a root. The given equation is x 3 -3x -1 = 0. -----------------------(1) FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
77
MATHEMATICS-II
78
Given, x = is a root of this equation. We will form an equation for which 2 -2 is a root. Put,
y = 2 -2 y = x 2 -2 x 2 -y -2 = 0 x 2 = y+2. ------------(2)
Put,
x 2 = y+2. in (1)
x (y+2) – 3x +1 = 0 x (y -1) = -1 Squiring,
x 2 (y -1) 2 = 1
(y+2) (y 2 -2y +1) = 1 y 3 – 2y 2 +y +2y 2 -4y +2-1 = 0 y 3 -3y +1 = 0.------------------------(3). This is same as an equation (1)
2 -2 also a root of equation (1).
11. If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are ( 2 - ) / , ( 2 ) / and ( 2 ) / . The given equation is x 3 +qx + r = 0 -------------------- (1) Its roots are , , 0
q r. We will form an equation with roots, ( 2 - ) / , ( 2 ) / and ( 2 ) / .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Put,
79
y = ( 2 - ) / y = ( 3 ) / 2
2y 3 r x 2 y x3 r x 3 x 2 y r 0. --------(2) Eliminating x between (1) and (2), we get the required equation. (1)-(2);
qx+ x 2 y 0 x(q +xy) =0 q+xy =0 x = -q/y
(1)
(-q/y) 3 + q(-q/y) + r = 0
y3 ;
-q 3 –q 2 y 2 +ry 3 = 0 ry 3 – q 2 y 2 – q 3 = 0.
This is the required equation. 12..If , , are the roots of the equation x 3 +px + q = 0, form an equation whose roots are (1 / 2 ) (1 / ) , (1/ 2 ) (1 / ) and (1/ 2 ) (1 / ) . The given equation is x 3 +px + q = 0 --------------------- (1) Its roots are , , 0
q r. We will form an equation with roots,
(1 / 2 ) (1 / ) , (1/ 2 ) (1 / ) and (1/ 2 ) (1 / ) . Put,
y = (1 / 2 ) (1 / ) y = ( 1 / 2 ) ( / )
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
y
80
1 2 q
y = 1/x 2 + x/q x 2 qy = q + x 3
x3 qyx 2 q 0 (2) Eliminating x between (1) and (2), we get the required equation. (1)-(2);
px + x 2 qy = 0 x (p +qxy) = 0 p + qxy = 0 x = -p/qy.
(1)
(-p/qy) 3 + p (-p/qy) +q = 0
q 3 y 3 ; - p 3 – p 2 q 2 y 2 +q.q 3 y = 0 q4 y4 – p2 q2 y2 – p3 = 0 This is the required equation.
13. If , , are the roots of the equation x 3 +px 2 + qx +r = 0, form an equation whose roots are 2 , 2 and 2 . The given equation is x 3 +px 2 + qx +r = 0 ----------------- (1) Its roots are , , 0
q r. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
81
We will form an equation with roots,
2 , 2 and 2 . Put,
y = 2 Y=
2
y = (-r/ ) 2 y = (-r/x) - x 2 xy = -r -x 3 .
x 3 xy r 0 ------------- (2). Eliminating x between (1) and (2), we get the required equation. (1)-(2);
p x 2 + qx –xy = 0 x [ px +q –y] = 0 px +q –y = 0 x = (y-q)/p
(2)
[(y-q)/p] + [(y-q)/p] y + r = 0 (y – p) 3 p 2 y( y p) p 3 r o
y 3 3qy 2 3q 2 y q 3 p 2 y 2 p 2 qy p 3 r 0
y 3 ( p 2 3q) y 2 (3q 2 p 2 q) y p 3 r q 3 0 . This is the required equation. 14. If , , are the roots of the equation x 3 +2x 2 +3x +3 = 0, form an equation whose roots are
, , 1 1 1
The given equation is x 3 +2x 2 +3x +3 = 0 ----------------- (1) Its roots are , , 2
3 3 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
82
We will form an equation with roots,
, , 1 1 1 Put,
y = /( 1)
y = x/(x+1) xy +y = x xy – x = -y x(y-1) = -y x y /(1 y). 3
2
(1)
y y y 2 3 3 0 1 y 1 y 1 y
(1 y) 3 ;
y 3 2 y 2 (1 y) 3 y(1 y) 2 3(1 y) 3 0
y 3 2 y 2 2 y 3 3y 6 y 2 3y 3 3 9 y 9 y 2 3y 3 0 y3 5y 2 6y 3 0 y3 5y 2 6y 3 0
This is the required equation.
15..If , , are the roots of the equation x 3 +px 2 +qx +r = 0, form an equation whose roots are /( ), /( ) and /( ) . The given equation is x 3 +px 2 +qx +r = 0 - ----------------- (1). Its roots are , , 0
q r. We will form an equation with roots, FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
83
, , Put, ( )
y = x/-p –x -py –xy = x -py = x +xy x = -py/(y+1) (1)
[-py/(y 1)]3 p[-py/(y 1)] q[-py/(y 1)] r 0
( y 1) 3 ;
p 3 y 3 p 2 y 2 ( y 1) pqy( y 1) 2 r ( y 1) 3 0
p 3 y 3 p 3 y 3 p 2 y 2 pqy 3 2 pqy 2 pqy ry 3 3ry 2 3ry r 0 y 3 (r pq) y( p 2 2 pq 3r ) y(3r pq) r 0
This is the required equation. Self assessment problems 1.
VI
If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are (1 / 1 / ), (1 / 1 / ), (1 / 1 / ) .
2.
If , , are the roots of the equation x 3 +qx + r = 0, form an equation whose roots are ( 2 2 ), ( 2 2 ), ( 2 2 )
3.
If , , are the roots of the equation x 3 -3x +1 = 0, form an equation whose roots are ( 2) 2 , ( 2) 2 , ( 2) 2 .
4.
If , , are the roots of the equation x 3 +2x 2 +3x -4 = 0, form an equation whose roots are ( 3) /( 2), ( 3) /( 2), ( 3) /( 2) .
5.
If , , are the roots of the equation x 3 -px 2 +qx -r = 0, form an equation whose roots are /( ), /( ), /( ) .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
84
Type 7: Symmetric functions of roots 1.If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of
3 3 3. , , are the roots of the equation
Given,
x 3 +px 2 +qx +r = 0 -------------- (1) p
q r.
3 3 3 = ( ) 3 3( )( )) ) = (-p) 3 -3(-p - )( p )( p ) = -p 3 +3 ( p )( p )( p ) = -p 3 3[ p 3 p 2 ( ) p( ) ] = - p 3 3[ p 3 p 2 ( p) pq r ]
3 3 3 = -p 3 + 3 (pq –r). 2.If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of ( )( )( ) .
Given,
, , are the roots of the equation x 3 +px 2 +qx +r = 0 ------------- (1) p
q r. ( )( )( ) = ( p )( p )( p )
= - ( p )( p )( p ) = -[ p 3 p 2 ( ) p( ) ] = -[ p 3 p 2 ( p) pq r ] = r- pq.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
85
3.If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of
2
2. , , are the roots of the equation
Given,
x 3 +px 2 +qx +r = 0 ------------- (1) p
q r.
2
2 = 2 2 2 2 2 = ( ) 2 2[ . . . ] = (q) 2 2 [ ] = q 2 2(r )( p)
2
2 q 2 2 pr.
4.If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of
[(
2
2 ) / ] .
, , are the roots of the equation
Given,
x 3 +px 2 +qx +r = 0 ------------- (1) p
q r.
[(
2
2 ) / ] =
( / / )
= ( / / ) ( / / ) ( / / ) = ) / ( ) / ( ) / =
([ ) ] / [( ) ] / [( ) ] / = ( p ) / ( p ) / ( p ) / = p / 1 p / 1 p / 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
(
MATHEMATICS-II
86 = -p ( 1 / 1 / 1 / ) 3 = -p[( ) / ] 3
q p 3 r
5.If
, ,
( 2 2 ) / =
pq 3r r
are
the
the
roots
of
equation
x3
-3ax+b
=
0
prove
that
( )( ) 9a. , , are the roots of the equation
Given,
x 3 -3ax+b = 0 ------------------- (1) 0 (3a) b.
( )( ) ( ) = [ ( ) 2 ] = [ 3a 2 ] = 9a 2 2
2
2
2
= ( 2 2 2 ) 2( ) 9a = ( ) 2 9a = 0 + 9a. = 9a.
Self assessment problems. VII 1. If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of
1/
2
2.
2. If , , are the roots of the equation x 3 +px 2 +qx +r = 0 find the value of
/ .
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Answers. Self assessment problems. I 1. Given , , are the roots of the equation
x 3 px 2 qx r 0 ------------------- (1) We will form an equation with roots - , , . Put,
y = -
y = -x x =-y (1) (-y) 3 + p(-y) 2 +q(-y)+r = 0
y 3 py 2 qy r 0 y 3 py 2 qy r 0 This is the required equation. Self assessment problem II: 1. Given,
, , , are the roots of the equation x 4 x 3 4 x 2 5x 10 = 0 ------------------- (1) We will form an equation with roots
3 ,3 ,3 and 3 . Put,
y = 3
y = 3x x = y/3. (1)
( y/3)4 (y/3)3 4(y/3)2 - 5(y/3) 10 0
y 4 3 y 3 36 y 2 135 y 810 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
87
MATHEMATICS-II
88
This is the required equation.
Self assessment problem III: 1. Given,
, , are the roots of the equation x 3 3 px 2 3qx r 0 ------------------ (1) We will form an equation with roots
2 , 2 and 2 Put,
y = 2
y = x2 x2 = y (1) x.y +3py +3qx +r = 0 x (y+3q) = -(3py+r) Squaring,
x 2 ( y 3q) 2 (3 py r ) 2
y ( y 6qy 9q 2 ) 9 p y 2 pry r 2
y 3 y 2 (6q 9 p 2 ) y(9q 2 6 px) r 2 0 This is the required equation.
Self assessment problems IV: 1. The given equation is, 2 x 4 25x 3 111x 2 208x 140 0 ------------- (1)
Reducing the roots by 3, we get 3
2
25
111
208
1 40
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
89
0
2
6
4 6
2
4
39
5 1 5
6
138 -
-
13
-
46
-
1
21
-
-
7
6
0 2
62 5
19
0
2
1
57
-
0
2
-
6 -1
The new equation is 2 x 4 x 3 6 x 2 x 2 0 2. The given equation is
4 x 4 32 x 3 83x 2 76 x 21 0 Reducing the roots by 2,
2
4
0
4 0
3
8
2
3 -
8
1
-
-70
2
3 5
-
2
6
48
4
7
-
12 6
9
-
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
90 8 4
0
6
1
3
6 8
4
0
32
0
16
8
13
8
4
0
The new equation is 4 x 4 0 x 3 13x 2 0 x 9 0
4x 4 13x 2 9 0 (2) ( 4 x 2 9)( x 2 1) 0 4 x 2 9 0orx 2 1 0
4x 2 9 or x 1 x= 3 / 2 , or x = 1 The roots of (2) are 3/2, -3/2, 1,-1.
The roots of the given equation are 3/2-2, -3/2-2, (1)-(2), -(1)-(2) -1/2, -7/2, -1, -3. Self assessment problems V 1. The given equation is
x3 6x 2 11x 6 0 (1) We will reduce the roots by h Here h = -Coeff of x 2 /3 Coeff of x 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
91
h = 6/3 h=2 Reducing the roots of (1) by( 2), we get 2
1
1 -6
0
1
2
-6 -
8 3
-4
0
1
1
2
6
0
4 -
-2
1
0
2
1
0
The new equation is
x3 x 0 x(x 2 -1) = 0 x (x+1) (x-1) = 0 x = 0,1,-1 The roots of the given equation are
2+0, 2+1, 2-1 2, 3, 1. 2. The given equation is 4 x 4 32 x 3 83x 2 76 x 21 0 ------------------ (1)
We will reduce the roots by h. h = -Coeff of x 3 /4 Coeff of x 4 h = -32/16
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
92
h = -2 Increasing the roots of (1) by (2), we get 2
4
0
4
0
4
0
3 2
7
3
8
-70
2
3
4 -
-
9
-
32
6
1
3
6 -
12 6
5
8
1
48
8
2
6
-
4
0
8
0
16
8
13
8
4
0
The new equation is 4 x 4 13x 2 9 0
( 4 x 4 9)( x 2 1) 0 X = -3/2, 3/2, -1, 1 The roots of the given equation are -2-3/2, -2+3/2, -2-1, -2+1 -7/2, -1/2, -3, -1. 3. The given equation is
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
93
x 4 4 x 3 7 x 2 22 x 24 0 1
We will diminish the roots by h. Here h = -Coeff of x 3 /4 Coeff of x 4 h = -(-4)/4 h=1 Reducing the roots by (1), we get 1
1
-4
0
1
1
-3 1
-2
1 -
2 4 1
-10
2 1
2
3 6
-12
-12
-2
0 1
-3
2
-10
0
1
2
-7
0
-1 -13
1
0
1
1
0
The new equation is
x 4 13x 2 36 0 ( x 2 4)( x 2 9) 0 (x+2)((x-2)(x+3)(x-3) = 0 x = 2, -2, 3, -3. The roots of the given equation are (1)+(2), (1)-(2), 1+3, 1-3 3, -1, 4, -2. FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
94
4. The given equation is x 4 16 x 3 83x 2 152 x 84 0 1
We will reduce the roots by h. Here h = -Coeff of x 3 /4 Coeff of x 4 h = -16/4 h = -4. Increasing the roots by 4 4
1
0
1
0
1 6+
4
0
-140 3
2
5 -
1
-
3 6
12
8
3
-
48
2
32
4
4
48
4
8
52
1
1
1
3 -
1 0
8
0
16
4 -13 4
1
0
The new equation is
x 13x 36 0
( x 2 4)( x 2 9) 0 (x+2)(x-2)(x+3)(x-3) = 0 x = 2, -2, 3, -3. The roots of the given equation are FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II -4+2, -4-2, -4+3, -4-3 -2, -6, -1, -7.
Self assessment problems VI 1. Given
, , are the roots of the equation x 3 qx r 0 --------------- (1)
0 q r.
We will form an equation with roots
(1 / 1 / ), (1 / 1 / ), (1 / 1 / ) Put,
y = (1 / 1 / )
y = [( ) / ] y = . ( ) / y = 3 /(r) ry = x 3 x 3 = ry (1) ry + qx +r =0 r (y+1) =-qx
r 3 ( y 1) 3 q 3 x 3
r 3 ( y 3 3 y 2 3 y 1) q 3 ry r 2 y 3 3r 2 y 2 y(3r 2 q 3 ) r 2 0 This is the required equation. 2. Given FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
95
MATHEMATICS-II
96
, , are the roots of the equation x3 qx 2 r 0 (1) 0 q r. We will form an equation with roots
( 2 2 ), ( 2 2 ), ( 2 2 ) Put, y=
y = ( 2 ) 2
[( ) 2 2 ]
y = [( ) 2 2 ] y = 3 2 y = x 3 2r x 3 -y+2r = 0
------------------------(2)
Eliminating x between 1 and 2, we get the required equation. (1)-(2)
qx +y +2r = 0 x = (r-y)/q
2
((r-y)/q) 3 -y+2r = 0
(r y) 3 q 3 y 2rq 3 0 r 3 3r 2 y 3ry 2 y 3 q 3 y 2rq 3 0 y 3 3ry 2 y(q 3 3r 2 ) r 3 2q 3 r 0. This is the required equation. 3. The given equation is
x3 3x 1 0 (1) Its roots are , , We will form an equation with roots
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
97
( 2) 2 , ( 2) 2 , ( 2) 2 Put,
y = ( 2) 2
y = (x-2) 2
y = x-2 x=
y +2
(1)
( y +2) 3 -3( y +2)+1=0 y y +6y +12 y +8 -3 y -6+1 = 0 y y +9 y = -6y -3
y (y+9) = -3 (2y+1) Squaring y(y+9) 2 = 9 (2y+1) 2 y(y 2 +18y+81) = 9 (4y 2 +4y+1) y 3 +18y 2 +81y-36y 2 -36y-9 = 0 y 3 -18y 2 +45y-9 = 0 This is the required equation . 4. Given
, , are the roots of the equation x 3 2 x 2 3x 4 0
----------------- (1)
2 3 4
We will form an equation with roots
3 3 3 , , 2 2 2 Put,
y = ( 3) /( 2)
y = (x+3)/(x-2) FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
98
xy -2y = x+3 x(y-1) = 2y+3 x = (2y+3)/(y-1) 3
2
2y 3 2y 3 2y 3 (( 2 3 4 0 y 1 y 1 y 1
(1)
(2y+3) 3 + 2 (2y+3) 2 (y-1) + 3(2y+3)(y-1) 2 -4 (y-1) 3 = 0 8y 3 +36y 2 +54y+27+(2y-2)(4y 2 +12y+9)+(6y+9)(y 2 -2y+1)-4(y 3 -3y 2 +3y-1) = 0 8 y 3 36 y 2 54 y 27 8 y 3 24 y 2 18 y 8 y 2 24 y 18 6 y 3 12 y 2 6 y 9 y 2 18 y 9 4 y 3 12 y 2 12 y 4 0
18 y 3 61y 2 24 y 22 0 This is the required equation.
5. Given
, , are the roots of the equation x 3 px 2 qx r 0 1
p q r
We will form an equation with roots
, , Put, Y=
y=
( ) 2
y = / p 2 y = x/p-2x py-2xy = x py = 2xy+x FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
99
py = x(2y+1) x = py/2y+1 3
2
py py py (1) p q r 0 2y 1 2y 1 2y 1
(2 y 1) 3 ;
py py(2 y 1) qpy(2 y 1) r (2 y 1) 0
py 2 py py 4 pqy 4 pqy pqy 8ry 12ry 6ry t 0
y 3 (-p 3 +4pq-8r) +y 2 (-p 3 +4pq-12r) + y(pq-6r) – r = 0 This is the required equation. Self assessment problems VII 1. Given
, , are the roots of the equation x 3 px 2 qx r 0
1/
p q r.
2
2=
1 1 1 2 2 2 2 2 2
= ( 2 2 2 ) / 2 2 2 =
( ) 2 2( ) ( )2
=
(p) 2 2q (r) 2
p 2 2q = r2 2. Given,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
100
, , are the roots of the equation x 3 px 2 qx r 0
p q r.
/ =
= ( 2 2 2 ) / = ( [ ) 2 2( )] /( ) 2 = [(-p) 2 -2q]/-r = (p 2 -2q)/-r = 2q-p 2 /r
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
101
UNIT – 3
EXPANSIONS
3.0
Introduction
3.1
Objective
3.2
Expansions of Sinn , Cosn and tan n
3.3
Expansions of sin n and cos n
3.4
Expansions of sin , cos and tan
3.5
Hyperbolic functions
3.6
Inverse hyperbolic functions
3.7
Logarithm of a complex number
3.8
Answers to Self Assessment Problems
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
102
3.0 INTRODUCTION
In this unit you will learn about some interesting topics in Trigonometry. You will know how to expand sin n , tan n . The method is explained in detail with many examples. The expansion of sin , cosn in terms of function of multiples of are also explained. Then the expansions of sin , cos , and tan as infinite series in ascending powers of are give with suitable examples. A new concept known as hyperbolic function is introduced. The relation between the circular and hyperbolic functions is derived and many interesting formulae are found out. Different types of problems have been worked out so that you may understand and appreciate the new concept. Inverse hyperbolic functions have also been introduced. You will also learn the logarithm of a complex number.
3.1 OBJECTIVE After going through this unit you should be able to
Expand sin n , tan n in terms of powers of sin , cos , and tan
.
Expand sinn and cosn in terms of functions of multiples of
Expand sin , cos , tan as infinite series in ascending powers of
Know hyperbolic functions and do problems
Know inverse hyperbolic functions and do problems
Find the values of the logarithms of complex numbers.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
103
3.1. Expansions of Sinn , Cosn and tan n By De’moivre’s theorem,
cos n i sin n cos i sin n
[n-a positive integer]
cos n i sin n cos n nC1. cos n1 .(i sin ) nC2 . cos n2 .i sin ........ i sin 2
cos n i sin n cos n inC1 . cos n1 .sin nC2 . cos n2 .sin 2 inC 3 cos n3 .sin 3 nC4 cos n4 .sin 4 ........ i sin
n
Equating real parts,
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 ................ 1 Equating imaginary parts
sin n nC1cosn-1.sin nC3.cosn 3 .sin 3 ................ 2 nC1cosn-1.sin nC3 .cos n 3 .sin 3 .................. (2) sin n (1) cos n cosn nC2 .cos n 2 .sin 2 nC4 .cos n 4 .sin 4 ............... In the R.H.S. dividing Nr and Dr by cos n
tan n
sin sin 3 nC3 . 3 ........... cos cos sin 2 1 nC2 . 2 ............... cos
nC1.
tan n
nC1.tan nC3. tan 3 nC5 tan 5 .............. 1 nC2 tan 2 nC4 tan 4 .............
Problems: Type1 1. Prove that cos 4 8 sin 4 8 sin 2 1 We have
cos n
cos n nC2 . cos n2 . sin 2 nC4 . cos n4 . sin 4 ................
Put n=4
cos 4
cos 4 4C2 . cos 2 .sin 2 4C4 . cos 0 .sin 4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
n
MATHEMATICS-II
104 1 sin 2 6(1 sin 2 ).sin 2 1.1.sin 4 2
cos 4
[cos 2 1 sin 2 ] cos 4 (cos 2 )2 (1 sin 2 ) 2 43 6 1 2 nCn 1] 4C2
cos 4 1 sin 2 sin 4 6 sin 2 6 sin 2 sin 4 cos 4 8sin 4 8 sin 2 1
2. Prove that cos 5 16cos 5 20 cos 3 5 cos We have
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 .......... Put n = 5
cos 5 cos 5 nC2 . cos 3 .sin 2 5C4 . cos .sin 4 cos 5 cos 5 10 cos 3 (1 cos 2 ) 5 cos (1 cos 2 ) 2 [ sin 2 1 cos 2 sin 4 (sin 2 ) 2 (1- cos 2 ) 2 5C2 5C4
5 4 10 1 2 5c1 5]
cos 5 cos 5 10 cos 3 10 cos 5 5 cos 10 cos 3 5 cos 5 cos5 16cos 5 20 cos 3 5 cos 3. Prove that cos 6 32cos 6 48 cos 4 18 cos 2 1 We have
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 .......... Put n = 6
cos 6 cos 6 6e2 cos 4 .sin 2 6e4 cos 2 .sin 4 6e6 .cos 0 .sin 6
cos 6 cos 6 15 cos 4 (1 cos 2 ) 15 cos 2 (1 cos 2 ) 2 1.1.(1 cos 2 ) 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
105
[ sin 4 (sin 2 ) 2 (1 coh 2) 2 sin 6 (sin 2 )3 (1 cos 2 )3
6C4
65 15 1 2 6C2 15
6C6
1]
6C2
cos 6 cos 6 15 cos 4 15 cos 6 15 cos 2 30 cos 4 15 cos 6 1 3 cos 2 3 cos 4 cos 6 cos 6 32 cos 6 48 cos 4 18 cos 2 1 4. Prove that
sin 6 32 cos 5 32 cos 3 6 cos sin
We have
sin n nC1cosn-1.sin nC3.cosn 3 .sin 3 .............. Put n = 6
sin 6 6C1 cosn 1 .sin 6C3 cos3 .sin3 6C5 cos .sin5
sin 6 6 cos 5 20 cos 3 .sin 2 6 cos .sin 4 sin
[6C1 6;
6C3
6 5 4 20; 1 2 3
6C5 6C1 6]
sin 6 6 cos 5 20 cos 3 (1 cos 2 ) 6 cos (1 cos 2 ) 2 sin 6cos 5 20 cos 3 20 cos 5 6 cos 5 32cos 5 32 cos 3 6 cos
5. Prove that
sin 7 7 56 sin 2 112 sin 4 64 sin 6 sin
We have
sin n nC1cosn-1.sin nC3.cosn 3 .sin 3 .............. Put n = 7
sin 7 7C1 cos 6 .sin 7C3 cos 4 .sin 3 7C5 cos 2 .sin 5 7C7 . cos 0 .sin 7 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
106
sin 7 7 cos 6 35 cos 4 .sin 2 21cos 2 .sin 4 sin 6 sin
[7C1 7;
7C 3
7C 5 7C2
7 65 35; 1 2 3
76 21; 1 2
7C 7 1]
sin 7 7(1 sin 2 ) 3 35(1 sin 2 ) 2 .sin 2 21(1 sin 2 ) sin 4 sin 6 sin
7 - 21sin 2 21sin 4 7 sin 6 35 sin 2 70 sin 4 35 sin 6 21sin 4 21sin 6 sin 6
sin 7 7 56 sin 2 112 sin 4 64 sin 6 sin
6. Prove that
sin 8 128 cos 7 192 cos 5 80 cos 3 8 cos sin
We have
sin n nC1cosn-1.sin nC3.cosn 3 .sin 3 .............. Put n = 8
sin 8 8c1 cos 7 .sin 8C3 cos 5 .sin 3 8C5 cos 3 sin 5 8C7 cos .sin 7
sin 8 8 cos 7 56 cos 5 .sin 2 56 cos 3 .sin 4 8 cos .sin 6 sin [8C1 8; 8C5 8C3 56;
8 7 6 56; 1 2 3 8C 7 8C1 8]
8c 3
8cos 7 56 cos 5 .(1 cos 2 ) 56 cos 3 (1 cos 2 ) 2 8 cos (1 cos 2 ) 3 8 cos 7 56 cos 5 (1 cos 2 ) 56 cos 3 (1 2 cos 2 cos 4 ) 8 cos (1 3 cos 4 cos 6
8cos 7 56 cos 5 56 cos 7 56 cos 3 112 cos 5 56 cos 7 8 cos 24 cos 2 24 cos 5 8 cos 7
sin 8 128 cos 7 192 cos 5 80 cos 3 8 cos sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
107
7. Prove that cos8 1 32sin 2 160sin 4 256sin 6 128sin 8 We have
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 ......... Put n = 8 cos 8 cos 8 8C2 cos 6 .sin 2 8C4 cos 4 .sin 4 8C6 . cos 2 .sin 2 8C8 cos 0 .sin 4
(1 - sin 2 ) 4 28 sin 2 1 sin 2 70 sin 4 (1 sin 2 ) 2 3
28 sin 6 (1 sin 2 ) 1.1.sin 8 8 7 28; 1 2 8C 6 8C2 28;
[8C 2
8 7 5 6 70; 1 2 3 4 8C8 1]
8C 4
1 - 4sin 2 6 sin 4 4 sin 6 sin 8 28 sin 2 (1 3 sin 2 3 sin 4 sin 6 ) 70 sin 4 (1 2 sin 2 sin 4 ) 28 sin 6 28 sin 8 sin 8
1 - 4sin 2 6 sin 4 4 sin 6 sin 8 28 sin 2 84 sin 2 84 sin 4 28 sin 8 28 sin 6 28 sin 8 sin 8 70 sin 4 140 sin 6 70 sin 8 cos 8 1 32 sin 2 160 sin 4 256 sin 6 128sin 8
8. Expand cos 7 in powers of cos We have
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 ......... Put n = 7
cos 7 cos 7 7C2 . cos 5 .sin 2 7c4 . cos 3 .sin 4 7C5 . cos .sin 6
cos 7 21cos 5 (1 cos 2 ) 35 cos 3 (1 cos 2 ) 2 7 cos (1 cos 2 ) 3 cos 7 21cos 5 21cos 7 35 cos 3 (1 2 cos 2 cos 4 ) 7 cos (1 3 cos 2 3 cos 4 cos 6 )
cos 7 21cos 5 21cos 7 35 cos 3 70 cos 5 35 cos 7 7 cos 21cos 3 21cos 5 7 cos 7 cos 7 64 cos 7 112 cos 5 56 cos 3 7 cos
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
108
9. Prove that cos 9 256 cos 9 576 cos 7 432 cos 5 120 cos 3 9 cos We have
cos n cosn nC2 .cosn 2 .sin 2 nC4 .cosn 4 .sin 4 ........ Put n = 9 cos 9 cos 9 9C2 cos 7 .sin 2 9C4 cos 5 .sin 4 9C6 cos 3 .sin 6 9C8 cos .sin 8
cos 9 36 cos 7 (1 cos 2 0 126 cos 5 (1 cos 2 )
2
84 cos 3 (1 cos 2 ) 3 9 cos (1 cos 2 ) 4 cos 9 cos 9 36 cos 7 36 cos 9 126 cos 3 (1 2 cos 2 cos 4 ) 84 cos 3 (1 3 cos 2 3 cos 4 cos 6 ) 9 cos (1 4 cos 2 6 cos 4 4 cos 6 cos 8
cos 9 36 cos 7 36 cos 9 126 cos 5 252 cos 7 84 cos 9 9 cos 36 cos 3 54 cos 5 9 cos 9 36 cos 7 cos 9 256 cos 9 576 cos 7 432 cos 5 120 cos 3 9 cos
10. Wirte down the expansion of tan 10
tan n
nC1 tan nC3 tan 3 ...................... 1 nC2 tan 2 nC4 tan 4 .....................
Put n=10
tan 10
10C1 tan 10C3 tan 3 10C5 tan 5 10C7 tan 7 10C9 tan 9 1 10C2 tan 2 10C4 tan 4 10C6 tan 6 10C8 tan 8 10C109 tan10
10tan 120 tan 3 252 tan 5 120 tan 7 10 tan 9 1 45 tan 2 210 tan 4 210 tan 6 45 tan 6 tan10
Self assessment problems I 1. Prove that
sin 5 16 sin 4 20 sin 2 5 sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
109
2. Prove that cos 6 1 18 sin 2 48 sin 4 32 sin 6
3.3. Type 2. Expansions of sin n and cos n Let x cos isin Then
1 (cos i sin ) 1 cos i sin x
1 2 cos x 1 x 2i sin x 1 x k k 2 cos k x 1 x k k 2i sin k x x
1. Prove that 16 cos 5 cos 5 5 cos 3 10 cos Let x cos i sin Then
1 cos i sin x
x
1 2 cos x
1 (2 cos ) 5 ( x ) 5 x 1 1 1 1 1 x 5 5C1 .x 4 . 5C2 .x 3 . 2 5C3 .x 2 . 3 5C4 .x. 4 5 x x x x x x 5 5x 3 10 x (x 5
10 5 1 3 5 x x x
1 1 1 ) 5(x 3 3 ) 10(x 5 x x x
32cos5 2.cos5 5.2cos3 10.2cos 16cos5 cos5 5cos3 10cos
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
110
2. Prove that 32 cos 6 cos 6 6 cos 4 15 cos 2 10
x cos isin
Let Then, x
1 cos i sin x 1 2cos x
2 cos
1 x x
6
6
1 1 1 1 1 1 x 6 6C1.x 5 . 6C 2 .x 4 . 2 6C3 .x 3 . 3 6C 4 .x 2 . 4 6C5..x. 5 6 x x x x x x x 6 6 x 4 15 x 2 20
15 6 1 4 6 2 x x x
1 1 1 x 6 6 6 x 4 4 15 x 2 2 20 x x x 64 cos 6 2 cos 6 6.2 cos 4 15.2 cos 2 20 32 cos 6 cos 6 6 cos 4 15 cos 2 10
3. Prove that 64sin 7 35sin 21sin 3 7sin 5 sin 7 Let x cos i sin then
1 cos i sin x
x
1 2 cos x
x
1 2i sin x
(2i sin ) 7
( x 1x ) 7
=
x 2 7c1x 6 . 1x 7c2 x 5 =
1 x2
7c3 x 4 . x13 7c4 x 3
1 x4
7c5 x 2 . x16 7c7 . x17
x 7 7 x 5 21x 3 35x
35 21 7 1 3 5 3 x x x x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
-i.128sin7
111
=
1 7 1 5 1 3 1 x 7 7 x 5 21 x 3 35 x x x x x
=
2isin 7 7.2isin 5 21.2isin 3 35.2isin
=
35sin 21sin 3 7sin 5 sin 7
- 2i;
64sin7
4. Prove that 128 Sin8 = Cos8 - 8cos6 + 28 cos4 - 56cos2 + 35 Let
x=
cos θ +isin θ
1 cos θ - i sin θ x x
1 2 cos θ x
x
1 2i sin θ x
xn
1 2 cos nθ xn
xn
1 2i sin nθ xn
1 (2i sin θ )8 = x x
8
1 1 1 1 x 8 8c1 x 7 . 8c2 x 6 . 2 8c3 x 5 . 3 8c4 x 4 . 5 x x x x 1 1 1 1 8c5 x 3 . 5 8c6 x 2 . 6 8c7 x. 7 8 x x x x 28 sin 8 x 8 8x 6 28x 4 56 x 2 70
56 28 8 1 4 6 8 2 x x x x
1 1 1 1 x 2 8 8 x 6 6 28 x 4 4 56 x 2 2 70 x x x x 256 sin 8 2 cos 8 8.2 cos 6 28.2 cos 4 56.2 cos 2 70
2; 128sin8 cos8 8cos 6 28cos 4 56cos 2 35
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
112
5. Prove that 28. cos 9 cos 9 9 cos 7 36 cos 5 84 cos 3 126 cos Let
x cos i sin 1 cos i sin x x
1 2 cos x
x
1 2i sin x
x n cos n i sin n 1 cos n i sin n xn xn
1 2 cos n xn
xn
1 2i sin n xn
2 cos
9
1 x x
9
1 1 1 1 1 29 cos 9 x 9 9c1.x 8 . 9c2 .x 7 . 2 9c3 .x 6 . 3 9c4 .x 5 . 4 9c5 .x 4 . 5 x x x x x 1 1 1 1 9c6 .x 3 . 6 9c7 .x 2 . 7 9c8 .x. 8 9 x x x x 29 cos 9 x 9 9 x 7 36 x 5 84 x 3 126 x
126 84 36 9 1 3 5 7 9 x x x x x
1 1 1 1 1 29 cos 9 x 9 9 9 x 7 7 36 x 5 5 84 x 3 3 126 x x x x x x 28.cos9 2.cos9 9.2cos 7 36.2cos5 84.2cos3 126.2cos
2;
28. cos 9 cos 9 9 cos 7 36 cos 5 84 cos 3 126 cos 6. Prove that 32 sin 4 . cos 2 cos 6 cos 4 cos 2 2 Let x cos i sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
113
1 cos i sin x x
1 2 cos x
x
1 2i sin x
xn
1 2 cos n xn
xn
1 2i sin n xn 4
1 1 4 2i sin . 2cos x x x x 2
2
2
1 1 1 2 6.sin 4 . cos 2 x x x x x x
2
1 1 x x2 2 x x
2
2
1 1 x 2 2 2 x 4 2 4 x x
x6 2 x 2
1 2 2 1 2x4 4 4 x2 2 6 x x x x
26.sin 4 . cos 2 2. cos 6 2.2 cos 4 2 cos 2 4
64.sin .cos2 2.cos6 2.2 cos 4 2 cos 2 4 2
32 sin 4 . cos 2 cos 6 2 cos 4 cos 2 2 7. Prove that cos 4 .sin 3
1 sin 7 sin 5 3sin 3 3sin 26
Let x cos i sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
114
1 cos i sin x x
1 2 cos x
x
1 2 cos x
x
1 2i sin x
xn
1 2 cos n xn
xn
1 2i sin n xn 4
1 1 x4 x x x
2 cos .2i sin 4
3
3
1 1 1 x x x x x x 1 1 x x 2 2 x x
3
3
3
1 1 1 1 x x 6 3x 4 3x 2 4 6 x x x x 1 3 1 x x 6 3x 2 2 6 x x x x 7 3x 3
3 1 3 1 5 x 5 3x 3 7 x x x x
1 1 1 1 2 4 cos 4 .23.i 3 .sin 3 x 7 7 x 5 5 3 x 3 3 3 x x x x x i 27. cos 4 ..sin 3 2i sin 7 2i sin 5 3.2 sin 3 3.2i sin 2i; 26 cos 4 .sin 3 sin 7 sin 5 3sin 3 3sin cos 4 .sin 3
1 sin 7 sin 5 3sin 3 3sin 26
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
115
8. Show that 64 sin 5 .cos 2 sin 7 3sin 5 sin 3 5sin . Let x cos i sin 1 cos i sin x x
1 2 cos x
x
1 2i sin x
xn
1 2 cos n xn
xn
1 2i sin n xn
2i sin 5 .2 cos 2 x 1
1 x x
3
2
1 . x x x
1 1 . x x x x
3
1 1 x . x 2 2 x x
5
2
2
2
1 1 1 1 1 x 3 3x 2 . 3x. 2 3 x 4 2 x 2 . 2 4 x x x x x 3 1 4 1 3 x 3x 3 x 2 4 x x x i 5 2 5 sin 5 .2 2 cos 2 x 7 2 x 3
1 3 6 3 2 1 3x 5 6 x 3 3x 3 5 x 3 7 x x x x x x
i 2 7 sin 5 . cos 2 2i sin 7 3.2i sin 5 5.2i sin
2i; 26 sin 5 . cos 2 sin 7 3 sin 5 sin 3 5 sin
9. Prove that cos 5 . sin 3
1 6 sin 2 2 sin 4 2 sin 6 sin 8 27
Let x cos i sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
116
1 cos i sin x x
1 2 cos x
x
1 2i sin x
xn
1 2 cos n xn
xn
1 2i sin n xn
2 cos 5 2i sin 3 x 1
3
5
1 . x x x
1 x x
2
1 1 . x x x x
1 x x
2
1 . x 2 2 x
3
3
3
1 1 1 1 1 x 3 2x. 2 x 6 3x 4 . 2 3x 2 . 4 6 x x x x x 1 3 1 x 2 2 2 x 6 3x 2 2 6 x x x x 8 3x 4 3
1 6 2 3 1 2x6 6x 2 2 6 x 4 3 4 8 4 x x x x x
1 1 1 1 25 cos 5 .23.i 3 .sin 3 x 8 8 2 x 6 6 2 x 4 4 6 x 2 2 x x x x i28 cos 5 .sin 3 2i sin 8 2.2i sin 6 2.2i sin 4 .2i sin 2 2i; 27 cos 5 .sin 3 6si2 2 sin 4 2 sin 6 sin 8 cos 5 .sin 3
1 6 sin 2 2 sin 4 2 sin 6 sin 8 27
10. Show that cos 6 sin 6
1 3 cos 4 5 8
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
117
Let x cos i sin 1 cos i sin x x
1 2 cos x
x
1 2i sin x
xn
1 2 cos n xn
xn
1 2i sin n xn
2 cos
6
1 x x
6
1 1 1 1 1 1 x 6 6c1 .x 5 . 6c2 .x 4 . 2 6c3 .x 3 . 3 6c4 .x 2 . 4 6c5 .x. 5 6 x x x x x x
= x 6 6 x 4 15 x 2 20
15 6 1 4 6 2 x x x
1 1 1 x 6 6 6 x 4 4 15 x 2 2 20 x x x
26.cos6 2cos 6 6 /.2cos 4 15.2cos 2 20 (1) Next,
2i sin 6 x 1
6
x
1 1 1 1 1 1 x 6 6c1 .x 5 . 6c2 .x 4 . 2 6c3 .x 3 . 3 6c4 .x 2 . 4 6c5 .x. 5 6 x x x x x x
1 1 1 2 6 i 6 sin 6 x 6 6 6 x 4 4 15 x 2 2 - 20 x x x
26 sin 6 2cos 6 6.2cos 4 15.2cos 2 20 (2) (1) (2)
26 cos 6 sin 6 24 cos 40
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
118
8;
8 cos 6 sin 6 3 cos 4 5 cos 6 sin 6
1 3sin 4 5 8
Self assessment problems II 1. Prove that 16 sin 5 sin 5 5 sin 3 10 sin 2. Prove that 64 cos 7 cos 7 7 cos 5 21cos 3 35 cos 3. Prove that 64 sin 4 . cos 3 cos 7 cos 5 3 cos 3 3 cos
4. Prove that 64 cos 8 sin 8 cos 8 26 cos 4 35 3.4 Type 3. Expansions of sin , cos and tan If n is an positive integer, we have
cos n cos n nc2 . cos n2 .sin 2 nc4 . cos n4 .sin 4 ............. put
n
cos cos n
or
n
n
nn 1 . cos n2 .sin 2 2 n n
nn 1n 2n 3 . cos n1 .sin 4 ......... 4 n n
n n 1 sin 2 n cos n n . cos n 2 . 1 n 2 n n2 n n 1 n 2 n 3 sin 4 n n n n n .......... . cos n 4 . 1 4 n n2 n
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
119
1 1.1 n 2 sin n n . 2 cos cos .cos . n 4 n n 4 1 2 3 11 1 1 n 4 sin n n n n . 4................ .cos . 4 n n n
Taking the limit as n
sin n 0, cos 1, 1 n n n
cos 1
1.1 0 11 01 01 0 .1.1. 2 .1.1. 4 ........... 2 4
cos 1
2 4 ................ (1) 2 4
Next,
n 1 n 3 sin n nn 1n 2 n ............. sin n .cos . sin . cos . 1 n n 3 n 1 n 3
n n n 1 n 2 n1 sin n 3 sin n n n n n . cos . n ........ . cos . 1 n 1 3 n 1 n n 3 1 2 1 1 1 n1 sin n3 sin 1 n . n n . cos . n . 3 ........... . cos . 1 n 3 n n n
Taking the limit as n
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
n
0, cos
120
sin
1,
n
n 1
n
sin 1.1. sin -
1.1.1 .1.1. 3 .............. 3
.................... (2) 3
Next, tan
sin cos
3
3
2
1
2
5 5
4 4
.................. ................
3 5 2 4 ................ 1 ............. 3 5 4 2
1
2 3 5 2 4 2 4 ................1 ....... ........ .............. 3 5 4 4 2 2
2 4 4 3 5 ................1 ........... 3 5 2 24 4 2 5 4 3 5 ................ 1 . ........... 6 120 2 24
3 6
5 5 3 5 5 ........... 24 6 12 120
1 1 1 1 5 3 5 ............. 2 6 24 24 120
tan
3 3
2 5 ................ 3 15
Note: For small values of measured in radians FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
cos 1
2 2
3
sin
3
tan
3 3
121
4 4
5 5
........... .......
2 5 ......... 15 Problem
1. Evaluate Lt
x0
Lt
x0
sin2x - 2sinx x3
sin 2 x 2 sin x x3 3 5 2x 2x x3 x5 2x ...... 2 x ...... 3 5 3 5 Lt 3 x 0 x
Lt
2x
x 0
8x 3 32x 5 2x 3 2x 5 2x ........ 6 120 6 120 x3
3 x5 x ..... 4 Lt x 0 x3 x3 x 3 1 ..... 4 Lt 3 x 0 x
1 0 sin 2 x 2 sin x 1 x0 x3
Lt
2. Evaluate Lt
x0
sinx - tanx x3
sinx - tanx x0 x3 Lt
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
122
x 3 x5 x3 2 5 x ......... x x ........ 3 5 3 15 Lt 3 x0 x
Lt
x
x0
x3 x5 x3 2 x x 5 ..... 6 120 3 15 3 x
3 1 16 5 x3 x ..... 6 120 Lt 3 x0 x 1 1 x 3 x 5 ......... 2 8 Lt 3 x0 x
1 2
tan 2 x 2 tan x x0 x3
3. Evaluate Lt
tan 2 x 2 tan x x0 x3 Lt
2 x 3 2 2 x 5 ..... 2 x x 3 2 x 5 ...... 2 x 3 15 3 15 Lt 3 x0 x
8 64 2 4 2 x x 3 x 5 2 x x 3 x 5 ......... 3 15 3 15 Lt 3 x0 x
8 2 64 4 5 x3 x ........ 3 15 Lt x0 x3
x 3 2 4 x 2 ........ x0 x3
Lt 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
123
tan x sin x x0 sin 3 x
4. Evaluate Lt Lt
x0
tan x sin x sin 3 x
Lt
x3 2 5 x3 x5 x x ..... x ........ 3 15 3 5 x3 x5 x ......... 3 5
x 0
Lt
x
x 0
3
x3 2 5 x3 x5 x x ...... 3 15 6 120 3 x2 x4 3 x 1 ...... 6 120
1 1 1 2 x3 x5 ...... 3 6 5 120 Lt 3 x 0 x2 3 x 1 ..... 6
1 1 x 3 x 2 . ...... 2 8 Lt 2 x 0 x x 3 1 ........ 6
1 0 2 1 03
1 2
5. Determine a, b, so that Lt
x 0
a sin b cos 1 4 2 Lt
x0
a sin b cos
4
1 12
2 4 3 5 a ...... b1 ........ 3 5 2 4 1 Lt 4 x 0 12
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
124
a b 2 1 b 4 1
Lt
2
x 0
6
b ...... 24
4
1 12
cons tan term 0
and
coeff of 2 0
a b 0
and
1
ab
and
b 0 2 b2
a 2 and b 2
6. If
sin x 863 find approximate value of x x 864
Given,
3
2
5045 5406
5405 5406
1
6
2
3
1
sin
nearly
1 nearly 5046
1 nearly 5046
2
6 nearly 5046
2
1 nearly 841
6
1 radiant nearly 29
1 57 0 28 nearly 29
1058 nearly 7. If
tan
2524 find the approximate value of 2523
Given,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II tan
2524 2523
3
3 2524 2523
1
3
2
3
1
2524 nearly 2523
1 nearly 2523
2
3 nearly 2523
2
1 nearly 841
3
1 radiant nearly 29
8. Evaluate tan 3x 3 tan x x0 x3 Lt
tan 3x 3 tan x x0 x3 Lt
3x 3 2 3x 5 ...... 3 x x 3 2 x 5 ..... 3 x 3 15 3 15 Lt 3 x0 x
27 x 3 2 5 5 x3 6 5 3x .3 .x 3x 3. x ...... 3 15 3 15 Lt 3 x0 x
8 x 3 31x 5 ........ x0 x3
Lt
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
125
MATHEMATICS-II
126
x 3 8 32 x 2 ...... x0 x3
Lt
80 8 9. Evaluate Lt sinx tan x x / 2
Let A Lt sinx tan x x / 2
log A Lt tan x. log sin x x / 2
log sin x x / 2 cot x
Lt
1 .cos x sin x Lt x / 2 cos x
Lt
x / 2
-
cos x sin 2 x sin x
0 A e0 , A 1 Lt sin x
tan x
x / 2
1
Self assessment problems III sin 2 x 2 sin x x0 sin 3 x
1. Evaluate Lt
cos ecx cot x x0 x
2. Evaluate Lt 3. Evaluate Lt
x0
4. If 5. If
sin
tan
3sin x sin 3x x sin x
5765 find the approximate value of 5766
433 find the approximate value of 432
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
127
3.5 Type 4 Hyperbolic functions
Definition: For all real or complex values of x,
e x ex cosh x 2
sinh x
e x ex 2
tanh x
sinh x e x e x e 2 x 1 cosh x e x e x e 2 x 1
Relation between circular and hyperbolic functions We know that ei cos i sin e i cos i sin
ei ei cos (1) 2 ei ei sin (2) 2i
put ix e i x e i x 1 cosix 2 2
cos ix
2
ex e x 2
i
2
1
cos ix cosh x
e i x e i x 2 sin ix 2i 2
e i
x
ex 2i 2
2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
i e x ex 2
e i
x
128
e x 2
sin ix i sinh x Next, tan ix
sin ix cos ix
i sinh x cosh x
tan ix i tanh x Some Important Formula 1. cosh 2 x sinh 2 x 1 Proof: we know that cos 2 sin 2 1
Put ix
cos ix sin ix 1 2
2
cosh x2 i sinh x2 1 cosh 2 x i 2 sinh 2 x 1
II. cosh 2 x sin 2 x cosh 2x
Proof: We know that cos 2 sin 2 cos 2
put ix
cos ix sin ix cos i 2 x 2
2
cosh x2 i sinh x2 cosh 2x FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
129
cosh 2 x i 2 sinh 2 x cosh 2x
cosh 2 x sinh 2 x cosh 2x
III . sinh2 x 2 sinh x.cosh 2x. Proof: We know that
sin 2 2 sin .cos Put ix sin i 2x 2 sin ix. cos ix i sinh 2x 2i sinh x.cosh x
sinh 2x 2 sinh x.cosh x Problems 1. Find the real and imaginary parts of sin(x iy)
sin x.cos iy cos x.sin iy sin x.cosh y cos x.(i sinh y) sin x.cosh y i cos x.sinh y
Re alpart
sin x.cosh y
Imaginarypart cos x.sinh y
2. Find the real and imaginary parts of cos( x iy ) cos( x iy ) cos x. cos iy sin x.sin iy cos x. cosh y sin x(i sinh y ) cos x. cosh y i sin x.sinh y R.P cos x. cosh y I .P sin x.sinh y
3. Separate into real and imaginary parts tan(x iy )
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
130
sin(x iy) cos(x iy) sin(x iy).cos(x iy) cos(x iy).cos(x iy) 1 [sin(x iy x iy) sin(x iy x iy)] 2 1 [cos(x iy x iy) cos(x iy x iy)] 2 sin 2x sin i2y cos 2x cos i2y sin 2x i sinh 2y tan(x iy) cos 2x cosh 2y sin 2x sinh 2y i cos 2x cosh 2y cos 2x cosh 2y sin 2x R.P cos 2x cosh 2x sinh 2y I.P cos 2x cosh 2y tan(x iy
4. Separate into real and imaginary parts cot(x iy )
cot(x iy)
R.P I.P
cos(x iy) sin(x iy) 2 cos(x iy).sin(x iy) 2sin(x iy).sin(x iy) sin(x iy x iy) sin(x iy x iy) [cos(x iy x iy) cos(x iy x iy)] sin 2x sin i2y cos 2x cosh 2y sin 2x i sinh 2y cosh 2y cos 2x sin 2x cosh 2y cos 2x sinh 2y cosh 2y cos 2x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
5. If tan(x iy ) u iv , prove that
131
u sin 2 x v sinh 2 y
Given, tan(x iy) u iv sin(x iy) cos(x iy) 2sin(x iy).cos(x iy) 2 cos(x iy).cos(x iy) sin(x iy x iy) sin(x iy x iy) cos(x iy x iy) cos(x iy x iy) sin 2x sin i2y cos2x cos i2y sin 2x i sinh 2y u iv cos 2x cosh 2y
u iv
Equating real parts,
u
sin 2 x cos 2 x cosh 2 y
(1)
Equating imaginary parts,
v
sinh 2 y cos 2 x cosh 2 y
(2)
(2) (1)
cos 2x cosh 2y u sin 2x v cos 2x cosh 2y sinh 2y
u sin 2x v sinh 2y
6. If tan(x iy) sin( i), prove that
tan sin 2x tanh sinh 2y
Given,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
132
tan(x iy) sin( i) sin x iy
cos x iy
sin .cos i cos .i sinh
sin(x iy x iy) sin(x iy x iy) sin .cosh i cos .sinh cos(x iy x iy) cos(x iy x iy) sin 2x i sinh 2y sin .cosh cos .sinh cos 2x cosh 2y
Equating real parts, sin 2x sin .cosh cos 2x cosh 2
(1)
Equating imaginary parts, sinh 2y cos .sinh cos 2x cosh 2 (1) (2)
(2)
sin 2x sin .cosh tan .coth sinh 2y cos .sinh sin 2x tan sinh 2y tanh
7. If cos( i ) k (cos i sin ) , prove that cos 2 cosh 2 2k 2 Given, cos( i ) k (cos i sin )
cos . cosh sin . sin i k (cos i sin ) cos . cosh i sin . sinh k cos ik sin Equating real parts cos . cosh k cos
(1)
Equating imaginary parts sin .sinh k sin
(2)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
133
(1)2 (2)2 cos2 .cosh 2 sin 2 .sinh 2 k 2 cos2 sin 2
1 cos 2 1 cos 2 . cosh 2 . sinh 2 k 2 2 2
cosh 2 cos 2 . cosh 2 sinh 2 cos 2 . sin 2 2k 2
(cosh 2 sinh 2 ) cos 2 (cosh 2 sinh 2 ) 2k 2 That is,
cosh 2 cos 2 2k 2 Another method, Given, cos( i ) k (cos i sin )
(1)
cos( i ) k (cos i sin )
(2)
(1) (2)
cos( i ). cos( i ) k 2 (cos i sin )(cos i sin ) 1 [cos( i ) cos( i ) cos( i i )] k 2 (cos 2 sin 2 ) 2 cos 2 cos i 2 2k 2 cos 2 cosh 2 2k 2
8. If cos( i ) tan i sec , prove that cos 2 . cos 2 3 Given,
cos .cosi sin .sin i tan i sec cos .cosh i sin .sinh tan i sec
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
134
Equating real parts cos . cosh tan
(1)
Equating imaginary parts sin . sinh sec
(2)
(2)2 (1)2 ; sin 2 . sinh 2 cos 2 . cosh 2 sec2 tan2 1 cos 2 1 cos 2 2 2 .sinh .cosh 1 2 2 2 2 2 sinh cos 2 . sinh cosh cos 2 . cosh 2 2 (cosh 2 sinh 2 ) cos 2 (sinh 2 cosh 2 ) 2 1 cos 2 . cosh 2 2 1 cos 2 . cosh 2 3 cos 2 . cosh 2 3 x y tanh , prove that cos x. cosh y 1 . 2 2 x y Given tan tanh 2 2 Next, x 1 tan 2 2 cos x 2 x 1 tan 2 y 1 tanh 2 2 cos x 2 y 1 tanh 2
9. If tan
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
y 2 1 2 y cosh 2 2 y sinh 2 1 y cosh 2 2 y cosh 2 sinh 2 2 y cosh 2 sinh 2 2 1 cosh y cos x. cosh y 1
135
sinh 2
y 2 y 2
10. If u log tan , prove that i) sinh u tan ii) tanh u sin and 4 2 iii) cosh u sec Given u log tan 4 2 e u tan 4 2 tan tan 4 2 eu 1 tan .tan 4 2 1 tan 2 eu 1 tan 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
136
i. now eu e u 2 1 tan 1 tan 1 2 2 2 1 tan 1 tan 2 2
sinh u
2 2 1 tan 1 tan 1 2 2 sinh u 2 1 tan 2 1 tan 2
4 tan 1 2 2 1 tan 2 2 2 tan 2 tan1. 2 1 tan 2 2 sinh u tan
ii.
cosh 2 u 1 sinh 2 u 1 tan 2 sec2 cosh u sec
iii.
tanh u
sinh u cosh u
tan sec
sin cos cos 1
tanh u sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
137
u 11. If u log tan( ) , prove that tanh tan 4 2 2 2 Given,
u log tan 4 2 eu tan 4 2
eu
tan
4
1 tan
eu
1 tan 1 tan
tan
4
2
. tan
2
2
2
Now,
u e 2 e 2 tanh u u 2 e 2 e 2 u
u
eu 1 u e 1 1 tan
1 tan 1 tan 1 tan
1 tan
2 1
2
2 1
2
1 tan 2 2
1 tan
2
1 tan
2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2 tan 2
tanh
138
2
u tan 2 2
12. If cosh u sec , prove that u log tan 4 2 Given, cosh u sec eu e u sec 2 1 eu u 2 sec e Put, eu x 1 x 2 sec x 2 x 1 2 x sec x 2 2 x sec 1 0
2 sec 4 sec 2 4 x 2
2 sec 4 sec2 1 x 2
2 sec 2 tan 2 x 2 x sec tan 1 eu tan cos 1 tan 2 2 tan 2 2 1 tan 2 1 tan 2 2 2 1 tan 2 2 tan 2 2 1 tan 2 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
139
1 tan 2 1 tan 1 tan 2 2 2
eu
1 tan 1 tan
tan
4
1 tan
2
2
tan
4
2
. tan
2 eu tan 4 2 u log tan 4 2
3.6 Inverse hyperbolic functions 1. cosh 1 log( x x 2 1) Proof Let cosh 1 x y x cosh y
e y e y x 2 1 2x e y y e Put ey z 1 z 2 2 xz z 1 z 2 2 xz 1 0
2x z
z ey
2x 4x2 4 2
2x 2 x2 1 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
140
e y x 4x2 4 y log( x x 2 1) ie,
cosh 1 x log( x x 2 1)
2. sinh 1 x log( x x 2 1) Proof: Let x sinh y
e y e y x 2 2x e y
1 ey
Put, e y z 1 2x z z 2 xz z 2 1 z 2 2 xz 1 0
ey
2x 4x2 4 2
e y x x2 1
y log x x 2 1
sinh 1 log x x 2 1
1 1 x 3. tanh 1 x log 2 1 x Proof, Let tanh1 x y x tanh y
e y e y e y e y 1 ey y e x 1 y e y e 2y e 1 x 2y e 1 2y xe x e2 y 1 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
141
e2y (x 1) x 1 1 x e2 y 1 x
1 x 1 x 1 x y log 1 x 1 1 x tanh 1 x log 2 1 x 2 y log
Problems 1. Separate into real and imaginary part tan 1 (x iy) Let, u iv tan1 ( x iy ) (1)
u iv tan1 ( x iy ) (1) (2)
2u tan1 x iy tan1 x iy
(2)
1 1 1 A B tan A tan B tan 1 AB
x iy x iy 2u tan 1 1 (x iy)(x iy) 2x 2u tan 1 2 2 1 (x y )
u
1 1 2x tan 2 2 2 1 x y
(3)
Next,
i 2v tan1 ( x iy ) ( x iy ) 1 1 1 A B tan A tan B tan 1 AB ( x iy ) ( x iy ) i 2v tan 1 1 ( x iy )( x iy ) i2 y tan i 2v 1 x2 y 2 i2 y i tanh 2v 1 x2 y 2 2y 2v tanh 1 2 2 1 x y (1) (2)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
v
142
1 2y tanh 1 2 2 2 1 x y
Real part u
1 1 2x tan 2 2 2 1 x y
v
1 1 2y tan 2 2 2 1 x y
Im part
(4)
Self assessment problems IV 1. If sin( A iB) x iy , prove that
x2 y2 1 and cosh 2 B sinh 2 B x2 y2 1 2. sin 2 A cos 2 B 2. If tan( i ) x iy prove that 1.
x 2 y 2 2 x cot 2 1 3. If tan( i ) cos i sin prove that n 1. and 2 4 1 2. log tan 2 4 2 4. Separate into real and imaginary parts tanh x iy 3.7 Logarithm of a complex number Definition:
if ez w where Z and W are complex numbers, then Z is called the
logarithm of W and is written as Z log e W To find the real and imaginary parts of Log a ib Let a ib r cos i sin 1
a rcos
and
b rsin
a 2 b 2 r 2 cos 2 sin 2 r 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
143
b r sin tan a r cos tan 1
b a
Now 1 a ib rcos i sin a ib rcos 2n i sin 2n
where n 0,1,2,3........ a ib re
i 2n
Loga ib Logr Logei 2n
Log a 2 b 2 i 2n .Loge e
1 log a 2 b 2 i 2n 2
1 b Log a ib log a 2 b 2 i 2n tan 1 2 a Where n 0,1,2,3..................... This is the general value. Put n = 0
1 b loga ib log a 2 b 2 i tan 1 2 a
This is the principal value. Problems 1. Find the value of Log 1 i
1 1 Log 1 i log 12 2 2 i 2n tan 1 2 1 1 log 2 i 2n 2 4 Where n 0,1,2,3.......... FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2. Show that i log L.H .S i log
144
x i 2 tan 1 x xi
x i xi
ilogx - i logx i 1 1 1 1 i log x 2 12 i tan 1 log x 2 12 i tan 1 x 2 x 2
1 1 i - tan -1 i tan 1 x x
-2i 2 tan 1
-1 1 1 tan x cot x
1 x
tan x cot
-2cot -1x
-1
1
x
2
2 tan 1 x 2 - 2tan-1 x
R.H.S
a - ib 2ab 3.Pr ove that tan log 2 2 a ib a b
log a ib
1 b log a 2 b2 i tan 1 1 2 a 1 b log a ib log a 2 b 2 i tan 1 2 a
1 b log a ib log a 2 b2 i tan1 2 2 a
2 1; b b log a ib log a ib i tan1 tan1 a a
1 1 1 A B tan A tan B tan 1 AB
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
145
b b a ib 1 a a log i tan b b a ib 1 . a a
b 2 a ib a i log i 2 tan 1 b2 a ib 1 2 a
2ab tan-1 2 2 a b a ib 2ab tan i log a ib a 2 b2 4.If i b x iy
y prove that x log 2 2 2 tan 1
Given i b x iy log i x iy log b
1 log 2 i2 i tan 1 x iy log b 2 Equating real parts, 1 log 2 2 x log b (1) 2 Equating imaginary parts,
tan 1 y log b (2) tan -1
(2) y log b ; (1) 1 log 2 2 x log b 2 2 tan 1 y 2 log 2 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
5. Prove That i i e
146
4 n 1
where n is a positive integer
2
we have
i i elogi
i
x elog x
ei logi
e
1 1 1 i log 0 2 12 i 2 n tan 0 2
1
ei 2
e
Where n is a positive integer
log1 i 2 n tan 1
i 0 i 2 n 2
e e
4 n 2
4 n 1.
Where n is a positive integer
2
Self assessment problems V 1. Prove that log 1 i tan x logsec x i 2n x 2. If tan logx iy a ib, prove that
tan log x 2 y 2
2a 1 a 2 b2
ANSWERS 3.8 Self Assessment Problems I 1. We know that
sin n nc1.cos n 1 .sin nc3.cos n 3 .sin 3 ............ Put n=5
sin 5 5c1. cos 4 . sin 5c3. cos 2 . sin 3 5c5 cos0 . sin 5
sin 5 5. cos 4 10 cos 2 .sin 2 1.1.sin 4 sin
5 1 sin 2 10 cos 2 .sin 2 1 sin 2 gq sin 4 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
147
5 10 sin 2 5sin 4 10 sin 2 10 sin 4 sin 4
16 sin 4 20 sin 2 5 2. We know that
cos n cos n nc2 .cos n 2 .sin 2 .......... cos 6 cos 6 6c2 .cos 4 .sin 2 6c4 cos3 .sin 4 6c6 .cos 0 .sin 6 cos 6 15 cos 4 .sin 2 15 cos 2 .sin 4 sin 6
1 sin 2 15 sin 2 1 sin 2 15 sin 4 1 sin 2 sin 6 3
2
1 3sin 2 3sin 4 sin 6 15 sin 2 30 sin 4 15 sin 6 15 sin 4 15 sin 6 sin 6 cos 6 1 18sin 2 48sin 4 32 sin 6
Self assessment problems II 1. Let x cos i sin 1 cos i sin x x
1 2 cos x
x
1 2i sin x
2i sin
5
1 x x
5
1 1 1 1 1 i 5 25 sin 5 x5 5c1x 4 . 5c2 .x3. 2 5c3.x 2 . 3 5c4 .x. 4 5c5 . 5 x x x x x i32 sin 5 x5 5 x3 10 x
10 5 1 x x3 x5
1 1 1 i32 sin 5 x5 5 x3 3 10 x x x x i32 sin 5 2i sin 5 5.2i sin 3 10.2i sin 16 sin 5 sin 5 5sin 3 10 sin
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
148
1 2. 2 cos 7 x x
7
1 1 1 27. cos 7 x 7 7c1.x 6 . 7c2 .x5 . 2 7c3 .x 4 . 3 x x x 1 1 1 1 7c4 .x3 . 4 7c5 .x 2 . 5 7c6 .x. 6 7 x x x x x 7 7 x5 21x3 35 x
35 21 7 1 3 5 7 x x x x
1 1 1 1 x 7 7 7 x5 5 21 x3 35 x x x x x 27.cos 7 2 cos 7 7.2 cos 5 21.2 cos 3 35.2 cos 64 cos 7 cos 7 7 cos 5 21cos 3 35 cos 4
3. 2i sin 2 cos 4
3
1 1 x x x x
3
3
1 1 1 i 2 sin .2 cos x x x x x x 4
4
4
3
1 1 2 .sin . cos x x 2 2 x x 7
4
3
3
3
3
1 1 1 1 x x 6 3x 4 . 2 3x 2 . 4 6 x x x x 1 3 1 x x 6 .3x 2 . 2 6 x x x x 7 3x 3
3 1 3 1 x 5 3x 3 7 x x x x
1 1 1 1 x 7 7 x 5 5 3 x 3 3 3 x x x x x 27.sin 4 .cos 3 2 cos 7 2 cos 5 3.2 cos 3 3.2 cos 64 sin 4 .cos 3 cos 7 cos 5 3cos 3 3cos 1 4. 2 cos 8 x x
8
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
149
1 1 1 1 28. cos 8 x 8 8c1 .x 7 . 8c2 .x 6 . 2 8c3 .x 5 . 3 8c4 .x 4 . 4 x x x x 1 1 1 1 8c5 .x 3 . 5 8c6 .x 2 . 6 8c7 .x. 7 8 2 x x x x
2i sin
8
1 x x
8
1 1 1 1 1 (1) (2) x 8 8C1.x 7 . 8C2 .x 6 . 2 8C3 .x 5 . 3 8C4 .x 4 . 4 8C5 .x 3 . 5 x x x x x 1 1 1 8C6 .x 2 . 6 8C7 .x1. 7 8 (2) x x x
1 1 28 cos 8 sin 8 2 x 8 8c2 x 4 8c4 8c6 . 4 8 x x 1 1 2 x 8 8 28 x 4 4 70 x x
2 2.cos 8 282 cos 4 70
4;
64 cos 8 sin 8 cos 8 28 cos 4 35 Self assessment problem III 1. Lt
xo
sin 2 x 2 sin x sin 3 x
Lt
3 5 2 x 2 x x3 x5 ........ 2 x ........ 2 x 3 5 3 5
xo
Lt x0
2x
x3 x5 ........... x 3 5
3
8 x 3 32 x 5 2x3 2x5 2x ......... 6 120 6 120 3 2 4 x x x 3 1 ........ 3 5
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II x4 x ......... 4 Lt 3 xo x2 x4 3 x 1 ........ 3 5 3
x2 x 3 1 ........ 4 Lt 3 x0 x2 x4 3 x 1 .......... 3 5
1 0 1
1
2. Lt
x0
cos ecx cot x x
1 cos x Lt sin x sin x x0 x 1 cos x x0 x sin x
Lt
x2 x4 1 1 ...... 2 4 Lt x 0 x3 x5 xx ........ 3 5 x2 x4 ........ 2 24 Lt x0 x2 x4 x 2 1 ........ 6 120
1 x x2 ...... 2 24 Lt 2 x0 x x 2 1 ....... 6
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
150
MATHEMATICS-II
151
1 0 2 1 0
3. Lt
x0
1 2
3 sin x sin 3x x sin x 3 5 x3 x5 3x 3x 3 x ..... 3x ...... 3 5 3 5 Lt 3 5 x0 x x x x ....... 3 5
3x
Lt
x0
Lt
x0
3 3 3 5 27 3 243 5 x x 3x x x 6 120 6 120 x3 x5 xx ......... 6 120
4 x 3 2 x 5 ...... x3 x5 .......... 6 120
x 3 4 2 x 2 .... x0 x2 3 1 x .... 6 120
Lt
4 1 6
24 4. Given,
sin
3 3
1
5765 5766
5 5
.....
2 1 1 5766
5765 5766
nearly
nearly
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2 6
1 961
2
tan
nearly
3 3
2
2
3
nearly
433 432
.......
1
nearly
1 radians 31
5. Given
6 5766
152
1
433 432
1 nearly 432
1 nearly 432
2
3 nearly 432
2
1 144
3
1 radians approximately 12
Self assessment Problems IV 1. Given x iy sin A iB
sin A. cos iB cos A. sin iB sin A. cosh B cos A.i sinh B Equating Real Parts,
x sin A.cos B (1) Equating imaginary Parts, y cos A.sinh B (2)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
i)
153
x2 y2 sin 2 A. cosh 2 B cos 2 A. sinh 2 B cosh 2 B sinh 2 B cosh 2 B sinh 2 B
sin 2 A cos 2 A
1
ii )
x2 y2 sin 2 A. cosh 2 B cos 2 A. sinh 2 B sin 2 A cos 2 A sin 2 A cos 2 A
cosh 2 B sinh 2 B
1 2. Given tan i x iy
i tan 1 x iy (1) lll ly i tan 1 x iy (2)
(1) (2);
2 tan 1 x iy tan 1 x iy x iy x iy 2 tan 1 1 x iy x iy
tan 2
2x 1 x2 y2
1 2x cot 2 1 x 2 y 2
1 x 2 y 2 2 x cot 2 1 x 2 y 2 2 x cot 2
3. Given tan i cos i sin
i tan 1 cos i sin 1 lll ly - i tan-1 cos i sin 2 (1) (2);
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
154
2 tan 1 cos i sin tan 1 cos i sin cos i sin cos i sin 2 tan 1 1 cos i sin cos i sin
2 cos 2 tan 1 2 2 1 cos sin
2 cos 2 tan 1 1 1
2 tan 1
2 n n
2
2
where n 0,1,2,3,......
4
Next, 1 2;
i 2 tan 1 cos i sin tan 1 cos i sin cos i sin cos i sin i 2 tan 1 1 cos i sin cos i sin tani 2 i tanh 2
i 2 sin 1 cos 2 sin 2
i 2 sin 2
2 tan e 4 1 2 4 e 1 1 tan 2 2 4
4
e 1 e e 4 1 e 4
1 tan 2 1 2 2 1 2 tan 1 tan 2 2 2
2 tan
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
155
1 tan 4 2e 2 2 2 1 tan 2 2
e
2 2
1 tan 2 1 tan 2
e 2
1 tan 1 tan
e 2
tan
4
2
2
2
tan
2
1 tan . tan 4 2
tan 4 2 2 log tan 4 2
1 log tan 2 4 2
1 4. tanhx iy tan ix iy i i tanix y
tan ix i tanh x tanh x 1 tan ix i
i sin ix y cos ix y
2i sin y ix . cos y ix 2 cos y ix . cos y ix
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
156
isin y ix y ix sin y ix y ix cos y ix y ix cos y ix y ix
isin 2 y sin i 2 x cos 2 y cos 2 x
=
isin 2 y i sinh 2 x cos 2 y cosh 2 x
i sin 2 y sinh 2 x cos 2 y cosh 2 x
sinh 2 x cos 2 y cosh 2 x
Imaginary Part
sin 2 y cos 2 y cosh 2 x
Real part
Self assessment Problems V
1 tan x 1. log 1 i tan x log 12 tan 2 x i 2n tan 1 2 1
1 log sec2 x i2n x 2 1 log sec x i2n x 2
Where n=0,1,2,3,…….. 2. Given, tan logx iy a ib
log x iy tan 1 a ib
(1)
logx iy x iy tan1 a ib tan1 a ib lll ly log x-iy tan 1 a ib (2) (1) (2)
log( x iy ) log( x iy ) tan1 a ib tan1 a ib
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
157
a ib a ib log x iy x iy tan 1 1 a ib a ib
2a tan log x 2 y 2 2 2 1 a b
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
158 UNIT-4
DIFFERENTIATION
4.0
Introduction
4.1
Objective
4.2.
Definition of Derivative.
4.3
Some Standard forms.
4.4
Some general theorems.
4.5
Some important formula
4.6
Successive differentiation
4.7
Leibnitz formula
4.8
Meaning of the derivative
4.9
Answers to Self assessment Problems
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
159
4.0 Introduction
In this unit you will learn an interesting and important branch of mathematics known as Differential Calculus. The derivative of a function is defined and from the basic principles how to derive the differential coefficient of a function is explained with many examples. List of formulae for many standard functions is given. Suitable examples were given for different types of functions. Next you will learn about successive differentiation. Leibnitz theorem is proved and many examples were given to illustrate the same. Also you will know the meaning of the derivative.
4.1 Objective
After going through this unit, you will be able to
4.2. Definition:
Understand what is derivative of a function
The meaning of the derivative
Find the derivatives of different kinds of functions
Find the successive derivative
Apply Leibnitz theorem and do problems.
Derivative.
Let y be a continuous function of the independent variable x. We can give arbitrary values for x. The values of y depend on those of x. y is called the dependent variable. Let x be any small increment in x. Let y be the corresponding increment in y. i.e.,
Let y f (x)
Then y + y = f ( x + x )
y f ( x x) f ( x)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
160
y f ( x x) f ( x) x x dy y f ( x x) f ( x) Lt Lt dx xo x xo x
If the limit on the R.H.S exists, then it is called the differential coefficient of y with respect to x. It is also called the derivative.
4.4 Some Standard forms. 1. To find the derivative of x n . Let y x n _____________(1) Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
i.e.,
y y ( x x) n ___________(2)
(2) (1) y ( x x) n x n dy dx
Lt
y x
Lt
( x x) n x n x
x o
x o
Lt
x x x
n.x
( x x) n x n ( x x) x
xn an n.a n1 Lt x a x a
n 1
d n ( x ) n.x n1 dx
for all values of n.
2.To find the derivative of ex: Let y e x Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
Then
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
161
y y e x x y e x x e x y
dy dx
Lt x
x 0
e x x e x Lt x x 0 e x 1 x x 0
e x . Lt
eh 1 1 Lt h 0 h
e x .1
d x (e ) e x . dx
3.To find the derivative of log x: Let y log x ___________(1) Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
Then (2) (1);
y y log x x __________(2) y log x x log x dy dx
y
Lt x
x 0
Lt
x 0
Lt
x 0
log x x log x x
x x log x x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
162
Lt
x 0
x log 1 x x x. x
x h x As x 0, h 0 put
dy dx
d log x dx
log 1 h 1 . Lt x h 0 h 1 1/ h Lt log e 1 h x h 0
1 .1 x
1 . x
n 1 Lt 1 e n n 1/ h 1 h e Lt h o
4. To find the derivative of sin x: Let y sin x ____________(1) Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
Then (2) (1);
y y sin x x __________(2) y sin x x sin x. dy dx
y
Lt x
x 0
sin x x sin x x x 0 x x x x x x 2 cos .sin 2 2 Lt x x 0
Lt
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
163
S
Lt
x 0
x x cos x .sin 2 2 x 2
x sin x 2 Lt cos x 2 Lt x x 0 x 0 2 cos x 0 .1
sin Lt 1 0
cos x
d sin x cos x. dx
5. To find the derivative of cos x: Let y cos x __________(1) Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
Then, (2) (1);
y y cosx x __________(2) y cosx x cos x dy y Lt dx x0 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
164
cos x x cos x x x 0 x x x x x x 2 sin . sin 2 2 Lt x x 0 x sin x 2 Lt sin x . 2 x x 0 2
d cos x dx
Lt
x sin x 2 Lt sin x . Lt 2 x 0 x x 0 2 sin sin x 0 .1 Lt 1 0 sin x.
4.4 Some general theorems. 1. The differential coefficient of a constant is zero. Let y = c, constant._____________(1) Let x
be an arbitrary increment in x.
Let y
be the corresponding increment in y.
y y c ______________(2)
Then, (2) (1);
y 0 dy y Lt dx x0 x
dy 0 Lt dx x0 x Lt 0 x 0
0
d (c ) 0 dx
Where c is any cons tan t.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
165
1. To find the differential coefficient of a product of a constant and a function of x. Let y = c.u _____________(1) Where c is a constant. Where u is a function of x. Let x be an arbitrary increment in x. Let y be the corresponding increment in y. Let u be the corresponding increment in u.
Then, y y cu u ____________(2) (2) (1); y c.u dy y Lt dx x0 x c.u Lt x 0 x u c. Lt x 0 x du c. dx d du cu c. . dx dx 2. To find the derivative of the sum or difference of two functions. Let y = u+v___________(1) Where u and v are two functions of x. Let x be an arbitrary increment in x. Let u, v and y be the corresponding increments in u,v and y respectively.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
166
y y u u v v _________(2)
Then, (2) (1);
y u v dy dx
y
Lt x
x 0
u v x x 0
Lt x x
Lt
u
v
x 0
dy du dv . dx dx dx Note:
If y = u-v, then dy du dv . dx dx dx
3. Product Rule: Let y = u.v____________(1) Where u and v are two functions of x. Let x be an arbitrary increment in x. Let u, v and y be the corresponding increment in u,v and y respectively. Then, y y u u v v ________(2) (2) (1);
y u.v v.v u.v dy y Lt dx x0 x u.v v.u u.v Lt x x 0 u u v Lt u. v. .v x x x x 0
dy dx
v u u u. Lt v. Lt Lt . Lt v x0 x x0 x x0 x x0 dv du du u. v. .0 dx dx dx dv du u. v. dx dx
4. Quotient Rule: FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Let y =
167 u __________(1) v
Where u and v are functions of x. Let x be an arbitrary increment in x. Let u, v and y be the corresponding increment in u,v and y respectively.
u u _______(2) v v u u u (2) (1); y v v v u u .v u v v v v .v
Then,
y y
v.u u.v v v .v dy y Lt dx x 0 x v.u u.v v v .x Lt x x 0 u v v. u. x Lt x v v . v x 0 du dv v. u. dx dx v 0.v du dv v. u. d u dx 2 dx dx v v y
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II 4.5
168
Some Important Formulae: y ex
dy dx
ex
xn
1 x n.x n 1
sin x
cos x
cos x
sin x
log x
tan x
sec 2 x
cot x
cos ec 2 x
sec x cos ecx
sec x. tan x cos ecx. cot x
sinh x
cosh x
cosh x
sinh x
sin 1 x
1 1 x2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
y cos 1 x tan 1 x cot 1 x sec 1 x sinh 1 x cosh 1 x
169 dy dx 1 1 x2 1 1 x2 1 1 x2 1 x x2 1 1 1 x2 1 x2 1 0
c cons tan t c.u uv u.v u v ax xx 1 x x
du dx du dv dx dx dv du u. v. dx dx du dv v. u. dx dx v2 a x log a c.
x x 1 log x 1 x2 1 2 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
u v ax xx 1 x x
170
v.
du dv u. dx dx 2 v x a log a x x 1 log x 1 x2 1 2 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
171
Function of a function rule: Let y f u Where u g x Then, dy dy du . dx du dx
(or)
y f g x
y1 f 1 g x .g 1 x . Differentiate the following functions: 1. 2 x 3 4 log x 5 sin 2 x Let y 2 x 3 4 log x 5 sin 2 x
Differentiating with respect to x
dy 1 2.3x 2 4. 5.cos 2x.2 dx x dy 4 6x 2 10 cos 2x. dx x 2. 2x 1 x 2 1 2
3
Let y 2x 1 x 2 1 2
3
2 3 dy 2 2x 1 .3 x 2 1 x 2 1 .2 2x 1 .2 dx
2 2x 1 x 2 1 3x 2x 1 2 x 2 1 2
2 dy 2 2x 1 x 2 1 8x 2 3x 2 dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
172
4. e x sin 2x 2 cos x Let y e x sin 2x 2 cos x dy e x cos 2x.2 2sin x sin 2x 2 cos x e x dx e x 2 cos 2x 2sin x sin 2x 2 cos x 5. x 3e3x sin 4x Let y x 3e3x sin 4x dy 3 3x x e cos 4x.4 x 3 sin 4x e3x .3 e3x sin 4x 3x 2 dx dy x 2 e3x 4x cos 4x 3x sin 4x 3sin 4x dx 6. x sin 1 x
2
Let y x sin 1 x
2
2 dy 1 x.2 sin 1 x . sin 1 x .1 dx 1 x2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
173
7. tan 1 x Let y tan 1 x dy 1 1 . 2 dx 1 x 2 x 1 2 x 1 x
8.
a b cos x sin 1 b a cos x a b cos x Let y sin 1 b a cos x b a cos x b sin x a b cos x a sin x dy 1 . 2 dx b a cos x 2 a b cos x 1 b a cos x b a cos x
dy dx
b a cos x 2 a b cos x 2
b 2 sin x ab sin x cos x a 2 sin x ab sin x cos x b a cos x 2
sin x a 2 b 2
1 b 2 2ab cos x a 2 2 cos 2 x a 2 2ab cos x b 2 cos 2 x b a cos x sin x a 2 b 2 1 . b 2 a 2 a 2 b 2 cos 2 x b a cos x
sin x a 2 b 2
.
1 b a 1 cos x b a cos x
.
2
2
sin x a 2 b 2
2
.
1 b a . sin x b a cos x 2
2
dy b 2 a 2 . dx b a cos x 9. x sin x Let y x sin x Taking log, log y sin x log s Differenti ating with respect to x, 1 dy 1 . sin x. cos x. log x y dx x
dy sin x y cos x. log x dx x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
174
dy sin x y cos x. log x dx x dy sin x sin x x cos x. log x dx x
10. tan x
log x
Let y tan x
log x
log y log x. log tan x Differenti ating with respect to x 1 dy 1 1 . log x. . sec 2 x log tan x . y dx tan x x dy cos x 1 1 y log x. . . log tan x 2 dx sin x cos x x dy log x 1 log x tan x . log tan x dx sin x. cos x x
x x 1 11. 2 x 3 2
3
3 2
3
x 2 x3 1 2 Let y 2x 3 Taking log,
3 2 log x log x 3 1 log 2 x 3 2 Differenti ating with respect to x,
log y
1 dy 3 2 1 1 3 3x 2 2 y dx 2 x x 1 2x 1 dy 3 2 3x 2 2 y 3 dx 2 x x 1 2 x 1 12.
3x 4 x
sin 1 3x 4 x 3 Let y sin
1
put x sin
3
or
sin 1 x.
y sin 1 3 sin 4 sin 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
175
y sin 1 sin 3 y 3 y 3sin 1 x
13.
dy 3 dx 1 x2
1 x 2 cos 1 x 2 1 x
1 x2 Let y cos 1 2 1 x
Put x tan
or
tan 1 x
1 tan 2 y cos 1 2 1 tan y cos 1 cos 2 y 2 y
2 tan 1 x dy 2 dx 1 x 2 1
14.
x2 2 tan 1 2 2 a x 1
Let
x2 2 y tan 1 2 2 a x
Put x a sin or
x x sin ; sin 1 a a
1
a 2 sin 2 2 y tan 1 2 2 2 a a sin 1
a 2 sin 2 2 y tan 2 2 a 1 sin y tan 1 tan 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
176
y y sin 1
dy dx
x a 1 1
x a2
1 a
a
.
2
a2 x2
.
1 a
dy 1 2 dx a x2
15. If x 1 y y 1 x 0, prove that
dy 1 dx 1 x 2
Given x 1 y y 1 x 0
x 1 y y 1 x Squaring ,
x 2 1 y y 2 1 x x 2 x 2 y y 2 xy 2 0
x
2
y 2 x 2 y xy 2 0
x y x y xy x y 0 x y x y xy 0 x y or x y xy 0 y 1 x x
x 1 x dy 1 x 1 x.1 2 dx 1 x y
dy 1 dx 1 x 2 16. If y x
x
.. x.
find
dy dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
177
Given y x
xx
. ..
y xy Taking log, log y y log x
Differentiating with respect to x 1 dy 1 dy . y. log x. y dx x dx y dy 1 log x dx y x dy 1 y log x y dx y x
dy y2 dx x1 y log x
17. If x y y x show that
dy y y x log y dx xx y log x
Given x y y x Taking log, y log x x log y
Differentiating with respect to x 1 dy 1 dy y. log x. x. . log y.1. x dx y dx
dy x y log x log y dx y x
dy y log x x x log y y dx y x
dy y x log y y dx x y log x x dy y y x log y dx x x y log x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
178
18. If x y e x y prove that
dy log x dx 1 log x 2
Given x y e x y Taking log,
y log x x y log e e
log e e 1
y log x x y y y log x x
y 1 log x x y
dy dx
x 1 log x
1 log x .1 x. 1 1 log x
2
19. If x at 2 ; y 2at find
x
log x 1 log x 2
dy . dx
Given x at 2
; y 2at
dx dy 2at ; 2a dt dt dy dy / dt dx dx / dt 2a 2at 1 t
20. If x a sin ; y a1 cos find
dy dx
Given x a sin ; y a1 cos
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
179
dx dy a 1 cos ; a sin d d dy dy / d dx dx / d a sin a 1 cos
2sin cos 2 2 2 cos 2 2 tan . 2 21.
sin 2A 2sin A.cos A 2 1 cos 2A 2 cos A
If x a cos 3 ; y a sin 3 find Given x a cos 3
dy dx
; y a sin 3
dx a.3 cos 2 sin d dy a.3 sin 2 . cos d dy dy / d dx dx / d 3a sin 2 . cos 3a cos 2 . sin dy tan dx x
22.
dy a If y find dx x a Given y x
x
Taking log, log y xlog a log x
Differentiating with respect to x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
180
1 dy 1 . x log a log x .1 y dx x dy a y 1 log a log x Where y dx x
23.
x
x 1 x2 dy If y log find 2 dx x 1 x x 1 x2 y log x 1 x 2
log x 1 x 2 log x 1 x 2
1 1 1 1 2x 1 1 2x 2 dy 2 1 x2 2 1 x 2 2 dx x 1 x x 1 x
1 x2 x
1 x . x 1 x 2
x 1 x2
2
2
x
1 x2 x 1 x2
1 x2 x
1 x
1 x2 x 1 x2 2
x
2
1 x2
dy x 2 1 x 2 2x 1 x 2 x 2 1 x 2 2 x 1 x 2 dx 1 x 2 x 2 1 x 2 dy 2 dx 1 x 2 2x 2 1
1 x2 dy 24. If y x find 2 dx 1 x 1 x2 Given, y x 1 x2
1 1 log y log x log 1 x 2 log 1 x 2 2 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
181
Differentiating with respect to x, 1 dy 1 1.2x 1 1 2x . 2 y dx x 2 1 x 2 1 x 2
dy x x 1 y 2 2 dx x 1 x 1 x
1 x 4 x 2 1 x 2 x 2 1 x 2 y x 1 x 2 1 x 2 1 x 4 x 2 x 4 x 2 x 4 y x 1 x 4
x 4 2x 2 1 dy y 4 dx x 1 x 24.
If x m . y n x y
m n
, prove that
dy y dx x
Given x m . y n x y
m n
Taking log, m log x n log x m nlogx y
Differentiating with respect to x,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
182
1 1 1 dy dy m. n. . m n 1 1. x y dx dx x y m n dy m n m n dy . x y dx x y x y dx
dy n m n m n m dx y x y x y x
dy n x y m n y m n .x m x y x y . y x y .x dx dy nx ny my ny mx nx mx my dx y x dy nx my nx my dx y x
dy y . dx x
Self assessment problems. I
1. Find the differential coefficient of tan x from first principles. Find the derivatives of 2. e 2 x , sin 3x, cos 4 x.
1 x 3. sinh 1 . 1 x 4. sin x, sin 2 x, sin 3x, sin 4 x.
sin x 5. tan 1 . 1 cos x 6. If sin y x sina y prove that
7. If x 2 y 2
2
a 2 x 2 y 2 find
dy sin 2 a y dx sin a dy . dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
4.6.
183
Successive differentiation: Let y be a function of x. On differentiating y with respect to x, we get
called the first derivative of y with respect to x. Generally we can differentiate
dy . It is dx
dy is also a function of x. So dx
d dy dy with respect to x. We get the second derivative or dx dx dx
d3 y d2y . Similarly the derivative of is called the third derivative. Differentiating y dx 3 dx 2
dn y successively n times, we get dx n
Some Standard results.
y
yn
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
184
1. e ax 2. 3.
a n .e ax
ax b m
mm 1......m n 1.a n ax b
mn
1n n!.a n ax b n1 1n1 n 1!a n ax b n
1 ax b
4. log ax b
n a n . sin ax b 2 n a n cos ax b 2
5. sin ax b 6. cos ax b 7.e ax . sin bx c
r n .e ax sin n bx c
8. e ax . cos bx c
r n .e ax . cos n bx c
Where r 2 a 2 b 2 , tan
9. x n
n!
Type-I: 1. Find the nth derivative of
1
Let
x 1x 2 A B x 1 x 2
x 1x 2 1 Ax 2 Bx 1 x 2;
1 B.1
1 A 1
x 1;
Let y y
1
1
x 1x 2
B 1 A 1
1 1 x 1 x 2
1
x 1x 2
1 1 x 1 x 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
b a
MATHEMATICS-II
185
Differentiating n times successively, we get
yn
1 1n n!.1n 1n .n!.1n x 1n1 x 2n1
1 1 n y n 1 n! n 1 n 1 x 2 x 1 2. Find the nth derivative of Let y Let
1 x 2 x 3 2
1 ____________ 1 x 2 x 3 2
1 A B C 2 2x 3 x 2 x 3 x x 2
1 Ax 2 x 3 B2 x 3 Cx 2 x 0; 1 B.3 x
1 3 4 C 9
B
3 9 1 c. 2 4
coeff .of x 2 0 2 A C c 2 A 2 9 2 / 9 1/ 3 4 / 9 y 2 x 2x 3 x A
Differentiating n times successively, we get
4 1 n 1n n!.1n 4 . 1n .n!.2 n . 1 .n!.1n yn 9 3 9 x n1 x n 2 2 x 3n1 1 4 4 2 n. n 9 y n 1 .n! 9n1 n3 2 x 2 x 3n1 x 3. Find the nth derivative of sin2x. Let y sin 2 x FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
186 y
1 cos 2 x 2
Differentiating n time successively, 1 n y n 0 2 n cos 2 x 2 2 n y n 2 n1. cos 2 x . 2
4. Find the nth derivative of cos3x. Let y cos 3 x. y
1 cos 3x 3 cos x 4
cos 3 A 4 cos 3 A 3 cos A 4 cos 3 A cos 3 A 3 cos A cos 3 A
1 cos 3 A 3 cos A 4
Differentiating n times successively,
yn
1 n n n 3 . cos 3x 3. cos x 4 2 2
5.Find the nth derivative of sin2x.cosx. Let y sin 2 x. cos x
1 sin 2 x x sin 2 x x 2 1 y sin 3x sin x 2 y
Differentiating n times successively,
1 n n y n 3n sin 3x 1n.sin x 2 2 2 6. Find the nth derivative of ex.cosx Let y e x cos x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Then,
187
yn r n .e x . cosn x ______1
Where, a=1; b=1;c=0 r 2 a 2 b 2 12 12 r 2 b a 1 1
tan
tan
4
4
1 y n
n n 2 e x cos x 4
n y n 2 e x cos x 4 n 2
7. Find the nth derivative of e3xsin2x
Let y e3 x sin 2 x y e3x
1 cos 2x
2 1 1 y .e3x .e3x cos 2x 2 2
1 cos 2A 2 sin A 2
Differentiating n times successively, 1 1 yn .3n.e 3 x .r n .e 3 x cosn 2 x ______ 1 2 2
Where,
a=3; b=2; c=0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
188
r 2 a 2 b 2 32 2 2 13 r 13 tan
2 3
2 3
tan 1
or
n 1 1 2 1 y n .3n.e 3 x 13 .e 3 x . cos n. tan 1 2 x 2 2 3
Self assessment problems – II 1. Find the nth derivative of
1 x 5x 6 2
2. Find the nth derivative of cos 2 x 3. Find the nth derivative of cos 3x. cos x
Type-2
d4y 4y 0 1. If y e cos x, prove that dx 4 x
Given, y e x . cos x y1 e x sin x e x cos x y1 e x sin x cos x
y2 e x cos x sin x e x sin x cos x y2 e x cos x sin x sin x cos x y2 2e x sin x y3 2e x. cos x 2e x sin x
y3 2e x cos x sin x
y4 2e x sin x cos x 2e x cos x sin x y4 2e x sin x cos x cos x sin x y4 4e x cos x y4 4 y
d4y 4y 0 dx 4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
189
Another method Given y e x . cos x Differentiating n times successively,
n yn r n e x cos x _________ 1 2 Where a=-1; b=1; c=0
r 2 a2 b2 11 2 r 2 tan
b 1 1 a 1
tan 1 1 . 4
1 yn
n 2 e x cos n x 4
put n 4 4 y 4 2 e x cos 4. x 4 4.e x cos x
cos cos
4e x cos x
4 y
4
d y 4 y 0. dx 4
d2y dy 2. If xy ae be , prove that x 2 2 xy 0 dx dx x
x
Given xy ae x be x Diff, Diff,
x.
dy y.1 ae x be x . dx
d 2 y dy dy x 2 .1 ae x be x dx dx dx xy x
d2y dy 2 xy 0 2 dx dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
190
d2y dy 4x x 2 6 y 0 2 dx dx
3. If y x 2 cos x, prove that x 2
Given, y x 2 cos x _______ 1 Diff,
dy x 2 sin x 2 x cos x _______ 2 dx
Diff,
d2y x 2 cos x 2 x sin x 2 x sin x 2 cos x dx 2
d2y x 2 cos x 4 x sin x 2 cos x ______ 3 dx 2 Now, x2
d2y dy 4x x 2 6 y 2 dx dx x 2 x 2 cos x 4 x sin x 2 cos x 4 x x 2 sin x 2 x cos x x 2 6 .x 2 cos x
x cos x 4 x sin x 2 x cos x 4 x sin x 8 x cos x x cos x 6 x 2 cos x 4
3
2
3
2
4
0
, prove that 1 x y xy m y 0 Given, y x 1 x 1 y mx 1 x 1 .2 x Diff, 2 1 x
4. If y x 1 x 2
m
2
1
m
2
2
m 1
1
y1 m x 1 x 2
m 1
1 x 2 y2 y1
2
1 x2 x 2 1 x
1 x 2 y1 m x 1 x 2
Diff,
2
2
1 2 1 x2
m
2 x m.m x 1 x 2
m1
1 2 x 1 2 2 1 x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
191
1 x x m x 1 x
m 1
1 x 2 ; 1 x 2 y 2 xy1 m 2 x 1 x 2 2
2
2
m
m2 y
1 x 2 y 2 xy1 m 2 y 0
2
5. If y sin 1 x , show that 1 x 2 y2 xy1 2 0
Given , y sin 1 x Diff,
y1 2 sin 1 x
2
1 1 x2
1 x 2 y1 2 sin 1 x Diff,
1 x 2 y2 y1
1
2 1 x
2
2 x 2.
1 x 2 ; 1 x 2 . y2 xy 1 2
1 1 x2
1 x 2 y2 xy1 2 0 6.
If y a coslog x b sinlog x , show that x 2 y 2 xy1 y 0 Given, y a coslog x b sinlog x
Diff,
1 1 y1 a sin log x . b coslog x . x x
xy1 a sin log x bcos log x 1 1 Diff, xy 2 y1 .1 a coslog x . b sin log x . x x
x 2 y 2 xy1 a cos log x b sin log x y x 2 y 2 xy1 y 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
192
7. If y ax n1 bx n , prove that x 2
d2y nn 1 y. dx 2
Given, y ax n1 bx n Diff,
y1 an 1x n b n.x n1
Diff,
y2 an 1.n.x n1 b n n 1.x n2
x 2 y 2 an n 1 .x n 1 bn n 1 .x n n n 1 ax n 1 bx n
n n 1 .y
x 2 y 2 n n 1 y 8. If x at 2 , y 2at find y 2 Given, x at 2 , y 2at
dx dy 2at ; 2a dt dx dy dy / dt dx dx / dt 2a 2at dy 1 dx t
Differentiating with respect to x,
d2y 1 dt 2. 2 dx t dx 1 1 2 t 2at 2 d y 1 2 dx 2at 3 9. If x
d2y 1 t 2t ,y , find 1 t 1 t dx 2
Given, x
1 t ; 1 t
y
2t 1 t
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Then,
193
dx 1 t 1 1 t .1 dt 1 t 2
1 t 1 t
1 t
2
2
1 t dy 1 t .2 2t.1 2 dt 1 t 2
dy 2 dt 1 t 2
dy dy / dt dx dx / dt
2
1 t
2
1 t
2
2
1
d2 y 0 dx 2
10. If x acos t t sin t , y asin t t cos t
d2y find dx 2
Given, x acos t t sin t
dx a sin t t. cos t sin t.1 dt dx at cos t. dt Now,
y asin t t cos t
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
194
dy acos t t. sin t cos t.1 dt dy at sin t dt dy dy / dt dx dx / dt at sin t at cos t dy tan t dx
Differentiating with respect to x,
d2y dt sec 2 t. 2 dx dx 1 sec 2 t. at cos t 3 sec t . at
Self assessment problems- III
1. If y sin m sin 1 x , prove that 1 x 2 y2 xy1 m 2 y 0 2. If y e a sin
1
x
prove that 1 x 2 y2 xy1 a 2 y 0
3. If x sin t , y sinpt prove that 1 x 2 y2 xy1 p 2 y 0
d2y 4. If x 2 cos cos 2t , y 2sint - sin2t find dx 2 5. If ax 2 2hxy by 2 1 , show that
d2 y h 2 ab dx 2 hx by 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
195
4.7 Leibnitz formula If u and v two functions of x , then
D n u.v u n .v nC1.un1.v1 nC2 .un2 .u2 ............ nCr .unr .ur ........u.vn Proof: Let u and v be two functions of x We have to prove
D n u.v u n .v nC1.un1.v1 nC2 .un2 .u2 ............ nCr .unr .ur ........u.vn 1 We will prove by the method of induction d u, v du dv .v u. dx dx dx
ie, D ' u, v u1.v u.v1 ie, the theorem is true when n 1 Let us assume 1 to be true for n 2,3........m. ie,
D m u.v um .v mC1.um1.v1 mC2 .um2 .u2 ............ mCr .umr .ur ........u.vm 2 We will prove that 1 is true for n m 1 Now differentiating 2 w.r.t.x, D m1 u.v um1.v um. .v1 mC1 um .v1 um1v2 mC2 um1.v2 um2 .v3 ............ mCr umr 1.vr umr .vr 1 ......u1.vm u.vm1
u m1.v 1 mc1 .u m .v1 mc1 mc2 .u m1.v2 .... mcr 1 mcr .u m1r .u r ..... u.vm1 3
Now, 1 mc1 m 1c1 mc1 mc2 m 1c2 ..................... .....................
mcnr mcr m 1cr .................... ...................
3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
196
Dm1 u.v um1.v m 1c1..umv1 m 1c2um1.v2 ...... m 1cr .um1r ..... u.vm1 ie, The theorem is true for n m 1 By the method of induction, the theorem is true for all the integral values of n
Problem 1. Find the n th derivative of x 2 .e x Let
y x 2e x
Using Leibniz theorem, differentiating n times,
yn Dn x 2e x
u ex ; v x 2
yn e x .x 2 nc1.e x .2 x nc2 .e x .2 nn 1 e x x 2 n.2 x 2 1.2
yn e x x 2 2nx nn 1 Find the n th derivative of x 3e 2 x Let y x3e2 x Using Leibnitz theorem differentiating n times, yn Dn x 3e2x
u e2x ; v x 3
yn 2n e2 x .x3 nc1. 2n1 e2 x 3x 2 nc2 2n2.e2 x 6 x nc3 2n3.e2 x .6 nn 1 n2 nn 1n 2 n3 yn e 2 x 2n.x 3 n.3.2n1 x 2 .2 .6 x .2 .6 1 2 1.2.3
yn 2n3.e2 x 8x3 12nx 2 6nn 1x nn 1n 2 3. Find the n th derivative of x sin 2 x. Let y x sin 2 x Using Leibnitz theorem differentiating n times,
yn Dn x. sin 2 x
u sin2x; v x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
197
yn 2n. sin n 2 x .x nc1.2n1 sin n 1 2 x.1 2 2 yn 2n1 2 x sin n 2 x n. sin n 1 2 x 2 2 4. Find the n th derivative of e x . log x. Let y e x . log x Using Leibnitz theorem, differentiating n times u ex ;
v log x
1 . n 1 1 1 y n e D (e ) log x nc1.e . nc 2 .e x . 2 ....... e x . x xn x n 1
x
n
x
x
1 . n 1 n nn 1 yn e log x ...... x 2x2 xn n1
x
5. If y a coslog x b sinlog x, prove that
i x 2 y2 xy1 y 0 and ii x 2 yn2 2n 1xyn1 n2 1yn 0 Given y a coslog x b sinlog x 1 1 Diff, y - a sin log x . b coslog x . x x xy 1 -a sinlog x b coslog x
1 1 Diff; xy 2 y1.1 a coslog x . b sin log x . x x
xx; x 2 y2 xy1 a coslog x b sinlog x -y
x 2 y2 xy1 y 0 1 Using Leibnitz theorem, differentiating n times
y
n 2
.x 2 nc1. yn1.2 x nc2 . yn .2 yn1.x nc1. y1 yn 0
x 2 yn2 n. yn1.2 x
nn 1 yn .2 x. yn1 n. yn yn 0 1.2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
198
x 2 yn2 xyn1 2n 1 yn nn 1n 1 0 x 2 yn 2 2n 1 xyn 1 yn n 2 n n 1 0
x 2 yn2 2n 1xyn1 n2 1 yn 0 6. If y ea sin
1
prove that i 1 - x 2 y2 xy1 a 2 y 0 and
x
ii 1 - x 2 yn2 2n 1xyn1 n2 a 2 yn 0 y ea sin
Given,
1
x
1
1
y1 e a sin x .a.
Diff,
1 x 2 . y1 a.ea sin
1
1 x2
x
Diff,
1 x 2 . y2 y1.
1 2 1 x
2
2 x a.ea sin
x 1 x 2 ; 1 - x 2 y2 xy1 a 2 .ea sin
1
1
x
1
.a.
1 x2
x
a2 y
1 x 2 y2 xy1 a 2 y 0 1 Using Leibnitz theorem, differentiating n times
y 1 x nc .y 2
n2
1
1 x y 2
n. yn1
n1
n
1.2
n
1 x y xy 2n 1 y nn 1 n a 0 1 x y 2n 1xy y n n n a 0 1 x y 2n 1xy n a y 0 y sin m sin x , prove that 1 x y 2n 1xy m Given y sin m sin x 2
n 2
2
n
2
n1
n
n 2
2
7. If
n 2
2x nc2 . yn 2 yn1.x nc1. yn .1 a 2 . yn 0 nn 1 . 2 x . y . 2 xy ny a 2 y 0
n1
n1
n 2
n1
1
2
2
n
2
2
n
2
n 2
n1
2
n2 yn 0
1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
199
1
Diff, y1 cos m sin 1 x .m.
1 x2
1 x 2 y1 m. cos m sin 1 x
Diff,
1 x 2 . y2 y1.
1 2 x
m. sin m sin 1 x .
2 1 x2
m 1 x2
x 1 x2 ;
1 x y 2
2
xy1 m2 sin m sin 1 x
- m2 y
1 x 2 y2 xy1 m2 y 0 Using Leibnitz theorem, differentiating n times,
y 1 x nc .y 2
n2
1
1 x y 2
n 2
2
8. If y x
n 2
n
n
xyn1 2n 1 yn nn 1 n m2 0
n 2
2
n1
2
2
n1
n2 m2 yn 0
m
y1 m x 1 x
n 2
y1 m x 1 x 2
2
n
m
Given, y x 1 x 2 Diff,
n1
n
1.2
2n 1xy y n m 0 1 x , prove that 1 x y 2n 1xy
1 x y 1 x y 2
n. yn1
2x nc2 . yn 2x yn1.x nc1. y1.1 m2 yn 0 nn 1 .2 x . y 2 xy ny m2 y 0 n1
2
m1
m1
1 x 2 . y1 m x 1 x 2
12 x .1 2 2 1 x
1 x2 x 2 1 x
m
my Squaring
1 x y 2
1
2
m2 y 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
200
Diff,
1 x 2 y y 2
1 2
2 x. y1 m2 2 yy1 2
2y1
1 x y xy m y ie, 1 x y xy m y 0 2
2
2
1
2
2
2
1
Differentiating n times using Leibnitz theorem,
y 1 x nc .y 2
n 2
1
1 x y 2
n 2
1 x y 1 x y 1 x y 2
2
2
n1
.2 x nc2 . yn .2 yn1.x nc1. yn .1 m2 yn 0
n.2 xyn1
nn 1 . yn .2 x. yn1 n. yn m2 yn 0 1.2
y n n n m 0 n m y 0
n 2
xyn1 2n 1 yn nn 1 n m2 0
n 2
2n 1xyn1
n 2
2n 1xyn1
2
2
n
2
2
n
9. If y x n1 log x, prove that i xy 1 n 1y x n1 and ii y n
n 1 . x
Given, y x n1 log x Diff,
1 y1 x n1. n 1x n2 . log x x
xy 1 x n1 n 1x n1. log x xy 1 x n1 n 1y
Differentiating n 1 times using Leibnitz theorem,
yn .x n 1e1. yn1.1 n 1 n 1 yn1 xyn n 1yn1 n 1 n 1yn1 xyn n 1 yn
n 1 x
10. If y x 2 1 , prove that x 2 1 yn2 2 xyn1 nn 1yn 0 n
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
201
Given y x 2 1
n
y1 n x 2 1
Diff
n1
.2 x
n
x 2 1 y1 n x 2 1 .2 x
x
2
1 y1 2nxy
diff
x
2
1 y2 2 xy1 2nx y1 y 1
( x 2 1) y2 2 xy1 (1 n) 2 xy 0 differentiating n times,
[ yn2 ( x 2 1) nC1. yn1.2 x nC2 . yn .2] 2(1 n)[ yn1.x nC1. yn .1] 2nyn 0
( x 2 1) yn2 n.2 xy n1
n(n 1) . yn .2 2(1 n) xy n1 2(1 n).n. yn 2nyn 0 1.2
( x 2 1) yn2 xy n1 (2n 2 2n) yn [n 2 n 2n 2n 2 2n] 0 ( x 2 1) yn2 2 xy n1 n(n 1) yn 0
Self assessment problems IV 1. Find the n th derivative of x cos 3x 2. Find the n th derivative of x 2 e 5 x 3. If y e tan
1
x
prove that
(1 x 2 ) yn2 [2 x(n 1) 1] yn1 n(n 1) yn 0 4. If y sin 1 x prove that
(1 x 2 ) yn2 (2n 1) xy n1 n 2 yn 0 1
5. If y m y
1 m
2 x prove that
( x 2 1) yn2 (2n 1) xy n1 (n 2 m2 ) yn 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
202
4.8 Meaning of the derivative In the previous section, we have calculated the derivative of many function. In this section we will learn about the meaning of the derivative. I. Geometrical Interpretation: Let p( x, y) the any point or the curve y f (x) . Let Q( x x, y y) be a neighboring point on the curve. Let PM OX , QN OX and PR QN . Let PQ be inline at an angle with OX . In PQR QPR , PR x and QR y
tan
y x
As Q P on the curve, the chord PQ will become the tangent at P and tan will be the slope of the tangent at P also x 0 .
y
Lt tan Lt x
Q P
x0
slope of the tangent at P
dy . dx
Meaning of the sign of the derivative. Let y f (x) (1) Let x be an arbitrary increment in x. Let y be the corresponding increment in y. y y f (x x) (2)
(2) (1);
y f ( x x) f ( x)
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
203
dy y Lt dx x0 x
dy f (x x) f (x) Lt dx x 0 x Put,
x a and x h
Then,
dy f ( a h) f ( a ) Lt dxatxa h0 h
Let h 0 If
dy 0 then f (a h) f (a) 0 ie, f (a h) f (a) ie, f (x) is an increasing dx
function at x a .
If
dy 0 , then f (a h) f (a) 0 ie, f (a h) f (a) ie, is a decreasing dx
function at x a .
Problem 1. Show that 2 x 3 3x 2 12 x 7 0 when x 1. Let f ( x) 2 x 3 3x 2 12 x 7
f 1 ( x) 6 x 2 6 x 12 6(x 2 x 2) 6(x 1)(x 2)
when x 1, x 1 0 and x 2 0
f 1 ( x) 0 when x 1 f (x) is an increasing function when x 1
At x 1
f ( x) 2 3 12 7 0
when x 1 , f ( x) 0
2. Find the range of value of x for which x 3 6 x 2 36 x 7 is an increasing function.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
204
Let f ( x) x 3 6 x 2 36 x 7
f 1 ( x) 3x 2 12 x 36
3( x 2 4 x 12) 3( x 6)( x 2)
when 2 x 6, f 1 ( x) 0 f (x) is a decreasing function when 2 x 6 for all other values of x ,
ie x 2 and x 6 f 1 ( x) 0 and f (x) is increasing function. 3. For what values of x is 2 x 3 15x 2 84 x 7 a decreasing function ? Let f ( x) 2 x 3 15x 2 84 x 7
6( x 2 5x 14) 6( x 2)( x 7)
when 2 x 7 , we get f 1 ( x) 0 f (x) is a decreasing function when 2 x 7
4. Show that x
x2 log(1 x) x when x 0 2
x2 Let, f ( x) x log(1 x) 2 f ' ( x) 1 x
1 1 x
1 x 2 1 1 x
f ' ( x)
x2 1 x
when x 0 , we get f ' ( x) 0 f (x) is a decreasing function,
At x 0 f ( x) 0 0 log(1 0) 0 when x 0 , we get f ( x) 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
ie, x
x
205
x2 log(1 x) 0 when x 0 2
x2 log(1 x) when x 0 2
(1)
Next let, f ( x) log(1 x) x f ' x
1 1 1 x
1 1 x 1 x
f ' ( x)
x 1 x
when x o , we get f ' ( x) 0 f ( x) 0 when x 0
ie,
log(1 x) x 0 when x 0
ie, log(1 x) x when x 0
(2)
(1) (2)
x
5. Show that 1
x2 log(1 x) x when x 0 . 2
x2 cos x 1 when x 0 2
Let f ( x) 1
x2 cos x 2
f ' ( x) x sin x when x 0 we get f ' ( x) 0
(sin x x)
f (x) is a decreasing function At x 0 , f ( x) 1 0 1 0
f ( x) 0 when x 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
206
ie, 1
x2 cos x 0 when x 0 2
ie, 1
x2 cos x when x 0 2
(1)
next, let f ( x) cos x 1
f ' ( x) sin x
| f ' ( x) 0
when x 0,
f (x) is a decreasing function.
At x 0
f (0) 1 1 0
f ( x) 0 when x 0
cos x 1 0 when x 0 cos x 1 when x 0
(2)
1& 2
1
x2 cos x 1 When x 0 . 2
Self assessment problems V 1. Prove that 3x 4 8x 3 6 x 2 24 x 19 0 when x 1 2. For what values of x, is 2 x 3 9 x 2 12 x 4 a decreasing function? 3. Show that x log(1 x)
x when x 0 1 x
1 4. Prove that x sin x cos x cos 2 x is an increasing function in 0, 2 2
Velocity and acceleration The velocity of a moving particle is defined as the rate of displacement w.r.t. time ie, velocity v
ds when s is the position vector of the particle at time t. Next the dt
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
207
acceleration of a particle is defined as the rate of change of velocity w.r.t.t ie, Acceleration a
d 2s dv or a 2 dt dt
1. The displacement of a moving particle is given by s t 3 2t 2 4 find its velocity and acceleration when t 2 sec. Given s t 3 2t 2 4 Vel
v
Acces a
ds 3t 2 4t dt dv 6t 4 dt
When t 2 sec Velocity v 3 4 4 2 4units Acceleration a 6 2 4 8units 2. The displacement of a moving particle in t secs is given by s t 3 9t 2 24t 18. Prove that the velocity is zero for two values of t. Find its velocity when the acceleration is zero and find the acceleration when the velocity is zero. The displacement is t secs is Given by s t 3 9t 2 24t 18 (1) Velocity v
ds 3t 2 18t 24 (2) dt
Acceleration a
dv 6t 18 (3) dt
When the velocity is zero
0 3t 2 18t 24 0
3 t 2 6t 8 0
t 2t 4 0 t 2or 4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
208
When t=2 secs and t=4 secs, velocity 0
when t=2, (3) a 6 2 18 6units when t=4, (3) a 6 4 18 6units When the acceleration is Zero
a0 6t 18 0 6t 3 0
t 3 secs When, t=3 2 3 32 18 3 24
3 units 3. The distance described by a particles in t seconds is given by s ae t be t . prove that the acceleration is always equal to the distance passed over. The distance described in t second is
s ae t be t Velocity
d ae t be t dt
Acceleration a
d ae t be t dt
as
Self assessment Problems 1. A stone thrown vertically upward risesrmts in t seconds where s 48t 16t 2 . Find its velocity when t= 1 second and find the time at which it is momentarily at rest. 2. The distance described by a particle in t seconds is given by s 10 27t t 3 . Find its velocity when t=2 seconds and its acceleration when its velocity is zero.
4.8.3. Rate of change of variables If y is a faction of x, then y f x Here x is the independent variable and y is the dependent variable FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
209
dy is called the rate of change of y w.r.t.x dx
Using this definition we will do problems.
1. If the rate of increase of x 3 5x 2 5x 8 is twice the rate of increase of x, what are the values of x? Let y x 3 5x 2 5x 8 Diff
dy 3x 2 10x 5 (1) dx
Given, the rate of change of y w.r.t. x =2. ie.,
dy 2. dx
2 3x 2 10 x 5 3x 2 10 x 3 0
3x 1x 3 0 1 x or 3 3
2. An inverted cone has a depth of 10cms and a base of radius 5 cms. Water is poured into it at the rate of 1.5 c.c per minute. Find the rate at which the level of water in the cone is rising when the depth is 4 cms. Given, Base radius=5 cms
5
Depth=10cms When water is pouring into the cone, at any time t, let r be the radius, h be the depth and v be the volume of the water
10
cone. 1 Then, v r 2 h 1 3
r
h
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
210
From the figure, we get h r 10 5 r
5 h h 10 2 2
1 h 1 v . . .h 3 2
v
12
h3
Differentiating w.r.t.t, dv dh .3h 2 . (2) dt 12 dt
Given, h 4cms and (2)
dv 3 1.5 dt 2
3 dh 3 2 12 dt
dh 3 12 dt 2 3 16
dh 3 cm / min . dt 8 The rate at which the level of water in the cone is rising is
3 cm/min. 8
3. A balloon which always remains spherical is being inflated by pumping 10 c.c of gas per sec. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm. At any time t, let r be the radius of the balloon. 4 It volume v rh3 3
Differentiating w.r.t. t dv 4 dr .3.r 2 . dt 3 dt
(1)
O
A
r
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II dv 10 (given) dt
when r= 15, (1)
211
10 4 225.
dr dt
dr 10 dt 4 225 dr 1 cm / sec . dt 90
Self assessment problems: VII 1.
A ladder of 20mts long has one end on the ground and the other in contact with a
vertical wall. Then the foot of the ladder is 16mts away from the wall, the lower end is slipping at 2mt/sec. find rate at which its upper end is moving downwards. 2.
A hollow right circular cone of height 10 cms and semi vertical angle 30 is full
of water. When water is drawn off such that the height of the water decreases at a uniform rate of 1cm/sec, find the rate at which the volume is decreasing when the height of the water is 5 cms.
4.9 Answers Self assessment problems I 1. Let y tax 1 Let x be an arbitrary increment in x Let y be the corresponding increment in y Then y y tanx x 2
2 1;
y tanx x tan x
sin x x sin x cosx x cos x
sin x x . cos x cosx x .sin x cosx x . cos x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
212
sin x x x cosx x . cos x
y sin x x x. cosx x . cos x
y sin x 1 Lt . x 0 x x0 x cosx x . cos x Lt
dy 1 1. dx cosx 0. cos x
dy 1 dx cos 2 x
d tan x sec 2 x dx
sin 1 Lt x0
2. Let y e 2 x .sin 3x.cos 4 x Taking log,
log y 2 x.log ee log sin 3x log cos 4 x Diff,
1 dy 1. cos 3x 1 sin 4 x . 2.1 .3 .4 y dx sin 3x cos 4 x
dy y2 3 cot 3x 4 tan 4 x dx
1 x 3. Let y sinh 1 1 x dy dx
1 1 x 1 1 x
2
.
1 x 1 1 x .1 1 x 2
1 x 1 x 1 x . 2 2 2 1 x 1 x 1 x -2 1 2x x 1 2 x x 2 1 x 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
-2
x 1
213
2 x2 1
4. Let y sin x.sin 2 x.sin 3x.sin 4 x Taking log, log y log sin x log sin 2x log sin 3x log sin 4 x
Diff,
1 dy cos x 2 cos 2 x 3 cos 3x 4 cos 4 x . y dx sin x sin 2 x sin 3x sin 4 x dy ycot x 2 cot 2 x 3 cot 3x 4 cot 4 x dx
sin x 5. Let y tan 1 1 cos x x x 2 sin . cos 2 2 y tan 1 x 2 cos 2 2
x y tan 1 tan 2 y
x 2
dy 1 dx 2
6. Given sin y x sina y
Diff`
cos y.
dy dy x. cosa y . sin a y .1 dx dx
dy cos y x cosa y sina y dx
dy sin y cos y . cos(a y sin a y dx sin a y
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
214
dy sin a y y sin a y dx sin a y
dy sin 2 a y dx sin a
x
7. Given
2
y2
2
Let f x, y x 2 y 2
a2 x2 y2
2
a2 x2 y2
2
f x 2 x 2 y 2 .2 x a 2 2 x
f dy x dx fy
dy x2x dx y2x
y a x2x y a y a y2x y a
dy 2 x 2 x 2 y 2 a 2 dx 2 y 2 x 2 y 2 a 2 2 2
2
2
2
2
2
2
2
2
2
2
Self Assessment Problems II 1. Let y
1 x 5x 6 2
y
1 (1) x 2x 3
y
1 1 x2 x3
Differentiating n times successively,
1n . n.1n 1n . n.1n yn x 2n1 x 3n1 1 1 n y n 1 . n n 1 x 3n1 x 2
2. Let y cos 2 x y
1 cos 2 x 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II y
215
1 1 . cos 2 x 2 2
Differentiating n times successively,
1 y n 0 2 n. cos n 2 x 2 2 y n 2 n1. cos n 2 x 2 3. Let y cos 3x. cos x cos A.CosB y
1 cos3x x cos3x x 2
y
1 cos 4 x cos 2 x 2
1 cos A B cos A B 2
1 n n y n 4 n. cos 4 x 2 n. cos 2 x 2 4 4
Self Assessment Problems III
1. y sin m sin 1 x
y1 cos m sin 1 x .m
1 1 x2
1 x 2 . y1 m. cos m sin 1 x
Diff,
1 x 2 . y 2 y1 .
1 2 x 2 1 x2
m sin m sin 1 x .m.
1 1 x2
1 x2 ,
1 x y 2
2
xy1 m 2 sin m sin 1 x
m 2 y
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
216
1 x 2 y2 xy1 m 2 y 0 2. y e a sin
1
x
1
1
y1 e a sin x .a.
1 x2
1 x 2 y1 a.ea sin
1
x
Diff,
1 x 2 y2 y1.
1 2 x 2 1 x
1
a.e a sin x .a.
2
1 1 x2
1 x2 ;
1 x y
xy1 a 2 .ea sin x 1
2
2
(1 x 2 )y2 xy1 a 2 y
1 x y2 xy1 a 2 y 0 3. x sin t ;
y sin pt
dx cos t; dt
dy cos pt. p dt
dy dy dt dx dx dt dy p cos pt dx cos t dy p 1 sin 2 pt dx 1 sin 2 t dy p 1 y 2 dx 1 x2
p2 1 y2 y 1 x2 2 1
1 x y 2
2 1
p2 1 y2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
217
Diff,
1 x 2 y y 2
1 2
y12 2 x p 2 2 yy1
2 y1 ,
1 x y xy 2 p y 1 x y xy p y 0 2
2
2
1
2
2
2
1
4. x 2 cos t cos 2t;
y 2 sin t sin 2t
dx 2 sin t 2 sin 2t; dt 2sin 2t sin t
2.2 cos
3t t . sin 2 2
dy 2 cos t 2 cos 2t dt 22 cos t cos 2t
2.2 sin
3t t . sin 2 2
dy dy dt dx dx dt 3t t . sin 2 2 3t t 4 cos . sin 2 2 4 sin
dy 3t tan dx 2
Differentiating w.r.t.x,
d2y 3t 3 dt sec 2 . . 2 dx 2 2 dx d2y 3 1 1 . . 2 dx 2 cos 2 3t 4 cos 3t . sin t 2 2 2
d2y 3 3t t . sec2 . cos ec 2 dx 8 2 2 5. Given ax 2 2hxy by 2 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
218
dy dy Diff; 2ax 2h x. y.1 2by. 0 dx dx
dy hx by ax hy dx
ax hy 1 dy hx by dx
dy dy hx by a.1 h ax hy h b d y dx dx Diff; 2 2 dx hx by 2
hx by ahx aby ahx h 2 y ax hy h 2 x hby abx bhy hx by 3
hx by yh 2 ab ax hy xh 2 ab hx by 3
h
2
ab hxy by 2 ax 2 hxy hx by 3
h
2
ab ax 2 2hxy by 2 hx by 3
d2y h 2 ab 2 dx hx by 3
Self Assessment problems IV 1. Let y x. cos 3x Differentiating n times using Leibnitz theorem,
u cos 3x;
vx
yn D n x cos 3x
yn 3n. cos n 3x .x nC1.3n1. cos n 1 3x.1 2 2 2. Let y x 2e5 x Differentiating n times using Leibnitz theorem, FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
yn D n x 2 e 5 x
219
u e5 x ;
v x2
yn 5n.e5 x .x 2 nC1 5n1.e5 x .2 x nC2 .5n2.e5 x .2 nn 1 yn 5n2.e5 x x 2 n.5.2 x .2 1.2
y n 5 n2.e 5 x x 2 10nx nn 1 3. y e tan
1
x
y1 e tan
1
1 x y 1 x y
x
.
1 1 x2
1
e tan
1
y
2
2
1
x
Diff,
1 x .y 2
2
y1 .2 x y1
Differentiating n times using Leibinitz formula,
y 1 x nC .y 2
n 2
1
1 x y
2
nn 1 yn .2 2 xy n1 2n. yn yn1 0 1.2
n.2 xy n1
n1
xyn1 2n 2 yn1 yn nn 1 2n 0
n1
yn1 2 xn 1 1 yn n 2 n 2n 0
n1
yn1 2 xn 1 1 nn 1yn 0
1 x y x 1y x 1y 2
.2 x nC2 y n .2 2y n1 .x nC1 . yn .1 yn1 0
n 2
2
2
n 1
4. y sin 1 x
y1
1 1 x2
1 x 2 . y1 1 Diff,
1 x 2 y2 y1
1 2 1 x2
2 x 0
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
1 x y 2
2
220
xy1 0
Differentiating n times using Leibnitz formula,
y 1 x nC y 2
n 2
1 x y 2
n 2
1 x y 1 x y 2
2
5.
1 m
y y 1
ym
1 n1
n.2 xy n1
2x nC2 . yn 2 yn1.x nC1 yn .1 0 nn 1 . y ,2 xy ny 0 1.2
n1
n
n 2
xyn1 2n 1 yn nn 1 n 0
n 2
2n 1xyn1 n 2 yn 0
1 m
n
2x
1 2x 1 y m 1
m put y z
z
1 2x z
z 2 2 xz 1 0
2x 4x2 4 z 2 1 m
y x x2 1 y ( x x 2 1) m
diff, y1 m x x 2 1
y1 m x x 2 1
m1
m1
.[1
1 2 x2 1
.2 x]
x2 1 x . x 2 1
x 2 1. y1 m x x 2 1
m
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
221
x 2 1. y1 m. y Squaring
x
2
1 y1 m2 y 2 2
diff
x
2
1 2 y1 y2 y1 .2 x m2 .2 yy1 2
x
2y1
x 1y 2
2
2
1 y2 xy1 m2 y
xy1 m2 y o
Differentiating n times using leibnitz theorem,
( y
n 2
)( x 2 1) nC1. yn1.2 x nC2 . yn .2 yn1.x nC1. yn .1 m2 yn 0
( x 2 1) yn2 xyn1 (2n 1) yn n(n 1) n m2 0 ( x 2 1) yn2 (2n 1) xyn1 (n2 m2 ) yn 0
Self assessment problems V s 48t 16t 2
1.Given
Velocity v
ds 48 32t dt
When t 1 , velocity 48 32.1 16 units When the stone is at rest, Its velocity 0
48 32t 0 32t 48 t
48 32
3 t sec s 2
2. Given
s 10 27t t 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
Velocity
222 v
Acceleration a
ds 27 3t 2 dt
dv 6t dt
When t 2, velocity 27 3 4 15units When the velocity is zero 27 - 3t 2 0 3t 2 27
t2 9
t 3 secs. Then, acceleration =-6 3
-18 units
1. Self assessment Problem VI Let AB be the ladder Given OA=16 and AB = 20 B
Then, OA2 OB2 AB 2
20 B'
16 2 OB 2 20 2 OB2 20 2 16 2
y
OB 144 20
OB 12
16
When the ladder is shipping,
O
x
A
At any time t, let A' B' be the position of the ladder. Let OA' x and OB' y Then, x 2 y 2 20 2 Diff 2 x.
dx dy 2 y. 0 dt dt
1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
A'
MATHEMATICS-II
223
Given, x 16, y 12. 1 16.2 12.
12
dx 2 dt
dy 0 dt
dy 32 dt
dy 32 dt 12 dy 8 mt / sec . dt 3
The upper end is moving downwards at
8 mt / sec . 3
2. Given, Height of the cone = 10 cms
300
Semi vertical angle
When the water is drawn off, At any given time t, Let h be the height and r be the radius of the water cone. 1 Its volume v r 2 h 3 2
1 h v .h 3 3
v
g
tan 30 0
1 r 3 h r
h3
h 3
r h
r
h 300
10 cms
Differentiating w.r.t. t,
dv 2 dh .3h . dt g dt Given, h=5; 1
(1)
dh 1 dt
dv 52 1 dt 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II dv 25 c.c/sec. dt 3 The volume is decreasing at
25 c.c/sec . 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
224
MATHEMATICS-II
225
UNIT V
5.0
Introduction
5.1
Objective
5.2
Partial Differentiation
5.3
Euler’s Theorem
5.4
Total differential coefficient
5.5
Implicit Functions
5.6
Curvature
5.7
Radius of curvature in Cartesian Co-ordinates
5.8
Radius of curvature in Polar co-ordinates
5.9
Answers to Self assessment Problems
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
226
5.0 Introduction
In this unit you will learn a new concept known as partial differentiation. Also you will learn Euler’s theorem and how to apply it to solve many problems. You will also know about the total differential coefficient. You will also learn bow to differentiate an inplict function. Next you will know the curvature of a given curve of a given curve both in caritisian and polar co-ordinates.
5.1 Objective
After completing this unit, you will be able to Find the partial derivatives of a function of many variables. Apply Euler’s theorem and solve many problems Find the total differential coefficient Find the derivative of an implicit function Calculate the radii of curvature of different curves both in Cartesian and polar coordinates.
5.2 PARTIAL DIFFERENTIATION
In unit 4, we have seen the differentiation of functions of one variable. In this unit, we will consider the differentiation of functions of two or more variables.
Let u be a function of two independent variables x and y. ie, u= f (x,y).
The derivative of u w,r,t,x . when x varies and y remains constant is called the partial derivative of u w, r, t, x. It is denoted by
u . x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
227 f (x x, y) f (x, y) u = Lt (1) x x 0 x
Similarly , when x remains constant and y varies, the partial derivatives of u w,r,t,,y is
f ( x1 y y) f ( x1 y ) u = Lt (2) y 0 y y
Generally
u u and are functions of x and y . They may be y x
differentiated again partially w,r, t , x or y . Then we get the higher order partial derivatives
2 u 2u 2 u , , , ........ x 2 xy y 2
Problems 1. If u = log ( x 3 y 3 z 3 3xyz ) , show that
u u 3 u + + = y z x yz x Given , u = log ( x3 y 3 z 3 3xyz ) Differentiating partially w,r,t, x
1 u (3x 2 3 yz ) (1) = 3 3 ( x y z 3 3xyz ) x III ly Diff u partially w,r,t, y,
u 1 (3x 2 3xz ) (2) = 3 3 3 y ( x y z 3xyz ) FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Diff u partially w,r,t,z
1 u (3x 2 3xy ) (3) = 3 3 3 ( x y z 3xyz ) z (1)+(2)+(3);
u u 1 u [3x 2 3xy 3 y 2 3xz 3z 2 3xy ] + + = 3 3 3 y z ( x y z 3xyz ) x 3( x 2 y 2 z 2 xy yz zx) = ( x y z )( x 2 y 2 z 2 xy yz zx) =
3 x yz
2. If u= log (tan x+tan y+tan z), show that Sin 2x.
u u u +sin2y . +sin2z . =2. y x z
Given u = log (tanx+tany+tanz) Differentiating partially w,r,t,x
1 u = . sec2 x (1) tanx tany tanz x
Similarly
u 1 = . sec2 y (2) y tanx tany tanz
1 u = . sec2 z (3) tanx tany tanz z (1) sin 2 x (2) sin 2 y (3) sin 2 z;
sin 2 x.
u u u + sin 2 y . + sin 2 z . y x z =
1 2 [ sin 2 x. . sin 2 x. + sin 2 y . sin 2 y + sin 2 z. sin z ] tan x tan y tan z
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
228
MATHEMATICS-II
=
1 tan x tan y tan z
[2 sin x. cos x. =
229
1 1 1 2 sin y. cos y. . 2 sin z. cos z. ] 2 2 cos x cos y cos 2 z
1 2(tan x tan y tan z ) tan x tan y tan z
=2. 3. If u = ( y z)( z x)( x y), show that Given u=
u u u + + =0 y z x
( y z)(z x)(x y)
Differentiating partially w,r,t,x, u = ( y z )[(z x).1 ( x y).(1)] x
u = ( y z )( z x) ( y z )( x y ) (1) x
///
ly
u = ( z x)( x y) ( z x)( y z ) (2) y
u = ( x y)( y z ) ( x y)(z x) (3) z (1)+(2)+(3);
u u u (y z)(z x) (y z)(x z) (z x)(x y) (z x)(y z) + + = (x y)(y z) (x y)(z x) x y z =0
4. If u =
1 x2 y2 z 2
u (x2 y2 z 2 )
1
2
Differentiating partially w,r,t, x,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
230
3 u 1 = ( x 2 y 2 z 2 ) 2 2 x 2 x
Again differentiating partially w,r,t,x, 3 5 2u 2 2 2 2 .1 3 ( x 2 y 2 z 2 ) 2 .2x ( x y z ) = 2 x 2
2u ( x 2 = x 2
y z ) 2
2
3
2
3x ( x y z ) 2
2
2
2
5
2
2u 3 2 5 = u 3x u (1) 2 x ///ly
2u 3 2 5 = u 3 y u (2) 2 y
And
2 u = u 3 3z 2u 5 (3) z 2
(1)+(2)+(3); 2 2u u 2u 3 5 2 2 2 + + = 3u 3u ( x y z ) 2 2 2 x y z
=
3u 3 3u 5 .u 2 )
= 3u
3
3u3
[u ( x 2 y 2 z 2)
1
2
u 2 ( x 2 y 2 z 2 )1 ]
=0
2u x 2
= 0
5. If r x y , 2
2
2
show that
2 r 2 r = 1 ( r ) 2 ( r ) 2 y x 2 y 2 r x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II Given, r x y 2
2
231 2
Differentiating partially w,r,t,x,
r 2x x r x (1) x r r y /// ly (2) y r 2r.
In (1), differentiating partially w,r,t,x,
r x 2 2
r.1 x.
r x
r2
r x.
x r
r2
2r r 2 x2 (3) x 2 r3
2r r 2 y 2 (4) /// y 2 r3 ly
2 2r r r 2 x2 r 2 y 2 Now, + + x 2 y 2 r3 r3
2r 2 ( x 2 y 2 ) = r3 2r 2 r 2 = r3 =
r2 r3
1 = (5) r
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
232
2 2 2 2 1 r r 1 x y Next, = r x y r r r
1 x2 y2 = r r 2 1 r2 = 2 rr =
1 (6) r
(5)and(6) 2 2 2 r 2 r 1 r r + = x 2 y 2 r x y
6. If Z= x 2 tan 1
y x y 2 tan 1 , prove that x y
2z x y = xy x 2 y 2 2
Given,
2
Z = x 2 tan 1
x x y 2 tan 1 y y
Differentiating partially w, r, t, y,
z 1 1 2. 1 2 x . y y y 2 x x2 1 2 1 x y2
x 2 2 y. tan 1 y
x y
x3 xy 2 1 x 2 y tan y x2 y2 x2 y2
x x2 y2 1 x 2 2 y tan x y2 y FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
z y
233
x x 2 y tan 1 y
Differentiating partially w, r, t, x,
2z 1 2 y . xy
1 x2 1 2 y
.
1 y
2y2 1 2 x y2 2z x2 y2 2 y2 xy x2 y2
x2 y2 2 x y2 7. If u tan( y ax) ( y ax)
3
2,
show that
2 2u 2 u a x 2 y 2
Given, u tan(y ax) (y - ax)
3
2
Differentiating partially w.r.t.x, 1 u 3 sec2 ( y ax).a ( y ax) 2 , (a) x 2
Differentiating again partially w.r.t.x, 1 2u 3 1 2 2 (a ) a . 2 sec ( y ax ). sec( y ax ). tan( y ax ). a a . ( y ax ) 2 2 x 2 1 2u 3 2 2 2 2 (1) 2 a sec ( y ax ). tan( y ax a ( y ax ) 2 4 x
Next, differentiating u partially w.r.t.y,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II 1 u 3 sec2 ( y ax).1 ( y ax) 2 .1 y 2
Differentiating again partially w.r.t.y, 1 2u 3 1 2 (1) 2 sec( y ax ). sec( y ax ). tan( y ax ) . ( y ax ) 2 2 2 y 2 2u 2 u (1) and (2) a x 2 y 2
2u 2u 8. If u x sin y y sin x, prove that xy yx Given,
u x sin y ysin x Differentiating partially w.r.t.x,
u sin y y. cos x x Differetiating partially w.r.t.y,
2u cos y cos x (1) xy Next, differentiating u partially w.r.t.y,
u = x cos y y. cos x x Differentiating partially w.r.t.x,
2u cos y cos x (2) xy (1) and (2)
2u 2u yx xy
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
234
MATHEMATICS-II
9. If u
xz , prove that 2 x y2
Given, u
235
2u x 2 0
xz , x2 y2
Differentiating partially w.r.t.x,
u ( x 2 y 2 ).xz.2 x x (x2 y2 )
2u z( y 2 2 ) x (x2 y 2 )2 2u ( x 2 y 2 ) 2 (2 xz ) z ( y 2 x 2 ).2( x 2 y 2) .2 x x (x2 y 2 )4
(x 2 y2 )2xz 4xz(y 2 x 2 ) (x 2 y2 )3
2 2 2 2 2 u 2 xz[ x y 2 y 2 x ) ( x 2 y 2 )3 x 2
2 u 2xz[x 2 3y2 ] (1) (x 2 y 2 )3 x 2 Next, differentiating u partially w.r.t.y,
u (1) xz. 2 .2 y 2 x (x y 2 )2 2u ( x 2 y 2 ) 2 (2 xz ) 2 xyz.2( x 2 y 2) .2 y y 2 (x2 y 2 )4
( x 2 y 2 )2 xz 8 xy 2 z ( x 2 y 2 )3
2 xz[ x 2 y 2 4 y 2 ] ( x 2 y 2 )3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
236
2 2 2 u 2 xz[ x 3 y ] (2) ( x 2 y 2 )3 x 2
Next, differentiating u partially w.r.t.z,
u x 2 z x y 2 Differentiating again partially w.r.t.z,
2u 0 3 z 2 (1)+(2)+(3) 2 2 2 2 2 2 u u 2u 2 xz ( x 3 y ) 2 xz ( x 3 y ) 0 + + = ( x 2 y 2 )3 x 2 y 2 z 2
=0 10. If u e ( x cos y y sin y), show that x
2u 2u 0 x 2 y 2
Given, u e ( x cos y y sin y), (1) x
Differentiating partially w.r.t. x u ex (cos y) e x (x cos y ysin y) 2 x
Differentiating again partially w.r.t.x,
2u e x cos y e x ( x cos y y sin y) e x (cos y) 2 x
2u e x [2 cos y x cos y y sin y ] (2) 2 x Next, differentiating u partially w.r.t.y,
u e x [ x sin y { y. cos y sin y.1}] y Differentiating again partially w.r.t.y,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
237
2u e x [ x cos y { y sin y cos y cos y}] 2 y 2u e x [ x cos y y sin y 2 cos y ] 2 y e x [ x cos y y sin y 2 cos y] 2 2u u (1)+(2) + =0 x 2 y 2
Self assessment problems I 1. If u log( x y z ) find 2
2
2
u
x
2r 2r 2r 2 2. If r ( x a) ( y b) ( z c) , show that 2 x y 2 z 2 r 2
2
2
3. If v (1 2 xy y ) 2
1
2,
2
prove that x
v v y y 3v 3 x y
4. If u x ( y z ) y ( z x) z ( x y), prove that 2
2
2
u
x 0
2u 2u 5. If u x , prove that xy yx y
5.3 Euler’s Theorem If f(x, y) is a homogeneous function of degree n, then x
f f y nf x y
Proof: Let f(x,y) be a homogeneous function of degree n in x and y. Let
f ( x, y) a0 x n a1 x n1. y a2 x n2. y 2 ....... an y n
where
a 0 ,a1 ,a 2 ................a n are constants.
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
238
y
ie, f ( x, y ) x n. f x (1) Differentiating partially w.r.t.x,
x f n 1 y y x .F . 2 n.x n 1.F (2) x x x y Differentiating (1) partially w.r.t.y,
f y 1 x n .F 1 . (3) y x x (2) x (3) y x
x
f f +y x n 1. yF 1 y n.x n .F y x n 1. y.F 1 y x x x x y
f f y + y = n.x n .F x x y = n f.
Problems 1. Verify Euler’s theorem for u x y z 3xyz 2
2
2
Given, u x y z 3xyz 3
3
3
U is a homogeneous function of degree n=3.
u 3x 2 3 yz x u 3 y 2 3xz y
u 3z 2 3xy z FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
x
239
u u u y z 3x 3 3xyz 3 y 3 3xyz 3z 3 3xyz x y z = 3( x 3 y 3 z 3 3xyz ) = 3 u.
Thus Euler’s theorem is verified. 2. Verify Euler’s theorem for u
u
1 x xy y 2 2
1 x 2 xy y 2
This is a homogeneous function of degee n=-2.
u 0 (2 x y ) 2 (1) x ( x xy y 2 ) 2
u 0 (2 y x) 2 (2) y ( x xy y 2 ) 2 x
u u 2x 2 xy 2y 2 xy y x y (x 2 y2 xy) 2 2(x 2 xy y 2 ) 1 2. 2 2 2 2 (x y xy) x xy y 2 =-2.u.
Thus Euler’s theorem is verified. 3. If u sin
1
x2 y2 u u , show that x y tan u. x y x y
x 2 y2 Given u sin 1 , xy
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
240
x2 y2 sin u . x y R.H.S is a homogeneous function of degree f= sin u
n= 2-1 =1.
By Euler’s theorem,
x x
u u y nf x y
(sin u ) y (sin u ) n. sin u x y
x. cos u
u u y cos u. 1. sin u y y
x
u u sin u y x y cos u
x
u u y tan u x y
4. If u sin
x y u u show that x y 0 x y x y
1
Given, u sin
sin u
1
x y x y
x y x y
R.H.S is a homogeneous function of degree
n 1 1 0 2 2 By Euler’s theorem,
f sin u
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
241
x
f f y nf x y
x
(sin u ) (sin u ) y o. f x y
cosu x
u u cos u. y o x y
:- cosu,
x
u u y o x y 3
5. If u = tan
1
x y 2 u u , prove that x y 0 x y x y 3
x y 2 Given, u tan 1 xy
tan u
3
( x y) ( x y)
3
2
, 2
R.H.S is a homogeneous function of degree n= 3 2 - 3 2 =0 By Euler’s theorem, x
f f y nf x x
x
(tan u ) (tan u ) y o. f x x
sec2 . x
:-sec 2 u ;
f=tan u
u u sec 2 u. y o x x x
u u y 0 x x
x3 y 3 u u , prove that x 6. If u= tan y sin 2u. x x x y 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
242
x3 y 3 Given, u tan 1 x y
tan u
x3 y 3 x y
R.H.S is a homogeneous function of degree n=3-1=2
By Euler’s theorem, x
x
f f y nf x x
(tan u ) (tan u ) y 2 tan u x x
sec2 u. x
u u sin 2 u. y 2 tan u x y
:- sec2 u. x
f f 2 tan u y x x sec2 u
sin u cos2 u 2sin u.cos u =2 cos u 1 = sin 2u. 7. If u sin 1
u u 1 x y tan u. ,prove that x x y 2 x y
Given, u sin 1
Sin u=
x y x y
x y x y
R.H.S is a homogeneous function of degree
n 1 1 1 2 2.
By Euler’s theorem,
f = sin u
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
x
x
243
f f y nf x y
(sin u ) (sin u ) 1 y sin u x y 2
cos u.x
x
u u 1 cos u. y sin u x y 2
f f 1 sin u y . x y 2 cos u 1 = tan u . 2
Self assessment problems II x2 y2 , show that 1. if u tan 1 x y
x
f f 1 y sin 2u. x y 2
f f x2 y 2 1 , prove that x y 2. If u log x y x y x x f f 3. If u sin 1 tan 1 , show that x y 0 . x y y y
5.4 Total differential coefficient Let u be a function of two variables x and y .Let x and y be functions of another variable t . Ie, u f ( x, y); x=f 1 (t) and y=f 2 (t). Then , the total differential of u is
du
u u .dx .dy x y
Total differential coefficient
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
244
du u dx u dy . . . dt x dt y dt
1. If u 2 x 2 3xy y 2 , x et , y e 1 find
du . dt
x et and y e t dx dy et and e t dt dt
du u dx u dy . . . dt x dt y dt = 4 x 6 y.et 3x 2 y.(e1 )
= 4et 6et .et 3et 2et .(e1 ) = 4e2t 6 3 2e2t du = 4e2t 2e2t 3 dt
2. If u xyz and x et , y e 1 sin t , z sin t find
du . dt
u xyz x e t ;
y e t ;
z sin t
dx dy e t ; e t .cos e t sin t; dt dt du u dx u dy u dz . . . dt x dt y dt z dt
dz cos t dt
yz(e t ) xz.[e t cos t e t sin t] xy.cos t e t sin t.sin t.e t e t .sin t[e t cos t e t sin t] e t .e t sin t cos t e2 t sin 2 t e2t sin t.cos t e 2t sin 2 t e 2t .sin t.cos t 2e2t .sin t(cos t sin t) 3. If u x 2 y 3 z 4
and x t; y t 2 ;
z t 2 ; find
du dt.
Given u x 2 y 3 z 4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II xt
y t2
;
245 ;
z t 3;
dx dy dz 1 ; 2t ; 3t 2 dt dt dt du u dx u dy u dz . . . dt x dt x dt x dt 2 xy 3 z 4 .1 x 2 .3 y 2 .z 4 .2t x 2 y 3 .4 z 3 .3t 2 2t.t 6 t 12 t 2 .t 4 .t 12 .t 12t 2 t 6 .t 9 .t 2 du 20t 19 dt
4. If u log( x y z )
andx cos t; y sin 2 t; z cos 2 t
find
du . dt
Given u log( x y z) x cos t
;
y sin 2 t
;
z cos 2 t
dx dy dz sin t; 2sin 2 t.cos t ; 2sin t.cos t dt dt dt du u dx u dy u dz . . . dt x dt y dt z dt
1 1 1 .( sin t) .(2sin t.cos t) .( 2sin t.cos t) xyz xyz xyz 1 (1sin t) cos t sin 2t cos 2 t du sin t dt cos t 1
Self assessment problems: III 1. If u x 2 y 3 2. If u
x y y x
and x 1 t , y 1 t find
and x et ; y t find
du dt
du dt
3. If u xyz and x t; y t ; z e t find
du dt
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II 4. If u x 2 y 2
246 and x t 3 , y t t 2 find
5. If u x 2 y 3 and x 1 t , y 1 t
find
du dt du dt
5.5 Implicit Functions
Consider the function f (x y) c, constant. Here the values of y is given implicity interms of x . Differentiating (1), we get f f y . 0 x y x
ie,
f dy x f dx y dy fx dx fy
Note: If u f (x, y)
and
1. If x y 3axy 3
3
find
y g(x),
then
du u u y . . dx x y x
dy . dx
Set f ( x, y) x y 3axy 3
3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
247
f x 3x 2 3axy f y 3y 2 3ax dy fx dx fy 3x 2 3ay 2 3y 3ax dy ay x 2 dx y 2 ax 2. If x y c, y
x
find
dy dx
Set f ( x, y) x y c. y
x
f x y.x y 1 y x .log y f y x y .log x x.y x 1 dy fx dx fy dy (yx y 1 y x log y) y dx (x log x xy x 1 )
3. If ax 2hxy by 2 gx 2 fy c 0 find 2
2
dy dx
let f ( x, y) ax 2hxy by 2 gx 2 fy c 2
2
fx
2ax 2hy 2 g
fy
2hx 2by 2 f
dy dx
fx fy
( 2ax 2hy 2 g ) ( 2hx 2by 2 f ) dy (ax hy g ) dx (hx by f )
2 2 dy 4. If x y 1 , find 2 2
a
b
dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
248
2 2 Let f ( x, y ) x y 1 2 2
a
b
2x a2 2y fy 2 b f dy x dx fy fx
2x 2 a 2y b2 b2 x 2 a y 5. If ( x y ) 2 3 ( x y ) 2 3 a 2 3 let f ( x, y) ( x y)
2
3
( x y)
f x 2 ( x y) 3 f y 2 ( x y) 3 dy fx dx fy
1
3
1
3
2
find 3
a
2
dy . dx
3
2 ( x y) 3 2 ( x y) 3
1 1
1
3
3
1
2 ( x y) 3 2 ( x y) 3 3 3 1 1 2 ( x y) 3 2 ( x y) 3 3 3 1
1
dy ( x y) 3 ( x y) 3 1 1 dx ( x y) 3 ( x y) 3 6.If u x y a 2
2
2
Given u x y a 2
2
where x 3 y 3 a 3 find 2
and
du dx
x3 y 3 a3
du dy dy and 3x 2 3 y 2 2 x 2 y. 0 dx dx dx
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
249
dy x2 2 dx y x2 2x 2y 2 y 2x 2 2x y 2xy 2x 2 y 2x(y x) y
7. If u x 3 y 3 where x 2 xy y 2 a 2 Given u x . y 3
3
du dy x 3 .2y. 3x 2 y 2 dx dx
and
find
du . dx
x 2 xy y 2 a 2
dy dy and 2x x y.1 2y 0 dx dx dy (2y x) y 2x dx dy y 2x dx 2y x
y 2x 2x 2 y(y 2x) 3x 2 y 2 (2y x) 2 2 2x y 3x y 2y x 2y x 2x 3 y 2 4x 4 y 6x 2 y 3 3x 3 y 2 2y x 3
6x 2 y3 4x 4 y x 3 y 2 2y x
du x 2 y(6y 2 4x 2 xy) dx 2y x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
250
5.6 CURVATURE Let P be any point on the curve
y f (x). Let the
y y=f(x)
tangent at P make an angle
T
with x axis. Let A be a fixed point on the curve from which arc distances are measured.
P
s A
Let AP s Then the rate of change of w,r,t,s is called the curvature =
d ds
x
O
The reciprocal of the curvature is called the radius of curvature. It is denoted by P.
ie,
ds . d
Cartesian formula for the radius of curvature Let P be any point on the curve
y f (x) .
y y=f(x)
Let A be a fixed point on the curve
T
From which one distances are measured Let AP s Let the tangent at p make an angle with
s A
x =axis The
P
dy tan dx
O
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
x
MATHEMATICS-II
251
Self assessment problems IV 1. If ax 2 2hxy by 2 1
find
2. If (sin x) tan y (tan y ) sin x 3. If u sin( x 2 y 2 )
where
find
dy dx
dy dx
x2 y2 1 a2 b2
find
dy . dx
On the curve form which arcual distances are measured. Set Now,
AP=S dy tan dx
Differentiating w.r.t..x
d2y d sec 2 . 2 dx dx d ds sec 2 . . ds dx d sec 2 . . sec ds d sec3 . ds (sec 2 )
3
[cos
dx ] ds
2 3
(1 tan 2 ) 2 . dy 2 1 ds dx d2y d dx 2
d ds 3
2
i.e., Radius of curvature at P is (1 y12 ) y2
Note: If
3
2
x f (t ) and y g (t )
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
252 3
(x1 y1 ) 2 1 11 1 11 x y y x 2
2
Problems 1. Find the radius of curvature at the point (0,1) on the curve y e x. Given equation of the curve is
y ex dy ex dx d2y ex dx 2
At the point P (0,1),
dy e0 1 dx d2y e0 1 2 dx Radius of curvature at P is
dy 2 1 dx d2y dx 2 (1 12 ) 1
2
3
3
3
2
2
(x
3
2
x1 . x
1
2
x x)
2
2 2 2. Find the radius of curvature at (1,1) on the curve xy=1 The given equation of the curve is xy 1
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
253
y 1
x dy 1 2 dx x d2y 2 3 2 dx x
At the point P (1,1),
dy 1 1 dx 1 2 d y 2 2 2 dx 1 Radius of curvature at P(1,1) is
(1 y12 ) y2 [1 (1) 2 ] 2
3
3
2
2
3
2 2 2
2 x y2 3. Show that the radius if curvature at any point (x,y)on the curve y c cosh is c c The given equation of the curve is
y c cosh
x c
dy x 1 c sinh . dx c c 2 d y x 1 cosh . 2 dx c c Radius of curvature at an point P (x,y) is
(1 y12 ) y2
3
2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
254
(1 sinh 2 x ) c x 1 cozh . c c
3
2
3
(cosh 2 x ) 2 .c c x cozh c
c cosh 3 x cosh x
c
c
c cosh 2 x c
c 2 cosh 3 x
c
c
( y c cosh x ) c
2
y c
4. Show that the radius if curvature at any point on the curve y a log (sec x ) is
a
a(sec x ) . a The given of the curve is y a log (sec x ) a
dy 1 x x 1 a. . sec . tan . x dx a a a sec a
dy tan x a dx d2y 1 sec 2 x . . 2 a a dx The radius of curvature at auy point (x,y) is
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II (1 y12 ) y2
3
255
2
3
(1 tan 2 x ) 2 a 2 x sec . 1 a a 3 (sec 2 x ) 2 .a a 2 x sec a sec3 x a 2 a sec x a a sec x a
5. Find the radius of curvature at
(a,2a) on the parabola y 2 4ax .
The given equation of the curve is
y 2 4ax y 2 a. x 1 dy 1 2 a. a .x 2 dx 2 x
3 d2y 1 ).x 2 a .( 2 dx 2
At the point P(a,2a)
dy 1 a. 1 dx a 3 d2y 1 2 . a . a 2 2 dx 1 1 . a. 3 2 a 2 1 . 2a
The radius of curvature at P(a,2a) is
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
(1 y1 ) y2
3
256
2
3
(1 12 ) 2 ( 1 ) 2a 3
2 2a 2
[ is
always
ve]
4 2a. 6. Find the radius of curvature at (1,0) on the curve y The equation of the curve is y
log x x
log x x
x. 1 log x.1 x x2 1 log x y1 x2 x 2 ( 1 ) (1 log x).2x x y2 x4 y1
At the point P (1,0) y1
1 log 1 1 0 2 12 1
y1 1 12 (1) (1 log 1).2.1 14 1 (1 0).2 y2 1 y2 3 y1
Radius of curvature at P (1,0) is
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
(1 y12 ) y2 (1 12 ) 3 2 2 3
3
3
257
2
2
(Radius of curvature is always positive)
7. Find the radius of curvature at x
2
on the curve
y 4 sin x sin 2 x
The equation of the curve is y 4 sin x sin 2 x
y1 4 cos x 2 cos 2 x y 2 4 sin x 4 sin 2 x At x 2
y1 4 cos
2 cos 2 y1 4.0 2(1) y1 2 Next y2 4 cos
2
4.sin
y 2 4.1 4.0 y 2 4. Radius of curvature is (1 y12 ) y2
3
(1 2 2 ) 4 5 5 4
3
2
2
8. Show that the radius of curvature at any point on the cycloid x a( sin ), y a(1 cos ) is 4a cos . 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
258
The given equation of the curve is x a( sin )
y a(1 cos )
;
x' a(1 cos )
;
y ' a sin
x" a sin
;
y" a cos
Radius of curvature 3
( x'2 y '2 ) 2 x' y" y ' x" 3
[a 2 (1 cos ) 2 a 2 sin 2 ] 2 a (1 cos ).a cos a sin .a sin (a 2 ) 3 [1 2 cos cos 2 sin 2 ] a 2 [cos cos 2 sin 2 ] a 3 [1 2 cos 1] a 2 [cos 1] a[2(1 cos )] [1 cos ]
3
3
2
2
2
3
a 2 2 (1 cos )
[1 cos 2 A 2 cos 2 A] 1
2
a.2 2 (2 cos 2 ) 2 a 2 2 . 2 . cos 4a cos . 2
3
1
2
2
Another method The equation of the curve is
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II x a ( sin )
259 y a (1 cos )
;
dx a(1 cos ) ; d dy dy d dx dx d a sin a(1 cos )
dy a sin d
2 sin . cos 2 2 2 2 cos 2
dy tan . 2 dx
Differentiating
w, r, t, x
d2 y 1 d sec 2 . . 2 2 dx dx 1 1 cos 2 .2 2 a(1 cos ) 2
1
cos .2 2 cos 2 2 2 1 . 4a cos 4 2 2
Radius of curvature dy 2 1 dx d2 y dx 2
3
2
(1 tan 2 ) 2 2 1 4 4 cos 2. 4a cos 4 2 3
(sec 2 ) 2 4a cos 4 2 2 2 4 sec 4a cos 2 2 4a cos . 2 3
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
260
on the curve x a cos3 , y a sin 3 .
9. Find the radius of curvature at any point The equation of the curve is
x a cos3
y a sin 3 .
;
dx a. 3 cos 2 ( sin ) d d 2x 3a cos 2 . cos sin 2 cos . sin 2 d
3a cos cos 2 2 sin 2
dy a.3 sin 2 . cos d
d2y 3a sin 2 sin cos .2 sin . cos 2 d
3a sin sin 2 2 cos 2
Radius of curvature
x' y' 2
2 32
x' y" y ' x"
9a cos . sin 9a sin . cos . sin .3a sin sin 2 cos 3a sin . cos .3a cos cos 4
3a cos 2
4
2
2
4
2
4
2
32
2
2
2 sin 2
9a 2 cos 2 .sin 2 cos 2 sin 2 3 2 2 2 2 2 2 2 9a sin .cos sin 2cos cos 2sin 2
3 a 2
2
cos 2 .sin 2
32
32 a 2 cos 2 .sin 2 cos 2 sin 2
32 a sin 2 . cos 2
12
3a sin . cos 10. Show that the radius of curvature at any point on the curve x acos sin ; y asin cos is a
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
261
The given equation of the curve is x acos sin ; y asin cos
dx a sin cos sin d
d 2x a sin cos d 2 dy acos sin cos d
a sin
d2y a . cos sin d 2 Radium of curvature 3
( x'2 y '2 ) 2 x' y" y ' x"
a
cos 2 2 a 2 2 sin 2 a cos .a cos sin a sin .a sin cos 2
32
2
a cos
sin 2 2 a cos 2 cos sin sin 2 sin . cos 2
2
a 3 3 a 2 2 cos 2 sin 2
32
2
a
11. Find the radius of curvature at at 2 ,2at on the parabola y 2 4ax The equation of the curve is y 2 4ax In parametric co-ordinates x at 2
;
y 2at
x' 2at
;
y' 2a
x" 2a
;
y" 0
Radius of curvature
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
x' y'
2 32
2
x' y" y ' x"
2at
2a 2at.0 2a.2a
2 32
2
4a t
1 4a 2
2
2
32
32 3 2a t 2 1
4a 2
8a t 2 1 4a 2
32
2at 2 1
32
12. Find the radius of curvature at any point on the curve
x a log tan ; y a sec . 4 2 x a log tan ; y a sec 4 2 x' a.
1 .sec 2 . 4 2 2 tan 4 2 1
cos 1 4 2 . x' a. 2 sin cos 2 4 2 4 2 x'
a sin 2 4 2
x'
a sin 2
x'
a cos
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
262
MATHEMATICS-II
263
x' a sec x" a sec . tan Next, y' a sec . tan
y" a sec .sec 2 tan .sec . tan
y" a sec sec 2 tan 2
Radius of curvature
x' y'
2 32
2
x' y" y ' x"
a sec a sec . tan a sec .a sec sec tan a sec . tan .a sec . tan a sec 1 tan a sec a sec sec tan a sec . tan .a sec . tan a sec 1 tan 2
2
2
2
4
2
2
2
2
32
2
2
2
2
2
2
2
32
2
2
3
2
2
a sec a sec . tan a sec2 . tan 2 2
a
2
4
2
sec2 .sec2 a 2 sec4
2
3
2
2
2
a 2 sec4 2 1
a sec2 13. Show that radius of curvature at a,0 on the curve xy
2
a 3 x 3 is 3a 2
The equation of the curve is
xy 2 a3 x3 x.2 y 2 xy
dy y 2 .1 3x 2 dx
dy 3x 2 y 2 dx
dy 3x 2 y 2 1 dx 2 xy
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
264
At P (a, 0)
dy 3a 2 0 dx 2a.0
dy dx
dx 1 0 dy
1 , dx dy
2 xy 3x 2 y 2
Differentiating w.r.t.y, 2
d x dy 2
3x
2
dx dx y 2 2 x 2 y 2 xy 3x 2 y dy dy 2 2 2 3x y
At P (a, 0)
d 2 x 3a 2 0 2a 2 y.0 2a.0 2 dy 2 3a 2 0
6a 3 9a 4
2 3a
Radius of curvature dx 2 1 dy d 2x dy 2
32
1 03 2 2 3a
3a . 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
265
14. Find the radius of curvature at (–2, 0) on curve y 2 x3 8 The equation of the curve is
y 2 x3 8 2y
dy 3x 2 dx
dy 3x 2 1 dx 2 y At P(–2, 0)
dy 3 2 dx 2.0
2
dy dx
dx 1 0 dy
1
dx 2 y dy 3x 2
Differentiating w.r.t. y 2
d x dy 2
3x 2 .2 2 y.6 x.
dx dy
9x4
At P (–2, 0) d 2 x 6 2 0 4 dy 2 9 2 2
24 9 16
1 6
The radius of curvature
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II dx 2 1 dy d 2x dy
1 0
266
32
32
1 6
6
15. Show that the radius of curvature at (a, 0) on the curve xy 2 a 2 a x is
a 2
The equation of the curve is
xy 2 a 2 a x Differentiating w.rt.x x.2 y
2 xy
dy y 2 .1 a 2 .1 dx
dy y2 a2 dx
dy y2 a2 1 dx 2 xy At (a, 0)
dy 0 a 2 dx 2 xy
dy dx
dx 1 0 dy
1 ,
dx 2 xy 2 dy y a 2
Differentiating w.r.t. y,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
2
d x dy 2
y
2
267
dx a 2 2 x 2 y 2 xy.2 y dy 2 y2 a2
At P (a, 0)
d 2 x 0 a 2 2a 0 0 2 dy 2 o a2
d 2 x 2a 3 4 dy 2 a d 2x 2 2 dy a The radius of curvature at P (a, 0) is dx 2 1 dy d 2x dy 2
32
1 03 2 2 a
a 2
Self Assessment Problems V
a a 1. Find the radius of curvature at , on the curve 4 4
x y a
3a 3a 2. Find the radius of curvature at , on the curve x 3 y 3 3axy 2 2 3. Show that the radius of curvature at any point on the curve x 3a cos a cos 3 , y 3a sin a sin 3 is 3a sin
4. Find at ‘t’ on the curve x 6t 2 3t 4 , y 8t 3 5. Find at ' ' on the curve x a logsec tan , y a sec
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
268
5.8. Radius of curvature in Polar co-ordinates Let O be the pole and OA be the initial line. Let Pr , be any
T
point on the curve r f P(r,
Let the tangent at P make an angle
with the initial line. Let be the angle between the
r
tangent and the radius vector at P. The,
d d 1 1 d d
A
O
We know that, tan r
d dr
i.e. tan
r dr d
Differentiating w.r.t. , we get
d 2r dr dr . r. 2 d d d d sec 2 . 2 d dr d 2
d2r dr r 2 1 tan 2 dd d 2 d dr d
d 2r dr r 2 d 1 r . d d 2 dr 2 d dr d d 2
2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
269
d 2r dr r 2 d d d d 2 2 1 dr . dr dr 2 d d 2
d 2r dr r 2 d d d 2 d dr 2 r d 2
2
d 2r dr r 2 d 1 d 1 d 2 d dr 2 r d 2
2
d 2r dr dr r r 2 d d d d 2 d dr r2 d 2
2
d 2r dr r 2 2 r d d 2 d 2 2 d dr r2 d
Next, we know that 2
2
ds dr 2 r 3 d d
Radius of curvature
ds d ds d . d d
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
270 2
dr d
r 2
2 12
dr r2 d . 2 d 2r dr 2 r 2 r 2 d d
2 dr 2 r d
32
2
d 2r dr r 2 2 r d 2 d
Note: The pedal equation of a curve is given by 1 1 1 dr 2 4 2 p r r d
2
Radius of curvature in pedal co-ordinates
r.
dr dp
Problems 1. Show that the radius of curvature at (r, ) on the cardioid r a1 cos is
2 2ar 3
The equation of the Cardioid is r a1 cos 1
dr a sin d
The pedal equation of the curve is 1 1 1 dr 2 4 2 p r r d
1 1 4 a 2 sin 2 2 r r
2
r 2 a 2 sin 2 r4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
271
a 2 1 cos a 2 sin r4
a 2 1 2 cos cos 2 a 2 sin 2 r4
a2 1 2 cos 1 r4
2
a2 4 21 cos r a4 r 4 .2. r a 1 2a p2 r3
p2
r3 2a
p
r3 2 2 2a
This is the pedal equation of the given curve differentiating w.r.t. r
dp 1 3 12 . .r dr 2a 2 Radius of Curvature
r.
dr dp
r.
2 2. a 3 r
2 2ar 3
Another Method The equation of the cardioid is r a1 cos
dr a sin d
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
272
d 2r a cos d 2 Radius of curvature 32
2 dr 2 r d 2 d 2r dr 2 r 2 r 2 d d
a 1 cos a sin 2
2
2
32
2
a 2 1 cos 2a 2 sin 2 a1 cos .a cos 2
a 1 2 cos cos a 2
2
a 1 2 cos cos sin a 1 3 cos 2cos sin 3
2
2
sin 2 a 2 1 2 cos cos 2 2 sin 2 cos cos 2 2
32
2
2
32
2
a21 cos 31 cos
32
12
a.23 2 r . 3 a
a.2 2 r . 3 a 2 3
. 2ar 2. Find the radius of curvature at any point on the curve r 2 a cos 2 The equation of the curve is r 2 a 2 cos 2
Diff, 2r
dr a 2 . sin 2 .2 d
Diff,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
273 2
r
d 2 r dr 2 a .2 cos 2 d 2 d
d 2r dr r 2 2r 2 d d
2
Radius of curvature
2 dr 2 r d
32
2
d 2r dr r 2 r d 2 d 2
32
2 dr 2 r d 2 2 dr dr 2 2 r 2 2r d d 32
2 dr 2 r d 2 dr 3r 2 d
1 a 4 sin 2 2 r 2 3 r2
12
1 4 r a 4 sin 2 2 3r
1 4 a cos 2 2 a 4 sin 2 2 3r
12 a2 cos 2 2 sin 2 2 3r
12
12
a2 3r
3. Find the radius of curvature at any point on the parabola
2a 1 cos . r
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
274
The equation of the parabola is
2a 1 cos r
Taking log, log 2a log r log1 cos
Diff, 1 dr 1 sin . r d 1 cos
dr r sin d 1 cos
The p–r equation of the curve is, 1 1 1 dr 2 4 2 p r r d
2
1 1 r 2 sin 2 . r 2 r 4 1 cos 2
2 1 cos sin 2 2 r 2 1 cos 21 cos 2 2 r 1 cos
2 r . r 2 2a
1 1 2 ar p
p 2 ar p a. r Diff w.r.t.r
dp 1 a. dr 2 r Radius of curvature FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
r.
275
dr 2 r r. dp a
2 32 .r a
Self Assessment Problems VI 1. Find the radius of the curvature at any point on the curve r a cos 2. Find the radius of curvature at any point on the curve r 2 a 2 sin 2
Answers 5.9. Self Assessment Problems – I
1. u log x 2 y 2 z 2
1 u 2 .2 x x x y 2 z 2
u 1 2 .2 y y x y 2 z 2 u 1 2 .2 z z x y 2 z 2
u u u 2x y z x y z x 2 y 2 z 2
2. r 2 x a y b z c 2
2
2
Differentiating partially w.r.t. x, 2r.
r 2x a x
r x a x r
Differentiating again partially w.r.t. x,
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
r x 2 2
r x 2 2
276
r.1 x a
r x
r2 r x a .
x a r
r2
2 x r 2 x a x 2 r3
2
Similarly,
2r r 2 y a y 2 r3
2
2 r r 2 z a z 2 r3
2
2u 2u 2u r 2 x a r 2 y b r 2 z c 2 2 2 x y z r3 2
3r x a y b z c r3 2
3r 2 r 2 r3
2r 2 r3
2 r
3. v 1 2 xy y 2
1 2
2
2
2
2
1
Differentiating partially w.r.t.x, v 1 1 2 xy y 2 x 2
x
2 y 3 2
v xy 1 2 xy y 2 x
3 2
2
Differentiating (1) partially w.r.t.y, FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
277
v 1 1 2 xy y 2 y 2
v 1 2 xy y 2 y
y
2 x 2 y 3 2
x y 3 2
v 1 2 xy y 2 y
xy y 3 3 2
2
(2) – (3);
x
v v y 1 2 xy y 2 x y
xy xy y 3 2
2
v 3 .y 2 y 2 .v 3 4. u x 2 y z y 2 z x z 2 x y u 2 x y z y 2 z 2 x
u x 2 2 yz x z 2 y u x 2 y 2 2 x x y z
u u u 2x y z yz x z x y y 2 z 2 x 2 z 2 x 2 y 2 x y z
2xy xz yz xy zx yz
= 2.0 =0 5. u x y
u x y . log x y 2u 1 x y . log x . yx y1 xy x
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
278
2u x y1 1 y log x 1 xy Next,
u y.x y 1 x
2u y.x y1. log x x y1 .1 yx 2u x y1 y log x 1 2 yx (1) & (2)
2u 2u xy yx
Self Assessment problems III x2 y 2 1. u tan 1 x y
tan u
x2 y2 x y
R.H.S is a homogeneous function of degree n=2–1=1
f tan u
By Euler’s theorem,
x
f f y nf x y
x
tan u y tan u 1. tan u x y
sec2 u.x
u u tan u sec2 u. y. x y sec2 u
sin u cos 2 u cos u 1
2 sin u . cos u 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
279
1 sin 2u 2 x2 y 2 2. u log x y
eu
x2 y2 x y
R.H.S is homogeneous function of degree
f eu
n = 2 – 1= 1 By Euler’s theorem,
x
f f y nf x y
x
u u e y e 1.eu x y
e u .x
u u u e . y. eu x y
eu , x
f f y 1 x y
x y 3. u sin 1 tan 1 x y u v 1
x y Where v sin 1 2 and tan 1 3 x y
sin
x y
R.H.S is a homogeneous function of degree
n 1 1 0
f sin
By Euler’s theorem,
x
f f y nf x y
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
x
280
sin y sin 0. f x y
cos .x
v v cos . y 0 4 x y
Next, 3 tan
y x
R.H.S is a homogeneous function of degree
f tan
n=1–1=0 By Euler’s theorem,
x
f f y nf x y
x
tan y tan 0. f x y
sec2 .x
sec2 . y 0 x y
sec2 ; x
f f y 0 5 x y
(4) + (5); x
v v y 0 x y
x
f f y 0 x y
u v
Self Assessment problems III 1. u x 2 y 3 ;
x 1 t; y 1 t
dx dy 1; 1 dt dt du dx dy 2 xy 3 . x .3 y 2 . dt dt dt
21 t 1 t .1 31 t 1 t . 1 3
2
2
1 t 1 t 1 t .2 31 t 1 t 2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
1 t 5t
281
1 t 2 2 4t 2t 2 3 3t 2 2
2
4t 1
5t 2 4t 1 5t 4 4t 3 t 2 5t 4 4t 3 6t 2 4t 1
2. u
x y ; y x
x et ; y t
dx dy et ; 1 dt dt du 1 dx 1 dx 1 dy 1 dy . y 2 . x. 2 . dt y dt x dt y dt x dt
t t et 1 1 t .e 2t .e 2 .1 t .1 e e t t
et t et 1 t et t 2 et te 2t t 3 e 2t t 2 t 2 et du t 2 te 2t e 2t t 3 dt t 2 e 2t 3. u xyz ;
x t;
y t;
z et
dx dy 1 dz 1; ; et dt dt 2 t dt du dx dy dz yz. xz xy dt dt dt dt
t .et .1 te t . t .et
1 2 t
t t .et
t t e t t et 2
3 t et t 2 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
282
4. u x 2 y 2 ;
x t 3; y t t 2
dx 3t 2 ; dt
dy 1 2t dt
du dx dy 2 x. 2 y dt dt dt
2t 3 .3t 2 2 t t 2 1 2t
6t 5 2 t 2t 2 t 2 2t 3
6t 5 2t 6t 2 4t 3 du 6t 5 4t 3 6t 2 2t dt
5. u x 2 y 3 ;
x 1 t;
y 1 t
dx 1 dy 1 ; dt 2 t dt 2 t du dx dy 2 xy 3 x 3 .3 y 2 . dt dt dt
3
2 1 t 1 t .
2 2 1 1 t .3 1 t . 2 t 2 t
1
1 t 1 t 21 t 31 t 1 t 2 t 2
1 t 2 4
t 2t 3 3t
2 t
du 1 t 5t 4 t 1 dt 2 t
Self Assessment Problems IV 1. ax 2 2hxy by 2 1 Let f x, y ax 2 2hxy by 2 1
f x 2ax 2hy
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
283
f y 2hx 2by f dy x dx fy
dy 2ax 2hy dx 2hx 2by
ax hy dy hx by dx 2. sin x
tan y
tan y
sin x
Let f x, y sin x
tan y
f x tan y sin x
tan y 1
f y sin x
tan y
tan y
sin x
.cos x tan y
sin x
.logtan y .cos x
.logsin x .sec 2 y sin x.tan y
sin x 1
.sec 2 y
f dy x dx fy
dy cos x tan y.sin x tan y . log tan y tan y sin x 1 2 dx sec y sin x . log sin x sin xtan y
tan y 1
x2 y2 1 a2 b2
3. u sin x y ; 2
2
sin x
du cos x 2 y 2 dx
2 x 2 y. dy dx
b 2 x cos x y 2 x 2 y. 2 a y
2
2
2x . cos x 2 y 2 . a 2 b 2 2 a
2 x 2 y dy . 0 a b 2 dx
dy b2 x 2 dx a y
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
284
Self Assessment Problems – V 1. The equation of the curve is
2 x
1
x y a
dy 0 2 y dx .
y dy dx x
d2y dx 2
1 dy 1 x . . y. 2 y dx 2 x x
a a At P , , 4 4 a dy 4 1 dx a 4
a 1 a 1 . 1 . 2 a a 2 2 2 2 d2y 2 2 a dx 4 1 1 2 2 a 4
4 a
Radius of curvature
1 y
2 32 1
y2
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
285
1 13 2 4 a
2 2a 4
a 2
2. The equation of the curve is x 3 y 3 3axy
3x 2 3 y 2 .
dy dy 3a x. y dx dx
dy 2 y ax ay x 2 dx
dy ay x 2 dx y 2 ax
2
d y dx 2
y
2
dy ax a 2 x ay x 2 dx 2 2 y ax
2 y dy a dx
3a 3a At P , , 2 2 3a a2 9 dy 4 1 22 dx a 3a 9 a. 4 2 a.
9a 2 3a 3a 3a a 2 3a 2. 1 a a . a 2 . a . 9 2 2 2 2 4 2 d y 4 2 2 dx a 3a 9 a 2 4 3a 2 3a 2 4a 4a 4 4 2 3a 2 4 FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II 6a 3
286
16 9a 4
32 3a
Radius of curvature
1 y
2 32 1
y2
1 13 2 3a 32 2 2 3a 32
3 2a 16
3. The equation of the curve is x 3a cos a cos 3 ;
y 3a sin a sin 3
x' 3a sin 3a sin 3 ;
y ' 3a cos 3a cos 3
x" 3a cos 9a cos 3 ;
y" 3a sin 9a sin 3
Radius of curvature
x' y'
2 32
2
x' y" y ' x" 32
3a sin 3asin3 2 3a cos 3a cos 3 2 3a sin 3a sin 3 3a sin 9a sin 3 3a cos 3a cos 3 3a cos 9a cos 3
9a sin
sin 2 3 2 sin .sin 3 cos 2 cos 2 3 2 cos . cos 3 9a 2 sin 2 27a 2 sin .sin 3 9a 2 sin .sin 3 27a 2 sin 3 3
2
32
2
9a 2 cos 2 27a 2 cos cos 3 9a 2 cos . cos 3 27a 2 cos 3 3
9a 2 3a1 1 2cos 3 cos sin 3 .sin 9a 2 27a 2 36a 2 cos 3 . cos sin 3 .sin
27a 2 2 2 cos3 9a 2 4 4 cos3
32
32
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
287
3a21 cos 2 2 41 cios 2 3
3a 3 2 12 2 .1 cos 2 4
3a 2 sin 2 2
3a 2 sin 2
12
3a sin 4. The equation of the curve is x 6t 2 3t 4 ;
y 8t 3
x' 12t 12t 3 ;
y ' 24t 2
x" 12 36t 2 ;
y" 48t
Radius of curvature
x' y'
2 32
2
x' y" y ' x"
12t 12t 24t
32 2 2
3 2
12t 12t .48t 24t .12 36t 3
2
2
144t 1 t 4t 2 2
2
4
32
1 t
24 12t 2 2 1 t 2 1 3t 2
12 t 24 12t 2 2t 2 2
2
32
2
2
1 3t 2
12 12 12 t 3 1 t 2 24 12t 2 1 t 2
6t 1 t 2
3
2
5. The equation of the curve is x a logsec tan ;
x' a.
1 . sec . tan sec2 sec tan
y a sec
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
x'
288
a sec sec tan sec tan
x' a sec x" a sec tan y' a sec tan
y" a sec . sec2 tan . sec . tan
y" a sec sec2 tan 2
Radius of curvature
x' y' 2
2 32
x' y" y ' x"
a
sec2 a 2 sec2 . tan2 a sec .a sec sec2 tan2 a 2 sec2 . tan2 32
2
a
sec2 1 tan2 2 4 a sec a 2 sec2 tan2 a 2 sec2 tan2
a
2
2
sec2 . sec2 a 2 sec4
32
32
a 3 sec 6 2 4 a sec
a sec2
Self Assessment Problems – VI 1. The equation of the curve is r a cos dr a sin d
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
289
d 2r a cos d 2 Radius of curvature 32
2 dr 2 r d 2 d 2r dr 2 r 2 r 2 d d
a
cos 2 a 2 sin 2 2 2 a cos 2a 2 sin 2 a cos .a cos 32
2
a cos sin 2a cos sin 2
2
2
a3 2a 2
a 2
32
2
2
2
2. The equation of the curve is r 2 a 2 sin 2
Taking log,
2 log r 2 log a log sin 2 Diff, 1 dr 1 2. . 0 . cos 2 .2 r d sin 2 dr r cot 2 d
The p – r equation of the curve is 1 1 1 dr 2 4 2 p r r d
2
1 1 2 .r cot 2 2 r2 r4
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
MATHEMATICS-II
1 1 2 cot 2 2 2 r r
1 cot 2 2 r2
cos ec 2 2 r2
1 1 2 2 2 p r sin 2
p 2 r 2 sin 2 2 p r sin 2
r.
r2 a2
p
r3 a2
Differentiating w.r.t. r. dp 1 .3r 2 dr a
Radius of curvature
r.
dr dp
r.
a2 a2 . 3r 2 3r
------------------------------------------THE END---------------------------------------------------
FOR MORE DETAILS VISIT US ON WWW.IMTSINSTITUTE.COM OR CALL ON +91-9999554621
290
MATHEMATI CSI I
Publ i s he dby
I ns t i t ut eo fMa na g e me nt& Te c hni c a lSt udi e s Addr e s s:E4 1 , Se c t o r 3 , No i da( U. P) www. i mt s i ns t i t ut e . c o m